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Symbolic Implementation of Arbitrary-Order Perturbation Theor y Using Computer
Algebra: Application to Vibrational-Rotational Analysis of Diatomic Molecules

ABSTRACT
Theoretical details necessary to calculate arbitbater correction terms to vibrational-
rotational energies and wave functions in Rayleigh-&tihger perturbation theory are presented.
Since manual derivation of high-order perturbation formiganot feasible due to the lengthy
algebra involved, the commercial computer algebra sodtiathematicd is employed to
perform the symbolic manipulations necessary to déneeequisite correction formulae in terms
of universal constants, molecular constants, and quamiambers. Correction terms through

sixth order for'Z diatomic molecules are derived and then evaluated. fodB, N,, CO, and HF.

It is thus possible—with the aid of computer-generated edgeto apply arbitrarily high-order

perturbation theory successfully to the problem of mtkecular nuclear motion.

Keywords: perturbation theory; computer algebra; molecular speapyswibration and
rotation; diatomic molecules



1. INTRODUCTION

Perturbation theory has traditionally been the metifathoice for describing the low-
lying vibrational and rotational states of polyatomiclecules (Sprandel and Kern, 1972).
Perturbation procedures furnish successively higher-ootegation terms to energies and wave
functions, and with suitable convergence this methogdioarinciple, be extended to arbitrary
order until the correction terms become negligibly §mal practice, however, the calculation of
high-order corrections to vibrational-rotational eyes and wave functions is limited by the
accuracy of the molecular potential energy surface artdebynherent complexity of the
perturbation formulae themselves (Duéasl, 1992). Fortunately, advances in high-speed
computing over the past two decades have assuaged the fwoblerm and made feasible the
calculation of accuratab initio potential energy surfaces for small molecules (seesXample,
Krohnet al, 1974; Harding and Ermler, 1985; Dunning, 1990).

The second problem with high-order perturbation theaywdver, has yet to be
satisfactorily resolved: even relatively low-ordertpebation calculations involve prohibitively
massive algebraic expressions. Because of this coitgplenalytic perturbation theory is seldom
applied to the intramolecular nuclear motion problem bdybe second order of approximation
(Levine, 1975; Carnegt al, 1978). Instead numerical solution of the perturbed Satger
equation (Sprandel and Kern, 1972) or variation-perturbat&thads (Sanders and Scherr,
1969) are employed to calculate high-order correction tettasvever, whereas derivation of an
analytic formula for each perturbation correction rezgimoa priori knowledge of molecular
data and therefore provides a general expression thaecapplied to any system (upon
substitution of the appropriate molecular constants), noateéechniques require that molecular

parameters be inserted into equatibefrethese equations are solved. Thus, the entire



numerical procedure must be repeated each time the moleounktants are changed.
Furthermore, variational techniques suffer from cabg@stic scaling behavior as a function of the
number of atoms and are consequently limited to sl @-5 atom) molecules (Carnetyal,
1978; Carter and Handy, 1982; Romanoveskal, 1985; Choi and Light, 1992).

Although manual computation of explicit algebraic coratformulae to arbitrary order
is not feasible, the growing availability of algebraaftware capable of large-scale symbolic
manipulations offers the possibility of obtaining theickrl expressions via computer. To this
end, high-order quantum-mechanical perturbation theorpd®s successfully applied to some
simple systems using computer algebnase applications, however, are limited to the edeatr
spectra of atoms (Vinette and ek, 1988; Adams, 1992; McRae and Vrscay, 1992; Fernandez,
1992; Adams and Arteca, 1994). Furthermore, these authoradadm,tage of the Hellmann-
Feynman and hypervirial theorems to circumvent exgaitulation of wave functions.

A more general computer algebra-based approach to a pédaonbeoblem was
presented in a series of papers by Bouanich (1987a-c) ahwig author uses commercial
algebra software to derive symbolic algebraic formtdaeibrational-rotational matrix elements.
Because of the nature of the potential energy functigpiayed, however, Bouanich (1987c¢)
concludes that it is not feasible to extend thesetseBubrbitrary order of correction. More
recently, Dudagt al. (1992)have developed a computer program [suitable for implementti
the commercial algebraic software environmdathematicd (Wolfram, 1996)] that can derive
certain matrix elements to arbitrary order of cotioet

This article presents a general perturbation-theotét&ament applied to the analysis of
vibrations and rotations in diatomic molecules. Usimggeneral perturbation energy formula

developed by Herbert (1997and incorporating thathematic& code described above (Dudas



et al, 1992), one may derive explicit algebraic formulae forgynand wave function correction
terms to arbitrary order in thdathematicd environment. These expressions incorporate
universal and molecular constants strictly in symbolion, so that the solution is not specific to a
particular molecule. Thus, after initial computatiortlese formulae, it is a simple matter to
substitute appropriate constants and thereby calculatgigiial-rotational energies and wave

functions to arbitrary order of correction for anylewule.

2. THE HAMILTONIAN
Within the Born-Oppenheimer approximation, the timejietelent Schidinger equation
for the nuclear motion of a diatomic molecule in a boxiyd coordinate system can be written as
[T +umy = Ep,

(1)
whereE is the system’s internal energy (i.e., the totakrgy less translational and electronic
contributions) andr is the nuclear kinetic energy operator in the body-fixache. The potential
energyU(R) is the sum of the vibrational potentia},l&nd rotational potential }Jas functions of
the internuclear separatiét For completeness and internal consistency of iooted few
standard results of perturbation theory as applied to olalegbrations and rotations are

presented in Section 2.1.

2.1 The Zeroth-Order Approximation
To obtain the eigenfunctions and eigenvalues of (1))JgR) be expanded as a Taylor

series about the equilibrium internuclear separdion
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where U’'(R,) =0 because (R, is the minimum potential energy; for conveniencgr.thas been

set equal to zero. The radius of convergence of thesse approximatelyR2 (Dudaset al.,

1992). It can be shown (Levine, 1975) that the rotatipotntial U, has the form

J(J+Dn?

U rot( R) = ZIURZ !
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whered =0, 1, 2, ... is the rotational quantum number ands the system’s reduced mass

(including electrons). Expansion of,l&as a power series iR R.) provides
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where |, = tR? is the molecule’s equilibrium moment of inertia. Eegies (4) converges
wheneveR < 2R, (Ogilvie, 1981; 1982).

For small displacements from equilibriuiR,= R,, and all terms in (2) and (4) save the
first are small (Levine, 1975). Neglecting these higaems corresponds to the harmonic
oscillator/rigid-rotator model, which provides a zerotider approximation to the true internal
nuclear motion of a diatomic molecule. The zeroth-owilwational-rotational wave functions

are (Levine, 1975)

(0) :LIJU(Q)YMQ 5
v,J,M Q+& J(!@’ ()

wherev =0, 1, 2, ... is the vibrational quantum numbdr= -J, -J+ 1, ...,.J—1,Jis an

angular momentum quantum number, &e R- R is the internuclear displacement coordinate.



