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AbstractWe present a structured interior-point method for the e�cient solution of the op-timal control problem in model predictive control (MPC). The cost of this approachis linear in the horizon length, compared with cubic growth for a naive approach. Weuse a discrete Riccati recursion to solve the linear equations e�ciently at each itera-tion of the interior-point method, and show that we can expect this recursion to benumerically stable although it was motivated originally by structural rather than nu-merical considerations. We demonstrate the e�ectiveness of our approach by solvingthree process control problems.1 IntroductionModel predictive control (MPC) is an optimal control-based strategy that uses a plant modelto predict the e�ect of an input pro�le on the evolving state of the plant. At each step ofMPC, an optimal control problem with Bolza objectives is solved and its optimal inputpro�le is implemented until the another plant measurement becomes available. The updatedplant information is used to formulate and solve a new optimal control problem|therebyproviding feedback from the plant to the model|and the process is repeated. This strategyyields a receding horizon control formulation.The MPC methodology is appealing to the practitioner because input and state con-straints can be explicitly accounted for in the controller. A practical disadvantage is itscomputational cost, which has tended to limit MPC applications to linear processes withrelatively slow dynamics. For such problems, the optimal control problem to be solved ateach stage of MPC is a convex quadratic program. While robust and e�cient software existsfor the solution of unstructured convex quadratic programs, signi�cant improvements canbe made by exploiting the structure of the MPC subproblem.�Department of Chemical Engineering, University of Wisconsin-Madison. rao@bevo.che.wisc.eduy(Author to whom correspondence should be addressed) Mathematics and Computer Science Division,Argonne National Laboratory. wright@mcs.anl.govzDepartment of Chemical Engineering, University of Wisconsin-Madison. jbraw@che.wisc.edu.



When input and state constraints are not present, MPC with an in�nite horizon is simplythe well-known linear quadratic regulator problem. Even when constraints are present,the in�nite-horizon MPC problem reduces to a linear quadratic regulator after a certainnumber of stages (see [3, 18, 22]) and can therefore be recast as a �nite-dimensional quadraticprogram. Since this quadratic program can be large, however, it is important that algorithmsbe e�cient even for long horizons.Unconstrained linear optimal control problems can be solved by using a discrete Riccatiequation. For this approach, the computational cost grows linearly in the horizon length N .A di�erent formulation obtained by eliminating the state variables results in an unconstrainedquadratic function whose Hessian is dense, with dimensions that grow linearly in N . Thecost of minimizing this quadratic grows cubically with N , making it uncompetitive with theRiccati approach. There is a third option, however|an optimization formulation in whichthe states are retained as explicit variables and the model equation is retained as a constraint.The optimality conditions for this formulation reveal that the adjoint variables are simply theLagrange multipliers for the model equation and that the problem can be solved by factoringa matrix whose dimension again grows linearly with N . In this formulation, however, thematrix is banded, with a bandwidth independent of N , so the cost of the factorization growslinearly rather than cubically with N . The discrete Riccati equation can be interpreted as ablock factorization scheme for this matrix.Traditionally, the discrete Riccati equation is obtained by using dynamic programmingto solve the unconstrained linear optimal control problem. The essential idea in dynamicprogramming is to work backwards stagewise through the problem. By tackling the opti-mization problem in stages, one can redice the optimization problem to a series of simplersubproblems. See Berksekas [2] for further details concerning dynamic programming. Inan analogous manner to dynamic programming, block factorization also exploits the multi-staged nature of the optimization problem. The key di�erence is that the block factorizationapproach tackles the problem explicitly, whereas dynamic programming tackles the problemsemi-implicitly by using Bellman's principle of optimality. It is through the explicit formu-lation that the block factorization approach retains its inherent structure with the additionof inequality constraints.When constraints are present, the quadratic program still can be structured in a manneranalogous to the unconstrained problem, so that the cost of solving linear equations associ-ated with the problem grows linearly with the horizon length N . This observation has beenmade by numerous authors, in the context of both active set and interior point methods.Glad and Jonson [8] and Arnold et al. [1] demonstrate that the factorization of a structuredLagrangian in an optimal control problem with a Bolza objective for an active set frameworkyields a Riccati recursion. Wright [23, 24], Steinbach [21], and Lim et al. [11] investigate theBolza control problem in an interior-point framework.In this paper we present an MPC algorithm in which the optimal control subproblemsare solved by using this structured formulation. Our work di�ers from earlier contributionsin that the formulation of the optimal control problem is tailored to the MPC application,the interior-point algorithm is based on Mehrotra's algorithm [14] (whose practical e�ciency2



on general linear and quadratic programming problems is well documented), and the linearsystem at each interior-point iteration is solved e�ciently by a Riccati recursion. We compareour approach with the alternative of using the model equation to eliminate the states, yieldinga dense quadratic program in the input variables alone. The two approaches are comparedon three large industrial problems.We now de�ne a few items of notation for use in the remainder of the paper. Given afunction f : [0;1)! [0;1), we write f(�) = O(�) if f(�) � C� for some positive constant Cand all � in some region of interest (usually � very small or very large). We write f(�) = 
(�)if there are positive constants C1 and C2 such that C1� � f(�) � C2� for all � in the regionof interest.We say that a matrix is \positive diagonal" if it is diagonal with positive diagonal el-ements. The term \nonnegative diagonal" is de�ned correspondingly. We use SPD as anabbreviation for \symmetric positive de�nite" and SPSD as an abbreviation for \symmetricpositive semide�nite."2 Model Predictive ControlThe fundamental formulation of the linear model predictive controller is the following in�nitedimensional convex quadratic program:minu;x �(u; x) = 12 1Xk=0(xTkQxk + uTkRuk +�uTk S�uk); (1)subject to the following constraints:x0 = x̂j; xk+1 = Axk +Buk; (2a)Duk � d; G�uk � g; Hxk � h; (2b)where xk 2 Rn, uk 2 Rm, and �uk = uk�uk�1. The vector x̂j represents the current estimateof the state at discrete time j, whereas xk represents the state at k sampling steps along thefuture prediction horizon and uk represents the input at this same time. We assume that Qis an SPSD matrix and that R and S are SPD.By a suitable adjustment of the origin, the formulation (1), (2) can also account for targettracking and disturbance rejection [15]. If there is a feasible point for the constraints (2),the in�nite horizon regulator formulation is stabilizing whenever (A;B) is stabilizable and(A;Q1=2) is detectable [20].By expanding �uk, we transform (1),(2) into the following more tractable form:minu;x �(u; x) = 12 1Xk=0(xTkQxk + uTkRuk + 2xTkMuk); (3)subject to the following constraints:x0 = x̂j; xk+1 = Axk +Buk; (4a)Duk �Gxk � d; Hxk � h: (4b)3



