
COMPUTATIONAL STUDY OF THE EFFECT OFUNSTRUCTURED MESH QUALITY ON SOLUTIONEFFICIENCYMichael Batdorf,� Lori A. Freitag,y and Carl Ollivier-GoochzAbstractIt is well known that mesh quality a�ects both e�-ciency and accuracy of CFD solutions. Meshes withdistorted elements make solutions both more di�-cult to compute and less accurate. In this article, wereview a recently proposed technique for improvingmesh quality as measured by element angle (dihe-dral angle in three dimensions) using a combinationof optimization-based smoothing techniques and lo-cal reconnection schemes. Typical results that quan-tify mesh improvement for a number of applicationmeshes are presented. We then examine e�ects ofmesh quality as measured by the maximum angle inthe mesh on the convergence rates of the commonlyused GMRES and Multigrid solvers. Numerical ex-periments are performed that quantify the cost andbene�t of using mesh optimization schemes for in-compressible and weakly compressible ow over acylinder.Keywords. Mesh Improvement, Mesh Smoothing,Convergence, Solution E�ciency1 IntroductionFinite element and �nite volume techniques incomputational uid dynamics require that the com-putational domain be decomposed into simple geo-metric elements, typically triangles and quadrilater-als in two dimensions and tetrahedra and hexahedrain three dimensions. This decomposition can oftenbe achieved automatically by using available meshgeneration tools. Unfortunately, meshes generatedin this way can contain poorly shaped or distorted�Research Intern, Mathematics and Computer Science Di-vision, Argonne National Laboratory, Argonne, IL 60430.batdorf@mcs.anl.govyAssistant Scientist, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, IL 60430.freitag@mcs.anl.gov, Associate Member AIAA.zAssistant Professor, Department of Mechanical Engineer-ing, The University of British Columbia, Vancouver, BC, V6T1Z4 Canada. cfog@mech.ubc.ca. Associate Member AIAA.

elements, which cause numerical di�culties duringthe solution process. For example, we know that aselement angles become too large, the discretizationerror in the �nite element solution increases;3 andas angles become too small, the condition numberof the element matrix increases.15 Thus, for mesheswith highly distorted elements, the solution is bothless accurate and more di�cult to compute.We recently introduced a two-pronged approachfor e�ectively improving the quality of triangularand tetrahedral meshes based on local reconnec-tion schemes and a new optimization-based meshsmoothing technique14, 12. In this article we brieyreview these mesh optimization procedures andpresent typical results for a number of applicationmeshes. In the course of those numerical experi-ments, we identi�ed particular combinations of tech-niques that resulted in the greatest improvement tomesh quality, and we summarize several recommen-dations o�ered in Freitag and Ollivier-Gooch.13The goal of our current research is to quantify thee�ects of poor mesh quality on solution e�ciencyfor CFD applications. Toward this end, we per-form a detailed examination of two test problems:incompressible and weakly compressible ow over acylinder. For the �rst case, we analyze a numberof numerical experiments that quantify the conver-gence rate of the solution technique for high-qualitymeshes, show how this rate is adversely a�ected bypoor element quality, and �nally show that the to-tal time required to improve the mesh and solve theproblem on the improved mesh is often less thanthe time required to �nd an accurate solution on apoor-quality mesh. Our results show that the pointat which the total time associated with solution onan improved mesh is less than the solution time on apoor-quality mesh is application and solution tech-nique dependent. We examine in detail three GM-RES iterative solvers and �nd that as the number ofgrid points increases and/or the mesh quality de-creases, mesh optimization techniques become in-creasingly bene�cial. For the second test case, westart with a randommesh for which a multigrid solu-1