Y (6, ¢) in (5) is a spherical harmonic function (arising frdgid rotation), whileW (Q) is a
harmonic oscillator wave function.
For molecules whose ground electronic stat&,ishe vibrational-rotational eigenenergies
in the harmonic oscillator/rigid-rotator approximatere (Townes and Schawlow, 1955)
El) =(U+2)w, +I(I+]) B,, (6)
wherea, =274V, V .is the classical frequency of oscillation and

L 7)

T

is theequilibrium rotational constant Note that in the cgs system, ., B., and E,ﬂ?j in (8) are in

units of ergs. Following the convention of Levine (197&yvenumber units are obtained by

using the constanta, and B, in place ofw . andB,, where

« B
_€ B _—_€ .
hc' ® hc ®)

we

2.2 Perturbation Corrections
Successively higher-order corrections for anharmagnicéntrifugal distortion, and
vibration-rotation coupling effects are obtained bynporating additional terms of the potential
energy series (2) and (4) as perturbations to the hacrosailator/rigid-rotator Hamiltonian. It
is known (Sprandel and Kern, 1972) that the sequence of ecamggtion terms from
perturbation theory is most likely to converge whenHlaeniltonian is expanded as a power
series with infinitely many separate perturbations;uibrational and rotational potential energy

series (2) and (4) are ideally suited for such an expansion



Within the radii of convergence of (2) and (4), the &Xx¢amiltonian operator for internal
nuclear motion is obtained by incorporating all terrosifthese series plus the kinetic energy

operator from (1):

S - +90+ D8, k0
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wherek, =U"(R,) is theequilibrium molecular force constarand thgth-order force constant
k is defined as
=y

ki =UY(R,) (10)
for allj > 2. Some authors [e.g., Sprandel and Kern (1972)] incdeptra factorial terms from
(9) into the force constants; however, Equation (10)idesva better analogy to the harmonic
oscillator potentialU,, =3k .Q°. Notice that the first term in series (4) is natarporated into
/= because this term is constant and was subsumed (L&9iNg) into the harmonic
oscillator/rigid-rotator eigenenergies (6).

Following the formalism of Kern and Matcha (1968) and efbhért (1997a), the

Hamiltonian operator, its eigenvalues, and its eigenfumetare rewritten in the form
f=0+y &0, E,, = EY) +Z B Wan = ut Z Y, (11)
1=1

where the unperturbed Hamiltonian operator
O =T+ikQ (12)
corresponds to the harmonic oscillator/rigid-rotat@tesy. There are numerous ways of

constructing the perturbed Hamiltonian operatéﬁ) such that their sum is equal to the full
Hamiltonian operator (9). When perturbation theoapplied through second order, the

perturbations traditionally are written (Dennison aretht, 1962) as follows:
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3J(J+1)B

A =Lk, Q' + Q2.

Here the first-order perturbatiaﬁl) comprises both the first-order vibrational corret{ithat
is, the cubic anharmonicity correction or the sedenoh in series (2)] and the first-order

rotational correction [the second term in series. (4)kewise, the second-order perturbation

2 incorporates second-order potential energy correclisrizoth vibration and rotation.
Extending this rationale to arbitrary order providesavenient form for the perturbed

Hamiltonian operators:

i) = Ki.z i+2 (_1)i(i +)JJ+DB i
)=o+afg ¥ R, Q -
or equivalently,
o= Ko e (DA DML DR (15)
(i+2)! 21, 0RO

since the total angular momentlnof a rotating diatomic molecule has magnitude
IL| =#%J(J+1) . The form of the perturbations in (15) parallels thatis second- (Nielsen,

1951) and fourth-order (Goldsmiét al,, 1956; Amatet al, 1971) perturbation treatments of
polyatomic molecules, in which each perturbed Hamiltorsghe sum of an anharmonicity

correction and a rotational term containing momentaell by moments or products of inertia.

2.3 Matrix Elements



To calculate energy correctios”; and perturbed wave functiogs, ,,, one must
evaluate numerous integrals of the form

D =<l//§f)‘@;m

&.é, T

o), (16)
where the ordered triplé = (ui ., Mi) specifies the system’s quantum state. Integrals such as

(16) can, in general, be evaluated numerically; howdeoethe case of internal nuclear motion
simple procedures exist whereby an analytic solutionlmaybtained.
The sixth-rank tensof= © is known (Levine, 1975) to be diagonal in bdtandM.

Using this fact in conjunction with Equation (14), ona easily show that

o ki+2 i+2 (_1)i(i +:DJ(‘] +])Be i
@;'71(;1?112 - (I + 2)| <Q >ul,u2 + Rle <Q >ul,u2’ (17)
where, for brevity,
(@), , =W | @ @) (18)

since theQ tensor is also diagonalihandM. Note that the matrix element{, contains an

implicit parametric dependence updrthus, for each value dfthere exists a separate, two-

dimensional matrixa= ©.

The matrix eIementéQ} areobtained from the harmonic oscillator wave functions

either by using linear algebra techniques (Matsen, 1978y taking advantage of the recursive
nature of the Hermite polynomials appearing in theseeviiawctions (Levine, 1975; Nifio and

Mufioz-Caro, 1995). These matrix elements are found to be

w+10

oud
<Q>,,,U = %E Oyt %E@Wl , (29)

whered is the Kronecker delta function and



(20)

is a constant appearing in the harmonic oscillatorafanctions. The elements Qf (z> 1) are
obtained from (19) via matrix multiplication; recursivgaithms for this procedure are provided

by Dudaset al. (1992) and by Nifio and Mufioz-Caro (1995). Explicit formulaghese matrix

elements up tciQ“}U,‘U are tabulated by Wilsoet al. (1980).

It should be noted that the matfkhas at most nonzero codiagonals on each side of the

main diagonal, so there are but a finite number of exnkamittonian matrix elements=(", .

As such, perturbation formulae arising from the Hamidtordescribed here will not involve
infinite summations, but instead will be expressiblelased (albeit lengthy) forms. Thus, these

formulae are exact solutions to the Sclinger equation at each order.

3. RAYLEIGH-SCRODINGER EXPANSIONS

For vibrational-rotational analysis problems, icavenient to use the Rayleigh-
Schr dinger form of perturbation theory, in which the setioperturbed wave functior{wgo)}
is assumed to form a basis for the Hilbert space romgathe true wave functiong,. Each

perturbed wave functiowg“) is expressed as a linear combination of these tasisons:
ZL U (21)

wherec"” is thenth-order expansion coefficient associated with quantate gt. In this

application, the summation in (21) runs over all possialees of the three quantum numbers

J, andM.



3.1 Preliminary Considerations

Three useful results will greatly expedite calculatiothefcoefficients in (21). First, it is

known (Dalgarno, 1961; Levine, 1974) that the expansion cieffic") ,,

does not affect the

perturbation energ¥."), so one may set.) ,, =0 in the Rayleigh-Schdinger expansion of

v,J !

™ w - The expansion (21) then simplifies to

) = 5 o700
P =y el

$#E

Second, observe that

i

)=y

1

and, finally,

[] []
(wiu)= 30 5 40

4('¢<(1[| "2,

O ~, 0
CAp Rl s
&7, 0

(22)

(23)

(24)

Equation (24) follows from the orthonormality of theah-order wave functions. If either of

ornis zero in (23) or (24), then one or both of the wlanetions does not need to be expanded.

Equations (23) and (24) are still valid, however, provideddaiaes

©) —
Ce’ =0,

(25)

whereé is the quantum state whose wave function is to be exgamé’ is the index variable

of the Rayleigh-Schdinger expansion (22).

