
RSL: A PARALLEL RUNTIME SYSTEM LIBRARY FORREGIONAL ATMOSPHERIC MODELS WITH NESTINGJOHN G. MICHALAKES�Abstract. RSL is a parallel runtime system library developed at Argonne NationalLaboratory that is tailored to regular-grid atmospheric models with mesh re�nementin the form of two-way interacting nested grids. RSL provides high-level stencil andinterdomain communication, irregular domain decomposition, automatic local/globalindex translation, distributed I/O, and dynamic load balancing. RSL was used withFortran90 to parallelize a well-known and widely used regional weather model, the PennState/NCAR Mesoscale Model.Key words. Weather modeling, parallel computing, mesh re�nement, dynamicload balancing.1. Introduction. Models of the earth's atmosphere were among the�rst applications for supercomputers and continue to push the limits ofavailable resources today [3]. Dynamic models of the atmosphere are usedfor forecasting and climate prediction. Such models may be categorizedas global and regional. Global models provide relatively low-resolutionpredictive capabilities and are crucial to providing large-scale long-rangesimulations. Regional models provide higher (and more costly) resolu-tion over a limited area for modeling e�ects of complex terrain, simulat-ing high-gradient features such a fronts, and \downscaling" | generatinghigh-resolution input for other simulations such as atmospheric chemistrymodels.The application of adaptive mesh re�nement to regional weather mod-els is an area of active research. The problem for weather models is therepresentation of small-scale features (clouds, complex terrain) in large-scale atmospheric ows while conserving computation [2]. The solution isnesting | the ability to create or delete �ner subgrids in a backgroundmesh to obtain a given level of accuracy with a minimum number of gridpoints. The Penn State NCAR Mesoscale Model (MM5), for example, usesan approach involving quasi-uniform grids [8]; that is, the model domainis divided into tiles, which are then further divided as necessary to providehigher resolution, preserving the alignment and orientation of grid points.The realization of \adaptive" mesh re�nement in MM5 and most otherregional weather models is primitive, however. It is adaptive only in thesense that the location of nests may be determined a priori and staticallyby the person con�guring the model run. Nests in NCAR model may alsomove over the course of a simulation, but only following a scripted set oftranslations, not in response to any dynamically detected increases in localgradients or error terms as the model runs.� Mathematics and Computer Science Division, Argonne National Laboratory, Ar-gonne, Illinois 60439. 1

2 John G. MichalakesE�cient parallelization involves decomposing the two horizontal di-mensions of the model domain over processors, implementing communica-tion between processors, adjusting iteration to compute only over the localsubdomain in each processor's memory, and load balancing. In the caseof large, preexisting models, parallelization must not hinder understand-ability, maintainability, and portability of the code. At �rst, few tools ex-isted beyond low-level message-passing libraries. Over time, however, manygroups have developed libraries that roll in other necessary functionality:library-level support for data domain decomposition and computation overdistributed domains [1][9][18], mesh re�nement, and load balancing [10][17].The Runtime System Library [12], was developed at Argonne the course ofa research e�ort to address load imbalance and nesting in the developmentof regional weather models.In addition to providing higher-level communication constructs, sten-cil exchanges and broadcast-merges for nesting, RSL o�ers other advancedfeatures: pointwise decomposed, irregularly shaped processor subdomains,dynamic remapping of work to processors for load balancing, and sup-port for irregularly shaped nests. Earlier concerns that RSL required moredramatic modi�cations to existing codes for column callability have beenaddressed in the current version, without sacri�cing RSL's unique abilityto e�ciently support irregularly shaped processor decomposition.RSL has been used to parallelize MM5, the �fth-generation Pennsylva-nia State University/National Center for Atmospheric Research MesoscaleModel. RSL is also one component of an e�ort to enable \same-source"parallelization of large existing atmospheric codes; the other component isapplication-speci�c Fortran source translation software [13]. The combina-tion hides parallel infrastructure in these codes and allows a single versionof a model source code to run e�ciently on diverse computer architectures.Section 2 describes characteristics of the type of application for whichRSL is targeted. Section 3 discusses parallelization issues and how theseare addressed in RSL. Section 4 presents the MM5 parallelization as a casestudy, with particular emphasis on dynamic load balancing and advancednesting options. Section 5 briey describes source translation and its rela-tionship to RSL in supporting a same-source approach to parallelization ofregional atmospheric models.2. Model Characteristics. Finite-di�erence models of dynamicalsystems are widespread in atmospheric and other sciences. The models typ-ically consist of a two- or three-dimensional gridded domain representingthe model state|velocity, temperature, and pressure, for example. Mostgenerally, a domain is initialized and then integrated forward over a series oftime steps. Boundary input and model output are performed periodically,as follows:Domain de�nition and initialization.Loop over time.