tion technique does not converge and show that com-bined swapping and smoothing improve the meshenough to obtain a convergent solution.The remainder of the article is organized as fol-lows. In Section 2, we briey review the meshsmoothing and local reconnection techniques usedfor mesh improvement. We then present results thatshow the improvement of several application meshesusing a combination of swapping and smoothing,and we review the recommendations for mesh im-provement given in Freitag and Ollivier-Gooch.13In Section 3, we describe the test cases and solu-tion techniques, followed by several numerical ex-periments that quantify the e�ects of mesh qualityon convergence behavior.2 Mesh Improvement TechniquesMuch research has been done in the area of im-proving mesh quality through a variety of tech-niques, including1. point insertion/deletion to re�ne or coarsen amesh,22, 242. local reconnection to change mesh topology fora given set of vertices,16, 18 and3. mesh smoothing to relocate grid points withoutchanging mesh topology.2, 9, 23We recently introduced a two-pronged approachfor e�ectively improving the quality of tetrahe-dral meshes based on local reconnection schemesand a new optimization-based mesh smoothingtechnique.12 We now briey review these procedures.2.1 Mesh SmoothingLocal mesh smoothing techniques are formulatedin terms of the grid point to be adjusted|the freevertex, v|and that grid point's adjacent vertices,V . The location of the free vertex is changed ac-cording to some rule or heuristic procedure basedon information available at the adjacent grid points.Suppose x is the position of the free vertex; then thegeneral form of the smoothing algorithms is given byxnew = Smooth(x, V , jV j, conn(V )),where xnew is the proposed new position of v, jV j isthe number of adjacent vertices, and conn(V ) is theadjacent vertex connectivity information. Ideally,the new location of the free vertex will improve themesh according to some measure of mesh quality,such as dihedral angle or element aspect ratio.

To evaluate the mesh quality for the mesh ele-ments, let fi(x), i = 1; : : : ; n, be the values of meshquality a�ected by a change in x. For example, ifwe use dihedral angles as a mesh quality measure ina three-dimensional mesh, each tetrahedron wouldhave six function values, one for each edge of thetetrahedron. Thus, the total number of function val-ues a�ected by a change in x would be the number oftetrahedra containing the vertex v multiplied by six.Let the minimum of the function values obtained atx be called the active value, and let the set of func-tion values that obtain that value, the active set, bedenoted by A(x).The action of the function Smooth is determinedby the particular algorithm chosen. In this sectionwe briey describe several di�erent methods; moredetails can be found in Freitag et al.,14 Freitag andOllivier-Gooch,12 and Freitag.11\Smart" Laplacian Smoothing. A variant ofLaplacian smoothing relocates the mesh grid pointto the geometric center of the adjacent grid pointsonly if the quality of the local mesh is improved ac-cording to some mesh quality measure. Computingxnew by this method is quite inexpensive, and thetotal time required is dominated by the two functionevaluations needed to determine the initial quality ofthe mesh and the resulting quality of the mesh.Optimization-based Smoothing. In Freitag etal.14 and Freitag and Ollivier-Gooch,12 a low-cost,optimization-based alternative to Laplacian smooth-ing was proposed. This optimization technique usesfunction and gradient evaluations to �nd the mini-mum (or maximum) value that a mesh quality mea-sure obtains in the solution space. The goal of theoptimization approach is to determine the positionx� that maximizes the composite function�(x) = min1�i�n fi(x): (1)For most quality measures of interest, the functionsfi(x) are di�erentiable. However, the compositefunction �(x) has discontinuous derivatives wherevera change occurs in the active set.We solve this nonsmooth optimization problemusing an analogue of the steepest descent methodfor smooth functions. The search direction s at eachstep is computed by solving a quadratic program-ming problem that gives the direction of steepestdescent from all possible convex linear combinationsof the gradients in the active set at x. The linesearch subproblem along s is solved by predictingthe points at which the set of active functions will2