The original formulation (1), (2) can be recovered from (3), (4) by making the followingsubstitutions into the second formulation:x̂j  � x̂juj�1 � ; xk  � xkuk�1 � ; A � A 00 0 � ; B  � BI � ;Q � Q 00 S � ; M  � 0�S � ; R R+ S;D � DG � ; G � 0 00 G � ; d � dg � ; H  � H 0 � :In the remainder of this section, we address two issues. The �rst is the replacement of (3),(4) by an equivalent (or similar) �nite-dimensional problem, a step necessary for practicalcomputation of the solution. The second issue is replacement of the constraints Hxk � h byso-called soft constraints. Instead of enforcing these conditions strictly, we add terms to theobjective that penalize violations of these conditions. This technique is a more appropriateway of dealing with certain constraints from an engineering viewpoint.2.1 Receding Horizon Regulator FormulationThe key step in reducing (3), (4) to a �nite-dimensional problem is the use of a linear controllaw to determine uk after a certain time horizon, that is,uk = Kxk; for all k � N: (5)With this added constraint, the states xk, k > N and the inputs uk, k � N are completelydetermined by xN , the state at the end of the prediction horizon.Two techniques can be used to determine the law (5). The �rst, due to Rawlings andMuske [16], sets K = 0 uniformly in (5) and produces an approximate solution to (3), (4).With this substitution, we have12 1Xk=N(xTkQxk + uTkRuk + 2xTkMuk) = 12 1Xk=N xTk �Qxk: (6)If A is stable, this sum is equal to (1=2)xTN �QxN , where �Q is the solution of the matrixLyapunov equation �Q�AT �QA = Q: (7)If A is unstable, the sum (6) may be in�nite, so we impose a stabilizing constraint to deriveany useful information from the solution of the model problem. The Schur decomposition ofA can be used to partition A into its stable and unstable subspaces. If this decomposition isA = UTUT = � Us Uu � � T11 T120 T22 � � UTsUTu � ;4



where the eigenvalues of T11 are contained within the unit circle whereas those of T22 arecontained on or outside of the unit circle, then the orthogonal columns of U span the stable(Us) and unstable subspaces (Uu) of A [13]. We add the endpoint constraintFxN = 0 (where F = UTu ) (8)to ensure that the unstable modes have vanished by stage N . (Since the input uk is zero forall k � N , the unstable modes also remain at zero at all subsequent stages.) The evolutionof the stable modes on the in�nite horizon can be accounted for by solving the followingLyapunov equation for �Q: �Q�ATs �QAs = Q;where As = UsT11UTs , and replacing the in�nite sum with (1=2)xTN �QxN , as above.In the second formulation, discussed by Sznaier and Damborg [22], Chmielewski andManousiouthakis [3], and Scokaert and Rawlings [18], the input after stage N is parameter-ized with the classical linear quadratic gain K obtained from the solution of the steady-stateRiccati equation. This matrix, used in conjunction with the control law (5), is the solutionto the \unconstrained" version of the problem, in which the inequality constraints (4b) donot appear. By using (5), the in�nite tail of the sum in (3) can be written as12 1Xk=N(xTkQxk + uTkRuk + 2xTkMuk) = 12 1Xk=N(xTkQxk + xTkKTRKxk + 2xTkMKxk):This in�nite summation can be replaced by the single term (1=2)xTN �QxN , where �Q is thesolution of the following discrete algebraic Riccati equation:�Q = Q+AT �QA� (AT �QB +M)(R +BT �QB)�1(BT �QA+MT ): (9)In both formulations, the feedback law (5) is valid only if the constraints (4) are satis�edat all stages, including the stages k � N . Hence, we would like to implement this law onlyafter we reach a state xN such that the solution generated by the control law (5) and themodel equation in (4a) at stages k � N satis�es the inequalities (4b) at all such stages. Wede�ne a set X of states for which this property holds, as follows:X = fx : H(A�BK)lx � h; (DK �G)(A�BK)lx � d; for all l � 0g:whereK is the optimal unconstrained linear control law obtained from the following equation:K = �(R+BT �QB)�1(BT �QA+MT ): (10)If N is chosen so that xN 2 X , then the following �nite-dimensional problem is equivalent1to (3), (4): minu;x �(u; x) = 12 N�1Xk=0 (xTkQxk + uTkRuk + 2xTkMuk) + 12xTN �QxN ; (11)1The �nite-dimensional problem is also a valid approximation to (3), (4) for K = 0 when the endpointconstraint FxN = 0 is added to (12) and �Q is de�ned by (7)5



subject to x0 = x̂j; xk+1 = Axk +Buk; k = 0; 1; 2; : : : ; (12a)uk = Kxk; k � N; (12b)Duk �Gxk � d; Hxk � h; k = 0; 1; 2; : : : ; N � 1; (12c)where �Q is de�ned in (9).The set X is di�cult to characterize explicitly because it is de�ned by an in�nite numberof conditions. If the components of h and d are strictly positive, however, and the \uncon-strained" model is stabilizable, we can show that X contains 0 in its interior. Under thesecircumstances, there is an index N1 such thatxk =2 X ; k < N1; xk 2 X ; k � N1: (13)Since N1 is di�cult to determine in practice, we can solve the problem (11),(12) for some�xed value of N and then check that the states and inputs at stages k � N continue tosatisfy the inequality constraints at subsequent stages. If not, we increase N and repeat theprocess.A variety of methods guarantee that the constraints are satis�ed on the in�nite horizon bychecking a �nite number of stages k � N . Scokaert and Rawlings [18] propose constructingan open ball Bx contained within the set X , thereby allowing termination of the search whenxk 2 Bx for k � N . The approximation for X tends to be conservative, however, since thealgorithm is motivated by norm-bounding arguments. A more practical method, given byGilbert and Tan [6], is to construct an output maximal set. This set provides a priori anupper bound l on number of feasible stages k 2 [N;N + l] necessary to guarantee that allof the subsequent stages k � l +N are feasible. The drawback of this approach is that thealgorithm for constructing the maximal sets is not guaranteed to converge for unboundedfeasible regions. A third approach, proposed by Rawlings and Muske [16], is to calculate anupper bound l that depends on the state xN . Since this method is also motivated by norm-bounding arguments, the bound also tends to be conservative. A more complete discussionof handling constraints on the in�nite horizon is given by Meadows et al. [13]. For a compact,convex set of states, an alternative approach that circumvents having to check for constraintviolations is given by Chmielewski and Manousiouthakis [3]. By examining the extremalpoints on the feasible region, they calculate a conservative upper bound on the N requiredto guarantee that the solution is feasible on the in�nite horizon.We have assumed to this point that there exists a feasible solution with respect to theinput and endpoint constraints for the optimal control calculation. In the presence of sideconstraints (2b), it is no longer true that the constrained regulator stabilizes all possible stateseven when the stabilizability assumption is satis�ed. When stabilization is not possible, theproblem (3),(4) is an infeasible optimization problem. (In actual operation, an infeasiblesolution would signal a process exception condition.)For the Rawlings-Muske formulation, enforcement of the endpoint constraint (8) oftenresults in an infeasible optimization problem. Feasibility can often be recovered by increasing6