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 3If it is time, acquire new boundary data.Advance domain state by one time step.If it is time, perform model output.End loop.At the beginning of the simulation, the model domain is de�ned interms of its size, shape, and allocation in memory, and the initial state ofthe model is input or otherwise obtained. Lateral boundary conditions,also may be input periodically over the course of the simulation. Duringeach time step, the state of the model for the next time step is computedfor each grid point by evaluating the state at the point and some stencil ofnearest-neighbor grid points.Xnewi;j = c1Xi+i;j +c2Xi;j�1 + c3Xi;j + c4Xi;j+1+ c5Xi�i;jThe exact shape and number of points in a stencil depend on the order ofthe �nite-di�erence method and on the gridding scheme used. Interpolationwill also involve a stencil.Accurate resolution of weather phenomena improves with scale-appropriateresolution. However, as �neness of resolution increases, so does computa-tional cost because of the added number of grid points and the smallertime step. Nesting is used to increase resolution over portions of a domain.Nesting is accomplished by positioning a higher-resolution domain withina coarser domain and exchanging forcing and feedback data between thetwo: Parent domain de�nition and initialization.Nested domain de�nition and initialization.Loop over time.Advance parent domain one time step.Transfer parent domain state data to force the nest.Loop over nest time steps.Advance nested domain one time step.End loop.Transfer nested domain state data back to parent domain.If it is time, perform model output for both parent and nest.End loop.The parent domain advances one time step; then data in the region of thenest is transferred from the parent to the nest. The model iterates overthe smaller nested domain time steps, bringing it forward to the same timelevel as the parent. Finally, nested domain data is transferred back ontothe region of the parent domain, and the next time step commences.Nested domains may themselves have nests, allowing simulations toreach arbitrarily �ne resolutions within the limits of the particular dynam-ics and physics in the model.

4 John G. Michalakes3. Parallelization. Parallelizing a model on a distributed-memoryparallel computer involves de�ning, decomposing, and allocating memoryfor the model domains; iteration over decomposed dimensions; local-globalindex translation; interprocessor communication; load balancing, nesting;and I/O. RSL provides support for each of these tasks.3.1. Domain De�nition, Decomposition, and Allocation. Do-mains are de�ned by describing their size, shape, and parentage to RSL.For rectangular domains, size and shape are speci�ed by giving the numberof rows and columns. For irregularly shaped domains, size and shape arespeci�ed by giving the outline of the domain, that is, by listing the coordi-nates of the vertices of the irregularly shaped domain's enclosing polygon.A domain may be any nonzero size provided it is totally enclosed by itsparent domain (in the case of nest), within the limits of physical memory.A nest is always de�ned as the child of a parent domain, and parentageremains �xed for the duration of the nest. Multiple nested domains maybe de�ned within a parent. There must always be a top-level mother do-main that is de�ned �rst and only once. The mother domain is alwaysrectangular and has no parent.Decomposition of a domain maps each grid cell of the domain to aprocessor. All domains in a model are de�ned over the same set of proces-sors. Viewed another way, each processor has a piece of every domain inthe model. RSL automatically decomposes domains when they are de�nedor remapped. RSL's default algorithm divides the domains into partitionswith the number of points as close to equal as possible. Each point of thedomain can be allocated independently, allowing irregularly shaped pro-cessor subdomains. Domains may be redecomposed at any point during arun. The user may specify alternative decomposition algorithms.Allocation pertains not to the domain itself but rather to the two- andthree-dimensional arrays that store the state and intermediate variablesused in the model. For a given decomposition, the arrays associated with adomain require a certain amount of memory on each processor. RSL doesnot actually allocate the arrays associated with a domain. Rather, it makesthe size information available to the program. This size information maybe used to allocate memory dynamically or simply to provide a means forchecking that static sizes are large enough for a decomposition.3.2. Local Iteration and Computation. Since a processor com-putes only the points that are stored locally, a mechanism is needed forkeeping track of a processor's local allocation in the parallel code. RSLassumes the responsibility for keeping track of the points that are localon each processor and for directing iteration over those points. A numberof mechanisms are provided. RSL may actually control the iteration byapplying model routines that the user provides as functional pointers, orit may simply make the partition information available to control iterationthat is speci�ed explicitly in the user program. Macros are provided to

