
Further Properties of a Continuum of Model Equations withGlobally De�ned FluxAnne C. Morlet�Department of MathematicsCleveland State UniversityCleveland, OH 4411528 July 1997AbstractTo develop an understanding of singularity formation in vortex sheets, we consider modelequations that exhibit shared characteristics with the vortex sheet equation but are slightlyeasier to analyze. A model equation is obtained by replacing the 
ux term in Burgers' equationby alternatives that contain contributions depending globally on the solution. We consider thecontinuum of partial di�erential equations ut = �(H(u)u)x + (1� �)H(u)ux + �uxx, 0 � � � 1,� � 0, where H(u) is the Hilbert transform of u. We show that when � = 1=2, for � > 0, thesolution of the equation exists for all time and is unique. We also show with a combination ofanalytical and numerical means that the solution when � = 1=2 and � > 0 is analytic. Usinga pseudo-spectral method in space and the Adams-Moulton fourth-order predictor-corrector intime, we compute the numerical solution of the equation with � = 1=2 for various viscosities.The results con�rm that for � > 0, the solution is well behaved and analytic. The numericalresults also con�rm that for � = 0 and � = 1=2, the solution becomes singular in �nite timeand �nite viscosity prevents singularity formation. We also present, for a certain class of initialconditions, solutions of the equation, with 0 < � < 1=3 and � = 1, that become in�nite for � � 0in �nite time.1 IntroductionWe consider the continuum of partial di�erential equationsut = �(H(u)u)x + (1� �)H(u)ux + �uxx;(1a) u(x; 0) = f(x);(1b)with 0 � � � 1, � � 0, H(u) the Hilbert transform of u, and 2�-periodic initial and boundaryconditions. This equation is of interest because it models the motion of vortex sheets. Here � is aparameter varying between 0 and 1 that helps us recast the two partial di�erential equationsut = (H(u)u)x + �uxx;ut = H(u)ux + �uxx;as a single one. By varying � between 0 and 1, we gain further insight about the results previouslyobtained in [1] and [8].Note that (1a) with � = 0 and � = 1 has already been considered in [1] and [8]. In [1], it wasshown that the solution with � = 1 develops singularities in �nite time for a certain class of initial�Current address: Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115 andMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 604391



conditions; it was also shown that the solution with � = 0 exists for all time provided � > 0. In[8], it was shown that the solution of (1a) with � = 0 has a weak limit in the limit of zero viscosity,the weak limit belongs to L1([0; 2�])\BV ([0; 2�]), and the temporal derivative of the weak limit islocally measurable. Here we extend the results presented in [1] and [8]; we show that the solution of(1a) with � = 1=2 and � > 0 exists for all time and is unique. This existence proof is obtained �rstby using Ball's theorem [2] to obtain short-term existence and then by proceeding as for Burgers'equation [7] to obtain long-term existence and uniqueness. Proceeding along the lines of the workpresented in [5], we show that when � > 0 and � = 1=2, the solution of (1a) is analytic. Wenumerically compute the solution of (1a), � = 1=2, for various viscosities, with a pseudo-spectralmethod in space and the Adams-Moulton fourth-order predictor corrector-method in time. Thenumerical results con�rm that the solution is analytic when � > 0 and that the viscosity preventsthe solution from becoming singular in �nite time. The numerical results also indicate that for � = 0in �nite time, the derivatives of the solution become in�nite.In Section 3, we show, that for 0 < � < 1=3 and for symmetric initial conditions, the solutionof (1a) blows up in �nite time; the result is obtained by using the Fourier space method of Palais[3], [4], and [9]: If the system of Fourier modes is cooperative, then the evolution of the ûk forany �nite subsystem of the original one serves as a lower bound for the ûk of the full system. Wealso show, using a di�erent approach from that in [1], that in �nite time the solution of (1a) with� = 1 becomes in�nite. In both cases, instead of transforming the original equation into Burgers'equation for the function z = H(u) � iu, we derive an in�nite system of di�erential equations forthe Fourier coe�cients and show that, for a certain class of initial conditions, the L2 norm of thesolution becomes in�nite in �nite time.2 Equation with � = 1=2Here we investigate the behavior of the solution of (1a) with 2�-periodic initial and boundaryconditions. We �rst prove short-term existence with Ball's theorem [2], then long-term existenceproceeding as in [1] and [7]. We also show uniqueness of the solution of (1a). Proceeding as in[5] for 3D Navier-Stokes equations, we show that the solution of (1a) is analytic when � > 0. Thedi�erence between our approach and that in [5] is that we use numerical results to con�rm that thedi�erential equation whose solution is obtained by analytical means is representative of the generalbehavior of the original equation. We present numerical solutions of (1a) for � > 0. The equation isapproximated with a pseudo-spectral method in space and the Adams-Moulton predictor-correctorin time. The numerical results con�rm that for � > 0, the solution is well behaved and analytic andthat when � = 0 the derivatives of the solution become in�nite in �nite time.2.1 Existence and UniquenessTo prove short-term existence of the solution of (1a) with � = 1=2, we use Ball's theorem [2], givenbelow. in [1].Theorem 2.1 Consider the equation ddtu = Au+ f(u);(2)where A is the generator of a holomorphic semigroup S(t) of bounded operators on a Banach spaceX. Suppose that jjS(t)jj � M for some constant M > 0 and all t 2 R+. Under these hypotheses, thefractional powers (�A)�� can be de�ned for 0 � � < 1, and (�A)� is a closed linear operator withdomain X� = Domain((�A)�) dense in X. Let f(u) be locally Lipschitz; that is, for each boundedsubset U of X� there exists a constant CU so thatjjf(u)� f(v)jj � CU jju� vjj� 8 u; v 2 U:Then, given u0 2 X, there exists a �nite time interval [0; t) and a unique solution to (2) withu(�; 0) = u0 on that time interval, and the solution can be continued uniquely on a maximal interval2