change based on the �rst-order Taylor series approxi-mations of the fi(x). The distance from the currentposition to the point at which the active sets arepredicted to change gives the initial step length �.Standard step acceptance and termination criteriaare used to ensure a robust implementation.Amenta et al. have shown that this techniqueis equivalent to generalized linear programmingtechniques.1 Thus, the convex level set criterion canbe used to determine whether there is a unique so-lution x�. Amenta et al. describe the level sets forseveral mesh quality criteria and show that manyof them meet the convexity requirement for uniquesolutions.Other optimization-based smoothing techniqueshave been developed by researchers in the mesh gen-eration and computational geometry communities.These methods di�er primarily in the optimizationprocedure used or in the quantity optimized. Forexample, Bank6 and Shephard and Georges25 pro-pose similar techniques for triangles and tetrahedra,respectively. In these methods, an element shapequality measure, q(t), is de�ned based on a ratio ofelement area (volume) to side lengths (face areas).In each case, q(t) is equal to one for equilateral ele-ments and is small for distorted elements. The freevertex is moved along the line that connects its cur-rent position to the position that makes q(t) equal toone for the worst element in the local submesh. Theline search in this direction is terminated when twoelements have equal shape measure. We note thatthis does not necessarily guarantee that the optimallocal solution has been found.All the techniques mentioned above optimize themesh according to element geometry. In contrast,Bank and Smith5 propose two smoothing techniquesto minimize the error in �nite element solutionscomputed with triangular elements with linear basisfunctions. Both methods use a damped Newton'smethod to minimize the interpolation error or the aposteriori error estimates for an elliptic partial dif-ferential equation. The quantity minimized in bothof these cases requires the computation of approxi-mate second derivatives for the �nite element solu-tion as well as the shape function q(t) for triangularelements mentioned above.Combined Approaches. In Freitag11 and Fre-itag and Ollivier-Gooch13 experiments showed thatthe most e�ective and e�cient smoothing approachcombined the smart Laplacian smoother with theoptimization-based algorithm. Four related combi-nation approaches, which used Laplacian smooth-ing as a �rst step followed by optimization-based

smoothing for the worst quality elements, were com-pared with results obtained with smart Laplacianand optimization-based smoothing used alone. Testmeshes for several application geometries in bothtwo and three dimensions were obtained by usinga variety of meshing techniques. In all cases, themesh quality function used to determine the activevalue was the minimum sine of the angles (dihedralangles in three dimensions) in the incident elements.Because the sine function is small near the anglesof 0o and 180o, this mesh quality measure has thee�ect of eliminating both large and small angles inthe mesh. E�ectiveness of the smoothing techniquewas measured by examining the global minimumand maximum angles/dihedral angles in two/threedimensions.In those experiments we found that theoptimization-based method yielded a greater in-crease in the minimum angle than the Laplaciansmoother did. In fact, the Laplacian smoother oftenfailed to eliminate extremal angles in the mesh. TheLaplacian smoother yielded a greater number of nearequilateral triangles and tetrahedra due to the aver-aging e�ect of the operator. The increase in compu-tational cost associated with the optimization-basedsmoother compared with the Laplacian smootherwas approximately a factor of four in two dimen-sions and a factor of ten in three dimensions. Forall but one case, the combined approaches were ableto obtain the same minimum angle as optimization-based smoothing used alone at a fraction of thecost. In addition, the combined approaches createdmore equilateral elements than optimization-basedsmoothing used alone. We concluded that the com-bined techniques generally generate higher-qualitymeshes than either Laplacian or optimization-basedsmoothing used alone. The cost the combined ap-proaches varied depending on the number of opti-mization steps performed. We note that more thanthree sweeps of the mesh o�er minimal improve-ments for the meshes and methods tested.All the mesh smoothing results presented in thisarticle use three to �ve passes of a combined ap-proach in which smart Laplacian smoothing is useda �rst step to improve all elements, followed byoptimization-based smoothing for the worst-qualityelements (those with angles less than 30 degrees in2D and 15 degrees in 3D). This combined approachhas a computational cost of roughly two times thecost of smart Laplacian smoothing. The quality cri-terion used is maxmin sine.3



2.2 Local Mesh Recon�gurationTechniquesLocal mesh recon�guration techniques change theconnectivity of part of a simplicial mesh to improvemesh quality. For triangles, these techniques arebased on edge swapping, and for tetrahedra, thesetechniques can be divided into two classes: faceswapping and edge swapping.Face swapping reconnects the tetrahedra sepa-rated by a single interior face. Each interior face ina tetrahedral mesh separates two tetrahedra madeup of a total of �ve points. A large number of non-overlapping tetrahedral con�gurations are possiblewith these �ve points, but only two can be legallyreconnected. These two cases are shown in Figure 1.On the left is a case in which either two or threetetrahedra can be used to �ll the convex hull of aset of �ve points. Switching from two to three tetra-hedra requires the addition of an edge interior to theconvex hull. On the right of the �gure is a con�g-uration in which two tetrahedra can be exchangedfor two di�erent ones. The shaded faces in the �g-ure are coplanar, and swapping exchanges the diago-nal of the coplanar quadrilateral. The two coplanarfaces must either be boundary faces or be backedby another pair of tetrahedra that can be swappedtwo for two. Otherwise, the new edge created by thetwo-for-two swap will not be conformal.
Figure 1: Swappable con�gurations of �ve points inthree dimensionsBecause each recon�gurable case has only twovalid con�gurations, a quick comparison to �nd theone with the higher quality is possible. If the higher-quality con�guration is not already present, recon-nection is performed to obtain it. In the case ofcon�gurations of equal quality, we select the two-tet con�guration when choosing between two- andthree-tet con�gurations, and we choose not to swapin the two-for-two recon�guration case.Edge swapping recon�gures N tetrahedra inci-dent on an edge of the mesh by removing that edgeand replacing the original N tetrahedra by 2N � 4