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 5facilitate the expression of decomposed loops using RSL. The macros maybe programmed manually or generated automatically by using a specialpurpose preprocessor or precompiler, such as the Fortran Loop and IndexConverter (FLIC) [13].3.3. Local and Logical Index Correspondence. Under the single-address space memory model, the indices of a point in the logical domainare identical to its array indices, so that the indices may be used inter-changeably. Decomposition and shrinking of local data structures on pro-cessors break this relationship: the index of a point in a local processor'smemory is almost never the logical index of the point in the global domain.Therefore, the relationship between the local array indices and logical co-ordinates must be explicitly established and maintained.RSL automatically computes and makes available to the program bothsets of indices. The indices in local data structures are used whenever alocal array is referenced in the code. No assumptions can be made by theprogram about the actual value of these local indices except that a pointi is always adjacent to the points i � 1 and i + 1 in a given dimension. Acorresponding set of global indices are used for determining the position ofa point within the logical domain, for example, when testing for proximitywith a boundary.3.4. Interprocessor Communication. Model computations thatinvolve data from neighboring cells or from cells that exist on another do-main will require communication if the cells reside on a di�erent processor.To avoid complicated, error-prone, and potentially less e�cient message-passing code in the model, RSL provides high-level communication mecha-nisms for handling the types of data dependency found in �nite-di�erencemodels with nests. The stencil provides intradomain communication for�nite-di�erencing and interpolation. The broadcast-merge provides com-munication for exchanging data between domains for nesting.Intradomain communication resolves the nearest-neighbor data depen-dencies associated with �nite di�erencing and horizontal interpolation. Theset of neighboring points that have data needed for a computation is calleda stencil. Under RSL, stencils are de�ned by specifying the points of thestencil and the �elds (model variables) that should be exchanged on eachof the points. Stencils are used in stencil exchanges: transfers of data fromremotely stored points into extra cells of the local array that have been allo-cated around the partition. This padding is known as the \halo" or \ghost"region of an array. RSL automatically determines the size and shape ofthe ghost region for each de�ned stencil. During a stencil exchange, theneeded data is automatically bu�ered on the sender and unbu�ered on thereceiver; hence, each stencil exchange involves only one message sent andone message received for each processor pair in the exchange, minimizingthe latency cost of the transfer.

6 John G. Michalakes
parent domain
mesh point

nested domain
mesh points

Bidirectional RSL
communication streamsFig. 3.1. A parent domain cell and nine nested domain cells covering the same geogra-phy at di�erent resolutions. The domains exchange data over communication streams.Interdomain communication transfers the forcing or feedback data be-tween a parent domain and a nest. At the time a nest is created, RSLestablishes a link between each parent domain point and the points in thenest it overlays (Figure 3.1). The links are logical and do not depend uponon what processor a parent or nested domain point resides. Downwardforcing, from parent to nest, involves a logical broadcast from a parent do-main point to the nest points that are linked to it. Upward forcing involvesa merge along the same links but in the opposite direction.Incidentally, RSL permits the ratio of nested to parent points to varyin each horizontal dimension (but always � 1).3.5. Load Balancing. Load imbalance occurs when some processorshave more work to do than others. Processors that �nish �rst idle, re-ducing performance relative to the ideal (in which all processors are keptbusy). The ratio of actual performance to ideal performance is called thee�ciency. Ine�ciency from load imbalance may result from (1) an uneveninitial distribution of domain points to processors | especially if the num-ber of processors does not evenly divide the number of rows or columns;(2) reduced amounts of work in the boundary points of a domain; (3) dy-namic conditions in the simulation itself that cause computations to beperformed in some sections of the domain but not in others; or (4) di�er-ent processor speeds or task loads in a heterogeneous or multiuser com-puting environment. RSL addresses this problem by supporting optimaldecompositions of points to processors, whether or not the decompositionresults in rectangular processor subdomains, and by providing a mecha-nism for distributing and redistributing domain cells between processors.Implementing irregularly shaped processor decompositions would be pro-hibitively complicated in an explicit message-passing code or using High

