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Abstract

We present a structured interior-point method for the efficient solution of the op-
timal control problem in model predictive control (MPC). The cost of this approach
is linear in the horizon length, compared with cubic growth for a naive approach. We
use a discrete Riccati recursion to solve the linear equations efficiently at each itera-
tion of the interior-point method, and show that we can expect this recursion to be
numerically stable although it was motivated originally by structural rather than nu-
merical considerations. We demonstrate the effectiveness of our approach by solving
three process control problems.

1 Introduction

Model predictive control (MPC) is an optimal control-based strategy that uses a plant model
to predict the effect of an input profile on the evolving state of the plant. At each step of
MPC, an optimal control problem with Bolza objectives is solved and its optimal input
profile is implemented until the another plant measurement becomes available. The updated
plant information is used to formulate and solve a new optimal control problem-—thereby
providing feedback from the plant to the model—and the process is repeated. This strategy
yields a receding horizon control formulation.

The MPC methodology is appealing to the practitioner because input and state con-
straints can be explicitly accounted for in the controller. A practical disadvantage is its
computational cost, which has tended to limit MPC applications to linear processes with
relatively slow dynamics. For such problems, the optimal control problem to be solved at
each stage of MPC is a convex quadratic program. While robust and efficient software exists
for the solution of unstructured convex quadratic programs, significant improvements can
be made by exploiting the structure of the MPC subproblem.
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When input and state constraints are not present, MPC with an infinite horizon is simply
the well-known linear quadratic regulator problem. Even when constraints are present,
the infinite-horizon MPC problem reduces to a linear quadratic regulator after a certain
number of stages (see [3, 18, 22]) and can therefore be recast as a finite-dimensional quadratic
program. Since this quadratic program can be large, however, it is important that algorithms
be efficient even for long horizons.

Unconstrained linear optimal control problems can be solved by using a discrete Riccati
equation. For this approach, the computational cost grows linearly in the horizon length N.
A different formulation obtained by eliminating the state variables results in an unconstrained
quadratic function whose Hessian is dense, with dimensions that grow linearly in N. The
cost of minimizing this quadratic grows cubically with N, making it uncompetitive with the
Riccati approach. There is a third option, however—an optimization formulation in which
the states are retained as explicit variables and the model equation is retained as a constraint.
The optimality conditions for this formulation reveal that the adjoint variables are simply the
Lagrange multipliers for the model equation and that the problem can be solved by factoring
a matrix whose dimension again grows linearly with N. In this formulation, however, the
matrix is banded, with a bandwidth independent of N, so the cost of the factorization grows
linearly rather than cubically with N. The discrete Riccati equation can be interpreted as a
block factorization scheme for this matrix.

Traditionally, the discrete Riccati equation is obtained by using dynamic programming
to solve the unconstrained linear optimal control problem. The essential idea in dynamic
programming is to work backwards stagewise through the problem. By tackling the opti-
mization problem in stages, one can redice the optimization problem to a series of simpler
subproblems. See Berksekas [2] for further details concerning dynamic programming. In
an analogous manner to dynamic programming, block factorization also exploits the multi-
staged nature of the optimization problem. The key difference is that the block factorization
approach tackles the problem explicitly, whereas dynamic programming tackles the problem
semi-implicitly by using Bellman’s principle of optimality. It is through the explicit formu-
lation that the block factorization approach retains its inherent structure with the addition
of inequality constraints.

When constraints are present, the quadratic program still can be structured in a manner
analogous to the unconstrained problem, so that the cost of solving linear equations associ-
ated with the problem grows linearly with the horizon length N. This observation has been
made by numerous authors, in the context of both active set and interior point methods.
Glad and Jonson [8] and Arnold et al. [1] demonstrate that the factorization of a structured
Lagrangian in an optimal control problem with a Bolza objective for an active set framework
yields a Riccati recursion. Wright [23, 24], Steinbach [21], and Lim et al. [11] investigate the
Bolza control problem in an interior-point framework.

In this paper we present an MPC algorithm in which the optimal control subproblems
are solved by using this structured formulation. Our work differs from earlier contributions
in that the formulation of the optimal control problem is tailored to the MPC application,
the interior-point algorithm is based on Mehrotra’s algorithm [14] (whose practical efficiency



on general linear and quadratic programming problems is well documented), and the linear
system at each interior-point iteration is solved efficiently by a Riccati recursion. We compare
our approach with the alternative of using the model equation to eliminate the states, yielding
a dense quadratic program in the input variables alone. The two approaches are compared
on three large industrial problems.

We now define a few items of notation for use in the remainder of the paper. Given a
function f :[0,00) — [0,00), we write f(J) = O(9) if f(§) < C6 for some positive constant C
and all § in some region of interest (usually d very small or very large). We write f(§) = Q(J)
if there are positive constants Cy and Cy such that €16 < f(§) < €36 for all § in the region
of interest.

We say that a matrix is “positive diagonal” if it is diagonal with positive diagonal el-
ements. The term “nonnegative diagonal” is defined correspondingly. We use SPD as an
abbreviation for “symmetric positive definite” and SPSD as an abbreviation for “symmetric
positive semidefinite.”

2 Model Predictive Control

The fundamental formulation of the linear model predictive controller is the following infinite
dimensional convex quadratic program:

o0

1
min ®(u,x) = 5 Z(:L'{ka + ul Rug + Aul SAuy), (1)
” k=0
subject to the following constraints:
ro = I, Tpy1 = Axp + Bug, (2a)
Duy < d, GAuy, < g, Hzxyp < h, (2b)

where 2, € R”, up, € R™, and Auy, = up—up_1. The vector Z; represents the current estimate
of the state at discrete time j, whereas zj represents the state at k sampling steps along the
future prediction horizon and wj represents the input at this same time. We assume that ()
is an SPSD matrix and that R and S are SPD.

By a suitable adjustment of the origin, the formulation (1), (2) can also account for target
tracking and disturbance rejection [15]. If there is a feasible point for the constraints (2),
the infinite horizon regulator formulation is stabilizing whenever (A, B) is stabilizable and
(A, Q?) is detectable [20].

By expanding Auy, we transform (1),(2) into the following more tractable form:

o0

1
rilixn O(u,x) = 5 Z(xf@xk + u} Ruy, + 221 Muy), (3)
' k=0
subject to the following constraints:
ro = I, Tpy1 = Axp + Bug, (4a)



The original formulation (1), (2) can be recovered from (3), (4) by making the following
substitutions into the second formulation:

A JA?]‘ T AO B
x]%[uj_l}, xk%{wﬂ_l], A%{OO}’ B%[[],
Qe[gg}, Me[_os], R+ R+ S,

D<—{D], Ge[o 0], de[j], H«[H 0].

