Adaptive SOR: A case study in automatic differentiation of
algorithm parameters *

Paul Hovland® Michael Heath?
July 2, 1997

Abstract

Many algorithms make use of one or more parameters to control the behavior of the algorithm.
Examples include the damping factor o in a damped Newton method or the relaxation parameter w in
a successive over-relaxation (SOR) iterative solver. The optimal value for such parameters is problem
dependent and difficult to determine for most problems. We describe the use of automatic differentiation
(AD) to adjust algorithm parameters toward optimal behavior. We demonstrate how AD can be used
to transform an SOR solver with fixed w into an adaptive SOR solver that adjusts w toward its optimal
value. We provide experimental evidence that for large problems with lax convergence criteria such an
adaptive solver may converge faster than a solver using an optimal, but fixed, value for w. These are
exactly the conditions that apply when SOR is used as a preconditioner, its most common use in modern
scientific computing.

1 Introduction

Many algorithms make use of one or more parameters to control the behavior of the algorithm. Consider,
for example, the relaxation parameter w in a successive over-relaxation (SOR) solver (see [4], for example).
An SOR solver uses iterations of the form

wa(k'l'l) = wa(k) + wb,

where
M,=D+wlL
and
Ny =(1—-w)D —wl,
where

Ax =10

is the linear system to be solved and D, L, and U correspond to the diagonal, lower triangular, and upper
triangular portions of A, respectively. The parameter w may be assigned any value in the interval [0, 2],
although typically values in the interval [1,2] are used (hence the term over-relaxation). The value of w can
have a significant effect on the convergence rate of the algorithm. The optimal value for w can be determined
for certain special problems, but in general can be determined only by using an eigenvalue analysis.

*This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office
of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

tCurrent address: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Ar-
gonne, 1L, 60439, hovland@mcs.anl.gov.

{Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL 61801,
heath@cs.uiuc.edu.

Automatic differentiation (AD) can be used to transform a program that computes a function into a new
program that also computes the derivatives of that function. The method works by differentiating individual
operations, such as multiplication and square root, for which derivatives can be determined by table lookup,
then propagating these derivatives via the chain rule of differential calculus. AD is applied to algorithms,
not some abstract notion of a function. Thus, the method used to compute a function can affect the values
computed for the derivatives. In certain cases [3, 6], this may affect the quality of the derivatives computed
using AD if precautions are not taken. However, it is also possible to exploit this feature by computing
derivatives with respect to algorithm parameters.

Computing derivatives with respect to algorithm parameters provides us with information about how
changing the values of the parameters would affect the behavior of the algorithm. In the case of an iterative
algorithm, we can use this information to adjust the parameters toward values with more desirable behavior.
For other algorithms, we can use this information to characterize the effects of the parameters on the behavior
of the algorithm, enabling us to develop better heuristics for choosing the parameter values.

2 Automatic Differentiation

Complex functions are often expressed as algorithms and computed using computer programs. Such programs
may range from tens to many thousands of lines of code. Automatic differentiation has proven an effective
means of developing code to compute the derivatives of such functions. AD relies upon the fact that all
programs, no matter how complicated, use a limited set of elementary operations and functions, as defined
by the programming language. The function computed by the program is simply the composition of these
elementary functions. Thus, we can compute the partial derivatives of the elementary functions using
formulas obtained via table lookup, then compute the overall derivatives using the chain rule. This process
can be completely automated, and is thus termed automatic differentiation [5].

Consider the code for computing the function y = f(z), where f(z) = (sin(x)y/z)/z, shown in Fig-
ure 1(a). Using AD, we can generate code to compute both y and dy/dz, as shown in Figure 1(b). While
this example is very simple, AD can be applied to complex programs of arbitrary length. The ADIFOR, tool
has been applied to programs of over 100,000 lines [1].

A = sin(X) A = sin(X)

B = sqrt(X) dAdX = cos(X) I table lookup

C=4A%*B B = sqrt(X)

Y = C/X dBdX = 1/(2%B) ! table lookup
C=4A=%B8B
dCda = B ! table lookup
dCdB = A ! table lookup
dCdX = dCdA*dAdX + dCdB*dBdX ! chain rule
Y = C/X
dydc = 1/X I table lookup
dYdX = dYdC*dCdX - C/(X*X) ! CR/TL

(a) (b)

Figure 1: Code for computing a simple function (a) and code for computing its derivatives generated by

AD (b).