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 7
Multiple Rectangular
 Nests

Single Irregular
 Nest

Fig. 3.2. A single irregularly shaped nest �ts a feature of interest in a simulation moreclosely and without additional code to handle the overlap region that occurs when tworectangular nests are used.Performance Fortran, which supports only regular decompositions of workto processors. However, RSL supports this automatically, transparently,and with little additional overhead.3.6. Irregularly Shaped Nests. Models that support nested do-mains may also allow multiple overlapping nests so that a user can overlaya number of rectangular nests to closely �t a feature of interest in the sim-ulation, such as a weather front or a region of complicated terrain. RSLsupports multiple domains on a nest level, but the user can avoid writingcomplicated \overlap" code by specifying, instead, an irregularly shapednested domain whose shape is a union of rectangles to �t the feature ofinterest (Figure 3.2). Control ow of the model is also simpli�ed by elimi-nating nest overlapping in favor of irregularly shaped domains. The nestinghierarchy becomes strictly tree-shaped, since only parent-to-nest (not nest-to-nest) data dependency relationships need to be supported.3.7. Input and Output. Reading data from a serial data set ontodistributed domains, and outputting distributed data to serial data sets,requires communication between processors and may also introduce a serialbottleneck in the parallel code. RSL provides routines that read and writesequential Fortran data sets, automating the distribution of array elementsto processors on input and the collection of array elements from processorson output. The parallel implementation of MM5, for example, is able toread and write serial MM5 data sets.Although RSL manages the complicated task of decomposing serial in-put and recomposing serial output on the y, the mechanism employed iscurrently \single reader, single writer"; that is, one processor reads and

8 John G. Michalakeswrites the data to �les and sends and receives messages to the other pro-cessors. This aspect of the system is currently nonscalable. However, sinceatmospheric codes such as MM5 generate output at a low frequency rela-tive to the amount of computation that occurs between outputs, the single-reader, single-writer mechanism has not been a serious problem in the workwith MM5. Implementing a scalable yet portable solution to parallel I/Ois an issue that will be addressed in future implementations of RSL.4. MM5. The PSU/NCAR MM5 models limited-area atmosphericsystems ranging from several thousand kilometers to several hundred. It isa primitive-equations model employing �nite di�erencing for atmosphericdynamics and has a rich complement of physics parameterization packages:solar radiation, cumulus, moisture physics, and boundary layer physics [7].It allows multiple grids for nesting high-resolution computations over re-gions of interest in a simulation with two-way interaction between nest lev-els. Four-dimensional data assimilation, in the form of Newtonian nudging,is provided to allow the incorporation of observational data to re�ne a fore-cast at run time. Uses include weather forecasting, regional climate pred-ication, air quality research, and basic atmospheric research. The model,which dates back to the late 1970s, is now in its �fth generation and ismaintained in the public domain by NCAR in cooperation with a large,active, and institutionally diverse user community.RSL was developed in the course of producing the Massively ParallelMesoscale Model (MPMM), a Fortran77-based implementationof MM5 [5][15].This version employed static memory allocation and a simpli�ed nestingscheme: there could be only one nest per nest-level. The model con-�guration needed to be speci�ed at compile time. MPMM also allowedstatic load balancing in which a pointwise decomposition of the domaincould be speci�ed once at the beginning of the run. Subsequent e�ort toemploy advanced features of Fortran90, including modules, derived datatypes, and dynamic memory allocation, and recursion, led to developmentof MM90 [14], a more modular, exible, and run-time con�gurable codethan MPMM. The added exibility also enabled dynamic load balancingand irregularly shaped nests.4.1. Dynamic Load Balancing in MM5. Overhead for parallelcomputation must be kept low relative to the amount of useful computa-tion. Load imbalance is a source of ine�ciency that results in some fractionof available processing power being lost as lightly loaded processors wait formore heavily loaded processors to �nish. Load imbalance in atmosphericcodes comes from a number of sources [11] [16] [4].� The number of processors may not evenly divide the data domain.� Domain boundaries entail less work than the interior.� Model physics (the parameterization of solar radiation, cloud pro-cesses, boundary layer physics, etc.) can perform di�erent amountsof computation depending on the local state of the model in an area