In the remainder of this section, we address two issues. The first is the replacement of (3),
(4) by an equivalent (or similar) finite-dimensional problem, a step necessary for practical
computation of the solution. The second issue is replacement of the constraints Haxy, < h by
so-called soft constraints. Instead of enforcing these conditions strictly, we add terms to the
objective that penalize violations of these conditions. This technique is a more appropriate
way of dealing with certain constraints from an engineering viewpoint.

2.1 Receding Horizon Regulator Formulation

The key step in reducing (3), (4) to a finite-dimensional problem is the use of a linear control
law to determine wuy, after a certain time horizon, that is,

up = Ky, for all £ > N. (5)

With this added constraint, the states zp, & > N and the inputs ug, £ > N are completely
determined by xy, the state at the end of the prediction horizon.

Two techniques can be used to determine the law (5). The first, due to Rawlings and
Muske [16], sets K = 0 uniformly in (5) and produces an approximate solution to (3), (4).
With this substitution, we have

1 I~ 7~
5 Z(l’g@l‘k + ul Ruy + 221 Muy,) = 5 Z i Quy. (6)
k=N k=N

If A is stable, this sum is equal to (1/2)a%Qzx, where Q is the solution of the matrix
Lyapunov equation B B

Q- ATQA=Q. (7)
If A is unstable, the sum (6) may be infinite, so we impose a stabilizing constraint to derive

any useful information from the solution of the model problem. The Schur decomposition of
A can be used to partition A into its stable and unstable subspaces. If this decomposition is
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where the eigenvalues of T; are contained within the unit circle whereas those of Ty, are
contained on or outside of the unit circle, then the orthogonal columns of U span the stable
(Us) and unstable subspaces (U,) of A [13]. We add the endpoint constraint

Fey=0 (where ' = UT) (8)

to ensure that the unstable modes have vanished by stage N. (Since the input wy is zero for
all & > N, the unstable modes also remain at zero at all subsequent stages.) The evolution
of the stable modes on the infinite horizon can be accounted for by solving the following

Lyapunov equation for @):

Q— ATQA, =Q,
where A, = U, T}, UL

T and replacing the infinite sum with (1/2)z5Qzy, as above.

In the second formulation, discussed by Sznaier and Damborg [22], Chmielewski and
Manousiouthakis [3], and Scokaert and Rawlings [18], the input after stage IV is parameter-
ized with the classical linear quadratic gain K obtained from the solution of the steady-state
Riccati equation. This matrix, used in conjunction with the control law (5), is the solution
to the “unconstrained” version of the problem, in which the inequality constraints (4b) do
not appear. By using (5), the infinite tail of the sum in (3) can be written as

I & I &
5 Z(l’%@l‘k + ugRuk + szMuk) =3 Z(l’%@l‘k + x%]&’TRK:I;k + ngMka).
k=N k=N

This infinite summation can be replaced by the single term (1/2)z§Qxzy, where Q is the
solution of the following discrete algebraic Riccati equation:

Q=Q+ATQA - (ATQB + M)(R+ BTQB) ™ (BTQA+ M™). (9)

In both formulations, the feedback law (5) is valid only if the constraints (4) are satisfied
at all stages, including the stages kK > N. Hence, we would like to implement this law only
after we reach a state xy such that the solution generated by the control law (5) and the
model equation in (4a) at stages k > N satisfies the inequalities (4b) at all such stages. We
define a set X’ of states for which this property holds, as follows:

X ={2r:H(A-BK)x <h, (DK —-G)A~BK)'z <d, foralll>0}.
where K is the optimal unconstrained linear control law obtained from the following equation:
K=—(R+BTQB)™Y(BTQA+ M7"). (10)

If N is chosen so that zx € X, then the following finite-dimensional problem is equivalent!

to (3), (4):

z

1 L 7~
min ®(u,z) = 5 (x} Quk + uf Ruy, + 22} Muy,) + 51'%@1'% (11)

0

o
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!The finite-dimensional problem is also a valid approximation to (3), (4) for K = 0 when the endpoint

constraint Fay = 0 is added to (12) and Q is defined by (7)
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subject to

To = I, xpr1 = Axg + Buy, E=0,1,2,..., (12a)
U = [(l‘k, k > N, (12b)
Duy — Gayp, <d, Haxp < h, k=0,1,2,...,N —1, (12c¢)

where @ is defined in (9).

The set X is difficult to characterize explicitly because it is defined by an infinite number
of conditions. If the components of h and d are strictly positive, however, and the “uncon-
strained” model is stabilizable, we can show that X" contains 0 in its interior. Under these
circumstances, there is an index N, such that

@ X, k< Nu, ar€X, k> N.. (13)

Since N is difficult to determine in practice, we can solve the problem (11),(12) for some
fixed value of N and then check that the states and inputs at stages k& > N continue to
satisfy the inequality constraints at subsequent stages. If not, we increase N and repeat the
process.

A variety of methods guarantee that the constraints are satisfied on the infinite horizon by
checking a finite number of stages & > N. Scokaert and Rawlings [18] propose constructing
an open ball B, contained within the set X', thereby allowing termination of the search when
xy € B, for k > N. The approximation for A tends to be conservative, however, since the
algorithm is motivated by norm-bounding arguments. A more practical method, given by
Gilbert and Tan [6], is to construct an output maximal set. This set provides a priori an
upper bound [ on number of feasible stages & € [N, N + [] necessary to guarantee that all
of the subsequent stages k > [+ N are feasible. The drawback of this approach is that the
algorithm for constructing the maximal sets is not guaranteed to converge for unbounded
feasible regions. A third approach, proposed by Rawlings and Muske [16], is to calculate an
upper bound [ that depends on the state zx. Since this method is also motivated by norm-
bounding arguments, the bound also tends to be conservative. A more complete discussion
of handling constraints on the infinite horizon is given by Meadows et al. [13]. For a compact,
convex set of states, an alternative approach that circumvents having to check for constraint
violations is given by Chmielewski and Manousiouthakis [3]. By examining the extremal
points on the feasible region, they calculate a conservative upper bound on the N required
to guarantee that the solution is feasible on the infinite horizon.

We have assumed to this point that there exists a feasible solution with respect to the
input and endpoint constraints for the optimal control calculation. In the presence of side
constraints (2b), it is no longer true that the constrained regulator stabilizes all possible states
even when the stabilizability assumption is satisfied. When stabilization is not possible, the
problem (3),(4) is an infeasible optimization problem. (In actual operation, an infeasible
solution would signal a process exception condition.)

For the Rawlings-Muske formulation, enforcement of the endpoint constraint (8) often
results in an infeasible optimization problem. Feasibility can often be recovered by increasing



the horizon length N, but when the initial state is not stabilizable, the feasible region will
continue to be empty for all N. The existence of a feasible N can easily be checked by
solving the following linear program [13]:

min elr, (14)

(where e is the vector whose entries are all 1) subject to the constraints

l’k_H:Al'k—l-Buk, kZO,l,Q,...,N—l,
Duk—kaSd, Hl’kgh, kZO,l,Q,...,N—l, (15)
r—Fzny>0, r+ Fay>0.

