RSL: A PARALLEL RUNTIME SYSTEM LIBRARY FOR
REGIONAL ATMOSPHERIC MODELS WITH NESTING

JOHN G. MICHALAKES*

Abstract. RSL is a parallel runtime system library developed at Argonne National
Laboratory that is tailored to regular-grid atmospheric models with mesh refinement
in the form of two-way interacting nested grids. RSL provides high-level stencil and
interdomain communication, irregular domain decomposition, automatic local/global
index translation, distributed I/O, and dynamic load balancing. RSL was used with
Fortran90 to parallelize a well-known and widely used regional weather model, the Penn

State/NCAR Mesoscale Model.

Key words. Weather modeling, parallel computing, mesh refinement, dynamic
load balancing.

1. Introduction. Models of the earth’s atmosphere were among the
first applications for supercomputers and continue to push the limits of
available resources today [3]. Dynamic models of the atmosphere are used
for forecasting and climate prediction. Such models may be categorized
as global and regional. Global models provide relatively low-resolution
predictive capabilities and are crucial to providing large-scale long-range
simulations. Regional models provide higher (and more costly) resolu-
tion over a limited area for modeling effects of complex terrain, simulat-
ing high-gradient features such a fronts, and “downscaling” — generating
high-resolution input for other simulations such as atmospheric chemistry
models.

The application of adaptive mesh refinement to regional weather mod-
els is an area of active research. The problem for weather models is the
representation of small-scale features (clouds, complex terrain) in large-
scale atmospheric flows while conserving computation [2]. The solution is
nesting — the ability to create or delete finer subgrids in a background
mesh to obtain a given level of accuracy with a minimum number of grid
points. The Penn State NCAR Mesoscale Model (MMS5), for example, uses
an approach involving quasi-uniform grids [8]; that is, the model domain
1s divided into tiles, which are then further divided as necessary to provide
higher resolution, preserving the alignment and orientation of grid points.
The realization of “adaptive” mesh refinement in MM5 and most other
regional weather models is primitive, however. It is adaptive only in the
sense that the location of nests may be determined a priori and statically
by the person configuring the model run. Nests in NCAR model may also
move over the course of a simulation, but only following a scripted set of
translations, not in response to any dynamically detected increases in local
gradients or error terms as the model runs.

* Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, lllinois 60439.

2 John G. Michalakes

Efficient parallelization involves decomposing the two horizontal di-
mensions of the model domain over processors, implementing communica-
tion between processors, adjusting iteration to compute only over the local
subdomain in each processor’s memory, and load balancing. In the case
of large, preexisting models, parallelization must not hinder understand-
ability, maintainability, and portability of the code. At first, few tools ex-
isted beyond low-level message-passing libraries. Over time, however, many
groups have developed libraries that roll in other necessary functionality:
library-level support for data domain decomposition and computation over
distributed domains [1][9][18], mesh refinement, and load balancing [10][17].
The Runtime System Library [12], was developed at Argonne the course of
a research effort to address load imbalance and nesting in the development
of regional weather models.

In addition to providing higher-level communication constructs, sten-
cil exchanges and broadcast-merges for nesting, RSL offers other advanced
features: pointwise decomposed, irregularly shaped processor subdomains,
dynamic remapping of work to processors for load balancing, and sup-
port for irregularly shaped nests. Earlier concerns that RSL required more
dramatic modifications to existing codes for column callability have been
addressed in the current version, without sacrificing RSL’s unique ability
to efficiently support irregularly shaped processor decomposition.

RSL has been used to parallelize MM5, the fifth-generation Pennsylva-
nia State University /National Center for Atmospheric Research Mesoscale
Model. RSL is also one component of an effort to enable “same-source”
parallelization of large existing atmospheric codes; the other component is
application-specific Fortran source translation software [13]. The combina-
tion hides parallel infrastructure in these codes and allows a single version
of a model source code to run efficiently on diverse computer architectures.

Section 2 describes characteristics of the type of application for which
RSL is targeted. Section 3 discusses parallelization issues and how these
are addressed in RSL. Section 4 presents the MM parallelization as a case
study, with particular emphasis on dynamic load balancing and advanced
nesting options. Section 5 briefly describes source translation and its rela-
tionship to RSL in supporting a same-source approach to parallelization of
regional atmospheric models.