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 9of the grid.� Nesting in multiple-grid models may induce imbalances associatedwith the forcing and feedback between domains.� The processors of the parallel computer may not be uniform intheir computational power.� Some processors may be running other users' jobs.Using mechanisms in the RSL library, MM90 addresses load imbalanceusing � instrumentation to monitor the amount of work performed in eachgrid-column of each domain (grid) in the simulation,� run-time remapping grid-columns to other processors to adjust forload imbalances that are detected, and� pointwise irregular decomposition of the two horizontal domaindimensions to allow for greater precision in mapping work to pro-cessors than in traditional patchwise decomposition.Load balancing in MM90 is implemented by identifying the key com-putational segments of the code and then inserting instrumentation thatmeasures the cost of computing each column in those segments. The num-ber of milliseconds to compute column i; j in a segment is accumulatedinto the corresponding entry of a two-dimensional array of timers for thatsegment. Periodically over the course of the model run, the timer arraysare collected into a global array of timers for all columns and all segments,and then this array is redistributed among the processors. A new mappingis computed using the timing information, and the e�ciency of the newmapping is compared with the e�ciency of the old mapping and adoptedif it improves e�ciency by more than an epsilon.Remapping work to processors involves determining which columnsstay and which columns are to be moved to a di�erent processor, packingup the state data for the columns to be moved into messages, sending themessages to their destinations, and unpacking them into the data structureson the destination processor. In addition, it may be necessary to resize thelocal data structures on a processor to accommodate an inux of columnsfrom other processors. Five steps are involved:� Construct an RSL state vector for the current (old) decomposition.� Decompose the domain using the newly computed mapping.� Construct an RSL state vector for the newly installed decomposi-tion.� Reallocate memory.� Remap.A state vector is an RSL message de�nition that contains a list of allthe �elds that make up the state for a grid-column. RSL will use the statevector for packing and unpacking messages containing the state data to bemoved. State vectors are described by making a series of calls to the RSLlibrary, passing information about the size, shape, and location in memoryof the state arrays.

