
Adaptive SOR: A case study in automatic di�erentiation ofalgorithm parameters �Paul Hovlandy Michael HeathzJuly 2, 1997AbstractMany algorithms make use of one or more parameters to control the behavior of the algorithm.Examples include the damping factor � in a damped Newton method or the relaxation parameter ! ina successive over-relaxation (SOR) iterative solver. The optimal value for such parameters is problemdependent and di�cult to determine for most problems. We describe the use of automatic di�erentiation(AD) to adjust algorithm parameters toward optimal behavior. We demonstrate how AD can be usedto transform an SOR solver with �xed ! into an adaptive SOR solver that adjusts ! toward its optimalvalue. We provide experimental evidence that for large problems with lax convergence criteria such anadaptive solver may converge faster than a solver using an optimal, but �xed, value for !. These areexactly the conditions that apply when SOR is used as a preconditioner, its most common use in modernscienti�c computing.1 IntroductionMany algorithms make use of one or more parameters to control the behavior of the algorithm. Consider,for example, the relaxation parameter ! in a successive over-relaxation (SOR) solver (see [4], for example).An SOR solver uses iterations of the formM!x(k+1) = N!x(k) + !b;where M! = D + !Land N! = (1� !)D � !U;where Ax = bis the linear system to be solved and D, L, and U correspond to the diagonal, lower triangular, and uppertriangular portions of A, respectively. The parameter ! may be assigned any value in the interval [0; 2],although typically values in the interval [1; 2] are used (hence the term over-relaxation). The value of ! canhave a signi�cant e�ect on the convergence rate of the algorithm. The optimal value for ! can be determinedfor certain special problems, but in general can be determined only by using an eigenvalue analysis.�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogramof the O�ceof Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.yCurrent address: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Ar-gonne, IL 60439, hovland@mcs.anl.gov.zDepartment of Computer Science, University of Illinois at Urbana-Champaign, 1304W. Spring�eldAve., Urbana, IL 61801,heath@cs.uiuc.edu. 1

Automatic di�erentiation (AD) can be used to transform a program that computes a function into a newprogram that also computes the derivatives of that function. The method works by di�erentiating individualoperations, such as multiplication and square root, for which derivatives can be determined by table lookup,then propagating these derivatives via the chain rule of di�erential calculus. AD is applied to algorithms,not some abstract notion of a function. Thus, the method used to compute a function can a�ect the valuescomputed for the derivatives. In certain cases [3, 6], this may a�ect the quality of the derivatives computedusing AD if precautions are not taken. However, it is also possible to exploit this feature by computingderivatives with respect to algorithm parameters.Computing derivatives with respect to algorithm parameters provides us with information about howchanging the values of the parameters would a�ect the behavior of the algorithm. In the case of an iterativealgorithm, we can use this information to adjust the parameters toward values with more desirable behavior.For other algorithms, we can use this information to characterize the e�ects of the parameters on the behaviorof the algorithm, enabling us to develop better heuristics for choosing the parameter values.2 Automatic Di�erentiationComplex functions are often expressed as algorithms and computed using computer programs. Such programsmay range from tens to many thousands of lines of code. Automatic di�erentiation has proven an e�ectivemeans of developing code to compute the derivatives of such functions. AD relies upon the fact that allprograms, no matter how complicated, use a limited set of elementary operations and functions, as de�nedby the programming language. The function computed by the program is simply the composition of theseelementary functions. Thus, we can compute the partial derivatives of the elementary functions usingformulas obtained via table lookup, then compute the overall derivatives using the chain rule. This processcan be completely automated, and is thus termed automatic di�erentiation [5].Consider the code for computing the function y = f(x), where f(x) = (sin(x)px)=x, shown in Fig-ure 1(a). Using AD, we can generate code to compute both y and dy=dx, as shown in Figure 1(b). Whilethis example is very simple, AD can be applied to complex programs of arbitrary length. The ADIFOR toolhas been applied to programs of over 100,000 lines [1].A = sin(X)B = sqrt(X)C = A * BY = C/X(a)
A = sin(X)dAdX = cos(X) ! table lookupB = sqrt(X)dBdX = 1/(2*B) ! table lookupC = A * BdCdA = B ! table lookupdCdB = A ! table lookupdCdX = dCdA*dAdX + dCdB*dBdX ! chain ruleY = C/XdYdC = 1/X ! table lookupdYdX = dYdC*dCdX - C/(X*X) ! CR/TL(b)Figure 1: Code for computing a simple function (a) and code for computing its derivatives generated byAD (b).An importance consequence of di�erentiating a function in this manner is that the derivative computationis intertwined with the algorithm used to compute the function. This has implications for the accuracy of the2