2. Model Characteristics. Finite-difference models of dynamical
systems are widespread in atmospheric and other sciences. The models typ-
ically consist of a two- or three-dimensional gridded domain representing
the model state—velocity, temperature, and pressure, for example. Most
generally, a domain is initialized and then integrated forward over a series of
time steps. Boundary input and model output are performed periodically,
as follows:

Domain definition and initialization.
Loop over time.

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 3

If 1t 1s time, acquire new boundary data.
Advance domain state by one time step.
If 1t 1s time, perform model output.

End loop.

At the beginning of the simulation, the model domain is defined in
terms of its size, shape, and allocation in memory, and the initial state of
the model is input or otherwise obtained. Lateral boundary conditions,
also may be input periodically over the course of the simulation. During
each time step, the state of the model for the next time step is computed
for each grid point by evaluating the state at the point and some stencil of
nearest-neighbor grid points.

X5 = a1 Xiyij +
o Xij1 + e3Xi; + s X4
+ e Xioi

The exact shape and number of points in a stencil depend on the order of
the finite-difference method and on the gridding scheme used. Interpolation
will also involve a stencil.

Accurate resolution of weather phenomena improves with scale-appropriate
resolution. However, as fineness of resolution increases, so does computa-
tional cost because of the added number of grid points and the smaller
time step. Nesting is used to increase resolution over portions of a domain.
Nesting is accomplished by positioning a higher-resolution domain within
a coarser domain and exchanging forcing and feedback data between the
two:

Parent domain definition and initialization.
Nested domain definition and initialization.
Loop over time.
Advance parent domain one time step.
Transfer parent domain state data to force the nest.
Loop over nest time steps.
Advance nested domain one time step.
End loop.
Transfer nested domain state data back to parent domain.

If 1t 1s time, perform model output for both parent and nest.
End loop.

The parent domain advances one time step; then data in the region of the
nest 1s transferred from the parent to the nest. The model iterates over
the smaller nested domain time steps, bringing it forward to the same time
level as the parent. Finally, nested domain data is transferred back onto
the region of the parent domain, and the next time step commences.

Nested domains may themselves have nests, allowing simulations to
reach arbitrarily fine resolutions within the limits of the particular dynam-
ics and physics in the model.

4 John G. Michalakes

3. Parallelization. Parallelizing a model on a distributed-memory
parallel computer involves defining, decomposing, and allocating memory
for the model domains; iteration over decomposed dimensions; local-global
index translation; interprocessor communication; load balancing, nesting;
and I/O. RSL provides support for each of these tasks.

3.1. Domain Definition, Decomposition, and Allocation. Do-
mains are defined by describing their size, shape, and parentage to RSL.
For rectangular domains, size and shape are specified by giving the number
of rows and columns. For irregularly shaped domains, size and shape are
specified by giving the outline of the domain, that is, by listing the coordi-
nates of the vertices of the irregularly shaped domain’s enclosing polygon.
A domain may be any nonzero size provided it is totally enclosed by its
parent domain (in the case of nest), within the limits of physical memory.
A nest is always defined as the child of a parent domain, and parentage
remains fixed for the duration of the nest. Multiple nested domains may
be defined within a parent. There must always be a top-level mother do-
main that is defined first and only once. The mother domain is always
rectangular and has no parent.

Decomposition of a domain maps each grid cell of the domain to a
processor. All domains in a model are defined over the same set of proces-
sors. Viewed another way, each processor has a piece of every domain in
the model. RSL automatically decomposes domains when they are defined
or remapped. RSL’s default algorithm divides the domains into partitions
with the number of points as close to equal as possible. Each point of the
domain can be allocated independently, allowing irregularly shaped pro-
cessor subdomains. Domains may be redecomposed at any point during a
run. The user may specify alternative decomposition algorithms.

Allocation pertains not to the domain itself but rather to the two- and
three-dimensional arrays that store the state and intermediate variables
used in the model. For a given decomposition, the arrays associated with a
domain require a certain amount of memory on each processor. RSL does
not actually allocate the arrays associated with a domain. Rather, it makes
the size information available to the program. This size information may
be used to allocate memory dynamically or simply to provide a means for
checking that static sizes are large enough for a decomposition.