10 John G. MichalakesA new decomposition is put into e�ect by passing a function to computethe new mapping to RSL. The library includes a built-in mapping function,but it considers only the unweighted number of cells per processors |the function MM90 provides weights the cells with the timing informationgathered on the most recent series of time steps. The MM90 mappingfunction computes the new mapping using the following algorithm:1. Compute T , the sum of the times for all the columns in the domain.2. Divide the m dimension of the domain into plat parts, each con-taining cells whose individual timings sum as closely as possible toTplat .3. Divide each of the partitions from Step 2 along the n dimensioninto plon parts, each containing cells whose individual timings sumas closely as possible to Tplat�plon .Once it has generated the new decomposition, the MM90 mappingfunction compares the new mapping with the current one. If the newdecomposition is adopted, MM90 allocates a new domain structure to holdthe remapped data. A new RSL state vector is described, identical tothe previous one except that it is associated with the �elds in the newlyallocated domain data structure. It remains only to e�ect the remapping:CALL RSL REMAP STATE(D)RSL compares the old and new mappings and generates lists of movesof grid points between processors. From these lists, information in the�rst state vector is used to pack columns into messages; the second statevector is used to unpack the messages at their destinations. Finally, theold structures are deallocated, and the model resumes time stepping underthe new mapping.Figure 4.2 shows the cost for the series of time steps in a single domain(no nest) 32-processor run into which an arti�cial load was induced at hour2.5. Prior to this, e�ciency as measured by the sum of the times for allpoints divided by the maximumprocessor time is 94 percent (Period A). Asa result of the imbalance, e�ciency falls to 50 percent (Period B). Modelperformance drops sharply until the next load-balancing step at hour 3.5.The resulting remapping restores e�ciency to 96 percent (Period C). Thecost for each remapping is approximately 18 seconds.The usefulness of MM90 load-balancing is demonstrated in a produc-tion setting. As part of the U.S. Air Force Global Theater Weather Analysisand Prediction System (GTWAPS) [19], MM90 produces twice-daily real-time forecasts at 10-km resolution covering a 1000-km by 1000-km domaincentered over Bosnia. The hardware platform, IBM SP2 with fourteen 66Mhz Power2 processors, was recently upgraded with the addition of six120 Mhz Power2-SuperScalar (P2SC) processors, yielding higher aggregatecomputing power, but in an unbalanced con�guration. The MM90 codeautomatically adapted by loading more points onto the faster P2SC nodes(Figure 4.1), yielding a decrease in execution time from 2.3 seconds pertime step to 2.0 seconds per time step (these are averages over a 36-hour

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 11
Fig. 4.1. Distribution of 10201 grid-cells over twenty processors of the IBM SP2 at AirForce Global Weather Central, O�ut AFB, Nebraska. The �rst fourteen are Power2nodes and the remaining six nodes have faster Power2 Super-Scalar processors. MM90automatically adjust the distribution of points to processors to give more work to thefaster nodes.simulation and include the cost of model initialization, I/O, and the costof load-balancing itself). This amounts to a 20-minute savings in the timeto run the forecast, from 2.76 hours to 2.4 hours.4.2. Irregularly shaped nests. MM5 allows overlapping of rectan-gular nests to cover irregularly shaped features such as mountains or evolv-ing fronts. However, this entails redundant computation in the overlap ar-eas, it requires additional code to maintain a consistent solution betweenthe overlapping nests, and it adds to the complexity of model control ow,since there are child-child data relationships at the same level in the nest-ing hierarchy (compared with the simpler situation where there exist onlyparent-child data relationships). Using the RSL library, MM90i, an exper-imental version of the MM90 code, permits a single irregularly shaped nestto take the place of a number of overlapping domains. Adapting the modelfor irregularly shaped nests entails modifying boundary tests to allow forirregularly shaped boundaries, and structuring loops to iterate over irreg-ularly shaped domains. Since MM90 is already computes over irregularlyshaped processor subdomains for load balancing, only irregular boundarytreatment needed to be added. For a given grid point, RSL provides theapplication with information on distance to the nearest boundary. Codemacros such as:IF (DOT GRID INTERIOR(2)) THEN . . .take the place of boundary tests in the model and expand to use the RSL-

12 John G. Michalakes
Fig. 4.2. Series of time steps from an 8-hour run with an arti�cially induced loadbetween 2.5 and 4.5 hours. Load balancing takes occurs at 3.5 hours, reducing theincrease in half. The load balancing itself required about 18 seconds each time it wasinvoked.supplied irregular boundary information when an irregularly shaped do-main is speci�ed.Figure 4.3 shows the decomposition of an irregularly shaped domainused for a climate simulation [6]. The nest, at 5-km resolution, is irregularlyshaped and �tted over a region of the Alps (map not shown). The irregulardomain requires only 6972 horizontal grid cells, compared with 9592 cellsfor the enclosing rectangle, for a savings of roughly 27 percent. Here, RSL'sability to specify irregular processor subdomains is especially advantageous(Figure 4.4).5. Source Translation. Parallelizing an existing atmospheric modelinvolves two main tasks: implementing coherency and modifying the codeto operate over separate distributed memories. On distributed memorymessage-passing architectures, the �rst task requires detailed knowledge ofthe code and involves a high level of conceptual e�ort, but the resultingimpact on the source code is small, especially if a library such as RSLis used. The second task, adapting the numerous loops throughout thecode and correctly handling global/local index translations entails muchmore mechanical work involves considerably more mechanical e�ort, butis conceptually straightforward. The second task is thus ideally suited toautomation, through the use of source translation tools. To be e�ective asource translator must be able to infer the greatest amount of information