derivatives, the e�ciency of the derivative computation, and the computation of sensitivities. In particular,we can compute the sensitivity of the value computed for the function with respect to algorithm parameters.3 Automatic Di�erentiation of Algorithm ParametersBecause AD is applied to a program, we can treat algorithm parameters as independent variables. Doing soenables us to compute the sensitivity of a function with respect to these parameters. These sensitivities aremost useful for functions that provide a measure of the quality of the solution. For example, in the case ofan SOR iteration, we could compute the derivative of the residual with respect to !.The derivative provides information about how using a di�erent value for the algorithm parameter wouldhave a�ected the quality of the solution. In an iterative algorithm, we can perform the next iteration usingvalues for this parameter that would have provided a better solution for the previous iteration. We thus useinformation about past behavior of the algorithm to attempt to improve future behavior of the algorithm.Alternatively, we could compute the sensitivities several times for various parameter values in order tocharacterize the behavior of the algorithm as a function of the algorithm parameters.4 Adaptive SORWe now consider a concrete example of using AD to compute derivatives with respect to algorithmparametersand the use of these derivatives to adjust the behavior of the algorithm. The SOR iteration for the �nitedi�erence discretization of the Poisson problemr2u(x; y) = f(x; y)is for i = 1 to M dofor j = 1 to N douGSi;j = (fi;j + uk+1i�1;j + uki+1;j + uk+1i;j�1 + uki;j+1)=4uk+1i;j = (1� !)uki;j + !uGSi;j :enddoenddoThe residual r for this problem is r = kb�Axk2;where kb� Axk22 = MXi=1 NXj=1(4ui;j � ui�1;j � ui+1;j � ui;j�1 � ui;j+1 � fi;j)2:We can use AD to produce code for computing the sensitivity of the residual with respect to the relaxationparameter, @r=@!, denoted by r0. We can then use the derivative computed for iteration k to adjust thevalue of ! used for iteration k + 1. One option is to use Newton's method to try to drive the residual tozero, !k+1 = !k � rkr0k :However, in general the residual will never equal zero using an iterative method and �nite precision arith-metic. An alternative is to use a secant method to minimize the residual (drive r0 to zero),!k+1 = !k + r0k!k � !k�1r0k � r0k�1 :3