the horizon length N , but when the initial state is not stabilizable, the feasible region willcontinue to be empty for all N . The existence of a feasible N can easily be checked bysolving the following linear program [13]:minu;x;r eTr; (14)(where e is the vector whose entries are all 1) subject to the constraintsxk+1 = Axk +Buk; k = 0; 1; 2; : : : ; N � 1;Duk �Gxk � d; Hxk � h; k = 0; 1; 2; : : : ; N � 1; (15)r � FxN � 0; r + FxN � 0:A positive solution to the linear program indicates that a feasible solution does not exist andthe horizon length N must be increased. If the feasibility check fails for some user suppliedupper bound on the horizon length, then current state is not constrained stabilizable for thespeci�ed regulator.2.2 Feasibility and Soft ConstraintsIn the formulation of the MPC problem, some state constraints are imposed by physicallimitations such as valve saturation. Other constraints are less important; they may representdesired ranges of operation for the plant, for instance. In some situations, no set of inputsand states for the MPC problem may satisfy all of these constraints. Rather than having thealgorithm declare infeasibility and return without a result, we prefer a solution that enforcessome constraints strictly (\hard constraints"), while relaxing others and replacing them withpenalties on their violation (\soft constraints").Scokaert and Rawlings [19] replace the soft constraints with penalty terms in the objec-tive that are a combination of `1 norms and squared `2 norms of the constraint violations.Assuming for simplicity that all state constraints Hxk � h in (12) are softened in this way,we obtain the following modi�cation to the objective (11):minu;x;� �(u; x; �) = 12 N�1Xk=0 (xTkQxk + uTkRuk + 2xTkMuk + �TkZ�k) + zT �k + 12xTN �QxN ; (16)where the constraint violations �k are de�ned by the following formulae (which replaceHxk �h): Hxk � �k � h; �k � 0: (17)It is known that when the weighting on the `1 terms is su�ciently large (see, for example,Fletcher [5]) and when the original problem (11),(12) has a nonempty feasible region, thenlocal minimizers of problem (11), (12) modi�ed by (16), (17) de�ned above correspond tolocal solutions of the unmodi�ed problem (11), (12). The modi�ed formulation has theadvantage that it can still yield a solution when the original problem (11), (12) is infeasible.7



The lower bound on elements of z needed to ensure that �k = 0 (that is, the originalhard constraints Hxk � h are satis�ed by the solution) cannot be calculated explicitlywithout knowing the solution to the original problem (11), (12), since it depends on theoptimal Lagrange multipliers for this problem. A conservative state-dependent upper boundfor these multipliers can be obtained by exploiting the Lipschitz continuity of the quadraticprogram [10]. In practice, it usually is not necessary to guarantee that the soft constraints areexact. Therefore, approximate values of z are su�cient for reasonable controller performance.In the remainder of the paper, we work with a general form of the MPC problem, whichcontains all the features discussed in this section: �nite horizon, endpoint constraints, andsoft constraints. This general form isminu;x;� �(u; x; �) = N�1Xk=0 12(xTkQxk + uTkRuk + 2xTkMuk + �TkZ�k) + zT �k + xTN �QNxN ; (18)subject to x0 = x̂j; (�xed) (19a)xk+1 = Axk +Buk; k = 0; 1; : : : ; N � 1; (19b)Duk �Gxk � d; k = 0; 1; : : : ; N � 1; (19c)Hxk � �k � h; k = 1; 2; : : : ; N; (19d)�k � 0; k = 1; 2; : : : ; N; (19e)FxN = 0: (19f)3 The Interior-Point MethodIn this section, we describe our interior-point-based approach for solving the MPC problem(18), (19). We start with a geneal description of the interior-point method of choice forlinear and convex quadratic programming: Mehrotra's predictor-corrector algorithm. Theremaining sections describe the specialization of this approach to MPC, including the use ofthe Riccati approach to sovle the linear subproblem, handling of endpoint constraints, andhot starting.3.1 Mehrotra's Predictor-Corrector AlgorithmActive set methods have proved to be e�cient for solving quadratic programs with generalconstraints. The interior-point approach has proved to be an attractive alternative whenthe problems are large and convex. In addition, this approach has the advantage thatthe system of linear equations to be solved at each iterate has the same dimension andstructure throughout the algorithm, making it possible to exploit any structure inherentin the problem. Moreover, the most widely used interior-point algorithms do not requirethe user to specify a feasible starting point. From a theoretical viewpoint, interior-point8



methods exhibit polynomial complexity, in contrast to the exponential complexity of active-set approaches.In this section, we sketch an interior-point method for general convex quadratic program-ming problems and discuss its application to the speci�c problem (18). A more completedescription is given by Wright [25].Consider the following convex quadratic programminw �(w) = 12wTQw + cTw; subject to Fw = g, Cw � d, (20)where Q is a positive semide�nite symmetric matrix. Let m denote the number of rows inC, the inequality constraint coe�cient matrix. The Karush-Kuhn-Tucker (KKT) conditionsstate that the vector w� solves this problem if and only if there are vectors �� and �� suchthat the following conditions are satis�ed for (w; �; �) = (w�; ��; ��):Qw + F T� + CT� + c = 0;�Fw + g = 0;�Cw+ d � 0;� � 0;�j(�Cw+ d)j = 0; j = 1; 2; : : : ;m.By introducing a vector t of slacks for the constraint Cw � d, we can rewrite these conditionsin a slightly more convenient form:F(w; �; �; t) = 2664 Qw + F T� + CT� + c�Fw+ g�Cw+ t+ dT�e 3775 = 0; (21a)(�; t) � 0; (21b)where T and � are diagonal matrices de�ned byT = diag(t1; t2; : : : ; tm); � = diag(�1; �2; : : : ; �m);and e = (1; 1; : : : ; 1)T as before.Primal-dual interior-point methods generate iterates (wi; �i; �i; ti), i = 1; 2; : : :, with(�i; ti) > 0 that approach feasibility with respect to the conditions (21a) as i ! 1. Thesearch directions are Newton-like directions for the equality conditions in (21a). Droppingthe superscript and denoting the current iterate by (w; �; �; t), we can write the generallinear system to be solved for the search direction as2664 Q F T CT�F�C �IT � 37752664 �w�����t 3775 = 2664 rQrFrCrt 3775 : (22)9



(Note that the coe�cient matrix is the Jacobian of the nonlinear equations (21a).) Di�er-ent primal-dual methods are obtained from di�erent choices of the right-hand side vector(rQ; rF ; rC; rt). The duality gap � de�ned by� = �T t=m (23)is typically used as a measure of optimality of the current point (w; �; �; t). Most primal-dual interior-point methods ensure that the norm of the function F de�ned by (21a) remainsbounded by a constant multiple of �.We use a variant of Mehrotra's predictor-corrector algorithm [14] to solve (20). Thisalgorithm has proved to be the most e�ective approach for general linear programs and issimilarly e�ective for convex quadratic programming. The �rst part of the Mehrotra searchdirection|the predictor or a�ne-scaling step|is simply a pure Newton step for the system(21a), obtained by solving (22) with the following right-hand side:2664 rQrFrCrt 3775 = �2664 Qw + F T� + CT�+ c�Fw+ g�Cw+ t+ dT�e 3775 : (24)We denote the corresponding solution of (22) by (�wa�;��a�;��a�;�ta�). The secondpart of the search direction|the centering-corrector direction (�wcc;��cc;��cc;�tcc)|iscalculated by choosing the centering parameter � 2 [0; 1) as outlined below and solving thesystem (22) with the following right-hand side:2664 rQrFrCrt 3775 = 2664 000��Ta���a�e+ ��e 3775 : (25)The following heuristic for choosing the value of � has proved to be highly e�ective.We �rst compute the maximum step length �a� that can be taken along the a�ne-scalingdirection, as follows:�a� = arg maxf� 2 [0; 1] j (�; t) + �(��a� ;�ta�) � 0g:The duality gap �a� attained from this full step to the boundary is�a� = (�+ ���a�)T (t+�ta�)=m:Finally, we set � = ��a�� �3 :The search direction is obtained by adding these two components:(�w;��;��;�t) = (�wa�;��a�;��a�;�ta�) + (�wcc;��cc;��cc;�tcc): (26)10