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 13
Fig. 4.3. A domain for simulating regional climate. A 5-km resolution irregularlyshaped domain speci�ed over a section of the Alps, within a larger 15-km resolutionrectangular domain covering central Europe.
Fig. 4.4. Pointwise decomposition over 12 processors of the irregularly shaped Alpinedomain. With RSL's built-in partitioner, the number of grid-points per processor di�ersby no more than 2.

14 John G. Michalakesabout the code with the least amount of input. Tools that perform simplelexical translation | macro preprocessors, for example | are insu�cient,since they require macros or directives to be inserted throughout the code.Source translation based on lexical, syntactic, and semantic analysis of acode, on the other hand, can be virtually directiveless because the transla-tor | e�ectively a Fortran compiler front-end | has complete informationon the loop and data structures of the code already, without the need fordirectives.FLIC [13] is a prototype source translator tailored to regular grid atmo-spheric models and is being used to develop a same-source parallel optionin MM5 for integration into the o�cial NCAR version of the code laterthis year. FLIC takes as input the list of de�ned constants that are usedto declare the decomposed dimensions of model arrays (e.g. \MIX" for thenorth/south dimension and \MJX" for the east/west dimension) and fromthis correctly infers� all loops over decomposed dimensions,� all indices that must be treated as global, and� all indices that must be treated as local.Further, the amount of information to direct the translation is small enoughto include on the command line for the tool.6. Conclusion. The runtime system library RSL has been developedfor implementing existing or new weather models on distributed memoryparallel machines. It supports dynamic, �ne-grained parallel decompositionof multiple nested domains and provides high-level communication routinesfor intra- and interdomain communication. Mechanisms provided supportdynamic load balancing and irregularly shaped nests, which can take theplace of multiple overlapping nests. Used in conjunction with source trans-lation tools, RSL enables implementation of atmospheric models so thatvirtually all architecture-speci�c aspects of the parallelism may be hidden,permitting one source code to be used on diverse computing architectures.Acknowledgments. Argonne researchers T. Can�eld, K. Dritz, S.Hammond, I. Foster, J. Mogill, and R. Nanjundiah contributed to the de-sign and implementation of MPMM and MM90. NCAR researchers J. Dud-hia, G. Grell, and W. Kuo provided access to and assistance with MM5.Y. Kim at Iowa State University, J. Larson and D. Sitsky at AustralianNational University, and V. Wayland at Cray Research contributed to thecode development. The U.S. Air Force and the U.S. EPA sponsored theMPMM and MM90 projects. Argonne National Laboratory (under U.S.Department of Energy contract W-31-109-Eng-38) and the NASA Numer-ical Aerospace Simulation Facility are gratefully acknowledged for grantsof machine time and assistance.REFERENCES