3.2 A General Expansion Formula

10



Using the results obtained above, one can derive aajdoenula for the Rayleigh-
Schr dinger expansion coefficients from the so-called pertiobaquations, which relate the

series expansions (11) a#, E, andy (Kern and Matcha, 1968; Herbert, 1997a). Applying the

Rayleigh-Schrdinger expansion (22) to tmgh-order perturbation equation provides

n

zécgw(@ﬁm-eg?;)wg@ =3 (B =)y (26)

1=1
Since the coefficients far = 0 are known [from (25)], let be greater than zero. Multiplication

of (26) by the complex c:onjugatﬂgﬁ,")D of the zeroth-order wave function for stdgtefollowed

by integration yields

Se(er, -, =3 luelw) Sl le). e

1=1 1=1
As ¢ is arbitrary, choosé' such thaté' # ¢. Under this condition, the wave functiogg” and
w{"" are not necessarily orthogonal (Herbert, 1997a); howevehe case wherie= n, these

two functionsare orthogonal. Thus, using (23) and (24), one may reduce Eqya@pio a

simple recursive formula:

[

0 0)_
C?)(EL(:',)J' - EH) -

> &L S @) @8)

1=1
for alln> 0.
Equation (28) is nearly the desired general formula foefpansion coefficients;

however, ifé and ¢' are degenerate states in the zeroth-order approximtiemthe left side

of (28) is zero, and no information regarding the expansiefficients can be obtained from this

11



formulation. Hence, assume for the moment g, # E\%. Solving (28) forc{" and
substituting this expression into (22) affords the expansio

[

] 1 -1 n
(n = (n-i) ) ) ) [0
¥"=) Bo _po é’Z‘%’n AR I S
&Ry B 0E [

EWLEY4

. (29)

—TOod

Observe from (28) withh = 1 that each first-order expansion coefficieﬁt is simply a
perturbed Hamiltonian matrix element divided by an endiffigrence. By induction on, one

may show that every set oth-order expansion coefﬁmen{ (“)} is a sum of such terms, some

of which are multiplied by an energy correctiEﬂ)J. Since each perturbed Hamiltonian matrix
/= O is diagonal inJ andM, the entire right side of (29) must be zero whenelet J” or

M'# M", so the summations ovéf £ & andé" # ¢ in (29) reduce to summations over# v
and v" # v, respectively. Applying this simplification and making a$€25), one may recast

Equation (28) in its simplest form:

n-1

e (ED), - E)= -7 +Z COEL =S Y e, (30)

1=1 v"2v
Note that the outer summation in the final Rayleigh#Sdinger expansion (29) runs over

only quantum numbers’ # u, and thereforel =J' and M = M'. Under these conditions, the

difference in zeroth-order energies between stéteand¢ is

ED) - B9 =(v' - v)w, (3=J) (31)

from (6). HenceE”, - E\% #0 if v’ # v. Since Equation (30) relates to the Rayleigh-

Schr dinger expansion

12



= (32)

(T

this condition is met, and the assumption tBgft, # E\° is now justified. Moreover, the

rotational quantum numbdrappears in (30) only as a multiplicative constant [fé&aglation

(14)] and the quantum numbler does not appear in Equation (30) at all. Hence, thesigay!
Schr dinger expansion coefficients in (32) will hereaftedeeoted byc'”, where an implicit
parametric dependence difanalogous to that of={, ) is assumed. The final expression for
the Rayleigh-Schidinger expansion coefficients is obtained from (30):

1

c,gw:mgﬂ Zc(”')EU(')+Z Y ¢ ), F (33)

1=1 0"#£v

Equation (33) provides an important recursive relation aliyeeach new set of expansion
coefﬁcients{cﬁf‘)} (n> 1) is determined by all of the coefficients of ortbss tham, while the

first-order coefficientsi(= 1) are determined directly from the elements8f®. Since

reference to molecular vibrations and rotations wadearonly in the context of obtaining a value

for EI,. — E%, the remainder of this derivation is valid for any Ragh-Schr dinger

perturbation problem involving arbitrarily many sepanageturbations to the Hamiltonian.

4. IMPLEMENTATION

Equations (32) and (33) are necessary in order to expapeitebed wave function
@, \ in terms of the known functions in the {eﬂ(o) } Such perturbed wave functions

appear in the equation for théh-order energy correction (Herbert, 1997a),

13
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where the parametar is defined as

0 g0) - B2 (9

T CELN| EAE

K= [% ng, (35)
the greatest integer less than or equdho Only the wave function terms

WP, WP, ... i are necessary to express ttie-order energy correctiog|") (Dalgarno,

1961).

4.1 Mathematica® Programs

An existingMathematicd code (Dudagt al, 1992) can evaluate the matricgsfor any
positive integee and return analytic functions of the vibrational quantwmmber analogous to
(19); thus, one may easily obtain algebraic expresswrbe perturbed Hamiltonian matrix
elements in (34) by using this code in conjunction wigndiions (17), (23), and (24). In fact, all
of the necessary theoretical pieces are now in ptacealculate explicit formulae for the
successive perturbation corrections to energies and fwaggons.

Equations (23), (24), (30), and (34) pertain to Rayleigh-Slimger perturbation theory
in general, and these equations (along with a few a&sbautes for manipulating quantum-
mechanical matrix elements) were coded together ipackage oMathematicd functions
calledRSPERTURE Equations (17) and (31), on the other hand, apply spdgificaliatomic
vibrational-rotational analysis problems and were @ifEd into a separatdathematicd package

calledDiaATomIcVIBROT. Early versions of thBRSPERTURBaNdDIATOMICVIBROT programs are

14



published in Herbert (1997bYogether, these programs can be used to derive symmahalbe
for diatomic vibrational-rotational energies and wawgctions in terms of universal constants,
molecular constants, and quantum numbers. Moreovee, aingpplication-specific equations
are collected in a separate program, the pacR&gerTurscan be applied to solve perturbation
problems other than the one discussed here.

In deriving energy formulae usirRSPERTURBaNdDIATOMICVIBROT, the quantum number
U was not incorporated symbolically, but instead a sepana¢rgy expression was derived for
each value ob . There are several reasons why this approach kes.tdirst and foremost,
whenov is known explicitly, summations over quantum numherg v, etc., may be quickly
evaluated, so it is enormously simpler (and much moieeeff) to derive formulae in this
manner. Furthermore, perturbation theory is most atewherv is small (that is, wheR is
nearR.), so relatively few values af will ever be required.

In actuality, it is of interest to derive a genergkdiraic energy expression in terms of

bothu andJ only in order to factor such an expression into ammotyial in J(J+1) and

(u +%), and thereby obtaiab initio formulae for spectroscopic constants. However,
perturbation analyses do not, in general, yield enetigggscan be factored into powers of

J(J+1) and (u +%) (Darling and Dennison, 1939), and indeed the expansion in

(u +%)i[J(J +1)]j is most often used simply as a numerical fitting equatlariight of this, the

most efficient way to obtain theoretical valuesdpectroscopic constants is to calculate

vibrational and rotational energy levels from firsinpiples, then numerically fit these values to an

15



appropriate power series in much the same wayathatitio electronic energies are fit to an
analytic potential energy function.
4.2 Symbolic Results and Discussion
Using Mathematicd version 2.2 (running on a Sun SPARC 5 workstation) and the
external packageRSPERTURBandDIATOMICVIBROT, Mathematicd derived analytic formulae for
the energy correction terns” throughE® and for vibrational statas = 0 throughv = 10.
The odd-order perturbation energies were found to be @aing to the fact that perturbed

Hamiltonian matrix elements={", as defined in (17) have a definite parity due to the pafity

<QZ>UVU, , as discussed by Levine (1975).

Using intrinsicMathematicd functions for algebraic simplification, it is possilide
separate each correction formula into a linear caaibin of small terms; the linear combination
coefficients are integers whose values depend upon tfaioial state. By taking advantage of
linear combination notation and intrinsic patternghia correction formulae, one can reduce these
expressions from literally hundreds of pages of algelboaciompact forms. For example, energy
correction formulae through sixth order for the fidstven vibrational states can be expressed in
only twelve pages of tables; these formulae have teepiled by Herbert (1997b). For
demonstrative purposes, the compact expressioi&fare reproduced here as an appendix.