3.2. Local Iteration and Computation. Since a processor com-
putes only the points that are stored locally, a mechanism is needed for
keeping track of a processor’s local allocation in the parallel code. RSL
assumes the responsibility for keeping track of the points that are local
on each processor and for directing iteration over those points. A number
of mechanisms are provided. RSL may actually control the iteration by
applying model routines that the user provides as functional pointers, or
1t may simply make the partition information available to control iteration
that is specified explicitly in the user program. Macros are provided to

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 5

facilitate the expression of decomposed loops using RSL. The macros may
be programmed manually or generated automatically by using a special
purpose preprocessor or precompiler, such as the Fortran Loop and Index

Converter (FLIC) [13].

3.3. Local and Logical Index Correspondence. Under the single-
address space memory model, the indices of a point in the logical domain
are identical to its array indices, so that the indices may be used inter-
changeably. Decomposition and shrinking of local data structures on pro-
cessors break this relationship: the index of a point in a local processor’s
memory is almost never the logical index of the point in the global domain.
Therefore, the relationship between the local array indices and logical co-
ordinates must be explicitly established and maintained.

RSL automatically computes and makes available to the program both
sets of indices. The indices in local data structures are used whenever a
local array is referenced in the code. No assumptions can be made by the
program about the actual value of these local indices except that a point
¢ 1s always adjacent to the points i — 1 and ¢+ 1 in a given dimension. A
corresponding set of global indices are used for determining the position of
a point within the logical domain, for example, when testing for proximity
with a boundary.

3.4. Interprocessor Communication. Model computations that
involve data from neighboring cells or from cells that exist on another do-
main will require communication if the cells reside on a different processor.
To avoid complicated, error-prone, and potentially less efficient message-
passing code in the model, RSL provides high-level communication mecha-
nisms for handling the types of data dependency found in finite-difference
models with nests. The stencil provides intradomain communication for
finite-differencing and interpolation. The broadcast-merge provides com-
munication for exchanging data between domains for nesting.

Intradomain communication resolves the nearest-neighbor data depen-
dencies associated with finite differencing and horizontal interpolation. The
set of neighboring points that have data needed for a computation is called
a stencil. Under RSL, stencils are defined by specifying the points of the
stencil and the fields (model variables) that should be exchanged on each
of the points. Stencils are used in stencil exchanges: transfers of data from
remotely stored points into extra cells of the local array that have been allo-
cated around the partition. This padding is known as the “halo” or “ghost”
region of an array. RSL automatically determines the size and shape of
the ghost region for each defined stencil. During a stencil exchange, the
needed data 1s automatically buffered on the sender and unbuffered on the
receiver; hence, each stencil exchange involves only one message sent and
one message received for each processor pair in the exchange, minimizing
the latency cost of the transfer.

6 John G. Michalakes

——

Bi di rectional RSL
communi cati on streans

parent donmin
mesh poi nt

nested domain
mesh points

Fi1Gc. 3.1. A parent domain cell and nine nested domain cells covering the same geogra-
phy at different resolutions. The domains exchange data over communication streams.

Interdomain communication transfers the forcing or feedback data be-
tween a parent domain and a nest. At the time a nest is created, RSL
establishes a link between each parent domain point and the points in the
nest it overlays (Figure 3.1). The links are logical and do not depend upon
on what processor a parent or nested domain point resides. Downward
forcing, from parent to nest, involves a logical broadcast from a parent do-
main point to the nest points that are linked to it. Upward forcing involves
a merge along the same links but in the opposite direction.

Incidentally, RSL permits the ratio of nested to parent points to vary
in each horizontal dimension (but always > 1).