RSL: A PARALLEL RUNTIME SYSTEM LIBRARY 15[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, E�cient Managementof Parallelism in Object-Oriented Numerical Software Libraries, in ModernSoftware Tools in Scienti�c Computing, E. Arge, A. M. Bruaset, and H. P.Langtangen, eds., Birkhauser Press, 1997. To appear (also Argonne NationalLaboratoryMathematics and Computer Science Division preprint P634-0197).[2] N. Chrisochoides, K. Droegemeier, G. Fox, K. Mills, and M. Xue, A Method-ology for Developing High Performance Computing Models: Storm-ScaleWeather Prediction, in High PerformanceComputing, 1993: Grand Challengesin Computer Simulation, The Society for Computer Simulation, 1993.[3] J. Drake and I. Foster, Introduction to the Special Issue on Parallel Computingin Climate and Weather Modeling, Parallel Computing, 21 (1995), pp. 1539{1544.[4] R. Ford, D. Snelling, and A. Dickinson, Controlling Load Balance, Cache Useand Vector Length in the Uni�edModel, in Coming of Age: Proceedings of theSixth ECMWF Workshop on the Use of Parallel Processors in Meteorology,World Scienti�c, River Edge, New Jersey, 1995, pp. 195-205.[5] I. Foster and J. Michalakes, MPMM: A Massively Parallel Mesoscale Model,in Parallel Supercomputing in Atmospheric Science, G.-R. Ho�mann and T.Kauranne, eds., World Scienti�c, River Edge, New Jersey, 1993, pp. 354-363.[6] G. Grell, A. Pfeiffer, L. Schade, and J. Michalakes, Regional and LocalClimate Modeling in Bavaria: Veri�cation with Lightning Statistics, presentedto Sixth Annual MM5 Users Group Workshop, NCAR, Boulder, Colorado,July 22-24, 1996.[7] G. A. Grell, J. Dudhia, and D. R. Stauffer, A Description of theFifth-Generation Penn State/NCAR Mesoscale Model (MM5), Tech. Rep.NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder,Colorado, June 1994.[8] W. Gropp and D. Keyes, Semi-structured re�nement and parallel domain de-composition methods, in Unstructured Scienti�c Computation on Scale Mul-tiprocessors, P. Mehrotra, J. Saltz, and R. Voigt, eds., 1990, pp. 187-203.[9] R. Hempel and H. Ritzdorf, The GMD Communications Library for Grid-oriented Problems, Tech. Rep. GMD-0589, German National Research Centerfor Information Technology, 1991.[10] S. R. Kohn and S. B. Baden, A Parallel Software Infrastructure for StructuredAdaptive Mesh Methods, in Proceedings of Supercomputing '95, IEEE Com-puter Society Press, 1996.[11] J. Michalakes, Analysis of Workload and Load Balancing Issues in the NCARCommunityClimateModel, Tech. Rep. ANL/MCS-TM-144, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Illinois,January 1991.[12] , Runtime System Library for Parallel Finite Di�erence Models with Nest-ing, Tech. Rep. ANL/MCS-TM-197, Mathematics and Computer Science Di-vision, Argonne National Laboratory, Argonne, Illinois, March 1997.[13] , FLIC: A Translator for Same-Source Parallel Implementation of RegularGrid Applications, Tech. Rep. ANL/MCS-TM-223, Mathematics and Com-puter ScienceDivision, Argonne National Laboratory, Argonne, Illinois,March1997.[14] , MM90: A Scalable Parallel Implementation of the Penn State/NCARMesoscale Model (MM5), to appear in Parallel Computing (also Argonne Na-tional Laboratory preprint ANL/MCS-P659-0597, 1997).[15] J. Michalakes, T. Canfield, R. Nanjundiah, S. Hammond, and G. Grell,Parallel Implementation, Validation, and Performance of MM5, in Comingof Age: Proceedings of the Sixth ECMWF Workshop on the Use of ParallelProcessors in Meteorology,World Scienti�c, River Edge, New Jersey, 1995, pp.266-276.[16] J. Michalakes and R. Nanjundiah, Computational Load in Model Physics of the

16 John G. MichalakesParallel NCAR Community Climate Model, Tech. Rep. ANL/MCS-TM-186,Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, Illinois, January 1994.[17] M. Parashar and J. C. Browne, Distributed dynamic data-structures for paral-lel adaptive mesh-re�nement, Proceedings of the International Conference forHigh Performance Computing, 1995, pp. 22-27.[18] B. Rodriguez, L. Hart, and T. Henderson, A Library for the Portable Paral-lelization of Operational Weather Forecast Models, in Coming of Age: Pro-ceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors inMeteorology, World Scienti�c, River Edge, New Jersey, 1995, pp. 148-161.[19] K.L. Simunich and S. Pinkerton and J. Michalakes System Implementationfor Global Theater Weather Analysis and Prediction System (GTWAPS), inproceedings of the 13th International Conference on Interactive Informationand Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrol-ogy. Long Beach, CA, February 1997, pp. 217-220.