The procedure used to deriZ®, E®, andE® is completely general and works for
arbitrarily high orders of correction; the maximum ardécorrection is limited only
by computer constraints. Previously, researchers tatgematicd to solve problems in

guantum chemistry have reported (Jones, 1994) that thigasefis perhaps too slow to be of

16



practical use. For the perturbation calculations presdentthis report, however, such is not the
case.

Figure 1 presents the CPU time required for initial deowedf successive orders of
perturbation formulae in their crudest forms, while Figzishows the time required to simplify
these crude formulae into their most compact formsniilang the timing data from Figures 1
and 2, one sees that the amount of CPU time requiredite dad simplify amth-order
correction formula is in all cases on the ordel@f seconds. Furthermore, for a given value of
n, CPU time scales linearly with .

Although Figures 1 and 2 indicate exponential scaling wipeet to the order of
perturbation theory, three facts make this problem rnragable. First, algebraic simplification
of crude correction formulae is not strictly necessany is useful only if the perturbation
formulae are to be elsewhere transcribed. Eliminaticsimplification steps reduces requisite
CPU time by the amounts shown in Figure 2.

Second, because of tke dependence of CPU time, the correction formulae for ve
low-lying vibrational states require significantly leésee to derive and simplify than those for
higher vibrational states (since negative values oére not allowed, summations over# v
are considerably less involved for small). Because Rayleigh-Schinger perturbation theory

is applicable only to low-lying vibrational statese lormulae that are of primary interest are also
the ones that require the least time to obtain.

Finally, it is worth noting thaRSPERTURBIS not the most efficient possible algorithm for

deriving energy correction formulae because the expansiefficientsc!’ in RSPERTURBare

recalculated from the general formelach timethey are needed. It would be enormously more

17



efficient to first calculate as many Rayleigh-Satinger coefficients as are required, then store
these expressions so tidathematicd may reference them during the course of a computation.
In the case of diatomic molecules, however, the peitd demonstrate that arbitrary-order
perturbation formulaeanin fact be derived using computer algebra. In our futune wdth
polyatomic molecules (where emphasis is placed on atgedctual numerical values for

vibrational-rotational energies), a more efficielgioaithm will be employed.

5. NUMERICAL RESULTS

Numerical values for perturbation energies through sixtlerofor selected molecules are
quickly obtained by substituting appropriate numerical parasiet® the perturbation formulae
derived by theRSPERTURBaNdDIATOMICVIBROT programs. In a fullab initio treatment, the
force constants and equilibrium internuclear separd&iare determined by means of electronic
energy calculations, and fé, this was accomplished by fitting existiag initio electronic
energy data (Keos and Wolniewicz, 1964) to an eighth-degree Taylor polyalonBly using
force constants obtained from this potential, vilorzdl-rotational energy levels fif, were
calculated to the sixth order of Rayleigh-Sclinger perturbation theorlREPT(6). However,
because the Taylor polynomial fit is good only witheme finite radius of convergence, the
theoretical data obtained from this potential energyaegion are not usable beyond a certain

value ofu . (In this application, it was found that beyomd = 4 the energies actually begin to
decreaseasv increases.) Thus, to assess the reliability dfisixder perturbation calculations
for larger values ob , we chose to employ an empirical potential energy lnectather than a

numerical fit ofab initio data.

18



5.1 Potential Energy Functions

Two of the most common empirical potential energy fiomst for diatomic molecules are
the Morse function (Morse, 1929) and the Hulburt-Hirschfefdection (Hulburt and
Hirschfelder, 1941; 1961). Molecular force constants [Equd8@rmay be obtained from either
of these functions by means of analytic differertdiati For the Morse potential, these force
constants may be written (Sprandel and Kern, 1972) imeeo@ént closed form. For the
Hulburt-Hirschfelder potential function, no such closed¥f@xpression exists; however,
Mathematicd can easily perform the requisite symbolic differentiati

For comparative purposes, RSPT(6) vibrational-rotatienatgies fofH,were calculated
by using first Morse and then Hulburt-Hirschfelder focoastants. In Figures 3 and 4, RSPT(6)
energies for each vibrational state = 0 throughv = 10 are plotted as functions of the
rotational statd and compared with experimental values (Stoicheff, 1957;de¢egzand Howe,
1959; Herzberg and Monfils, 1960). For the lowest vibratitewals (i.e.,u < 4), theoretical
energies obtained from Hulburt-Hirschfelder force carmistare essentially indistinguishable from

experimental values. Ag increases, so does the discrepancy between theoryaedngent;

this rift also increases (to a lesser extent) witiheasingJ.

Although force constants from the Morse potential appe@rovide a better fit foo =
7 throughv = 10, the decision was made to use the Hulburt-Hirschfelolemtial function for

all calculations because Rayleigh-Satinger perturbation theory is most applicable to the &we

vibrational levels. This last point cannot be owegpbasized, and in performing such theoretical
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calculations it is imperative that one understand prgdigav many vibrational and rotational
energy levels can accurately be described by using tha tireory and all its intrinsic

approximations and assumptions.
5.2 Accuracy of Perturbation Calculations

The maximum vibrational-rotational energy that carcdleulated to a given level of
accuracy depends upon the potential energy surface, theodgEturbation theory, and the
molecule itself. In what follows, a paradigmatic asslpf the applicability oRSPT(6)
calculations tdH, is provided, beginning with a look at the sequence of er@rggctions for
this molecule.

Table 1 lists the individual correction terms for saveifferent vibrational-rotational
states ofH,. Several important trends in the perturbation eneogiections, which are true for
nearly all diatomic molecules, are exemplified by tlaga. First, note that corrections to the
zeroth-order energy are significantly smaller dor= 0 than forv = 1. This difference in the
relative magnitudes of correction terms is even mooagunced at larger values of and
illustrates a general trend: the perturbation correctoeach order becomes larger (in an
absolute sense) as increases. This is not surprising, given that thenbaic oscillator model
becomes increasingly less accurate at higher and hitdgnational energy levels; for highly
excited vibrational states, significant correctiornhis idealized model is required.

Table 1 also demonstrates, however, that perturbadioeations at each order increase
relatively slowly withJd. Although this phenomenon is illustrated in Table 3/ éol the ground
vibrational state, it is in fact a general trendléw-lying vibrational and rotational states: within
a given vibrational state, energy corrections in@edswly withJ, but within a given rotational

state, the correction terms increase quite rapidly with This behavior arises because the
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vibrational potential energy series (2) is term byntenuch larger than the rotational potential
energy series (4) (Dennison and Hecht, 1962).

The results of RSPT(6) energy calculations for the &1 vibrational-rotational states
of 'H, are listed in Table 2, along with the corresponding emxpial energies (Stoicheff, 1957;
Herzberg and Howe, 1959; Herzberg and Monfils, 1960); for coenee, the relative differences
between theoretical and experimental energies areataduh Table 3. The data in Table 3
indicate excellent agreement between theory and exparior low-lying vibrational states (for
instance, whew < 4, the difference between theoretical and experimentgies is less than 1
percent for all eleven rotational levels considerew)reover, the relative differences in Table 3
are not altogether large even for higher vibratiotetes. However, it should be noted that when
v >4, the absolute difference between theoretical apdrinental energies is on the order of
hundreds of wavenumbers for all eleven rotational¢emelable 2. Thus, it appears that for
> 4 one might wish to include eighth- or higher-order pegtion corrections.