3.5. Load Balancing. Load imbalance occurs when some processors
have more work to do than others. Processors that finish first idle, re-
ducing performance relative to the ideal (in which all processors are kept
busy). The ratio of actual performance to ideal performance is called the
efficiency. Inefficiency from load imbalance may result from (1) an uneven
initial distribution of domain points to processors — especially if the num-
ber of processors does not evenly divide the number of rows or columns;
(2) reduced amounts of work in the boundary points of a domain; (3) dy-
namic conditions in the simulation itself that cause computations to be
performed in some sections of the domain but not in others; or (4) differ-
ent processor speeds or task loads in a heterogeneous or multiuser com-
puting environment. RSL addresses this problem by supporting optimal
decompositions of points to processors, whether or not the decomposition
results in rectangular processor subdomains, and by providing a mecha-
nism for distributing and redistributing domain cells between processors.
Implementing irregularly shaped processor decompositions would be pro-
hibitively complicated in an explicit message-passing code or using High

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 7

Multiple Rectangular Single Irregular
Nests Nest

Fi1G. 3.2. A single irregularly shaped nest fits a feature of interest in a simulation more
closely and without additional code to handle the overlap region that occurs when two
rectangular nests are used.

Performance Fortran, which supports only regular decompositions of work
to processors. However, RSL supports this automatically, transparently,
and with little additional overhead.

3.6. Irregularly Shaped Nests. Models that support nested do-
mains may also allow multiple overlapping nests so that a user can overlay
a number of rectangular nests to closely fit a feature of interest in the sim-
ulation, such as a weather front or a region of complicated terrain. RSL
supports multiple domains on a nest level, but the user can avoid writing
complicated “overlap” code by specifying, instead, an irregularly shaped
nested domain whose shape is a union of rectangles to fit the feature of
interest (Figure 3.2). Control flow of the model is also simplified by elimi-
nating nest overlapping in favor of irregularly shaped domains. The nesting
hierarchy becomes strictly tree-shaped, since only parent-to-nest (not nest-
to-nest) data dependency relationships need to be supported.

3.7. Input and Output. Reading data from a serial data set onto
distributed domains, and outputting distributed data to serial data sets,
requires communication between processors and may also introduce a serial
bottleneck in the parallel code. RSL provides routines that read and write
sequential Fortran data sets, automating the distribution of array elements
to processors on input and the collection of array elements from processors
on output. The parallel implementation of MM5, for example, is able to
read and write serial MMb data sets.

Although RSL manages the complicated task of decomposing serial in-
put and recomposing serial output on the fly, the mechanism employed is
currently “single reader, single writer”; that is, one processor reads and

8 John G. Michalakes

writes the data to files and sends and receives messages to the other pro-
cessors. This aspect of the system is currently nonscalable. However, since
atmospheric codes such as MM5 generate output at a low frequency rela-
tive to the amount of computation that occurs between outputs, the single-
reader, single-writer mechanism has not been a serious problem in the work
with MM5. Implementing a scalable yet portable solution to parallel /O
is an issue that will be addressed in future implementations of RSL.

4. MMS5. The PSU/NCAR MMb5 models limited-area atmospheric
systems ranging from several thousand kilometers to several hundred. It is
a primitive-equations model employing finite differencing for atmospheric
dynamics and has a rich complement of physics parameterization packages:
solar radiation, cumulus, moisture physics, and boundary layer physics [7].
It allows multiple grids for nesting high-resolution computations over re-
gions of interest in a simulation with two-way interaction between nest lev-
els. Four-dimensional data assimilation, in the form of Newtonian nudging,
is provided to allow the incorporation of observational data to refine a fore-
cast at run time. Uses include weather forecasting, regional climate pred-
ication, air quality research, and basic atmospheric research. The model,
which dates back to the late 1970s, is now in its fifth generation and is
maintained in the public domain by NCAR in cooperation with a large,
active, and institutionally diverse user community.

RSL was developed in the course of producing the Massively Parallel
Mesoscale Model (MPMM), a Fortran77-based implementation of MM5 [5][15].
This version employed static memory allocation and a simplified nesting
scheme: there could be only one nest per nest-level. The model con-
figuration needed to be specified at compile time. MPMM also allowed
static load balancing in which a pointwise decomposition of the domain
could be specified once at the beginning of the run. Subsequent effort to
employ advanced features of Fortran90, including modules, derived data
types, and dynamic memory allocation, and recursion, led to development
of MM90 [14], a more modular, flexible, and run-time configurable code
than MPMM. The added flexibility also enabled dynamic load balancing
and irregularly shaped nests.