Note that the coe�cient matrix in (22) does not need to be refactored to compute thecentering-corrector step. Total computational requirements in obtaining the step (26) includeone factorization of the matrix in (22), back-substitutions for two di�erent right-hand sides,and a number of matrix-matrix operations.The distance we move along the direction (26) is de�ned in terms of the maximum step�max that can be taken without violating the condition (21b):�max = arg maxf� 2 [0; 1] j (�; t) + �(��;�t) � 0g:The actual steplength � is chosen to be 
�max, where 
 is a parameter in the range (0; 1)chosen to ensure that the pairwise products �iti do not become too unbalanced and theimprovement in duality gap does not outpace the improvement in feasibility with respect tothe linear constraints in (21a) by too much. The value of 
 typically lies between :9 and:9999.The algorithm does not require the initial point to be feasible, and checks can be addedto detect problems for which no feasible points exist. In our case, feasibility of the MPCproblem obtained from the Rawlings and Muske formulation with unstable plants can bedetermined a priori by solving the linear program (14),(15).Finally, we note that block elimination can be applied to the system (22) to obtain reducedsystems with more convenient structures. By eliminating�t, we obtain the following system:24 Q F T CT�F�C ��1T 3524 �w���� 35 = 24 rQrFrC + ��1rt 35 def= 24 r̂Qr̂F̂rC 35 : (27)Since ��1T is a positive diagonal matrix, we can easily eliminate �� as well to obtain� Q+ CT�T�1C F T�F 0 � � �w�� � = � rQ � CTT�1(�rC + rt)rH � : (28)We conclude with a note on the sizes of elements in t and � and their e�ect on elements ofthe matrices in (27) and (28). In path-following interior-point methods that adhere rigorouslyto the theory, iterates are con�ned to a region in which the pairwise products ti�i are nottoo di�erent from each other in size. A bound of the formti�i � 
� (29)is usually enforced, where � is the average value of ti�i (see (23)) and 
 2 (0; 1) is constant,typically � = 10�4. When the primal-dual solution set for (20) is bounded, we have furtherthat ti � �; �i � �; i = 1; 2; : : : ;m; (30)for some constant bound � > 0. It follows immediately from (29) and (30) that
�2� � ti�i � �2
 ��1; 
�2� � �iti � �2
 ��1: (31)11



Hence, the diagonal elements of the matrices T�1� and ��1T lie in the range [
(�);
(��1)].Although bounds of the form (29) are not enforced explicitly in most implementations ofMehrotra's algorithm, computational experience shows that they are almost always satis�edin practice. Hence, it is reasonable to assume, as we do in the stability analysis below, thatthe estimates (31) are satis�ed by iterates of our algorithm.3.2 E�cient MPC FormulationThe optimal control problem (18),(19) has been viewed traditionally as a problem in whichjust the inputs are variables, while the states are eliminated from the problem by directsubstitution using the transition equation (19b) (see, for example, Muske and Rawlings [15]).We refer to this formulation hereafter as the standard method. Unfortunately, the constraintand Hessian matrices in the reduced problem are generally dense, so the computational costof solving the problem is proportional to N3. E�cient commercial solvers for dense quadraticprograms (such as QPSOL [7]) can then be applied to the reduced problem.The O(N3) cost of the standard method is unacceptable because the \unconstrained"version of (18) is known to be solvable in O(N) time by using a Riccati equation or dynamicprogramming. We are led to ask whether there is an algorithm for the constrained problem(18),(19) that preserves the O(N) behavior. In fact, the interior-point algorithm of thepreceding section almost attains this goal. It can be applied to the problem (18),(19) at acost of O(N) operations per iteration. The rows and columns of the reduced linear systems(27) and (28) can be rearranged to make these matrices banded, with dimension O(N)and bandwidth independent of N . Since the number of iterations required by the interior-point algorithm depends only weakly on N in practice, the total computational cost ofthis approach is only slightly higher than O(N) in practice. In both the active set andinterior-point approaches, the dependence of solution time on other parameters, such asinput dimension m, control dimension n, and the number of side constraints, is cubic.Wright [23, 24] describes a scheme in which these banded matrices are explicitly formedand factored with a general banded factorization routine. In the next section, we show thatthe linear system to be solved at each interior-point iteration can be rearranged to havethe same form as an \unconstrained" version of (18), (19), that is, a problem in which theside constraints (19c), (19d) are absent. Hence, a Riccati recursion similar to the techniqueused for the unconstrained problem can be used to solve this linear system. From a purelylinear algebra point of view, this approach is equivalent to a block factorization schemefor the banded coe�cient matrix. Because the block elimination scheme restricts the useof pivoting for numerical stability, it is not obvious that the Riccati scheme will produceaccurate answers. We alleviate this concern by showing in the next section and in Appendix Athat numerical stability of the Riccati approach can be expected under normal circumstances.Suppose that the interior-point algorithm of Section 3.1 is applied to the problem (18),(19).We use �k, �k, and �k to denote the Lagrange multipliers for the constraints (19c), (19d),and (19e), respectively. We rearrange the linear system (27) to be solved at each iteration ofthe interior-point method by \interleaving" the variables and equations according to stage12



index. That is, the primal and dual variables for stage 0 are listed before those for stage 1,and so on. For this ordering, the rows of the system (27) that correspond to stage k are asfollows:266666666664 : : : Q M �GT ATMT R DT BT�G D ��DkA B �I���k+1 �I��Hk+1 �I H�I �I Z�I HT Q : : : 377777777775
26666666666666664

...�xk�uk��k�pk+1��k+1��k+1��k+1�xk+1...
37777777777777775 = 26666666666666664

...rxkrukr�krpk+1r�k+1r�k+1r�k+1rxk+1...
37777777777777775 :(32)The diagonal matrices �Dk , ��k, and �Hk , which correspond to ��1T in the general system(27), are de�ned by�Dk = (�k)�1T �k ; ��k = (�k)�1T �k ; �Hk = (Hk)�1T �k ; (33)where �k, �k, and Hk are the diagonal matrices whose diagonal elements are the Lagrangemultipliers �k, �k, and �k, while T �k , T �k , and T �k are likewise diagonal matrices constructedfrom the slack variables associated with the constraints (19c), (19d), and (19e), respectively.The �nal rows in this linear system are26666666666664 : : : Q M �GT ATMT R DT BT�G D ��DN�1A B �I���N �I��HN �I H�I �I Z�I HT �QN F TF

3777777777777526666666666666664
...�xN�1�uN�1��N�1�pN��N��N��N�xN��

37777777777777775 = 26666666666664 rxN�1ruN�1r�N�1rpN�1r�N�1r�N�1r�N�1rxNr�
37777777777775 ;(34)where � denotes the Lagrange multiplier for the endpoint constraint (19f).By eliminating the Lagrange multipliers �k, �k, and �k from the systems (32) and (34),13



we derive the following analog of the compact system (28):26666666666666664
R0 BTB �I�I Q1 M1 ATMT1 R1 BTA B �I�I Q2 M2 ATMT2 R2 BTA B . . . . . .. . . QN F TF