The small relative differences in Table 3 can be sdmaé misleading, for the series (2)
and (4) may not converge for all valuesuof andJ listed in this table. An estimate of the
maximum values o andJ for which convergence is guaranteed can be obtaineaayining

the radii of convergence of these series. Figure 5 depiptot of the Hulburt-Hirschfelder
potential energy curve foH,; overlaid onto this plot are tlSPT(6)vibrational energy levels for
the ground rotational state and the 10 rotational state. The vertical line in Figure b@ated
at Q = R,, which represents the best estimate (Dwdad, 1992) of the radii of convergence of

(2) and (4). Although the quantum-mechanical harmonidlatscimay tunnel out of the
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potential well of Figure 5, the wave function falls wdiry rapidly for values of) outside this well.
Hence, to a good approximation one may resRitd values within the potential energy well.

Note that for vibrational levels abowe =5 (in the ground rotational state) and above
v =3 (intheJ = 10 rotational statef) may drift beyondR. yet still be within the potential well.

For these energy levels, the perturbation series (hhptde assumed to converge for all values
of Q, so the perturbation treatment presented here isoptitable. Sincd = 10 and) = 0 are,
respectively, the highest and lowest rotational leseésmined fofH,, Figure 5 establishes
boundary conditions for convergence of the perturbagoiesfor this molecule. For all

rotational levels in the interval9J < 10, one anticipates convergent perturbation series ap to
leastthev = 3 vibrational level buho higherthan thev =5 vibrational level.

One last comment concerning the accuracy of molebytinogen calculations is in order.
This molecule (and, in particular, the diprotium isotopengred here) represents a worst-case
scenario for vibrational-rotational energy calculasio Because it is the lightest molecule, high-
order energy corrections fét, should be the most significant of any diatomic mole{Dienham,
1932). Furthermore, the breakdown of the Born-Oppenheipmeogmation is known (Bunker,
1972) to be more significant for isotopomers gfttdn for other diatomic molecules. Thus, H
represents something of a lower limit to the accucdcy

perturbation calculations.

5.3 Additional Results
Tables 4 through 7 present experimental RB8T(6)energies for several other
representative diatomic molecules, while Tables 8 aixd the relative differences between

theory and experiment for each set of calculationsticH that these differences are typically
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much smaller for heavier moleculéd\; and**C*°O) than for lighter onesH**F and'HH), which
affirms Dunham'’s result (Dunham, 1932) for dinuclear vibral-rotational energies: the
accuracy of low-order perturbation calculations increagth the molecular reduced mass.
The RSPT(6)calculations in Tables 4-7 are all based upon HulburteHfieder force
constants, where the parameters in the Hulburt-Heegidf potential function were taken from
those explicitly tabulated by Hulburt and Hirschfelder (194T)ese parameters [which are
related (Hulburt and Hirschfelder, 1941; 1961) to experimentaigsured spectroscopic
constants] were also calculated by using more recgetriexental data (Huber and Herzberg,
1979). When force constants obtained in this mannez used irRSPT(6)calculations, the
theoretical energies obtained fét*°F and'H*H fell several wavenumbers closer to experimental
values, thus demonstrating the importance of possessexccamte potential energy function.

One final numerical result is presented. Theoretiahies for spectroscopic constants of
'H, were obtained by fitting RSPT(6) energy data'frto a polynomial in(u +%) and
J(J+1). Mathematic&’sintrinsic functionNonl i near Regr ess was used to perform the
numerical fitting procedure, and the, energy data from Table 2 for<Ov <3 and (< J< 10

were used as input [since the energy series (11) conviergesch of these vibrational-rotational
states]. The theoretical spectroscopic constantsnaut in this manner are listed in Table 10
alongside their experimental counterparts (Huber and degzth979), which are valid for

0< v <3. The numerical fit of the theoretical data has ameggd standard deviation of 1.24

waves per centimeter.
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6. CONCLUSIONS

Equation (29) provides a general expression for the Ray&ah dinger expansion of
perturbed wave functions when a molecular Hamiltoniartagoing arbitrarily many separate
perturbations is employed. This formula is valid for application of Rayleigh-Schdinger
perturbation theory—for instance, the polyatomic vibral-rotational analysis problem—and
complements the general perturbation energy formularaatdiy Herbert (1997a). These two
formulae are included in tHdathematicd packageRSPERTURB which contains all of the
equations necessary to implement arbitrary-order Rgw/®chr dinger perturbation theory. This
program can be used not only to calculate energies, dmt@bbtain wave functions to arbitrary
order of correction. This is a major advantage oflé¥gly-Schrddinger perturbation theory, for
explicit knowledge of the quantum-mechanical wave functigables one to calculate directly
spectral line intensities and expectation values fdecotar properties such as the molecular
dipole moment (Ermler and Hsieh, 1990; Nifio and Mufioz-CE885).

In this article,RSPERTURBWaS used in conjunction with anothdathematicd package,
DIATOMICVIBROT, to apply arbitrary-order Rayleigh-Schinger perturbation theory to diatomic
vibrational-rotational analysis problems. Symbeplgturbation energy formulae were derived and
then evaluated numerically for several molecules, gmdeedure was given whereby the
applicability of such theoretical calculations may beneated. However, the numerical results are
not the focus of what is reported here; rather ReERTURBaNdDIATOMIC VIBROT programs are
the principal results, for they allow one to implemeetturbation theory to arbitrary order of
correction RSPERTURB. In particular, the diatomic vibrational-rotatiomadalysis problem may

now be easily solved to arbitrary order by usingromic ViBROT.
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Although derivation of symbolic high-order perturbatiomalae requires a significant
amount of computation time due to the nature oMla¢hematicd software package,
appreciable improvements in algorithm efficiency (asufised in Section 4.2) will be made when
this analysis is applied to polyatomic molecules. Esgerthe methods presented here are more
efficient than numerical procedures, for the calculatiperformed byathematicd result in
symbolic formulae that express perturbation correctiobsrms of user-supplied universal and
molecular constants.

Admittedly, perturbation theory is not the preferred rodtfor calculating the vibrational
and rotational energies dfatomicmolecules (Sprandel and Kern, 1972); however, this work
demonstrates that perturbation corrections can balatdd accurately, efficiently, and
systematically foany order of correction. These results furnish imporigight into the general
guantum-mechanical vibrational-rotational problem andigeoa framework for studies of the
vibration and rotation of large polyatomic moleculebeve perturbation theoryg the most
tractable and accurate method of analysis. Effoesiader way to develop a polyatomic
analogue of th&iaTomic VIBROT program that will enable efficient calculation of ardiy-order
correction terms to polyatomic vibrational-rotatibeaergies, wave functions, line intensities, and

property expectation values.

PROGRAM AVAILABILITY

The latest versions &¥SPERTURBaNdDIATOMICVIBROT, along with a text file describing

their use in detall, are available by anonymous FTigpatinfo.mcs.anl.gov/pub/perturb.
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APPENDIX
SECOND-ORDER CORRECTION FORMULAE

For each vibrational state® is a linear combination of the purely vibrationahter
purely rotational terms, and vibrational-rotationalipling terms listed below.
VIBRATIONAL TERMS: Agv), Bgv)
ROTATIONAL TERMS: Agr), Bgr)
COUPLING TERMS Agv'r), Bg"'r)
Using lower-case letters to represent the integeficieets of a linear combination, one can

write the complete second-order energy correction as
E? =al) A" +b BY +al™” A +b0 B +al) A) +b) B)
(36)
=a" A + b BY +al ) A +b¢I B + 0,
where the coefficients depend upon the vibrational stateThe coefficients of the two

rotational terms are independent of the vibratioraskstso these terms have been grouped

together into theecond-order constant of pure rotation, whose value is

-2J%(J+)°R
o 2 : (37)
aRhv,
Values of the linear combination coefficients fro36) are listed in Table 11 for the first eleven
vibrational states.