4.1. Dynamic Load Balancing in MMS5. Overhead for parallel
computation must be kept low relative to the amount of useful computa-
tion. Load imbalance is a source of inefficiency that results in some fraction
of available processing power being lost as lightly loaded processors wait for
more heavily loaded processors to finish. Load imbalance in atmospheric
codes comes from a number of sources [11] [16] [4].

e The number of processors may not evenly divide the data domain.

e Domain boundaries entail less work than the interior.

e Model physics (the parameterization of solar radiation, cloud pro-
cesses, boundary layer physics, etc.) can perform different amounts
of computation depending on the local state of the model in an area

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 9

of the gnd.

e Nesting in multiple-grid models may induce imbalances associated
with the forcing and feedback between domains.

e The processors of the parallel computer may not be uniform in
their computational power.

e Some processors may be running other users’ jobs.

Using mechanisms in the RSL library, MM90 addresses load imbalance

using

e instrumentation to monitor the amount of work performed in each
grid-column of each domain (grid) in the simulation,

e run-time remapping grid-columns to other processors to adjust for
load imbalances that are detected, and

e pointwise irregular decomposition of the two horizontal domain
dimensions to allow for greater precision in mapping work to pro-
cessors than in traditional patchwise decomposition.

Load balancing in MM90 is implemented by identifying the key com-
putational segments of the code and then inserting instrumentation that
measures the cost of computing each column in those segments. The num-
ber of milliseconds to compute column ¢, 5 in a segment i1s accumulated
into the corresponding entry of a two-dimensional array of timers for that
segment. Periodically over the course of the model run, the timer arrays
are collected into a global array of timers for all columns and all segments,
and then this array is redistributed among the processors. A new mapping
is computed using the timing information, and the efficiency of the new
mapping is compared with the efficiency of the old mapping and adopted
if it improves efficiency by more than an epsilon.

Remapping work to processors involves determining which columns
stay and which columns are to be moved to a different processor, packing
up the state data for the columns to be moved into messages, sending the
messages to their destinations, and unpacking them into the data structures
on the destination processor. In addition, it may be necessary to resize the
local data structures on a processor to accommodate an influx of columns
from other processors. Five steps are involved:

e Construct an RSL state vector for the current (old) decomposition.

e Decompose the domain using the newly computed mapping.

e Construct an RSL state vector for the newly installed decomposi-
tion.

e Reallocate memory.

e Remap.

A state vector is an RSL message definition that contains a list of all
the fields that make up the state for a grid-column. RSL will use the state
vector for packing and unpacking messages containing the state data to be
moved. State vectors are described by making a series of calls to the RSL
library, passing information about the size, shape, and location in memory
of the state arrays.

10 John G. Michalakes

A new decomposition is put into effect by passing a function to compute
the new mapping to RSL. The library includes a built-in mapping function,
but it considers only the unweighted number of cells per processors —
the function MM90 provides weights the cells with the timing information
gathered on the most recent series of time steps. The MM90 mapping
function computes the new mapping using the following algorithm:

1. Compute T', the sum of the times for all the columns in the domain.
2. Divide the m dimension of the domain into plat parts, each con-

taining cells whose individual timings sum as closely as possible to
T
plat |
3. Divide each of the partitions from Step 2 along the n dimension

into plon parts, each containing cells whose individual timings sum
as closely as possible to platrm.

Once it has generated the new decomposition, the MM90 mapping
function compares the new mapping with the current one. If the new
decomposition is adopted, MM90 allocates a new domain structure to hold
the remapped data. A new RSL state vector is described, identical to
the previous one except that i1t is associated with the fields in the newly
allocated domain data structure. It remains only to effect the remapping:

CALL RSL_REMAP_STATE(D)

RSL compares the old and new mappings and generates lists of moves
of grid points between processors. From these lists, information in the
first state vector is used to pack columns into messages; the second state
vector 1s used to unpack the messages at their destinations. Finally, the
old structures are deallocated, and the model resumes time stepping under
the new mapping.