A positive solution to the linear program indicates that a feasible solution does not exist and
the horizon length N must be increased. If the feasibility check fails for some user supplied
upper bound on the horizon length, then current state is not constrained stabilizable for the
specified regulator.

2.2 Feasibility and Soft Constraints

In the formulation of the MPC problem, some state constraints are imposed by physical
limitations such as valve saturation. Other constraints are less important; they may represent
desired ranges of operation for the plant, for instance. In some situations, no set of inputs
and states for the MPC problem may satisfy all of these constraints. Rather than having the
algorithm declare infeasibility and return without a result, we prefer a solution that enforces
some constraints strictly (“hard constraints”), while relaxing others and replacing them with
penalties on their violation (“soft constraints”).

Scokaert and Rawlings [19] replace the soft constraints with penalty terms in the objec-
tive that are a combination of /; norms and squared /5 norms of the constraint violations.
Assuming for simplicity that all state constraints Hay < h in (12) are softened in this way,
we obtain the following modification to the objective (11):

N-1
1 1 _
min ®(u,x,€) = 5 E (:L'gQ:z;k + ugRuk + szMuk + ezZek) + 2T + 5:1:%@:1;]\7, (16)

U,T,€ o

where the constraint violations € are defined by the following formulae (which replace Hay, <
h):
Hl’k—ék Sh, €L ZO (17)

It is known that when the weighting on the /1 terms is sufficiently large (see, for example,
Fletcher [5]) and when the original problem (11),(12) has a nonempty feasible region, then
local minimizers of problem (11), (12) modified by (16), (17) defined above correspond to
local solutions of the unmodified problem (11), (12). The modified formulation has the

advantage that it can still yield a solution when the original problem (11), (12) is infeasible.
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The lower bound on elements of z needed to ensure that ¢, = 0 (that is, the original
hard constraints Hxp < h are satisfied by the solution) cannot be calculated explicitly
without knowing the solution to the original problem (11), (12), since it depends on the
optimal Lagrange multipliers for this problem. A conservative state-dependent upper bound
for these multipliers can be obtained by exploiting the Lipschitz continuity of the quadratic
program [10]. In practice, it usually is not necessary to guarantee that the soft constraints are
exact. Therefore, approximate values of z are sufficient for reasonable controller performance.

In the remainder of the paper, we work with a general form of the MPC problem, which
contains all the features discussed in this section: finite horizon, endpoint constraints, and
soft constraints. This general form is

N-1
) 1 _

min O(u,x,€) = 5(:1;£ka + ugRuk + szMuk + ezZek) + 2T + J}%QNJ}N, (18)

3, € kZO
subject to

ro = &y, (fixed) (19a)

Th41 = Al’k—I-Buk, kZO,l,...,N—l, (19b)

Duy, — Gz < d, E=0,1,...,N—1, (19¢)

Hl’k—ék S h, k:1,2,...,N, (19(1)

¢ > 0, kE=1,2,..., N, (19e)

Fay = 0 (191)

3 The Interior-Point Method

In this section, we describe our interior-point-based approach for solving the MPC problem
(18), (19). We start with a geneal description of the interior-point method of choice for
linear and convex quadratic programming: Mehrotra’s predictor-corrector algorithm. The
remaining sections describe the specialization of this approach to MPC, including the use of
the Riccati approach to sovle the linear subproblem, handling of endpoint constraints, and
hot starting.

3.1 Mehrotra’s Predictor-Corrector Algorithm

Active set methods have proved to be efficient for solving quadratic programs with general
constraints. The interior-point approach has proved to be an attractive alternative when
the problems are large and convex. In addition, this approach has the advantage that
the system of linear equations to be solved at each iterate has the same dimension and
structure throughout the algorithm, making it possible to exploit any structure inherent
in the problem. Moreover, the most widely used interior-point algorithms do not require
the user to specify a feasible starting point. From a theoretical viewpoint, interior-point



methods exhibit polynomial complexity, in contrast to the exponential complexity of active-
set approaches.

In this section, we sketch an interior-point method for general convex quadratic program-
ming problems and discuss its application to the specific problem (18). A more complete
description is given by Wright [25].

Consider the following convex quadratic program

1
min ¢(w) = §wTQw + cw,  subject to Fuw = ¢, Cw < d, (20)
where () is a positive semidefinite symmetric matrix. Let m denote the number of rows in
C, the inequality constraint coefficient matrix. The Karush-Kuhn-Tucker (KKT) conditions
state that the vector w* solves this problem if and only if there are vectors 7* and A* such
that the following conditions are satisfied for (w,m, A) = (w*, 7%, A*):

Qw+FT7T+CT)\—|—c = 0,
—Fw+g¢9g = 0,
—Cw+d > 0,
A >0,
N(=Cw+d); = 0, J=12...,m.

By introducing a vector ¢ of slacks for the constraint C'w < d, we can rewrite these conditions
in a slightly more convenient form:

Qw+FT7T+CT)\—|—c

—Fw+

Flw,m A\ 1) = _Cw+tid 0, (21a)
TAe

(A1) = 0, (21b)

where T" and A are diagonal matrices defined by
T:diag(tl,tz,...,tm), A:diag()\l,)\g,...,)\m),

and e = (1,1,...,1)T as before.

Primal-dual interior-point methods generate iterates (w', 7', \",#'), i = 1,2,..., with
(A%, t") > 0 that approach feasibility with respect to the conditions (21a) as 7 — oo. The
search directions are Newton-like directions for the equality conditions in (21a). Dropping
the superscript and denoting the current iterate by (w,m, A, t), we can write the general
linear system to be solved for the search direction as

Q FT CT Aw rQ

_F Ar | | rF

—C a7 e | (22)
T A At T



(Note that the coefficient matrix is the Jacobian of the nonlinear equations (21a).) Differ-
ent primal-dual methods are obtained from different choices of the right-hand side vector
(rg,re,rc,re). The duality gap p defined by

w=t/m (23)

is typically used as a measure of optimality of the current point (w,m, A, t). Most primal-
dual interior-point methods ensure that the norm of the function F defined by (21a) remains
bounded by a constant multiple of p.

We use a variant of Mehrotra’s predictor-corrector algorithm [14] to solve (20). This
algorithm has proved to be the most effective approach for general linear programs and is
similarly effective for convex quadratic programming. The first part of the Mehrotra search

direction—the predictor or affine-scaling step—is simply a pure Newton step for the system
(21a), obtained by solving (22) with the following right-hand side:

rQ Qw+FT7T+CT)\—|—c

TFo| _ —Fw+g

re | —Cw+t+d ) (24)
T TAe

We denote the corresponding solution of (22) by (Awag, Amagr, Adasr, Atag). The second
part of the search direction—the centering-corrector direction (Awee, Aee, Adce, Atec)—is
calculated by choosing the centering parameter o € [0,1) as outlined below and solving the
system (22) with the following right-hand side:

TQ 0

rp . 0

o | = 0 ) (25)
T —AT.qgANge + ope

The following heuristic for choosing the value of o has proved to be highly effective.
We first compute the maximum step length c,g that can be taken along the affine-scaling
direction, as follows:

aag = arg max {a € [0, 1] | (A, 1) + o Adagr, Atagr) > 0}.
The duality gap pag attained from this full step to the boundary is

Haff = ()\ + OéA)\aﬂ‘)T(t + Ataﬂ)/m.