Capital letters in the energy formula (36) represenectidins of universal and molecular

constants having the form

I3 BK K
0a"R (hve)fs (38)
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whereQ, ¢, /,, ..., {4 are integers whose values are listed in Table 12 lfeibedtional and
coupling terms.

The correction formulae fd“ andE® can be represented in analogous fashion. The
linear combination representififf’ consists of 20 vibrationally dependent terms plysthe
fourth-order constant of pure rotation, while the Imeambination representirig® contains 75
vibrationally dependent terms, plus. Finally, recall that Darling and Dennison (1939) prestict
that high-order perturbation formulae would not be fattierito integer powers aJ(J +1)
and (v +32). Infact,0,is found to be

120°(3+)° 8 | 4°(I+ Bk
a’Ré(w)  a’R(w.)’

OF (332-23+3, (39)

which indeed cannot be factored exactly into powerg(df+ 1).
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Correction Vibrational-Rotational Energy Vibrational-Rotational Energy
Term Contributions,E") [waves/cm] Contributions,E") [waves/cm]
v =0,J=|v =0,J=|v =0,J=|v =1,J=| v =2,J=| v =3,J=
0 1 2 0 0 0
E©@ 2202.42 2324.14 2567.58 6607.27 11012.12 15416.97
E@ -23.34 -26.59 -34.21 -274.04 -775.45 -1527.56
E® -0.52 -0.49 -0.42 1.9 45.91 101.44
E® 0.02 0.02 0.02 -0.51 -5.05 -20.57]




Table 1. Energy correction terms for six vibratier@htional states of '~*, *H,. The tilde over

the energy correction indicates units of waves peliroetgr.

J=0 | J=1|J=2 | J=3 | J=4 | J=5]J=6 ]| J=7 J=8 J=9 | J=10

=0 | 2178.59| 2297.08| 2532.96| 2884.09| 3347.34| 3918.67| 4593.28| 5365.67| 6229.81 | 7179.21| 8206.94
2179.27| 2297.76| 2533.66| 2884.81| 3348.07| 3919.46| 4594.24| 5367.17| 6232.69 | 7185.19| 8219.31

=1 | 6334.71| 6447.26| 6671.22| 7004.58| 7444.28| 7986.38| 8626.23| 9358.52| 10177.4 | 11076.6| 12049.5
6340.41| 6452.97| 6677.04| 7010.54| 7450.30( 7992.13| 8630.80| 9360.00| 10172.4 | 11059.6| 12012.2

=2 | 10246.7| 10353.4| 10565.6| 10881.3| 11297.6| 11810.7| 12415.9| 13108.2| 13881.8 | 14730.6| 15648.2
10266.4| 10373.2| 10585.7| 10901.9| 11318.8| 11832.2| 12436.9| 13126.9| 13894.9 | 14732.7| 15631.2

= 3| 13914.8| 14015.4| 14215.8| 14513.8| 14906.4| 15390.1| 15960.3| 16611.9| 17339.2 | 18136.6| 18997.4
13961.6| 14062.7| 14263.9| 14563.3| 14958.0| 15444.5| 16018.4| 16674.8| 17408.3 | 18213.4| 19084.6

=4 | 17335.4| 17430.0| 17618.2| 17897.9| 18266.4| 18719.8| 19253.8| 19863.2| 20542.7 | 21286.4| 22087.9
17429.7| 17525.1| 17715.0| 17997.6| 18370.0| 18828.9| 19369.8| 19988.1| 20678.5 | 21435.6| 22253.9

=5 | 20501.9| 20590.1| 20765.6| 21026.3| 21369.4| 21791.2| 22287.2| 22852.5| 23481.5| 24168.4| 24907.0
20671.2| 20761.0{ 20939.6| 21205.2| 21555.2| 21986.2| 22494.0| 23074.0| 23721.2 | 24430.2| 25195.8

= 6 | 23403.8| 23485.3| 23647.4| 23888.0| 24204.3| 24592.5| 25048.2| 25566.3| 26141.4 | 26767.7| 27438.7
23684.9| 23769.0| 23936.2| 24184.7| 24512.0| 24914.7| 25388.8| 25929.6| 26532.4 | 27191.8| 27902.6

=7 | 26027.3| 26101.7| 26249.4| 26468.5| 26756.0| 27108.2| 27520.5| 27988.0| 28505.0 | 29065.5| 29663.3
26467.1| 26545.2| 26700.7| 26931.6| 27235.6| 27609.2| 28048.8| 28549.6| 29107.1 | 29716.0| 30371.4

= 8 | 28355.2| 28421.9| 28554.1| 28749.9| 29006.3| 29319.5| 29684.8| 30097.2| 30551.0 | 31040.0| 31557.7
29010.3| 29082.3| 29225.5| 29438.1| 29717.6| 30060.9| 30463.9| 30922.2| 31431.2 | 31985.6| 32580.5

=0 | 30366.7| 30424.9| 30540.3| 30710.8| 30933.3| 31204.0| 31518.1| 31870.4| 32254.9 | 32665.5| 33095.4
31303.2| 31368.7| 31498.9| 31692.0| 31945.6| 32256.3| 32620.3| 33033.2| 33490.1 | 33986.0| 34515.8

v = | 32037.5| 32086.5| 32183.5| 32326.3| 32511.8| 32735.9| 32993.8| 33280.1| 33588.7 | 33913.1| 34246.3
10 33329.5| 33387.9| 33504.0| 33676.0| 33901.2| 34176.5| 34497.8| 34860.5| 35259.5 | 35689.2| 36144.1

Table 2. RSPT(6) vibrational-rotational energiesMaves per centimeter) for the lowest
vibrational-rotational states &f'>", 'H,; the lower entry in each cell is an experimentdlea

The experimental zero-point energy was obtained fromaliéeg and Monfils (1960), while the

remaining experimental energies were calculated usinglitetional quanta and mean rotational



constants obtained experimentally by Stoicheff (1957)bgriderzberg and Howe (1959).

Theoretical calculations used Hulburt-Hirschfelder faxoastants with parameters obtained from

Hulburt and Hirschfelder (1941).

J=0]J=1]J=2 | J=3 | J=4 | J=5]J=6 | J=7 J=8 J J=10 |
v =0 -0.03 -0.03 -0.03 -0.03 -0.0p -0.02 -0.02 -0.03 -0{05 -0.08 -¢.15
v =1 -0.09 -0.09 -0.09 -0.09 -0.08 -0.97 0.05 -0.02 0}05 0.15 ¢.31
v =2 -0.19 -0.19 -0.19 -0.19 -0.19 -0.18 -0.17 -0.14 -0{09 -0.01 (I).ll
v =3 -0.34 -0.34 -0.34 -0.34 -0.3b -0.35 -0.36 -0.38 -0{40 -0.42 -¢.46
v =4 -0.54 -0.54 -0.55 -0.5% -0.5p -0.58 -0.60 -0.63 -0{66 -0.70 -0.75
v =5 -0.82 -0.82 -0.83 -0.84 -0.8p -0.89 -0.92 -0.06 -1{01 -1.07 -1.15
v =6 -1.19 -1.19 -1.21) -1.23 -1.26 -1.29 -1.34 -1.40 -1|47 -1.56 -1.66
v =7 -1.66 -1.67 -1.69 -1.72 -1.76 -1.81 -1.88 -1.07 -2{07 -2.19 -2.33
v =8 -2.26 -2.27 -2.30 -2.34 -2.30 -2.47 -2.56 -2.67 -2{80 -2.96 -3.14
v =9 -2.99 -3.01 -3.04 -3.1( -3.1)7 -3.26 -3.38 -3.62 -3{69 -3.89 -4.12
v = -3.88 -3.90 -3.94 -4.01 -4.10 -4.22 -4.36 -4.63 -4174 -4.98 -$.25
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Table 3. Relative (percent) difference between th®atdRSPT(6)] and experimental energies

for the lowest vibrational-rotational statesXof>", *H,.