Figure 4.2 shows the cost for the series of time steps in a single domain
(no nest) 32-processor run into which an artificial load was induced at hour
2.5. Prior to this, efficiency as measured by the sum of the times for all
points divided by the maximum processor time is 94 percent (Period A). As
a result of the imbalance, efficiency falls to 50 percent (Period B). Model
performance drops sharply until the next load-balancing step at hour 3.5.
The resulting remapping restores efficiency to 96 percent (Period C). The
cost for each remapping is approximately 18 seconds.

The usefulness of MM90 load-balancing is demonstrated in a produc-
tion setting. As part of the U.S. Air Force Global Theater Weather Analysis
and Prediction System (GTWAPS) [19], MM90 produces twice-daily real-
time forecasts at 10-km resolution covering a 1000-km by 1000-km domain
centered over Bosnia. The hardware platform, IBM SP2 with fourteen 66
Mhz Power2 processors, was recently upgraded with the addition of six
120 Mhz Power2-SuperScalar (P2SC) processors, yielding higher aggregate
computing power, but in an unbalanced configuration. The MM90 code
automatically adapted by loading more points onto the faster P2SC nodes
(Figure 4.1), yielding a decrease in execution time from 2.3 seconds per
time step to 2.0 seconds per time step (these are averages over a 36-hour

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 11

BOO -

700 —

600 11

500 i ————

400 ——

lHumber ol cell

200 44— —

Fi1Gc. 4.1. Distribution of 10201 grid-cells over twenty processors of the IBM SP2 at Air
Force Global Weather Central, Offut AFB, Nebraska. The first fourteen are Power2
nodes and the remaining siz nodes have faster Power2 Super-Scalar processors. MM390
automatically adjust the distribution of points to processors to give more work to the
faster nodes.

simulation and include the cost of model initialization, I/O, and the cost
of load-balancing itself). This amounts to a 20-minute savings in the time
to run the forecast, from 2.76 hours to 2.4 hours.

4.2. Irregularly shaped nests. MMb5 allows overlapping of rectan-
gular nests to cover irregularly shaped features such as mountains or evolv-
ing fronts. However, this entails redundant computation in the overlap ar-
eas, 1t requires additional code to maintain a consistent solution between
the overlapping nests, and it adds to the complexity of model control flow,
since there are child-child data relationships at the same level in the nest-
ing hierarchy (compared with the simpler situation where there exist only
parent-child data relationships). Using the RSL library, MM90¢, an exper-
imental version of the MM90 code, permits a single irregularly shaped nest
to take the place of a number of overlapping domains. Adapting the model
for irregularly shaped nests entails modifying boundary tests to allow for
irregularly shaped boundaries, and structuring loops to iterate over irreg-
ularly shaped domains. Since MM90 is already computes over irregularly
shaped processor subdomains for load balancing, only irregular boundary
treatment needed to be added. For a given grid point, RSL provides the
application with information on distance to the nearest boundary. Code
macros such as:

IF (DOT_GRID_INTERIOR(2)) THEN . . .

take the place of boundary tests in the model and expand to use the RSL-

12 John G. Michalakes

2000

4500

4000

3500

3000 el ... l |

2500

2000 -

1500 oo

1000
S0 A B C D E

WO DO 0 DW= — = T

time steps

Fic. 4.2. Series of time steps from an 8-hour run with an artificially induced load
between 2.5 and 4.5 hours. Load balancing takes occurs at 3.5 hours, reducing the
increase in half. The load balancing itself required about 18 seconds each time it was
mnvoked.

supplied irregular boundary information when an irregularly shaped do-
main is specified.

Figure 4.3 shows the decomposition of an irregularly shaped domain
used for a climate simulation [6]. The nest, at 5-km resolution, is irregularly
shaped and fitted over a region of the Alps (map not shown). The irregular
domain requires only 6972 horizontal grid cells, compared with 9592 cells
for the enclosing rectangle, for a savings of roughly 27 percent. Here, RSL’s

ability to specify irregular processor subdomains is especially advantageous
(Figure 4.4).