5 Experimental ResultsWe implemented the SOR algorithm described above in Fortran, using f(x; y) = 0 (the Laplace equation)and Dirichlet boundary conditions, and terminating after the relative residual was below some threshold r̂.We applied ADIFOR [1] to this program, then added code that uses the resulting derivatives to modify !using a secant method. To avoid large changes in ! when r0 is small and to keep ! within the requiredinterval, we used the modi�ed form:�! = min�:05; r0k!k � !k�1r0k � r0k�1 � ;!k+1 = max(0;min(1:985; !k +�!)):The experimentally determined value 1:985 was used to avoid getting \stuck" at 2.The optimal �xed ! for the Poisson problem can be computed using an analytic formula given in [2](see [7] for background theory): !opt = 21+p1� �2 ;where � = 12 �cos �M + 1 + cos �N + 1� :We compared the standard SOR program using this optimal ! to the adaptive algorithm for various problemsizes. Both programs were compiled using xlf -O and executed on an IBM SP1 node. Figure 2 shows theprogression of the residual and, for the adaptive method, ! over successive iterations for a 300�300 problem.Table 1 shows our results for various problem sizes M;N and stopping thresholds r̂ ranging from 10�2 to10�4. We report the residual r0 for the initial guess u = 0 as well as the number of iterations required (its)and the execution time (t) in seconds for �xed ! = 1:5, �xed ! = !opt, and variable ! with starting value1:5. The program using �xed ! attempts to reduce the overhead of computing r=r0 by computing it onlyonce every 10 iterations.From these results, we can conclude that adaptive SOR based on derivatives computed using AD ispreferable to regular SOR using �xed !, even when the optimal value for ! is used. This is especially truefor large problems with lax convergence criteria. These are exactly the conditions that apply when SOR isused as a preconditioner, its most common use in modern scienti�c computing. Large problem sizes helpamortize the overhead associated with the computation used to adjust !. As is illustrated in Figure 2, theoptimal value for ! is optimal only asymptotically, so the adaptive method does considerably better whenwe use lax convergence criteria.6 SummaryMany algorithms used in scienti�c computing rely upon parameters that control the behavior of the algorithm.An example is the relaxation parameter ! of the SOR iteration. It is often di�cult to determine theoptimal value of the parameter for a particular problem. We demonstrated how sensitivities computed usingautomatic di�erentiation can be used to adjust an algorithm parameter toward its optimal value. We showedhow this technique can be applied to SOR to develop an adaptive SOR algorithm that, even when startedat a highly suboptimal !, outperforms standard SOR using the optimal value for !.References[1] C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic di�erentiation of Fortran 77programs. IEEE Computational Science & Engineering, 3(3):18{32, 1996.4

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Fixed omega (optimal)

Fixed omega = 1.5

Fixed omega = 1.9

Adaptive, starting at 1.5

Adaptive, starting at 1.9

Iteration number

R
es

id
ua

l

0 100 200 300 400 500 600 700 800 900 1000
1.4

1.5

1.6

1.7

1.8

1.9

2
O

m
eg

a

Figure 2: Comparison of methods using starting ! > 1Fixed ! = 1:5 Fixed ! = !opt AdaptiveM N !opt r0 r̂ its t its t its t300 300 1.975 20.08 10�2 70 2.15 300 8.59 56 3.65400 400 1.984 23.17 10�2 70 4.28 400 20.13 58 7.45500 500 1.987 25.88 10�2 70 7.73 500 39.29 57 12.76750 750 1.992 31.68 10�2 70 22.41 750 131.61 57 35.061000 1000 1.994 36.56 10�2 70 45.58 990 307.45 57 69.68300 300 1.975 20.08 10�3 1260 36.02 490 13.97 398 23.95400 400 1.984 23.17 10�3 1300 66.02 650 32.71 330 35.95500 500 1.987 25.88 10�3 1340 107.39 810 63.55 281 49.29750 750 1.992 31.68 10�3 1390 258.85 1220 213.75 280 118.451000 1000 1.994 36.56 10�3 1410 489.25 1620 502.58 260 208.38300 300 1.975 20.08 10�4 7910 224.94 610 17.33 676 40.46400 400 1.984 23.17 10�4 11700 588.78 810 40.82 596 63.91500 500 1.987 25.88 10�4 15430 1210.96 1010 79.18 608 102.77750 750 1.992 31.68 10�4 23130 4067.20 1510 264.78 765 295.471000 1000 1.994 36.56 10�4 26800 8362.84 2010 623.48 766 535.36Table 1: Comparison of SOR algorithms using �xed and variable !.5

[2] B. N. Datta. Numerical Linear Algebra and Applications. Brooks/Cole, Paci�c Grove, CA, 1995.[3] P. Eberhard and C. Bischof. Automatic di�erentiation of numerical integration algorithms. PreprintANL/MCS-621-1196, Mathematics and Computer Science Division, Argonne National Laboratory, 1996.[4] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore,MD, 3rd edition, 1996.[5] A. Griewank. On automatic di�erentiation. In Mathematical Programming: Recent Developments andApplications, pages 83{108, Amsterdam, 1989. Kluwer Academic Publishers.[6] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson. Derivative convergence of iterativeequation solvers. Optimization Methods and Software, 2:321{355, 1993.[7] R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cli�s, NJ, 1962.

6