37777777777777775
26666666666666664 �u0�p0�x1�u1�p1�x2�u2...�xN��

37777777777777775 = 26666666666666664 ~ru0~rp0~rx1~ru1~rp1~rx2~ru2...~rxNr�
37777777777777775 ; (35)whereRk = R+DT (�Dk )�1D k = 0; : : : ; N � 1;Mk = M �GT (�Dk )�1D k = 1; : : : ; N � 1;Zk = Z + (��k)�1 + (�Hk )�1 k = 1; : : : ; N;Qk = Q+HT (�Hk )�1H +GT (�Dk )�1G�HT (�Hk Zk�Hk )�1H k = 1; : : : ; N � 1;QN = �QN +HT (�HN )�1H �HT (�HNZN�HN)�1H; (36)and~ruk = ruk +DT (�D)�1r�k ; k = 0; : : : ; N � 1;~rpk = rpk; k = 0; : : : ; N � 1;~rzk = r� � (��k)�1r�k � (�Hk )�1r�k; k = 1; : : : ; N;~rxk = rxk +�GT (�Dk )�1r�k +HT (�Hk )�1r�k +HT (�Hk Zk)�1~rzk; k = 1; : : : ; N � 1;~rxN = rxN +HT (�HN )�1r�N +HT (�HNZN )�1~rzN : (37)This matrix has the same form as the KKT matrix obtained from the following problem inwhich the only constraint (apart from the model equation and initial state) is a �nal pointcondition: minu;x �(u; x) = N�1Xk=0 12(xTkQkxk + uTkRkuk + 2xTkMkuk) + 12xTNQNxN ; (38)subject to x0 = x̂j; (�xed); (39a)xk+1 = Axk +Buk; k = 0; 1; : : : ; N � 1; (39b)FxN = 0: (39c)Note that Rk is SPD, because it is an SPSD modi�cation of the SPD matrix R. To showthat Qk is SPSD, we show that the modi�cation applied to the SPSD matrices Q and �QNin (36) is itself SPSD. It su�ces to show that the sumHT (�Hk )�1H �HT (�Hk Zk�Hk )�1H (40)14



is SPSD for all k. By writing this sum asHT (�Hk )�1=2 �I � (�Hk )1=2Z�1k (�Hk )1=2� (�Hk )�1=2H;we note that positive de�niteness of (40) follows if we can show that the diagonal matrixin brackets has positive diagonal elements. Using the de�nition of Zk above, together withdiagonality of Z and ��k, we have thatI � (�Hk )1=2Z�1k (�Hk )1=2 = I � ��Hk Z + �Hk ��k + I��1 : (41)Since Z, �Hk , and ��k are all diagonal with positive diagonal elements, the matrix (41) hasthe required property, so that Qk is symmetric positive semide�nite as claimed.Since the matrix in (35) is banded with dimensionO(N(m+n)) and bandwidth O(m+n),the computational cost of factoring is O(N(m + n)3). This estimate is linear in N , unlikethe naive dense implementation for which the cost grows cubically in N .3.3 Block Elimination Solution: No Endpoint ConstraintsWe can improve the e�ciency of the algorithm by applying a block factorization schemeto (35) in place of the elimination scheme for general banded matrices. In this section, weconsider the case in which endpoint constraints are not present in the problem (so that thequantities F , ��, and r� do not appear in (35)). We describe a block elimination schemeand show that it yields a Riccati recursion.For simplicity, we rewrite the system (35) for the case of no endpoint constraints asfollows: 266666666666664 R0 BTB �I�I Q1 M1 ATMT1 R1 BTA B �I�I Q2 M2 ATMT2 R2 BTA B . . . . . .. . . �QN
377777777777775
26666666666666664

c�u0c�p0c�x1c�u1c�p1c�x2c�u2...c�xN
37777777777777775 = 266666666666664 ~ru0~rp0~rx1~ru1~rp1~rx2~ru2...~rxN

377777777777775 : (42)Our scheme yields a set of matrices �k 2 Rn�n and vectors �k 2 Rn, k = N;N � 1; : : : ; 1,such that the following relationship holds between the unknown vectors c�pk�1 and c�xk in(42): �c�pk�1 +�kc�xk = �k; k = N;N � 1; : : : ; 1: (43)We can see immediately from (42) that (43) is satis�ed for k = N if we de�ne�N = �QN ; �N = ~rxN : (44)15



The remaining quantities �k and �k can be generated recursively. If (43) holds for somek, we can combine this equation with three successive block rows from (42) to obtain thefollowing subsystem:2664 �I Qk�1 Mk�1 ATMTk�1 Rk�1 BTA B 0 �I�I �k 37752666664 c�pk�2c�xk�1c�uk�1c�pk�1c�xk 3777775 = 2664 ~rxk�1~ruk�1~rpk�1�k 3775 : (45)Elimination of c�pk�1 and c�xk yields� �I Qk�1 +AT�kA AT�kB +Mk�10 BT�kA+MTk�1 Rk�1 +BT�kB � 264 c�pk�2c�xk�1c�uk�1 375 = � ~rxk�1 +AT�k~rpk�1 +AT�k~ruk�1 +BT�k~rpk�1 +BT�k � :(46)Finally, elimination of c�uk�1 yields the equation�c�pk�2 +�k�1c�xk�1 = �k�1: (47)where�k�1 = Qk�1 +AT�kA� (48a)(AT�kB +Mk�1)(Rk�1 +BT�kB)�1(BT�kA+MTk�1);�k�1 = ~rxk�1 +AT�k~rpk�1 +AT�k � (48b)(AT�kB +Mk�1)(Rk�1 +BT�kB)�1(~ruk�1 +BT�k~rpk�1 +BT�k):The equation (48a) is the famous discrete Riccati equation for time-varying weighting ma-trices.The solution of (42) can now be obtained as follows. By combining (43) for k = 1 withthe �rst two rows of (42), we obtain24 R0 BTB �I�I �1 35264 c�u0c�p0c�x1 375 = 24 ~ru0~rp0�1 35 ; (49)which can be solved for c�u0, c�x1, and c�p0. Values of c�uk, c�pk, and c�xk at subsequentstages can be obtained by substituting into (46) and (45) for successively higher values of k.The computational cost of the entire process is O(N(m+ n)3).The stability of this approach may seem questionable. For one thing, the submatricesRk,Mk, Qk, and Zk contain elements of widely varying magnitude, because the diagonal matrices�Dk , �Hk , and ��k typically contain both very large and very small elements. Second, the16



elimination ordering in this scheme is determined in part by structural rather than numericalconsiderations, leaving open the possibility of signi�cant element growth as the factorizationprogresses, a phenomenon that often leads to instability. (Note however that pivoting fornumerical stability can occur \internally," during the factorization of (Rk�1 + BT�kB) in(48a) and (48b) for k = N;N � 1; : : : ; 2.)If we analyze (48a) by estimating norms of the each of the right-hand side components, we�nd that k�kk = O(�k�N�1), indicating severe blowup (and attendant loss of information)as k is decreased. A more careful analysis indicates, however, that we can reasonably expectthe estimate k�kk = O(��1) to hold independently of k. This observation is consistent withour computational experience. Our discussion of these claims is quite technical, and werelegate it to Appendix A.3.4 Endpoint ConstraintsWhen endpoint constraints are present in the problem, they must be accounted for by addi-tional recursions. In the language of linear algebra, our approach is to partition the coe�cientmatrix in (35) in the form � T11 T12T T12 T22 � ;where T11 = 266666664 R0 BTB �I�I Q1 M1 ATMT1 R1 BTA B . . . . . .. . . �QN 377777775 ; T12 = 2666664 00...0F T 3777775 ; T22 = 0: (50)We partition the right-hand side and solution of (35) correspondingly and rewrite the systemas � T11 T12T T12 T22 � � y1y2 � = � r1r2 � ;where r2 = r� and y2 = ��. By simple manipulation, assuming that T11 is nonsingular, weobtain [T22 � T T12T�111 T12]y2 = r2 � T T12T�111 r1; (51a)y1 = T�111 r1 � T�111 T12y2: (51b)17