5. Source Translation. Parallelizing an existing atmospheric model
involves two main tasks: implementing coherency and modifying the code
to operate over separate distributed memories. On distributed memory
message-passing architectures, the first task requires detailed knowledge of
the code and involves a high level of conceptual effort, but the resulting
impact on the source code is small, especially if a library such as RSL
is used. The second task, adapting the numerous loops throughout the
code and correctly handling global/local index translations entails much
more mechanical work involves considerably more mechanical effort, but
is conceptually straightforward. The second task is thus ideally suited to
automation, through the use of source translation tools. To be effective a
source translator must be able to infer the greatest amount of information

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 13

e
-

g] L3 m "y EEIFFHH W M- T

Fic. 4.3. A domain for simulating regional climate. A 5-km resolution irregularly
shaped domain specified over a section of the Alps, within a larger 15-km resolution
rectangular domain covering central Europe.

8 S 10 11

L

Fic. 4.4. Pointwise decomposition over 12 processors of the irregularly shaped Alpine
domain. With RSL’s built-in partitioner, the number of grid-points per processor differs
by no more than 2.

14 John G. Michalakes

about the code with the least amount of input. Tools that perform simple
lexical translation — macro preprocessors, for example — are insufficient,
since they require macros or directives to be inserted throughout the code.
Source translation based on lexical, syntactic, and semantic analysis of a
code, on the other hand, can be virtually directiveless because the transla-
tor — effectively a Fortran compiler front-end — has complete information
on the loop and data structures of the code already, without the need for
directives.

FLIC [13] is a prototype source translator tailored to regular grid atmo-
spheric models and is being used to develop a same-source parallel option
in MM5 for integration into the official NCAR version of the code later
this year. FLIC takes as input the list of defined constants that are used
to declare the decomposed dimensions of model arrays (e.g. “MIX” for the
north/south dimension and “MJX” for the east/west dimension) and from
this correctly infers

e all loops over decomposed dimensions,

e all indices that must be treated as global, and

e all indices that must be treated as local.
Further, the amount of information to direct the translation is small enough
to include on the command line for the tool.

6. Conclusion. The runtime system library RSL has been developed
for implementing existing or new weather models on distributed memory
parallel machines. It supports dynamic, fine-grained parallel decomposition
of multiple nested domains and provides high-level communication routines
for intra- and interdomain communication. Mechanisms provided support
dynamic load balancing and irregularly shaped nests, which can take the
place of multiple overlapping nests. Used in conjunction with source trans-
lation tools, RSL enables implementation of atmospheric models so that
virtually all architecture-specific aspects of the parallelism may be hidden,
permitting one source code to be used on diverse computing architectures.

Acknowledgments. Argonne researchers T. Canfield, K. Dritz, S.
Hammond, I. Foster, J. Mogill, and R. Nanjundiah contributed to the de-
sign and implementation of MPMM and MM90. NCAR researchers J. Dud-
hia, G. Grell, and W. Kuo provided access to and assistance with MMb5.
Y. Kim at lTowa State University, J. Larson and D. Sitsky at Australian
National University, and V. Wayland at Cray Research contributed to the
code development. The U.S. Air Force and the U.S. EPA sponsored the
MPMM and MM90 projects. Argonne National Laboratory (under U.S.
Department of Energy contract W-31-109-Eng-38) and the NASA Numer-
ical Aerospace Simulation Facility are gratefully acknowledged for grants
of machine time and assistance.

REFERENCES

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 15

[1] S. BarLay, W. D. Gropp, L. C. McINNES, aND B. F. SMITH, Efficient Management
of Parallelism in Object-Oriented Numerical Software Libraries, in Modern
Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P.
Langtangen, eds., Birkhauser Press, 1997. To appear (also Argonne National
Laboratory Mathematics and Computer Science Division preprint P634-0197).

[2] N. CHrisocHoIDES, K. DROEGEMEIER, G. Fox, K. MiLLs, AND M. XUE, A Method-
ology for Developing High Performance Computing Models: Storm-Scale
Weather Prediction, in High Performance Computing, 1993: Grand Challenges
in Computer Simulation, The Society for Computer Simulation, 1993.

[3] J. DRAKE aND I. FOSTER, Introduction to the Special Issue on Parallel Computing
in Climate and Weather Modeling, Parallel Computing, 21 (1995), pp. 1539—
1544.