3
. (Maﬂ)
g = .
1

The search direction is obtained by adding these two components:

Finally, we set

(Aw, Am, AN, At) = (Awasr, Ao, Adagr, Atast) + (AWee, Ao, Adcey Atee). (26)

10



Note that the coefficient matrix in (22) does not need to be refactored to compute the
centering-corrector step. Total computational requirements in obtaining the step (26) include
one factorization of the matrix in (22), back-substitutions for two different right-hand sides,
and a number of matrix-matrix operations.

The distance we move along the direction (26) is defined in terms of the maximum step
Omax that can be taken without violating the condition (21b):

Omax — arg max {Oé - [0, 1] | ()\,t) + Oé(A)\, At) Z 0}

The actual steplength o is chosen to be yamay, Where v is a parameter in the range (0,1)
chosen to ensure that the pairwise products A;t; do not become too unbalanced and the
improvement in duality gap does not outpace the improvement in feasibility with respect to
the linear constraints in (21a) by too much. The value of v typically lies between .9 and
.9999.

The algorithm does not require the initial point to be feasible, and checks can be added
to detect problems for which no feasible points exist. In our case, feasibility of the MPC
problem obtained from the Rawlings and Muske formulation with unstable plants can be
determined a priori by solving the linear program (14),(15).

Finally, we note that block elimination can be applied to the system (22) to obtain reduced
systems with more convenient structures. By eliminating At, we obtain the following system:

Q FT CT i Aw TQ fQ
—F Ar | = re L e | (27)
—C AT || AN re + Atr, P

Since A™!'T is a positive diagonal matrix, we can easily eliminate A\ as well to obtain

—F 0 Am (28)

ra

Q+ CTAT-'C FT ] [ Aw ] B [ rg — CTT_l(Arc + 1)

We conclude with a note on the sizes of elements in ¢t and A and their effect on elements of
the matricesin (27) and (28). In path-following interior-point methods that adhere rigorously
to the theory, iterates are confined to a region in which the pairwise products ¢;); are not
too different from each other in size. A bound of the form

Lide > v (29)

is usually enforced, where g is the average value of ¢;A; (see (23)) and v € (0,1) is constant,
typically g = 107*. When the primal-dual solution set for (20) is bounded, we have further
that

tigﬁ, )\Zgﬁ, i:1,2,...,m, (30)
for some constant bound 3 > 0. It follows immediately from (29) and (30) that
2 A, 2
L <+ S 2, << i (31)
s 7" prT LTy

11



Hence, the diagonal elements of the matrices T*A and AT lie in the range [Q(u), Q(p™1)].

Although bounds of the form (29) are not enforced explicitly in most implementations of
Mehrotra’s algorithm, computational experience shows that they are almost always satisfied
in practice. Hence, it is reasonable to assume, as we do in the stability analysis below, that
the estimates (31) are satisfied by iterates of our algorithm.

3.2 Efficient MPC Formulation

The optimal control problem (18),(19) has been viewed traditionally as a problem in which
just the inputs are variables, while the states are eliminated from the problem by direct
substitution using the transition equation (19b) (see, for example, Muske and Rawlings [15]).
We refer to this formulation hereafter as the standard method. Unfortunately, the constraint
and Hessian matrices in the reduced problem are generally dense, so the computational cost
of solving the problem is proportional to N?. Efficient commercial solvers for dense quadratic
programs (such as QPSOL [7]) can then be applied to the reduced problem.

The O(N?) cost of the standard method is unacceptable because the “unconstrained”
version of (18) is known to be solvable in O(/N) time by using a Riccati equation or dynamic
programming. We are led to ask whether there is an algorithm for the constrained problem
(18),(19) that preserves the O(N) behavior. In fact, the interior-point algorithm of the
preceding section almost attains this goal. It can be applied to the problem (18),(19) at a
cost of O(N) operations per iteration. The rows and columns of the reduced linear systems
(27) and (28) can be rearranged to make these matrices banded, with dimension O(N)
and bandwidth independent of N. Since the number of iterations required by the interior-
point algorithm depends only weakly on N in practice, the total computational cost of
this approach is only slightly higher than O(N) in practice. In both the active set and
interior-point approaches, the dependence of solution time on other parameters, such as
input dimension m, control dimension n, and the number of side constraints, is cubic.

Wright [23, 24] describes a scheme in which these banded matrices are explicitly formed
and factored with a general banded factorization routine. In the next section, we show that
the linear system to be solved at each interior-point iteration can be rearranged to have
the same form as an “unconstrained” version of (18), (19), that is, a problem in which the
side constraints (19c¢), (19d) are absent. Hence, a Riccati recursion similar to the technique
used for the unconstrained problem can be used to solve this linear system. From a purely
linear algebra point of view, this approach is equivalent to a block factorization scheme
for the banded coefficient matrix. Because the block elimination scheme restricts the use
of pivoting for numerical stability, it is not obvious that the Riccati scheme will produce
accurate answers. We alleviate this concern by showing in the next section and in Appendix A
that numerical stability of the Riccati approach can be expected under normal circumstances.

Suppose that the interior-point algorithm of Section 3.1 is applied to the problem (18),(19).
We use Ay, (x, and g to denote the Lagrange multipliers for the constraints (19¢), (19d),
and (19e), respectively. We rearrange the linear system (27) to be solved at each iteration of
the interior-point method by “interleaving” the variables and equations according to stage

12



index. That is, the primal and dual variables for stage 0 are listed before those for stage 1,

and so on. For this ordering, the rows of the system (27) that correspond to stage k are as

follows:

SRV~

—GT AT
DT BT
—Zf

€
_Zk+1

-1

—Zfﬂ
—1

HT

~1
~1
~I H
Z

Q

Al‘k

Auk

AN
AV
Ay
Anpga
A€k-|-1
Ae’JCk-|-1

Tk+1
TZ-H
T+t
T+t

(32)

The diagonal matrices ¥, ¥¢ and %# which correspond to A™'T in the general system
(27), are defined by

NP = (Ap)7TE,

ZZ = (Ek)_lTlfv

ij = (Hk)_llev

(33)

where Ay, =, and Hj are the diagonal matrices whose diagonal elements are the Lagrange
multipliers Ay, Cx, and 5, while T}, T,f, and 7} are likewise diagonal matrices constructed
from the slack variables associated with the constraints (19¢), (19d), and (19e), respectively.