We calculate the vector T�111 r1 by using the approach of Section 3.3. The other majoroperation is to �nd T�111 T12, which we achieve by solving the following system:266666666666664 R0 BTB �I�I Q1 M1 ATMT1 R1 BTA B �I�I Q2 M2 ATMT2 R2 BTA B . . . . . .. . . �QN
3777777777777752666666666664 �u0�p0�x1�u1�p1�x2...�xN 3777777777775 = 266666666666664 000000...0F T

377777777777775 : (52)The structure of this system is identical to (42) except that the right-hand side is nowa matrix instead of a vector. As in the preceding section, we seek n � nf matrices 	k,k = N;N�1; : : : ; 1 (where nf is the number of rows in F ) such that the following relationshipholds between �pk�1 and �xk satisfying (52):��pk�1 +�k�xk = 	k; k = N;N � 1; : : : ; 1: (53)(Note that �k in (53) are identical to the matrices of this name in the preceding section,since these matrices depend only on the coe�cient matrix.) The familiar argument yieldsthe following recursion for 	k:	N = F T ;	k�1 = AT	k � (AT�kB +Mk�1)(Rk�1 +BT�kB)�1BT	k; k = N;N � 1; : : : ; 2:We solve (52) by using a similar technique to the one used for (42).We now recover the solution of (35) via (51). By substituting from (50) and (52), we �ndthat T22 � T T12T�111 T12 = �(�xN )TF T ;r2 � T T12T�111 r1 = r� � F�xN;so that y2 = �� can be found directly by substituting into (51a). We recover the remainderof the solution vector from (51b) by noting thatT�111 r1 � T�111 T12y2 = 26666666666664 c�u0c�p0c�x1c�u1c�p1c�x2...c�xN
37777777777775� 2666666666664 �u0�p0�x1�u1�p1�x2...�xN 3777777777775��:18



In the implementation, the recurrences for computing �k, 	k, and �k take place simulta-neously, as do the recurrences needed for solving the systems (42) and (52). The additionalcost associated with the nf endpoint constraints is O(N(m + n)2nf). When nf < n|anecessary condition for (35) to have a unique solution|the cost of solving the full system(35) is less than double the cost of solving the subsystem (42) alone by the method of thepreceding section.3.5 Hot StartingModel predictive control solves a sequence of similar optimal control problems in succession.If the model is accurate and disturbances are modest, the solution of one optimal controlproblem can be shifted one time step forward to yield a good approximation to the solutionof the next problem in the sequence. Unfortunately, an approximate solution of this typeis not a suitable starting guess for the interior-point method, since it usually lies at theboundary of the feasible region. Points close to the so-called central path are much moresuitable. In the notation of Section 3.1, the characteristics of such points are that theirpairwise products �iti are similar in value for i = 1; 2; : : : ;m and that the ratio of the KKTviolations in (21a)|measured by F(z; �; �; t)|to the duality gap � is not too large. We canattempt to �nd near-central points by bumping components of the \shifted" starting pointo� their bound. (In the notation of Section 3.1, we turn the zero value of either ti or �i intoa small positive value.) A second technique is to use a shifted version of one of the earlierinterior-point iterates from the previous problem. Since the interior-point algorithm tendsto follow the central path, and since the central path is sensitive to data perturbations onlynear the solution, this strategy generally produces an iterate that is close to the central pathfor the new optimal control subproblem.In the presence of new disturbances, the previous solution has little relevance to thenew optimal control problem. A starting point can be constructed from the unconstrainedsolution, or we can perform a cold start from a well-centered point, as is done to good e�ectin linear programming codes (see Wright [25, Chapter 10]).4 Computational ResultsTo gauge the e�ectiveness of the structured interior-point approach, we tested it againsta naive quadratic programming approach, in which the states xk are eliminated from theproblem (18),(19) by using the model equation (19b). A reduced problem with unknownsuk, k = 0; 1; : : : ; N � 1 and �k, k = 1; 2; : : : ; n is obtained. The reduction in dimension isaccompanied by �lling in of the constraint matrices and the Hessian of the objective. Theresulting problem is solved with the widely used code QPSOL [7], which implements anactive set method by using dense linear algebra calculations.We compared these two approaches on three common applications of the model predictivecontrol methodology. 19
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Figure 1: Input Pro�le at t = 0 for Example 1Example 1: Copolymerization Reactor. Congalidis et al. [4] presented the followingnormalized model for the copolymerization of methyl methacrylate (MMA) and vinyl acetate(VA) in a continuous stirred tank reactor:G(s) = 2666664 0:340:85s+1 0:210:42s+1 0:50(0:50s+1)12s2+0:4s+1 0 6:46(0:9s+1)0:07s20:3s+1�0:412:41s+1 0:661:51s+1 �0:31:45s+1 0 �3:720:8s+10:302:54s+1 0:491:54s+1 �0:711:35s+1 �0:202:71s+1 �4:710:008s2+0:41s+10 0 0 0 1:020:07s2+0:31s+1 3777775 : (54)The normalized inputs into the system are the 
ow of monomer MMA (u1), 
ow of monomerVA (u2), 
ow of the initiator (u3), 
ow of the transfer agent (u4), and the temperature of thereactor jacket (u5). The normalized outputs of the systems are the polymer production rate(y1), mole fraction of MMA in the polymer (y2), average molecular weight of the polymer(y3), and reactor temperature (y4). The model was realized in observer canonical form anddiscretized with a sample period of 1.The normalized inputs were constrained to be within 10% of their nominal operatingsteady{state values The tuning parameters were chosen to be Q = CTC (C is the measure-ment matrix obtained from the state space realization), R = I=10, N = 100. The controllerwas simulated with the following state disturbance:[x0]j = 0:02 � sin j:Because of the very slow dynamics of the reactor, the Rawlings and Muske formulation wasused for this example. Figure 1 shows the optimal control pro�le normalized with the upperbounds on the input constraints for t = 0.Example 2: Gage Control of a Polymer Film Process. We considered the gage(cross-directional control) of a 26-lane polymer �lm process with 26 actuators. We used thefollowing model for our simulation:A = 0:9I; B = (I �A) �K;20
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jFigure 2: Input Pro�le at t = 0 for Example 2where the steady-state gain matrix K was extrapolated from data obtained from a 3Mpolymer �lm pilot plant. The state [x]j denotes the deviated �lm thickness in the jth lane,and the input [u]j denotes the deviated position of the jth actuator.The actuators were constrained between the values of 0:1 and �0:1, while the velocityof the actuators was constrained between the values of 0:025 and �0:025. Since a largedi�erence between actuator positions can create excess stress on the die, we imposed thefollowing restriction on the change in input from stage to stage:j[u]j � [u]j�1j < 0:05; j = 1; 2; : : : ;m:We chose the tuning parameters to beQ = I; R = I; S = I:We chose a horizon of N = 30 to guarantee that the constraints were satis�ed on the in�nitehorizon. Figure 2 shows the calculated optimal input pro�les.Example 3: Evaporator. Ricker et al. [17] presented the following model for an evapora-tion process in a kraft pulp mill:G(s) = 2664 130s+1 0648s(30s+1)(20s+1) 2:7(�6s+1)(20s+1)(5s+1)�90s(30s+1)(30s+1) �0:1375(�4s+1)(30s+1)(2:6s+1) 3775 : (55)The normalized outputs of the process are the feed level (y1), product concentration (y2),and product level (y3). The normalized inputs for the the process are the feed level setpoint(u1) and the steam 
ow (u2). The process was sampled every 0.5 minutes.Both inputs were constrained to lie in the range [�0:2; 0:2], while the three outputs wereconstrained to lie in [�0:05; 0:05]. A bound of 0:05 was also imposed on the input velocity.The controller was tuned withQ = I; R = I; Z = I; N = 60:21
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Figure 3: Input Pro�le at t = 0 for Example 3
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Figure 4: Predicted Output Pro�le at t = 0 for Example 3A constant l1 penalty of 1000 was su�cient to force the soft constraints to hold. We simulatedthe controller with the following state disturbance:[x0]j = sin(j) + cos(j):Figure 3 shows the calculated optimal input pro�le, while Figure 4 shows the predictedoutput pro�le.The computational times required by the structured interior-point approach and thenaive quadratic programming approach are shown in Table 1. Our platform was a DECAlphastation 250, and the times were obtained with the Unix time command. For thechosen (large) values of the horizon parameter N , the structured interior-point method easilyoutperforms the naive quadratic programming approach. For the latter approach, we do notinclude the time required to eliminate the states. These times were often quite signi�cant,but they are calculated o�ine. 22