[4] R. Forp, D. SNELLING, AND A. DickiNsoN, Controlling Load Balance, Cache Use
and Vector Length in the Unified Model, in Coming of Age: Proceedings of the
Sixth ECMWEF Workshop on the Use of Parallel Processors in Meteorology,
World Scientific, River Edge, New Jersey, 1995, pp. 195-205.

[5] 1. FosTER AND J. MicHALAKES, MPMM: A Massively Parallel Mesoscale Model,
in Parallel Supercomputing in Atmospheric Science, G.-R. Hoffmann and T.
Kauranne, eds., World Scientific, River Edge, New Jersey, 1993, pp. 354-363.

[6] G. GRELL, A. PFEIFFER, L. SCHADE, AND J. MICHALAKES, Regional and Local
Climate Modeling in Bavaria: Verification with Lightning Statistics, presented
to Sixth Annual MM5 Users Group Workshop, NCAR, Boulder, Colorado,
July 22-24, 1996.

[7] G. A. GreLn, J. DupHia, aAND D. R. STAUFFER, A Description of the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), Tech. Rep.
NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder,
Colorado, June 1994.

[8] W. GroprP AND D. KEYES, Semi-structured refinement and parallel domain de-
composition methods, in Unstructured Scientific Computation on Scale Mul-
tiprocessors, P. Mehrotra, J. Saltz, and R. Voigt, eds., 1990, pp. 187-203.

[9] R. HEMPEL anD H. RiTZDORF, The GMD Communications Library for Grid-
oriented Problems, Tech. Rep. GMD-0589, German National Research Center
for Information Technology, 1991.

[10] S. R. KoHN aND S. B. BADEN, A Parallel Software Infrastructure for Structured
Adaptive Mesh Methods, in Proceedings of Supercomputing 95, IEEE Com-
puter Society Press, 1996.

[11] J. MIcHALAKES, Analysis of Workload and Load Balancing Issues in the NCAR
Community Climate Model, Tech. Rep. ANL/MCS-TM-144, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Illinois,
January 1991.

[12] , Runtime System Library for Parallel Finite Difference Models with Nest-
ing, Tech. Rep. ANL/MCS-TM-197, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, Argonne, Illinois, March 1997.

[13] o , FLIC: A Translator for Same-Source Parallel Implementation of Regular
Grid Applications, Tech. Rep. ANL/MCS-TM-223, Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, Illinois, March
1997.

[14] , MM90: A Scalable Parallel Implementation of the Penn State/NCAR
Mesoscale Model (MM35), to appear in Parallel Computing (also Argonne Na-
tional Laboratory preprint ANL/MCS-P659-0597, 1997).

[15] J. MicHALAKES, T. CANFIELD, R. NANJUNDIAH, S. HAMMOND, AND G. GRELL,
Parallel Implementation, Validation, and Performance of MMS5, in Coming
of Age: Proceedings of the Sixth ECMWEF Workshop on the Use of Parallel
Processors in Meteorology, World Scientific, River Edge, New Jersey, 1995, pp.
266-276.

[16] J. MicHALAKES AND R. NANJUNDIAH, Computational Load in Model Physics of the

16 John G. Michalakes

Parallel NCAR Community Climate Model, Tech. Rep. ANL/MCS-TM-186,
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, January 1994.

[17] M. ParasHaRr AND J. C. BROWNE, Distributed dynamic data-structures for paral-
lel adaptive mesh-refinement, Proceedings of the International Conference for
High Performance Computing, 1995, pp. 22-27.

[18] B. RODRIGUEZ, L. HART, AND T. HENDERSON, A Library for the Portable Paral-
lelization of Operational Weather Forecast Models, in Coming of Age: Pro-
ceedings of the Sixth ECMWEF Workshop on the Use of Parallel Processors in
Meteorology, World Scientific, River Edge, New Jersey, 1995, pp. 148-161.

[19] K.L. SIMUNICH AND S. PINKERTON AND J. MICHALAKES System Implementation
for Global Theater Weather Analysis and Prediction System (GTWAPS), in
proceedings of the 13th International Conference on Interactive Information
and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrol-
ogy. Long Beach, CA, February 1997, pp. 217-220.