An importance consequence of differentiating a function in this manner is that the derivative computation
is intertwined with the algorithm used to compute the function. This has implications for the accuracy of the

derivatives, the efficiency of the derivative computation, and the computation of sensitivities. In particular,
we can compute the sensitivity of the value computed for the function with respect to algorithm parameters.

3 Automatic Differentiation of Algorithm Parameters

Because AD is applied to a program, we can treat algorithm parameters as independent variables. Doing so
enables us to compute the sensitivity of a function with respect to these parameters. These sensitivities are
most useful for functions that provide a measure of the quality of the solution. For example, in the case of
an SOR iteration, we could compute the derivative of the residual with respect to w.

The derivative provides information about how using a different value for the algorithm parameter would
have affected the quality of the solution. In an iterative algorithm, we can perform the next iteration using
values for this parameter that would have provided a better solution for the previous iteration. We thus use
information about past behavior of the algorithm to attempt to improve future behavior of the algorithm.
Alternatively, we could compute the sensitivities several times for various parameter values in order to
characterize the behavior of the algorithm as a function of the algorithm parameters.

4 Adaptive SOR

We now consider a concrete example of using AD to compute derivatives with respect to algorithm parameters
and the use of these derivatives to adjust the behavior of the algorithm. The SOR iteration for the finite
difference discretization of the Poisson problem

Viu(z,y) = f(z,y)

for: =1to M do
for j = 1to N do
ui? = (fij + Ufjf,j +ufig;+ Ufﬁ1 +uf;i1)/4
uf}'l =(1- w)ufyj + wuiGJ»S.
enddo
enddo

The residual r for this problem 1s
r=|b— Ax||2,

where

M N
16— Awll3 = (4w j — i1 j — wigrj — wijo1 — wijo1 — fi)°

i=1 j=1

We can use AD to produce code for computing the sensitivity of the residual with respect to the relaxation
parameter, dr/0w, denoted by /. We can then use the derivative computed for iteration k to adjust the
value of w used for iteration k£ 4+ 1. One option i1s to use Newton’s method to try to drive the residual to

7€To,
Tk
Wet1 = W — —.
+ r;c
However, in general the residual will never equal zero using an iterative method and finite precision arith-
metic. An alternative is to use a secant method to minimize the residual (drive ' to zero),

_ ;W — WE—1
Wl =W +7p————-

E Tk

5 Experimental Results

We implemented the SOR algorithm described above in Fortran, using f(z,y) = 0 (the Laplace equation)
and Dirichlet boundary conditions; and terminating after the relative residual was below some threshold 7.
We applied ADIFOR [1] to this program, then added code that uses the resulting derivatives to modify w
using a secant method. To avoid large changes in w when 7’ is small and to keep w within the required
interval, we used the modified form:

Aw = min (.05, r%%) ,
" = Th-1
w1 = max(0, min(1.985,wy, + Aw)).

The experimentally determined value 1.985 was used to avoid getting “stuck” at 2.
The optimal fixed w for the Poisson problem can be computed using an analytic formula given in [2]

(see [7] for background theory):
2

Wopt = —————
I 2

where

1 T T
p= 3 (COSM+1 —|—COSN—+1).

We compared the standard SOR program using this optimal w to the adaptive algorithm for various problem
sizes. Both programs were compiled using x1f -0 and executed on an IBM SP1 node. Figure 2 shows the
progression of the residual and, for the adaptive method, w over successive iterations for a 300 x 300 problem.
Table 1 shows our results for various problem sizes M, N and stopping thresholds # ranging from 1072 to
10~*. We report the residual ro for the initial guess u = 0 as well as the number of iterations required (its)
and the execution time (t) in seconds for fixed w = 1.5, fixed w = wept, and variable w with starting value
1.5. The program using fixed w attempts to reduce the overhead of computing r/rg by computing it only
once every 10 iterations.