Table 1: Computational Times (sec)Example Structured Interior-Point Naive Quadratic Programming1 3:80 23:782 20:33 276:913 2:01 25:325 Concluding RemarksWe conclude with three brief comments on the structured interior-point method for MPC.The �rst is that the structured method presented is also directly applicable to the dual prob-lem of MPC, the constrained receding horizon estimation problem. In fact, the estimationproblem will provide greater justi�cation for structured approach because long horizons Nare desirable. However, we did not investigate applying the structured optimization approachbecause the theory for linear constrained receding horizon estimators is still in its infancy.The second comment is that we can extend the structured method to nonlinear MPCby applying the approach of this paper to the linear-quadratic subproblems generated bysequential quadratic programming. Wright [23], Arnold et al. [1], and Steinbach [21] allapply this technique to discrete-time optimal control problems. While some theory fornonlinear MPC is available, the questions of robust implementation and suitable formulationof nonlinear MPC have not been resolved. See Mayne [12] for a discussion of the some ofthe issues.The third comment concerns time delays, which occur when more than one samplingperiod elapses before an input uk a�ects the state of the system. In the simplest case, wecan rewrite the state equation (4a) asxk+1 = Axk +Buk�d; (56)for the case in which the delay is d sampling periods. The natural in�nite-dimensional LQRobjective function for this case is� = 12 1Xk=0(xTkQxk + uTkRuk + 2xTk+dMuk); (57)where the cross-penalty terms relates uk�d and xk. Since the �rst (d + 1) state vectorsx0; x1; : : : ; xd are independent of the inputs, the decision variables in the optimization prob-lem are xd+1; xd+2; : : : and u0; u1; : : :. By de�ning~xk = xk+d; k = 0; 1; 2; : : : ;and removing constant terms from (57), the objective function and state equation become�0 = 12P1k=0(~xTkQ~xk + uTkRuk + 2~xTkMuk);~x0 = xd; ~xk+1 = A~xk +Buk; k = 0; 1; 2; : : : :23



These formulae have the same form as (3) and (4).If no additional constraints of the form (4b) are present, a Riccati equation may be usedto solve (58), (58) directly, as in Section 2.1. If state constraints of the form Hxk � hor \jump" constraints of the form G�uk � g (as in (1)) are present, we can still applyconstraint softening (Section 2.2) and use the approaches of Rawlings and Muske [16] andScokaert and Rawlings [18] described in Section 2.1 to obtain �nite-dimensional versions of(58), (58). The techniques of Section 3.1 can then be used to solve the problem e�ciently.Di�culties may arise, however, when multiple time delays are present, since these mayreduce the locality of the relationships between the decision variables and lead to signi�cantbroadening of the bandwidths of the matrices in (32) and (35). A process in which two timedelays are present (of d1 and d2 sampling intervals) can be described by a state equation ofthe following form:� x1k+1x2k+1 � = � A11 A12A21 A22 � � x1kx2k �+ � B11 B12B21 B22 � � u1k�d1u2k�d2 � :A problem with these dynamics can be solved by augmenting the state vector xk withthe input variables uk�d1 ; uk�d1�1; : : : ; uk�d2+1 (assuming that d2 > d1) and applying thetechnique for a single time delay outlined above. Alternatively, the KKT conditions forthe original formulation can be used directly as the basis of an interior-point method. Thelinear system to be solved at each interior-point iteration will contain not only diagonalblocks of the form in (32), but also a number of blocks at some distance from the diagonal.Some rearrangement to reduce the overall bandwidth may be possible, but expansion of thebandwidth by an amount proportional to (d2 � d1) is inevitable.Of course, we can also revert to the original approach of eliminating the states x0; x1; : : :from the problem to obtain a problem in which the inputs u0; u1; : : : alone are decisionvariables. The cost of this approach, too, is higher than in the no-delay case, becausethe horizon length N usually must be increased to incorporate the e�ects of the delayeddynamics. One could postulate that certain processes would be e�ectively handled by thestandard approach while others would be e�ectively handled by the structured approach.Perhaps the only solution is to exercise engineering judgment to decouple the multiple timescales of the process and consider a set of singularly perturbed control problems. This issueremains unresolved and is a topic of current research.AcknowledgmentsThis work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38, and a grant from Aspen Technology Inc.The authors also acknowledge the support of the industrial members of the Texas-WisconsinModeling and Control Consortium. 24