tetrahedra. The recon�guration is performed only ifevery new tetrahedron has better quality than theworst of the N original tetrahedra. In principal,edge swapping could be used to replace, for exam-ple, 12 tetrahedra with 20, but in practice we havefound that the number of transformations that im-prove the mesh declines dramaticallywith increasingN . In particular, for practical cases 7-for-10 trans-formations are rare, and consequently we have notinvestigated these techniques for N > 7. Edge swap-ping is used in two ways: �rst, as a supplement toface swapping, and second as a separate procedurespeci�cally designed to remove poor-quality tetra-hedra. More details can be found in Freitag andOlliver-Gooch.13We use two geometric quality measures to de-termine whether to locally reconnect a tetrahedralmesh: the minmax angle (or sine of the angle) crite-rion and the in-sphere criterion. The minmax angle(sine) criterion chooses the con�guration that min-imizes the maximum dihedral angle (sine of) of thetetrahedra formed by the �ve points in the two tetsincident on a face. The in-sphere criterion selectsthe con�guration in which no tetrahedron formedby four of the �ve points contains the other point inits circumsphere. This leads to a locally Delaunaytetrahedralization in the sense that there is no face inthe mesh with incident cells violating the in-spherecriterion that are recon�gurable. For either crite-rion, however, the optimum reached by this face-swapping algorithm will probably be local ratherthan global. Recent work by Joe18 describes a moreadvanced technique for improving mesh quality bylocal transformations. This approach notwithstand-ing, it is not known whether the global optimum canbe reached by any series of local transformations.2.3 Mesh Improvement ResultsIn Freitag and Ollivier-Gooch,12 we presented re-sults for mesh improvement using in-sphere and min-max dihedral angle face swapping and Laplacian andoptimization-based smoothing techniques for three-dimensional tetrahedral meshes. For two randommeshes and three application meshes, we showedthat neither swapping nor smoothing was able tomake signi�cant improvements in mesh quality whenused alone. The face-swapping techniques fail toremove very small and very large angles, and thesmoothing techniques fail to improve the overall dis-tribution of angles because they cannot change localmesh connectivity. However, we showed for thesetest cases that the cumulative improvement obtainedwhen combining in-sphere and minmax swapping4



Table 1: Mesh improvement for three application meshesMin Max % Dihedral Angles < % Dihedral Angles >Case Dihed Dihed 6o 12o 18o 162o 168o 174oTire incinerator before 0:66o 178:88o 0.11 0.54 1.27 0.074 0.035 0.0075Tire incinerator after 13:67o 159:82o 0 0 0.038 0 0 0T-�re boiler before 0:048o 179:86o 0.16 0.50 0.99 0.24 0.12 0.037T-�re boiler after 5:61o 174:15o 0.0013 0.029 0.11 0.019 0.0071 0.00045ONERA M6 wing before 0:0066o 179:984o 0.78 1.63 2.85 0.57 0.41 0.23ONERA M6 wing after 0:098o 179:76o 0.16 0.66 1.46 0.17 0.076 0.018followed by the combined smoothing technique re-sults in very high quality meshes.Two of the application meshes were generated inthe interior of a tangentially �red (t-�red) industrialboiler and a tire incinerator, respectively. The thirdapplication mesh was generated around the ONERAM6 wing attached to a at wall. Each mesh was gen-erated by using point insertion techniques combinedwith face swapping.12The improvement in mesh quality achieved foreach of the three application meshes is shown in Ta-ble 1. For each case we show the minimumand max-imum angle in the mesh before and after mesh im-provement, as well as the percentage of angles in thelower and upper three 6o bins. For all three cases,mesh quality is improved signi�cantly. The �nalmesh quality di�ers dramatically among the threecases because of the initial topology and point dis-tribution of the meshes. For example, the M6 wingmesh began with a very large number of poor dihe-dral angles in adjacent tetrahedra. Clustering of badtetrahedra was fairly common in our initial meshes,with the worst cells often sharing vertices, edges, oreven faces. While smoothing improved many tetra-hedra, some could not be improved without makinga neighboring cell worse, and so no improvement wasmade.These experiments led to several general rec-ommendations for the improvement of tetrahedralmeshes:� Never use the in-sphere criterion during the �-nal pass of face swapping. It performs poorlyin practice with respect to extremal angles.Edge swapping is a bene�cial supplement toface swapping and should be used.� Meshes whose connectivity has not been im-proved during generation should be reconnectedusing in-sphere face swapping, followed by faceand edge swapping by using the maxmin sine of