EU‘J J=0 J=1 J=2 J=3 J=4

1N, RSPT(6) | Exp. RSPT(6) | Exp. RSPT(6) | Exp. RSPT(6) Exp. RSPT(6) Exp.
v = 1176.69| 1175.70 1180.69 1179.68 1188.68 1187.64 1200.68 1199.58 1216.67 1p15.49
U = 3507.55| 3505.62 351151 3509.56 3519.43 3517.45 3531.32 3529.28 3547.16  3p45.06
U = 5808.20 | 5806.89 5812.12 5810.Y7 5819.97 5818.58 5831.74 5830.31 5847.43 5B45.95
U = 8077.78 | 8079.39 8081.6% 8083.27 8089.42 8091.02 8101.08 8102.64 8116.62 8[18.14
v = 10315.4| 10323.2 10319.2 10327.0 10326.9 10334.7 10388.5 10334.7 10353.8 1p361.6




Table 4. Experimental and RSPT(6) vibrational-rotati@mergies foX 'Z*, **N, in waves per

centimeter. Theoretical calculations used the HulbuinrdeHfelder potential model with

parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpkerimental data.

E,.; J=0 J=1 J=2 J=3 J=4
12C%0 | RSPT(6) | Exp. RSPT(6) | Exp. RSPT(6) | Exp. RSPT(6) Exp. RSPT(6) Exp.
U = 1081.07 | 1081.59 1084.92 1085.831 1092.p0 1093.12 1104.14 1104.66 1119.51 1120.03
v =1 3223.08| 3224.86 3226.89 3228.67 3234.p1 3236.29 3245.94 324[7.72 3261.17 362.96
U = 5338.70 | 5341.63 5342.47 534542 5350.02 5352.97 5361.34 5364.30 5376.44 5379.40
U = 7427.71 | 7432.03 7431.44 7435.Y7 7438.92 7443.25 7450.14 7454.46 7465.09 7469.42
U = 9489.88 | 9496.06 9493.59 9499.Y6 9500.p9 9507.17 9512.10 9518.28 9526.91 9633.10




Table 5. Experimental and RSPT(6) vibrational-rotati@mergies fok '~* **C'®O in waves per
centimeter. Theoretical calculations used the HulbundeHfelder potential model with
parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpkerimental data.

" J=0 J=1 J=2 J=3 J=4
H | RSPT(6)| Exp. RSPT(6) | Exp. RSPT(6) | Exp. RSPT(6) Exp. RSPT(6) Exp.
v =0 2054.70| 2046.80 2095.73 2087.94 2177./9 2170.34 2300.75 2294.2 2464.47 2h60.02
v =1 6018.60| 6008.23 6057.99 6048.05 6136./3 6129.21 6254.72 6254.73 6411.81 6429.14
v =2 | 9813.65| 9797.62 9851.46 9836.40 9927.04 9918.26 10040.3 100p1.8 10191.1 10249.9
v =3 | 13445.2 | 1341.97 13481.%5 13457.7 13554.0 13542.2 13662.7 136p0.1 13807.5 13926.8
v = 16916.0| 16878.6 16950. 16916.1 17020.3 17005.2 17124.6 171[73.8 17263.4 1§7464.2




Table 6. Experimental and RSPT(6) vibrational-rotati@mergies foX 'Z* *H'F in waves per
centimeter. Theoretical calculations used the HulbundeHfelder potential model with
parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpkerimental data.

E,.; J=0 J=1 J=2 J=3 J=4
H?H | RSPT(6)| Exp. RSPT(6) | Exp. RSPT(6) | Exp. RSPT(6) Exp. RSPT(6)| Exp.
= 1890.33 | 1883.79 1979.58 1972.96 2157.47 2150.74 2421.78 2415.85 2773.71 2766.42
v = 5519.06 | 5515.90 5604.42 5601.02 5774.p4 5770.64 6028.23 6023.50 6363.74 6B57.73
v = 8962.80| 8971.00 9044.32 9051.95 9206.f6 9213.23 9448.96 9433.58 9769.20 9771.13
U = 12222.6 | 12253.2 12300.2 12329.9 12455.0 12482.7 12685.7 12741.04 12990.6 13011.0
v = 15297.5| 15366.7 15371.2 15439.2 15518.2 15583.5 15787.2 157198.4 16026.7 16081.9




Table 7. Experimental and RSPT(6) vibrational-rotati@mergies foK 'X*, *H*H in waves per
centimeter. Theoretical calculations used the HulbundeHfelder potential model with
parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpkerimental data.

J=0 J=1 J=2 J=3 J=4
N, [CO[ N, [cO[ N, [cO| N [CO| N, [ CO
v = | 008| -0.05 009 -0.04 0.09 -0.05 0.09 -005 0[10 -d.05
0
v = | 006 -0.06 006 -0.06 006 -006 0.06 -005 o0lo6 -d.05
1
v = | 002] -0.06f 003 -0.06 002 -006 0.02 -006 0[03 -d.06
2
v = | -0.02] -0.06] -0.03 -0.06 -0.02 -006 -0.p2 -0j06 -0[02 -d.06
3
v = | -0.08] -0.07 -0.0§ -0.06 -0.08 -007 0.04 -006 -0j08 -d.06
4




Table 8. Relative (percent) difference between th®atdRSPT(6)] and experimental energies

for the heavy moleculédN,and**C*0O.

J=0 J=1 J=2 J=3 J=4
HF [ HD | HF | HD | HF [ HD | HF [ HD | HF [ HD

v = | 039] 035 037 034 03¢ 031 029 0p9 o[18 .26
0

v =| 017| 0.06) 0.1 0.06 0.12 007 0.0 008 -0[27 .09
1

v = | 016] -0.09 013 -0.08 009 -007 -011 -005 -0[57 -d.02
2

v = | 019] -025 01§ -0.24 009 -022 -0.20 -019 -0[86 -d.16
3

v = | 022] -0.45 021 -0.44 0.09 -042 -029 -0B9 -115 -0.34




HF HD HF HD HF HD HF HD HF HD

Table 9. Relative (percent) difference between th@atdRSPT(6)] and experimental energies

for the light moleculedH"F and'H*H.

Spectroscopic| Theoretical Value | Experimental Value

Constant [waves/centimeter] | [waves/centimeter]
. 4400.33 4401.213
CzeXe -122.135 -121.336
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B, 60.616 60.8530
a, -3.0655 -3.0622
D, -0.0399509 -0.0471
A 10.2031 8.93

Table 10. Theoretical and experimental spectroscopitants forX '~*, *H,. Theoretical
values were obtained from a numerical fit of RSPT(B)ational-rotational energy data for
0<wv <3and(J< 10 and were calculated Mathematic& to six significant digits.
Experimental constants were obtained from Huber andlig¢ey (1979) and are valid for

O<sv <3.
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Table 11. Linear combination coefficients f&?.

v al by Al by
0 11 1 3 1
1 71 5 9 3
2 191 13 15 5
3 371 25 21 7
4 611 41 27 9
5 911 61 33 11
6 | 1271 85 39 13
7 | 1691 | 113 45 15
8 | 2171 | 145 51 17
9 | 2711 | 181 57 19
10 | 3311 | 221 63 21

AR
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Av|ofo|of 2] of 3] of 1] -28d
B [0[ 0|0 0] 1| 2] of of 32
Al 1] 1] 1] o] o] 1] 2] of 2

ol 1|1 1] 1] o] 2 1] 1] 2

Table 12. Symbolic term factors [Equation (38)] Ht.