The final rows in this linear system are

Q
MT
-G

A

M
R
D
B

—GT AT
DT BT

—Xx
—1I

-1

_2%
-1
HT

-1
-1
-1 H
Z

Qn FT
F

Azn_q

Aun_q

Adn-1
Apn
Aln
A?]N
AGN
AJ}N

Ap

where 3 denotes the Lagrange multiplier for the endpoint constraint (19f).
By eliminating the Lagrange multipliers Az, (x, and ng from the systems (32) and (34),
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we derive the following analog of the compact system (28):

[ Ry BT __Auo_ _Fg_
B -1 Apo 6
—[ Ql M1 AT Axl Fij
MIT R, BT Auy T
I Q, M, AT Aey | = | 72 | (39
mMI R, BT Ausy Py
A B . : :
QN FT AJ}N F}U\f
i I3 JLas | ]
where
R, = R—I—DT(Zf)_lD k=0,...,N—1,
M, = M—GT(Zf)_lD k=1,...,N—1,
Zy = Z4+ (37 + (2! k=1,...,N, (36)
Qn = Q+H'(E)'H+GNEY)'G - NS 2SN H k=1,...,N -1,
Qn = Qn+ HY(EN)™'H — HY (SNZnEN) T H,
and
= T};—I—DT(ZD)_IT?, k=0,....N—1,
fi — Ti, kZO,...,N—l,
7:; = rf— (ZZ)_ITi — (ij)_lrz, k= 17 ceey N7 (37)
F= oGP b (S (S )7 B =1 N

= i+ HUER) Ty + HE(SNZn) 7

This matrix has the same form as the KKT matrix obtained from the following problem in
which the only constraint (apart from the model equation and initial state) is a final point

condition:

i

) 1 1
min O(u,x) = 5($£Qkxk + unguk + ngMkuk) + 5:1;%62]\7:1;]\7, (38)
’ k=0
subject to
ro = &y, (fixed), (39a)
Th41 = Al’k—I-Buk, kZO,l,...,N—l, (39b)
Fany = 0. (39¢)

Note that Ry is SPD, because it is an SPSD modification of the SPD matrix R. To show
that () is SPSD, we show that the modification applied to the SPSD matrices () and Qxn
in (36) is itself SPSD. It suffices to show that the sum

HY(SIH™ ' H — HY (P 72,20 | (40)
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is SPSD for all k. By writing this sum as
HE (S Y2 [ = ()22 (o) Y] (=) 2 e,

we note that positive definiteness of (40) follows if we can show that the diagonal matrix
in brackets has positive diagonal elements. Using the definition of Z; above, together with
diagonality of Z and Xf, we have that

1

I (S S =1 - (S Z+sisg )7 (1)

Since 7, X1 and X¢ are all diagonal with positive diagonal elements, the matrix (41) has
the required property, so that () is symmetric positive semidefinite as claimed.

Since the matrix in (35) is banded with dimension O(N(m+n)) and bandwidth O(m+n),
the computational cost of factoring is O(N(m + n)®). This estimate is linear in N, unlike
the naive dense implementation for which the cost grows cubically in V.

3.3 Block Elimination Solution: No Endpoint Constraints

We can improve the efficiency of the algorithm by applying a block factorization scheme
to (35) in place of the elimination scheme for general banded matrices. In this section, we
consider the case in which endpoint constraints are not present in the problem (so that the
quantities F', A3, and r¥ do not appear in (35)). We describe a block elimination scheme
and show that it yields a Riccati recursion.

For simplicity, we rewrite the system (35) for the case of no endpoint constraints as

follows:

[ RO BT < [ A\UO ] r Fu ]
e 0
B —1I Apy i
-1 Q1 M AT Axy P
MR BT A ||
A B —1I o P

I Qy M, AT Shl =i ()

MI R, BT A 7:2
2 2 A\uQ Ty
A B . :

i QN Arn | TN ]

Our scheme yields a set of matrices I, € R"*" and vectors m; € R", k = N, N —1,...,1,
such that the following relationship holds between the unknown vectors Ap,_; and Axj in
(42):

_&%_1‘|‘Hk&?k:7m, Ek=NN-—-1,...,1. (43)
We can see immediately from (42) that (43) is satisfied for k = N if we define
HN:QN, WN:Ff\f- (44)
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The remaining quantities Il and 7 can be generated recursively. If (43) holds for some
k, we can combine this equation with three successive block rows from (42) to obtain the
following subsystem:

_&\ ~ —
—I Qpy M, AT D (-
T T Axk—l ~
My, Ryx B ' Th1
A B 0 || | TRl | (45)
A T I a
Al‘k

Elimination of &%-1 and Az, yields

A
I Quoy + ATIA  ATILB + My, } Dk [ F_ 4+ ATIL |+ ATy

0 BTI A+ ML, Ry, + BTILB | | 2% M4BTI+ BTm,
Aug_q
(46)
Finally, elimination of Awuy_; yields the equation
—&?k_g + Hk—l&k—l = Tk—1- (47)
where
Hk—l = Qk—l + ATHkA — (48&)
(ATT B + My_y)(Re_y + BTILB) Y (BT,A + ML),
Ty = o+ AT 4+ Alwy — (48b)

(ATTL B + My_y)(Reoy + BTILB) Y (72, + BT + BT wy).

The equation (48a) is the famous discrete Riccati equation for time-varying weighting ma-
trices.

The solution of (42) can now be obtained as follows. By combining (43) for k = 1 with
the first two rows of (42), we obtain

Ry BT Aug s
B —I || Ap, | =17 |, (49)
—[ Hl &1 ™

which can be solved for A\uo, &1;1, and &?0. Values of A\uk, &%, and &}k at subsequent
stages can be obtained by substituting into (46) and (45) for successively higher values of k.
The computational cost of the entire process is O(N(m + n)?).

The stability of this approach may seem questionable. For one thing, the submatrices Ry,
My, Qr, and Zj, contain elements of widely varying magnitude, because the diagonal matrices
YOS and ¢ typically contain both very large and very small elements. Second, the
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elimination ordering in this scheme is determined in part by structural rather than numerical
considerations, leaving open the possibility of significant element growth as the factorization
progresses, a phenomenon that often leads to instability. (Note however that pivoting for
numerical stability can occur “internally,” during the factorization of (R,_; + BTII;B) in
(48a) and (48b) for k=N, N —1,...,2.)

If we analyze (48a) by estimating norms of the each of the right-hand side components, we
find that |[IIg|| = O(u*=N=1), indicating severe blowup (and attendant loss of information)
as k is decreased. A more careful analysis indicates, however, that we can reasonably expect
the estimate ||TI|| = O(x™") to hold independently of k. This observation is consistent with
our computational experience. Our discussion of these claims is quite technical, and we
relegate it to Appendix A.