dihedral angle criterion. For meshes that haveinitially reasonable connectivity, only the sec-ond pass need be performed.� The local reconnection schemes should befollowed by two passes of a combinedLaplacian/optimization-based smoothing tech-nique, followed by an edge-swapping procedureto remove the worst tetrahedra from the mesh,and �nishing with two more passes of smooth-ing. Quality criteria that tend to eliminatesmall angles in the mesh are more e�ective thancriteria that tend to eliminate large angles.3 Numerical ExperimentsWe now examine the e�ect of mesh quality onthe convergence rates of commonly used solutiontechniques for incompressible and weakly compress-ible, two-dimensional ow applications. We considertwo test cases; the �rst is incompressible ow in achannel around a cylinder, and the second is weaklycompressible ow over a cylinder at Mach 0.3. Thesolution for the �rst test case is obtained using bylinear �nite element techniques with exact integra-tion. The linear systems are solved by using theGMRES solvers in the PETSc toolkit for scienti�ccomputation4 with a relative convergence toleranceof 10�12. The solution for the second test case iscomputed by using an edge-based, vertex-centered�nite volume solver for which second-order accu-racy is attained through least-squares reconstruc-tion. Results for both cases show that element qual-ity has a signi�cant e�ect on the convergence rateof the solution procedure and that the total cost ofsolving the problem an improved mesh, which in-cluded the mesh optimization costs, is less than thecost to obtain comparable accuracy on poor-qualitymeshes.5



3.1 Case Study 1: Incompressible Flowover a CylinderOur �rst case study is incompressible ow over acylinder centered in a channel. The computationaldomain is four cylinder diameters long and two wide,with a symmetry condition imposed on the upperand lower surfaces. For our test problem we choosethe radius of the cylinder to be .25 and the uniformow to be U = 1 in the x-direction. The compu-tational domain is triangulated with the Delaunaymesh generation package Triangle.26 The geometryand a typical mesh with N = 800 grid points areshown in Figure 2.
Figure 2: Delaunay mesh for ow over a cylinder(N=800)Experiment 1: Convergence of GMRES. Our�rst experiment examines the e�ect of the numberof grid points N on the convergence rate of the GM-RES solvers. It is well known that the number of it-erations for the Incomplete Cholesky conjugate gra-dient (ICCG) algorithm increases as the number ofgrid points increases. In particular, for elliptic oper-ators on the unit square, several authors have shownthat the number of iterations required by ICCG isproportional to N 12 when a second order central �-nite di�erence method is used with the natural or-dering of grid points.10 Although the potential owproblem can be solved using ICCG, we are interestedin developing a more general code for the solutionof CFD problems and in understanding the conver-gence behavior of the more commonly used GMRESiterative techniques.To empirically obtain the convergence behaviorof GMRES on the domain shown in Figure 2, weran a series of numerical experiments with N =200; 400; 800; 1600; 3200; 6400; and 12800 gridpoints in the mesh. Each of these meshes has aminimum angle of approximately 30o and a max-imum angle between 110o and 120o. We considerthree di�erent solvers: GMRES with no precondi-tioning (GMRES), GMRES with Jacobi precondi-