From these results, we can conclude that adaptive SOR based on derivatives computed using AD is
preferable to regular SOR using fixed w, even when the optimal value for w is used. This is especially true
for large problems with lax convergence criteria. These are exactly the conditions that apply when SOR is
used as a preconditioner, its most common use in modern scientific computing. Large problem sizes help
amortize the overhead associated with the computation used to adjust w. As is illustrated in Figure 2, the
optimal value for w i1s optimal only asymptotically, so the adaptive method does considerably better when
we use lax convergence criteria.

6 Summary

Many algorithms used in scientific computing rely upon parameters that control the behavior of the algorithm.
An example is the relaxation parameter w of the SOR iteration. It is often difficult to determine the
optimal value of the parameter for a particular problem. We demonstrated how sensitivities computed using
automatic differentiation can be used to adjust an algorithm parameter toward its optimal value. We showed
how this technique can be applied to SOR to develop an adaptive SOR algorithm that, even when started
at a highly suboptimal w, outperforms standard SOR, using the optimal value for w.

References

[1] C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic differentiation of Fortran 77
programs. IEEE Computational Science & Engineering, 3(3):18-32, 1996.

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
10" g T T T T T T T T T 3
3 — Fixed omega (optimal)
- Fixed omega=1.5
Fixed omega = 1.9
Adaptive, starting at 1.5]
Adaptive, starting at 1.9 E

Residual

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Iteration number

Figure 2: Comparison of methods using starting w > 1

Fixed w =15 Fixed w = wops Adaptive

M N Wopt r0 7 its t its t its t
300 300 | 1.975 | 20.08 | 1072 70 2.15 300 8.59 56 3.65
400 400 | 1.984 | 23.17 | 1072 70 4.28 | 400 20.13 58 7.45
500 500 | 1.987 | 25.88 | 1072 70 7.73 500 39.29 57 12.76
750 750 | 1.992 | 31.68 | 1072 70 22.41 750 131.61 57 35.06
1000 | 1000 | 1.994 | 36.56 | 10~2 70 45.58 990 307.45 57 69.68
300 300 | 1.975 | 20.08 | 1073 1260 36.02 | 490 13.97 | 398 23.95
400 400 | 1.984 | 23.17 | 1073 1300 66.02 650 32.71 | 330 35.95
500 500 | 1.987 | 25.88 | 1073 1340 107.39 810 63.55 | 281 49.29
750 750 | 1.992 | 31.68 | 1073 1390 258.85 | 1220 213.75 | 280 | 118.45
1000 | 1000 | 1.994 | 36.56 | 1073 1410 489.25 | 1620 502.58 | 260 | 208.38
300 300 | 1.975 | 20.08 | 1071 7910 224.94 | 610 17.33 | 676 40.46
400 400 | 1.984 | 23.17 | 10~* | 11700 588.78 810 40.82 | 596 63.91
500 500 | 1.987 | 25.88 | 10~% | 15430 | 1210.96 | 1010 79.18 | 608 | 102.77
750 750 | 1.992 | 31.68 | 10~* | 23130 | 4067.20 | 1510 264.78 | 765 | 295.47
1000 | 1000 | 1.994 | 36.56 | 10~* | 26800 | 8362.84 | 2010 623.48 | 766 | 535.36

Table 1: Comparison of SOR algorithms using fixed and variable w.

[2] B. N. Datta. Numerical Linear Algebra and Applications. Brooks/Cole, Pacific Grove, CA, 1995.

[3] P. Eberhard and C. Bischof. Automatic differentiation of numerical integration algorithms. Preprint
ANL/MCS-621-1196, Mathematics and Computer Science Division, Argonne National Laboratory, 1996.

[4] G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins University Press, Baltimore,
MD, 3rd edition, 1996.

[5] A. Griewank. On automatic differentiation. In Mathematical Programming: Recent Developmenis and
Applications, pages 83-108, Amsterdam, 1989. Kluwer Academic Publishers.

[6] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson. Derivative convergence of iterative
equation solvers. Optimization Methods and Software, 2:321-355, 1993.

[7] R.S. Varga. Matriz Iterative Analysis. Prentice Hall, Englewood Cliffs, NJ, 1962.