3.4 Endpoint Constraints

When endpoint constraints are present in the problem, they must be accounted for by addi-
tional recursions. In the language of linear algebra, our approach is to partition the coefficient

Ty Tio
TL Ty |°

matrix in (35) in the form

where
[ Ry BT T _ -
B —1 0
I Q, M, AT 0
T = MI R, BT , Ty = co | T2 =0 (50)
A B ﬁQT
i e QN - i}

We partition the right-hand side and solution of (35) correspondingly and rewrite the system

Ty Tig A1 _ (]
T Ty Y2 ry ]’

where ry = r? and y, = AB. By simple manipulation, assuming that 7y, is nonsingular, we
obtain

[Toe — THLT Thalys = 1o — THTT 1, (5la)
Yy = T1_11T1 — T1_11T12y2. (51b)
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We calculate the vector Tj;'ry by using the approach of Section 3.3. The other major
operation is to find 77" T},, which we achieve by solving the following system:

_R BT -— -~ _ — -—
B 1 5 .
7 0
—[ Ql M1 AT g 0
MP R, BT g; 0

A B — . o | =] 0 (52)

[ Q, M, A 1 0
MI R, BT 3 :

i O I

The structure of this system is identical to (42) except that the right-hand side is now
a matrix instead of a vector. As in the preceding section, we seek n x n; matrices Wy,
k= N,N—1,...,1 (where ny is the number of rows in F') such that the following relationship
holds between @7 _, and @7 satisfying (52):

—®7 |+ 11,07 = Uy, k=N,N—-1,...,1. (53)
(Note that Il in (53) are identical to the matrices of this name in the preceding section,
since these matrices depend only on the coefficient matrix.) The familiar argument yields
the following recursion for Wy:
Uy = FT,
Uy = AT, — (ATHLB 4+ My ) (Rey + BYILB)Y ' BT, k=N,N—1,...,2.
We solve (52) by using a similar technique to the one used for (42).
We now recover the solution of (35) via (51). By substituting from (50) and (52), we find
that
Ty — THLTR' Ty = —(0%)" F7,
ry — T1T2T1_11r1 = P — FAzy,
so that y, = A can be found directly by substituting into (51a). We recover the remainder
of the solution vector from (51b) by noting that

Ao | T ey ]
é\po o,
Az o7
1 1 Aul (I)ilb
Tir =Ty Ty = &31 — q)i ApS.
Al’g (I)2
| Koy | LW
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In the implementation, the recurrences for computing Il;, ¥y, and m; take place simulta-
neously, as do the recurrences needed for solving the systems (42) and (52). The additional
cost associated with the n; endpoint constraints is O(N(m + n)*ns). When n; < n—a
necessary condition for (35) to have a unique solution—the cost of solving the full system
(35) is less than double the cost of solving the subsystem (42) alone by the method of the
preceding section.

3.5 Hot Starting

Model predictive control solves a sequence of similar optimal control problems in succession.
If the model is accurate and disturbances are modest, the solution of one optimal control
problem can be shifted one time step forward to yield a good approximation to the solution
of the next problem in the sequence. Unfortunately, an approximate solution of this type
is not a suitable starting guess for the interior-point method, since it usually lies at the
boundary of the feasible region. Points close to the so-called central path are much more
suitable. In the notation of Section 3.1, the characteristics of such points are that their
pairwise products A;t; are similar in value for « = 1,2, ..., m and that the ratio of the KKT
violations in (21a)—measured by F(z, 7, A, t)—to the duality gap p is not too large. We can
attempt to find near-central points by bumping components of the “shifted” starting point
off their bound. (In the notation of Section 3.1, we turn the zero value of either ¢; or A; into
a small positive value.) A second technique is to use a shifted version of one of the earlier
interior-point iterates from the previous problem. Since the interior-point algorithm tends
to follow the central path, and since the central path is sensitive to data perturbations only
near the solution, this strategy generally produces an iterate that is close to the central path
for the new optimal control subproblem.

In the presence of new disturbances, the previous solution has little relevance to the
new optimal control problem. A starting point can be constructed from the unconstrained
solution, or we can perform a cold start from a well-centered point, as is done to good effect
in linear programming codes (see Wright [25, Chapter 10]).

4 Computational Results

To gauge the effectiveness of the structured interior-point approach, we tested it against
a naive quadratic programming approach, in which the states zj are eliminated from the
problem (18),(19) by using the model equation (19b). A reduced problem with unknowns
ug, k=0,1,....,N —1 and ¢, k = 1,2,...,n is obtained. The reduction in dimension is
accompanied by filling in of the constraint matrices and the Hessian of the objective. The
resulting problem is solved with the widely used code QPSOL [7], which implements an
active set method by using dense linear algebra calculations.

We compared these two approaches on three common applications of the model predictive
control methodology.
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Figure 1: Input Profile at ¢ = 0 for Example 1

Example 1: Copolymerization Reactor. Congalidis et al. [4] presented the following
normalized model for the copolymerization of methyl methacrylate (MMA) and vinyl acetate
(VA) in a continuous stirred tank reactor:

0.34 0.21 0.50(0.505+1) 0 6.46(0.95+1)

0.85s54+1 0.42s54+1 125240.45+1 0.07520.35+1

—0.41 0.66 —0.3 0 —3.72

G(S) _ 2.41s5+1 1.51s41 1.45s54+1 0.85+1 (54)

0.30 0.49 —0.71 —0.20 —4.71 )

2.545+1 1.54s54+1 1.35s54+1 2.71s+1 0.0085240.415+1

1.02
L 0 0 0 0 0.07524-0.31s4+1

The normalized inputs into the system are the flow of monomer MMA (u4), flow of monomer
VA (us), flow of the initiator (us), flow of the transfer agent (uy), and the temperature of the
reactor jacket (us). The normalized outputs of the systems are the polymer production rate
(y1), mole fraction of MMA in the polymer (y,), average molecular weight of the polymer
(y3), and reactor temperature (y4). The model was realized in observer canonical form and
discretized with a sample period of 1.

The normalized inputs were constrained to be within 10% of their nominal operating
steady-state values The tuning parameters were chosen to be Q = CTC (C is the measure-
ment matrix obtained from the state space realization), R = [ /10, N = 100. The controller
was simulated with the following state disturbance:

[20]; = 0.02 % sin j.

Because of the very slow dynamics of the reactor, the Rawlings and Muske formulation was
used for this example. Figure 1 shows the optimal control profile normalized with the upper
bounds on the input constraints for ¢ = 0.

Example 2: Gage Control of a Polymer Film Process. We considered the gage
(cross-directional control) of a 26-lane polymer film process with 26 actuators. We used the
following model for our simulation:

A=09I, B=(I-A)xK,
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25

Figure 2: Input Profile at ¢ = 0 for Example 2

where the steady-state gain matrix K was extrapolated from data obtained from a 3M
polymer film pilot plant. The state [z]; denotes the deviated film thickness in the jth lane,
and the input [u]; denotes the deviated position of the jth actuator.