tioning (GMRES/Jac), and GMRES with no-�ll ILUpreconditioning (GMRES/ILU). All are restarted byusing the PETSc default value of 30 iterations. Ta-ble 2 gives the number of grid points used and thenumber of iterations required for each of the threesolution techniques.The number of iterations for each of the solu-tion techniques is also given graphically in Figure3 as a log-log plot. It is clear that in each case thenumber of iterations is growing as a function of Nand that GMRES/ILU requires considerably feweriterations than the other two techniques. Linearleast-squares analysis gives the slopes of these curvesto be s = :907; :866, and .792 for GMRES, GM-RES/Jac, and GMRES/ILU, respectively. Thus, asN in creases, the number of iterations grows as N s.We further note that the work required for each it-eration is dominated by a matrix-vector multiplica-tion that is O(N ) operations for the sparse linearsystems generated by the �nite element technique.Therefore, the total work required to solve the sys-Table 2: Number of iterations as a function the num-ber of grid points in the meshNumber of IterationsN GMRES GMRES/Jac GMRES/ILU200 199 172 41400 316 217 79800 670 567 1431600 1176 949 2183200 2093 1571 3036400 4205 3128 69012800 8571 5605 1263
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Figure 3: The number of iterations as a function ofthe number of grid points in the mesh6
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E3Figure 4: An example of perturbing an element tocreate poor quality elementstem is approximately O(N s+1) for each of the iter-ative techniques.Experiment 2: E�ect of element quality on con-vergence. We use the iteration counts given in Table2 as a baseline to examine the e�ect on the con-vergence rates of element quality as measured bythe maximum angle. To control the maximum an-gle in the mesh, we start with the original meshescreated with Triangle and insert a new grid pointa distance � from and perpendicular to the mid-point of an edge of 10 percent of the elements.The distance � is chosen to result in an elementwith the desired maximum angle. An example ofthis point insertion technique is shown in Figure4. For each point inserted, two new elements arecreated so that the �nal mesh has N + :1N gridpoints and 2N + :2N elements. Using this tech-nique, we created a series of meshes for each orig-inal mesh with N = 200; 400; 800; 1600; and 3200grid points. Each series consists of �ve meshes withpoor quality elements whose maximum angles are170o; 175o; 178o; 179o; and 179:5o, respectively.In Figure 5 we show the number of iterations re-quired to reach an accuracy comparable to that ob-tained on the original meshes versus the maximumangle in the mesh for each of the three solution tech-niques. For each iterative technique, large maximumangles signi�cantly a�ect the convergence rate, par-

ticularly if the maximumangle is 178o or greater. Infact, for the largest values ofN and for maximuman-gles greater than 175o and 179o, GMRES and GM-RES/Jac failed to converge to the desired tolerancein less than the maximum number of iterations al-lowed (10,000). GMRES/ILU performs signi�cantlybetter and has severely degraded performance onlywhen maximum angles are greater than 178o.For each N and a maximum angle of 170o, thenumber of iterations for GMRES is roughly tripledcompared with GMRES on the original mesh, morethan doubled for GMRES/Jac, and almost doubledfor GMRES/ILU. We note that the amount of workrequired to smooth each mesh is an O(N ) operation,and the following question arises: For what values ofN and maximum angle in the mesh is the total costof smoothing the mesh and solving the problem onthe improved mesh less than the cost of obtainingan accurate solution on a poor-quality mesh?Experiment 3: Determination of smoothingbene�ts on solution time. We address the questiongiven above by comparing the di�erence in solutiontimes on the poor-quality mesh and on an improvedmesh (including the time to improve the mesh).For this experiment, we improve each mesh withthree passes of the combined smoothing approachdescribed in Section 2.1. Element quality typicallyimproves to greater than 15o for the minimumanglesand less than 140o for the maximum angle. We in-clude the original meshes and their smoothed coun-terparts so that the maximum angles considered inthis experiment range from 110o to 179:5o.From our �rst and second experiments, we ex-pect that the bene�ts of smoothing will be morepronounced as both N and the maximum angle in-crease. In Figure 6, we plot the di�erence in thetime required to reach convergence on a poor qual-ity mesh and the total time to reach convergence on7
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Figure 6: The solution times for convergence of the three iterative techniques for poor quality meshes andthe same meshes after smoothingan improved mesh which includes the time for meshsmoothing for the three values of N for each iter-ative technique. The amount of time required formesh smoothing is approximately 3.8, 8, and 15.7seconds for N = 800; 1600 and 3200, respectively.Clearly, as N and the maximum angle in the meshincrease, the amount of time saved by smoothing themesh also increases. It is also clear that as the iter-ative technique improves, the value of N for whichsmoothing is bene�cial increases.3.2 Case Study 2: Compressible Flowover a CylinderOur second case study examines the e�ect of meshquality on convergence behavior for weakly com-pressible ow over a cylinder at Mach 0.3. The com-putational domain is nine cylinder diameters longand three diameters wide, with a symmetry condi-tion imposed on the upper surface. For this exper-iment, we generated three meshes each beginningwith the same random point set with point den-sity falling exponentially with distance from the sur-face. This distribution corresponds to a constantstretching ratio for structured meshes. The pointset contains 2500 interior points and 190 boundarypoints, which are evenly spaced on the cylinder, in-ow, outow, and upper symmetry plane and expo-nentially stretched along the lower symmetry plane.The �rst mesh, the left mesh in Figure 7, was gen-erated by simply inserting the random points intothe mesh and swapping using the Delaunay crite-rion. The smallest angle in this mesh is 0:56o andthe largest is 178:86o. The middle mesh in Fig-ure 7 was obtained by performing �ve passes ofoptimization-based smoothing on the vertices of the�rst mesh; this procedure improves the extremal an-