Table 1. Energy correction terms for six vibratier@htional states of '~*, 'H,. The tilde over

the energy correction indicates units of waves peliroetgr.

Table 2. RSPT(6) vibrational-rotational energiesMaves per centimeter) for the lowest
vibrational-rotational states &f'>*, 'H,; the lower entry in each cell is an experimentdlea

The experimental zero-point energy was obtained fromaliéeg and Monfils (1960), while the
remaining experimental energies were calculated usinglitetional quanta and mean rotational

constants obtained experimentally by Stoicheff (1957)bgriderzberg and Howe (1959).
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Theoretical calculations used Hulburt-Hirschfelder fareastants with parameters obtained from

Hulburt and Hirschfelder (1941).

Table 3. Relative (percent) difference between th@atdRSPT(6)] and experimental energies

for the lowest vibrational-rotational statesXof>", *H,.

Table 4. Experimental and RSPT(6) vibrational-rotati@mergies foX 'Z*, **N, in waves per

centimeter. Theoretical calculations used the HulbuinrdeHfelder potential model with
parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpierimental data.

Table 5. Experimental and RSPT(6) vibrational-rotati@mergies fokX '~* **C'*O in waves per

centimeter. Theoretical calculations used the HulbundeHfelder potential model with
parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were
obtained (Huber and Herzberg, 1979) from a polynomial #xpkerimental data.

Table 6. Experimental and RSPT(6) vibrational-rotati@mergies foX 'Z* *HF in waves per
centimeter. Theoretical calculations used the HulbudeHfelder potential model with
parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpierimental data.

Table 7. Experimental and RSPT(6) vibrational-rotati@mergies foK 'X*; *H*H in waves per

centimeter. Theoretical calculations used the HulbundeHfelder potential model with
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parameters obtained from Hulburt and Hirschfelder (1941)ewkperimental energies were

obtained (Huber and Herzberg, 1979) from a polynomial #xpierimental data.

Table 8. Relative (percent) difference between th@atdRSPT(6)] and experimental energies

for the heavy moleculédN,and*C"*0O.

Table 9. Relative (percent) difference between th@atdRSPT(6)] and experimental energies

for the light moleculedH"F and'H?H.

Table 10. Theoretical and experimental spectroscopitants forX '~*, *H,. Theoretical
values were obtained from a numerical fit of RSPT(Bjational-rotational energy data for
0<wv <3and(J< 10 and were calculated Mathematic& to six significant digits.
Experimental constants were obtained from Huber andligey (1979) and are valid for

O<sv <3.

Table 11. Linear combination coefficients f&?.

Table 12. Symbolic term factors [Equation (38)] Et.
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CPU Time Required for Derivation of Crude Correction Formulae
4000 T T T T T

3500

3000 .

2500 1 v=1

2000 _

CPU Time [seconds]
o
3
T
|

1000 ,

500 - ,

Order of Correction

Fig. 1. CPU time required bylathematic& to derive symbolic energy correction formulae. All
computations were performed on a Sun SPARC 5 workstatiog Mathematicaversion 2.2 for

Unix. Results are shown for the first eleven vilorzdl states, ranging from =0tov = 10.
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Additional Time Required for Algebraic Simplification of Crude Formulae
1400 T T T T \

1200

1000 |-

800

600 [

CPU Time [seconds]

400 -

200

| ) — | | |
0 1 2 3 4 5 6
Order of Correction

Fig. 2. CPU time required byathematic& to manipulate crude energy formulae into their

simplest forms. Results are shown for the first elexkrational states.
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RSPT(6) Versus Experiment for Molecular Hydrogen (Morse Potential Function)
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Rotational Quantum Number, J Vibrational Quantum Number, v

Fig. 3. Energy calculations through sixth orderXo&*, *H,, using force constants obtained

from the Morse potential. Each solid line showsttieoretical energy for a particular vibrational
state as a function of the rotational quantum numbergashed lines represent experimental
values. Morse parameters were obtained from Sprandddemm (1972). The experimental
zero-point energy was obtained from Herzberg and Mqif#§0), while the remaining
experimental energies were calculated using the vibatipranta and mean rotational constants

obtained experimentally by Stoicheff (1957) and by Heiglaexd Howe (1959).
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RSPT(6) Versus Experiment for Molecular Hydrogen (Hulburt—Hirschfelder Potential)

x 10

w
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Energy [waves/cm]
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Rotational Quantum Number, J Vibrational Quantum Number, v

Fig. 4. Energy calculations through sixth orderXo&*, *H,, using force constants obtained

from the Hulburt-Hirschfelder potential. Each soliclshows the theoretical energy of a
particular vibrational state as a function of the tioteal quantum number, and dashed lines
represent experimental values. Hulburt-Hirschfelder paiers were obtained from Hulburt and
Hirschfelder (1941). The experimental zero-point energy atdained from Herzberg and
Monfils (1960), while the remaining experimental energiege calculated using the vibrational
guanta and mean rotational constants obtained expeailtydiyt Stoicheff (1957) and by

Herzberg and Howe (1959).
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Fig. 5. Hulburt-Hirschfelder potential energy curve andatibnal-rotational energy levels for
the ground rotational state (solid lines) andlkel0 rotational state (dashed linesXd&*, *H..
These energies were obtained from RSPT(6) calculatising Hulburt-Hirschfelder force
constants, with Hulburt-Hirschfelder parameters takemfHulburt and Hirschfelder (1941).

The dotted vertical line is located @t= Re.
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Fig. 1. CPU time required bylathematic& to derive symbolic energy correction formulae. All
computations were performed on a Sun SPARC 5 workstatiog Mathematicaversion 2.2 for

Unix. Results are shown for the first eleven vilonadl states, ranging from =0touv = 10.

Fig. 2. CPU time required byathematic& to manipulate crude energy formulae into their

simplest forms. Results are shown for the first elewkrational states.

Fig. 3. Energy calculations through sixth orderXo&*, 'H,, using force constants obtained

from the Morse potential. Each solid line showsttieoretical energy for a particular vibrational
state as a function of the rotational quantum numbergashed lines represent experimental
values. Morse parameters were obtained from Sprandddemm (1972). The experimental
zero-point energy was obtained from Herzberg and Mqif#§0), while the remaining
experimental energies were calculatated using the vibadtquanta and mean rotational contants

obtained experimentally by Stoicheff (1957) and by Heiglaeid Howe (1959).

Fig. 4. Energy calculations through sixth orderXo&*, *H,, using force constants obtained

from the Hulburt-Hirschfelder potential. Each soliclshows the theoretical energy of a
particular vibrational state as a function of the tioteal quantum number, and dashed lines
represent experimental values. Hulburt-Hirschfelder pairens were obtained from Hulburt and
Hirschfelder (1941). The experimental zero-point energy atdained from Herzberg and
Monfils (1960), while the remaining experimental energiese calculatated using the vibrational
guanta and mean rotational contants obtained experitgeayt&toicheff (1957) and by Herzberg

and Howe (1959).
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Fig. 5. Hulburt-Hirschfelder potential energy curve andatibnal-rotational energy levels for
the ground rotational state (solid lines) andlkel0 rotational state (dashed linesXd&*, *H,.
These energies were obtained from RSPT(6) calculabypnsing Hulburt-Hirschfelder force
constants, with Hulburt-Hirschfelder parameters takemfiHulburt and Hirschfelder (1941).

The dotted vertical line is located @t= R..
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