The actuators were constrained between the values of 0.1 and —0.1, while the velocity
of the actuators was constrained between the values of 0.025 and —0.025. Since a large
difference between actuator positions can create excess stress on the die, we imposed the
following restriction on the change in input from stage to stage:

[u]; — [u]j—1] < 0.05,  j=1,2,...,m.
We chose the tuning parameters to be
Q = [7 R = [7 S — [

We chose a horizon of N = 30 to guarantee that the constraints were satisfied on the infinite
horizon. Figure 2 shows the calculated optimal input profiles.

Example 3: Evaporator. Ricker et al. [17] presented the following model for an evapora-
tion process in a kraft pulp mill:

; 0
30s+1
_ s 2.7(—6s+1
G(s) = (305+E15A)1?205+1) (205-(|—1)(55-|—)1) : (55)
—90s —0.1375(—4s+1)

(305+1)(30s+1)  (30s+1)(2.6s+1)

The normalized outputs of the process are the feed level (y;), product concentration (ys),
and product level (ys). The normalized inputs for the the process are the feed level setpoint
(u1) and the steam flow (uy). The process was sampled every 0.5 minutes.

Both inputs were constrained to lie in the range [—0.2,0.2], while the three outputs were
constrained to lie in [—0.05,0.05]. A bound of 0.05 was also imposed on the input velocity.
The controller was tuned with

Q=1, R=1I, Z=1I, N=060.
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Figure 3: Input Profile at ¢ = 0 for Example 3
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Figure 4: Predicted Output Profile at t = 0 for Example 3

A constant [y penalty of 1000 was sufficient to force the soft constraints to hold. We simulated
the controller with the following state disturbance:

[0l = sin(j) + cos(7).

Figure 3 shows the calculated optimal input profile, while Figure 4 shows the predicted
output profile.

The computational times required by the structured interior-point approach and the
naive quadratic programming approach are shown in Table 1. Our platform was a DEC
Alphastation 250, and the times were obtained with the Unix time command. For the
chosen (large) values of the horizon parameter N, the structured interior-point method easily
outperforms the naive quadratic programming approach. For the latter approach, we do not
include the time required to eliminate the states. These times were often quite significant,
but they are calculated offline.
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Table 1: Computational Times (sec)

Example | Structured Interior-Point | Naive Quadratic Programming
1 3.80 23.78
2 20.33 276.91
3 2.01 25.32

5 Concluding Remarks

We conclude with three brief comments on the structured interior-point method for MPC.
The first is that the structured method presented is also directly applicable to the dual prob-
lem of MPC, the constrained receding horizon estimation problem. In fact, the estimation
problem will provide greater justification for structured approach because long horizons N
are desirable. However, we did not investigate applying the structured optimization approach
because the theory for linear constrained receding horizon estimators is still in its infancy.

The second comment is that we can extend the structured method to nonlinear MPC
by applying the approach of this paper to the linear-quadratic subproblems generated by
sequential quadratic programming. Wright [23], Arnold et al. [1], and Steinbach [21] all
apply this technique to discrete-time optimal control problems. While some theory for
nonlinear MPC is available, the questions of robust implementation and suitable formulation
of nonlinear MPC have not been resolved. See Mayne [12] for a discussion of the some of
the issues.

The third comment concerns time delays, which occur when more than one sampling
period elapses before an input wuy affects the state of the system. In the simplest case, we
can rewrite the state equation (4a) as

Tpy1 = Az + Bug_q, (56)

for the case in which the delay is d sampling periods. The natural infinite-dimensional LQR
objective function for this case is

1 o]
o = 5 Z(:z;{@xk + up Rug + 2x), ,Muy,), (57)
k=0
where the cross-penalty terms relates ug_q and xg. Since the first (d + 1) state vectors
Xo,T1,...,xq are independent of the inputs, the decision variables in the optimization prob-
lem are x441,%g412,... and ug, uy,.... By defining

:f;k:xk+d, kZO,l,Q,...,
and removing constant terms from (57), the objective function and state equation become

O = L S°07 (#T Qi + ul Ruy + 25T Muy),
:%O:md, ‘%k+1:A‘%k+Buk7 k:071727””
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These formulae have the same form as (3) and (4).

If no additional constraints of the form (4b) are present, a Riccati equation may be used
to solve (58), (58) directly, as in Section 2.1. If state constraints of the form Hzp < h
or “jump” constraints of the form GAu, < g (as in (1)) are present, we can still apply
constraint softening (Section 2.2) and use the approaches of Rawlings and Muske [16] and
Scokaert and Rawlings [18] described in Section 2.1 to obtain finite-dimensional versions of
(58), (58). The techniques of Section 3.1 can then be used to solve the problem efficiently.

Difficulties may arise, however, when multiple time delays are present, since these may
reduce the locality of the relationships between the decision variables and lead to significant
broadening of the bandwidths of the matrices in (32) and (35). A process in which two time
delays are present (of d; and dy sampling intervals) can be described by a state equation of
the following form:

(2 )12 )

fliz_H N Ay Ay :ch By By Uz_d2 '

A problem with these dynamics can be solved by augmenting the state vector x; with
the input variables wg_g4,, Ug—d,—1,- .-, Uk—dy+1 (assuming that dy > dy) and applying the
technique for a single time delay outlined above. Alternatively, the KK'T conditions for
the original formulation can be used directly as the basis of an interior-point method. The
linear system to be solved at each interior-point iteration will contain not only diagonal
blocks of the form in (32), but also a number of blocks at some distance from the diagonal.
Some rearrangement to reduce the overall bandwidth may be possible, but expansion of the
bandwidth by an amount proportional to (dy — dy) is inevitable.

Of course, we can also revert to the original approach of eliminating the states xg, zy, ...
from the problem to obtain a problem in which the inputs wug,uq,... alone are decision
variables. The cost of this approach, too, is higher than in the no-delay case, because
the horizon length N usually must be increased to incorporate the effects of the delayed
dynamics. One could postulate that certain processes would be effectively handled by the
standard approach while others would be effectively handled by the structured approach.
Perhaps the only solution is to exercise engineering judgment to decouple the multiple time
scales of the process and consider a set of singularly perturbed control problems. This issue
remains unresolved and is a topic of current research.
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A Stability of the Riccati Scheme

We return to the solution of the system (35) by the Riccati substitution approach of Sec-
tion 3.3. In this appendix, we present an informal argument to back up our computational
observation that the matrices I, arising in the Riccati iteration (48a) do not blow up unduly
as k decreases from N to 1.

The singular value decomposition (SVD) of a general real matrix W has the form

Ww=usv?t, (58)

where U and V are orthonormal matrices and ¥ is a nonnegative diagonal matrix. (The
diagonals of ¥ are the singular values.) When W is symmetric, its SVD has the special form

W =UxU?t,

where U is orthogonal and the diagonals of ¥ are the eigenvalues of W. Consequently, 3 is
nonnegative diagonal if W is SPSD, while X is positive diagonal if W is SPD.