gles to 12:3o and 145:6o. The rightmost mesh in Fig-ure 7 was obtained from the �rst mesh by perform-ing �ve passes of smoothing alternating with passesof swapping using the Delaunay criterion; this meshhas extremal angles of 23:2o and 131:9o. Figure 8compares the overall angle distribution for the threemeshes. Clearly, smoothing alone improves the an-gle distribution, dramatically reducing the numberof both small and large angles. When combined withswapping, the improvement is even greater.Flow around the cylinder was computed us-ing an edge-based, vertex-centered �nite volumesolver. Second-order accuracy was attained usingleast-squares reconstruction8, 20, 21. Following re-construction, uxes were computed by using Roe'sux formula and integrated for each control vol-ume. Time advance was performed using an ex-plicit multistage scheme with multigrid convergenceacceleration.22 In each case, the same three coarsemeshes were used to eliminate the e�ects of coarsemesh convergence behavior on the results. Figure 9shows the convergence rates for each of the �nemeshes. The random mesh fails to converge, fallinginto a limit cycle with large variations in ow param-eters. The smoothed mesh and the smoothed andswapped mesh cases both converge, with the asymp-totic rate being about 25% faster for the latter case.In both cases, the mesh optimization procedures re-quired less time than a single cycle of the multi-grid solver. In both cases, convergence is limitedby behavior near the rear separation point on thecylinder, where local time step is limited by acousticmodes while the solution is changing due to convec-tive modes with a propagation speed of M = 0.01 orless.8



Figure 7: From left to right: the random mesh, smoothed mesh, and smoothed and swapped mesh
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Figure 8: Angle distribution for cylinder meshes
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3.3 Summary and ConclusionsIn this paper we examined the bene�ts of us-ing mesh optimization procedures to improve meshquality for computational uid dynamics applica-tions. We briey reviewed several mesh improve-ment techniques and strategies for triangular andtetrahedral meshes and presented typical results forthe improvement of application meshes. We thenexamined two CFD applications involving ow overa cylinder solved with �nite element and �nite vol-ume solution techniques. In both cases, we showedthat mesh improvement is critical to the e�cient so-lution of the application and that the total cost ofthe mesh improvement procedures and solution timeon a high-qualitymesh is often less than the solutiontime on a poor-quality mesh.In future work we will extend our study of therami�cations of mesh quality on solution techniquesto include more di�cult three-dimensional CFD ap-plications and an in-depth analysis of solution accu-racy. AcknowledgmentsThis work was supported by the Mathematical,Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.References[1] N. Amenta, M. Bern, and D. Eppstein. Opti-mal point placement for mesh smoothing. In8th ACM-SIAM Symp. on Discrete Algorithms,New Orleans, to appear.9
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