A Stability of the Riccati SchemeWe return to the solution of the system (35) by the Riccati substitution approach of Sec-tion 3.3. In this appendix, we present an informal argument to back up our computationalobservation that the matrices �k arising in the Riccati iteration (48a) do not blow up undulyas k decreases from N to 1.The singular value decomposition (SVD) of a general real matrix W has the formW = U�V T ; (58)where U and V are orthonormal matrices and � is a nonnegative diagonal matrix. (Thediagonals of � are the singular values.) When W is symmetric, its SVD has the special formW = U�UT ;where U is orthogonal and the diagonals of � are the eigenvalues of W . Consequently, � isnonnegative diagonal if W is SPSD, while � is positive diagonal if W is SPD.A cursory analysis of (48a) does not allay our concern about possible blowup during theRiccati iteration. From the estimates (31), we have that the diagonal elements in �Dk , �Hk ,and ��k lie in the range [
(�);
(��1)]. From the de�nitions (36), our assumption that R issymmetric positive de�nite, and the argument above for positive semide�niteness of Qk, itfollows that(i) Rk is SPD with eigenvalues in the range [
(1);
(��1)];(ii) the singular values of Mk, k = 1; : : : ; N � 1 lie in the range [0;
(��1)]; and(iii) the matrices Qk, k = 1; : : : ; N � 1 and �QN are SPSD with eigenvalues in the range[0;
(��1)].In particular, we have from (44) that �N is SPSD with eigenvalues in the range [0;
(��1)].By considering the �rst step of recursion (k = N in (48a)), we �nd thatkQk�1 +AT�NAk = O(��1);kAT�NB +MN�1k = O(��1);k(RN�1 +BT�NB)�1k = O(1);so we obtain the estimate k�N�1k = O(��2):Continuing inductively in k, we obtain the general estimate k�kk = O(�k�N�1), whichindicates blowup of the kind that destroys accuracy of the solution.A more re�ned analysis shows that we can reasonably expect k�kk = O(��1) indepen-dently of k, indicating stability. We use an informal style of stability analysis here, whichsu�ces to demonstrate the \usual" behavior of the algorithm. (A rigorous analysis would be25



overly technical and pessimistic.) We use a recursive argument to show that if �k = O(��1)(with its \large" eigenvalues of size 
(��1) well separated from the smaller values of sizeO(1)), then under certain assumptions the next matrix �k�1 in the Riccati recurrence willhave the same properties. Given �k with the speci�ed properties, we can write its SVD as�k = Uk�kUTk = Uk;�1�k;�1UTk;�1 + Uk;0�k;0UTk;0; (59)where Uk is orthogonal, �k is nonnegative diagonal, and �k;�1 contains the diagonals of size
(��1) while �k;0 contains the O(1) diagonals.Consider the matrixRk�1+BT�kB. Using the de�nition of Rk�1 in (36), we partition thediagonal weighting matrix �Dk�1 into an 
(�) component �Dk�1;1 and an 
(��1) component�Dk�1;�1 (see (31)) and partition D correspondingly to obtainDT (�Dk�1)�1D = DTk�1;�1(�Dk�1;�1)�1Dk�1;�1 +DTk�1;1(�Dk�1;1)�1Dk�1;1: (60)Using (36) and (59), we can writeRk�1 +BT�kB = R+DT (�Dk )�1D +BTUk�kUTk B= ~Rk�1 + �DTk�1;1 jBTUk;�1� � (�Dk�1;1)�1 00 �k;�1 � � Dk�1;1UTk;�1B � ; (61)where ~Rk�1 = R + �DTk�1;�1 jBTUk;0� � (�Dk�1;�1)�1 00 �k;1 � � Dk�1;�1UTk;0B � :Since R is SPD and ( ~Rk�1 � R) is SPSD with size O(�), it follows that all eigenvalues of~Rk�1 are 
(1). Meanwhile, we can write the SVD of the second term in (61) as�DTk�1;1 jBTUk;�1� � (�Dk�1;1)�1 00 �k;�1 � � Dk�1;1UTk;�1B � = V̂k�1;�1�̂Rk�1;�1V̂ Tk�1;�1; (62)where V̂k�1 is an orthonormal matrix that satis�esrange ��DTk�1;1 jBTUk;�1�� = range(V̂k�1;�1): (63)We assume that [DTk�1;1 jBTUk;�1] has full rank for all k, in which case all diagonals of thesingular value matrix �̂Rk�1;�1 are 
(��1) in size.It follows from (62) and (58) that there is an orthogonal matrix Ŵk�1 such thatV̂k�1;�1(�̂Rk�1;�1)1=2Ŵ Tk�1 = �DTk�1;1 jBTUk;�1� " (�Dk�1;1)�1=2 00 �1=2k;�1 # : (64)For convenience, we use V̂k�1;0 to denote the orthonormal matrix that spans the null spaceof V̂ Tk�1;�1; that is, [V̂k�1;�1 j V̂k�1;0] is orthonormal.26



We can view the full matrix in (61) as a positive de�nite perturbation of an SPSD matrixwhose nonzero singular values are all 
(��1) in size. A standard eigenspace perturbationresult (see, for example, Golub and Van Loan [9, Theorem 7.2.4]) then implies that for �su�ciently small, we haveRk�1 +BT�kB = [Vk�1;�1 jVk�1;0] � �k�1;�1 00 �k�1;0 � � V Tk�1;�1V Tk�1;0 � ; (65)where there are matrices P�1 and P0 such thatkP�1k = O(�); kP0k = O(�); (66)Vk�1;�1 = (V̂k�1;�1 + V̂k�1;0P�1)(I + P T�1P�1)�1=2; (67)Vk�1;0 = (V̂k�1;0 + V̂k�1;�1P0)(I + P T0 P0)�1=2: (68)In addition, we have that �k�1;�1 is positive diagonal with all diagonals of size 
(��1), while�k�1;0 is positive diagonal with all diagonals of size 
(1). Using (68) and orthonormality ofV̂k�1;�1, we have that V̂ Tk�1;�1Vk�1;0 = P0(I + P T0 P0)�1=2;and therefore from (66) we obtainkV̂ Tk�1;�1Vk�1;0k = O(�): (69)We can use the SVD (65) to immediately write the inverse of the matrix in question as(Rk�1 +BT�kB)�1 = [Vk�1;�1 jVk�1;0] � ��1k�1;�1 00 ��1k�1;0 � � V Tk�1;�1V Tk�1;0 � ; (70)where from the discussion above we havek��1k�1;�1k = O(�); k��1k�1;0k = O(1): (71)We turn now to another term in (48a), namely, the matrix BT�kA+MTk�1. From (36),we have BT�kA+MTk�1 =MT �DT (�Dk�1)�1G +BT�kA:By decomposing similarly to (61), we obtainBT�kA+MTk�1 = ~MTk�1 + �DTk�1;1 jBTUk;�1� � (�Dk�1;1)�1 00 �k;�1 � � �Gk�1;1UTk;�1A � ; (72)where ~MTk�1 = �DTk�1;�1 jBTUk;0� � (�Dk�1;�1)�1 00 �k;1 � � �Gk�1;�1UTk;0A � +MT :27



By substituting (64) into (72), we obtainBT�kA+MTk�1 = ~MTk�1 + V̂k�1;�1(�̂Rk�1;�1)1=2Ŵ Tk�1 " �(�Dk�1;1)�1=2Gk�1;1�1=2k;�1UTk;�1A #= ~MTk�1 + V̂k�1;�1O(��1): (73)It follows from (69) thatV Tk�1;0(BT�kA+MTk�1) = V Tk�1;0 ~MTk�1 + V Tk�1;0V̂k�1;�1O(��1) = O(1); (74)while from orthonormality of Vk�1;�1 and V̂k�1;�1, we haveV Tk�1;�1(BT�kA+MTk�1) = V Tk�1;�1 ~MTk�1 + V Tk�1;�1V̂k�1;�1O(��1) = O(1) +O(��1): (75)By combining (70) with (74) and (75), and using the estimates (71), we obtain(AT�TkB +Mk�1)(Rk�1 +BT�kB)�1(BT�kA+MTk�1) = O(1) +O(��1): (76)It is easy to see that the �rst term in (48a), namely, Qk�1+AT�kA, is also an SPSD matrixwith eigenvalues in the range [0;
(��1)]. We conclude thatk�k�1k = 
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