A cursory analysis of (48a) does not allay our concern about possible blowup during the
Riccati iteration. From the estimates (31), we have that the diagonal elements in %P S8
and X¢ lie in the range [Q(u), Q(p™")]. From the definitions (36), our assumption that R is
symmetric positive definite, and the argument above for positive semidefiniteness of (), it
follows that

(i) Ry is SPD with eigenvalues in the range [Q(1), Q(px™")];
(ii) the singular values of My, k=1,..., N — 1 lie in the range [0, Q(x~')]; and

(iii) the matrices Qg, k = 1,..., N — 1 and Qx are SPSD with eigenvalues in the range
[0, (1)1

In particular, we have from (44) that Iy is SPSD with eigenvalues in the range [0, Q(x™1)].
By considering the first step of recursion (k= N in (48a)), we find that

Qi1 + ATIINA|| = O™,
IATTINB + My = O(p™"),
I(By-1 4+ BTTINB)'|| = O(1),

so we obtain the estimate

Myt = O(n™?).

Continuing inductively in k, we obtain the general estimate |[II;|| = O(p*~"N=!), which
indicates blowup of the kind that destroys accuracy of the solution.
A more refined analysis shows that we can reasonably expect ||II;|]| = O(p™") indepen-

dently of k, indicating stability. We use an informal style of stability analysis here, which
suffices to demonstrate the “usual” behavior of the algorithm. (A rigorous analysis would be
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overly technical and pessimistic.) We use a recursive argument to show that if 1Ty = O(p™")
(with its “large” eigenvalues of size Q(u™') well separated from the smaller values of size
O(1)), then under certain assumptions the next matrix Il;_; in the Riccati recurrence will
have the same properties. Given Il with the specified properties, we can write its SVD as

Hk = Uk/\kUg = Uk;_1Ak;—1U]z:_1 + Uk;OAk;OUIz:m (59)

where Uy, is orthogonal, Ay is nonnegative diagonal, and Aj,_; contains the diagonals of size
Q') while Ag,o contains the O(1) diagonals.

Consider the matrix Ry_; +BT1I;B. Using the definition of Rj_; in (36), we partition the
diagonal weighting matrix ¥’ | into an Q(u) component X’ ., and an Q(u~') component
25—1;—1 (see (31)) and partition D correspondingly to obtain

DT(Z£—1)_1D = Dg—l;—l(21?—1;—1)_1Dk—1§—1 + DkT—1;1(Z£—1;1)_1Dk—1;1- (60)
Using (36) and (59), we can write
Ry, + B'I,B = R+ D' (S2)"'D+ B'UMNU!B

. (=P )t 0 Di_14
= R+ [DkT_m |BTU1€%—1} { ’ 671 Apy UkT;_lB » (61)

where

~ T T ()™ 0 Dy—1;-1
Riy = R+ [Dj_,._, | B'Uyyo] [ ’ 1() ' Aga ULB |’

Since R is SPD and (Ri—y — R) is SPSD with size O(p), it follows that all eigenvalues of
Ri—1 are Q(1). Meanwhile, we can write the SVD of the second term in (61) as

DTS I | Di_1. . A )
(DF 1 | 870 | ) A} {U;_fi%} = Vi AL Vs (62)

where %_1 is an orthonormal matrix that satisfies
range ([DkT_m | BTUk;_lb = range(f/k_l;_l). (63)

We assume that [D]_,,, | BTUy,_1] has full rank for all k, in which case all diagonals of the
singular value matrix /A\E_l;_l are Q(u™t) in size.
It follows from (62) and (58) that there is an orthogonal matrix Wy_, such that

(21?—1;1)_1/2 0

%—1;—1(AE—1;—1)1/2W5—1 = [DkT—m |BTUk;—1] 1/2
0 Ak;—l

(64)

For convenience, we use \A/k_l;o to denote the orthonormal matrix that spans the null space
of VkT—h—ﬁ that is, [Vi—1,-1 | Vk—1,0] is orthonormal.
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We can view the full matrix in (61) as a positive definite perturbation of an SPSD matrix
whose nonzero singular values are all Q(u™!) in size. A standard eigenspace perturbation
result (see, for example, Golub and Van Loan [9, Theorem 7.2.4]) then implies that for p
sufficiently small, we have

Rict + BB = Vieyor | Viero) | it 0 [ )
1 —1;—1 —-1;0 0 Ak—l;o ijll;o 7

where there are matrices P_; and P, such that

121l = OGa), (IR = Ol (66)
Victicr = (Vicro1 + Viero Po1) (L + P_T1P—1)_1/27 (67)
Vicio = (Vk—no + Vk—h—lpo)(] + POTPO)_l/Q- (68)

In addition, we have that Aj,_;,_; is positive diagonal with all diagonals of size Q(p~"), while
Ak—1,0 is positive diagonal with all diagonals of size Q(1). Using (68) and orthonormality of
\A/k_l;_l, we have that

Vo Viero = PolT+ P Po)™'12,

and therefore from (66) we obtain
IV i Vieroll = O(p). (69)

We can use the SVD (65) to immediately write the inverse of the matrix in question as

T -1 AI;—IL—I 0 VkT—1~—1
(Rp—1 + B I B)™ = [Vic1—1 | Vie10] ' AL T ; (70)
0 k—1;0 ‘/k—l;O
where from the discussion above we have
1ALl = O(w), AL ol = O(1). (71)

We turn now to another term in (48a), namely, the matrix BTI[, A + M!_,. From (36),
we have

BT A+ ME, = MT — DI(2P )7'G + BTIILA.
By decomposing similarly to (61), we obtain

T T T T T (B,)™ 0 —Gr_1n
B A+ My = My_ + [Dk—m | B Uk;—l] 07 Mgy UkT;—1A (72

where

i P "t —Gh_1.—
Mi_y = [Di_y,_y | B Ukl [ o ld g A ] [ Ul?oil 1 ] AL
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By substituting (64) into (72), we obtain

_(25—1;1)_1/2Gk—1;1
A UL A
= M+ Vi O™, (73)
It follows from (69) that

BTHkA + Ml?—l = M,?_l + %—1;—1(A§_1;_1)1/2W5—1

Vilio( BTIA + M) = VLo My + Vil o Vi O(™!) = O(1), (74)
while from orthonormality of Vi_y,—; and Vi_i,_;, we have
Vi (BT A+ M) =V ME L +VE Vi O™t = 0(1) + O(p™t). (75)
By combining (70) with (74) and (75), and using the estimates (71), we obtain
(ATIIB 4+ My_ ) (Ri—y + BIILB) N (BTI A + M) = O(1) + O(u™"). (76)

It is easy to see that the first term in (48a), namely, Q. + ATTI, A, is also an SPSD matrix
with eigenvalues in the range [0, Q(x™!)]. We conclude that

s || = Qp7), (77)

as claimed.
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