of existence [0; T ?). Moreover, if T ? <1, then necessarilylimt!T? jju(t)jj� =1:We directly apply Theorem 2.1 to (1a) with � = 1=2, A = �@2=@x2, X = L2([0; 1]), andf(u) = 12(H(u)u)x + 12H(u)ux:Then X� = H2 andjjf(u)� f(v)jj � jjH(u)jj1jjux � vxjj+ jjvxjj1jjH(u)�H(v)jj+12 jjujj1jjH(ux)�H(vx)jj+ 12 jjH(vx)jj1jju� vjj;� C (jjujjH2 + jjvjjH2) jju� vjjH1 :In the above relations and the rest of the paper, jjujj denotes the L2 norm of u and C denotes aconstant. To obtain the above inequalities, we use the following properties of the Hilbert transform[10]:� Let g be a C1, 2�-periodic function. Then H(g) is a C1, 2�-periodic function and(H(g))x = H(gx):� The L2 norm of H(g) satis�es the boundjjH(g)jj � jjgjj:� H(eikx) = isign(k)eikx.The �nal bound for the L2 norm of f(u) � f(v) is a direct consequence of Sobolev's inequalities.Hence, f is locally Lipschitz continuous on H2. Theorem 2.1 implies that a solution exists in anytime interval in which the H2 norm of the solution is controlled.To prove the existence of a solution for all time, we require bounds on the solution to holdindependent of the length of the time interval. We can obtain such bounds using the followinglemma which establishes an L2 norm bound for the solution of (1a), � = 1=2.Lemma 2.1 Let the initial data f be C1 and 2�-periodic. Let u be a solution of (1a), � = 1=2,that exists for some [0; T ]. Then jju(�; t)jj � jjf jj:(3)Proof: Taking the inner product of u with the equation it satis�es leads toddt jjujj2 = (u; (H(u)u)x) + (u;H(u)ux)� 2�jjuxjj2(4a) = �2�jjuxjj2:(4b)We are led to (4b) because (u; (H(u)u)x) = �(ux;H(u)u). Integration with respect to time of (4b)gives us the desired bound.The following theorem replaces Theorem 4.2.1 in [7] and Theorem 5 in [1].Theorem 2.2 Let f be a 2�-periodic C1 initial condition, and let u be a C1 solution of (1a),� = 1=2, de�ned on [0; T ]. Then there is a constant K, dependent on the H2 norm of the initialcondition and on the viscosity �, but independent of T , such thatjju(�; t)jjH2 � K;(5)with t 2 [0; T ]. 3



Proof: Let v = ux. The equation for v isvt = 12(H(u)u)xx + 12(H(u)v)x + �vxx:(6a)Taking the inner product of v with the equation it satis�es, we are led toddt jjvjj2 = (v; (H(u)u)xx) + (v; (H(u)v)x)� 2�jjvxjj2:(6b)Integrating by parts the inner product (v; (H(u)v)x), expanding (H(u)u)xx, and integrating by partsthe scalar product (v;H(v)v), to decrease the derivative of v, we obtainddt jjvjj2 = �(v;H(vx)u)� 2(vx;H(v)u) � 2�jjvxjj2:(6c)We need to estimate both inner products in (6c)j(v;H(vx)u)j � jjujj1jjvjj jjvxjj;j(vx;H(v)u)j � jjujj1jjvjj jjvxjj:Sobolev's inequality then tells usjjujj1jjvjj jjvxjj � p2jjujj1=2jjvjj3=2jjvxjj � 25=4jjujj5=4jjvxjj7=4:Recall Young's inequality, which states that for a, b > 0ab � 1pap + 1q bq; with 1p + 1q = 1:(7)Take a = 323=8jjujj5=4=�7=8 and b = 27=8�7=8jjvxjj7=4. Then, with p = 8 and q = 8=7, Equation (7)becomes 3jjujj1jjvjj jjvxjj � 38 23�7 jjujj10+ 74�jjvxjj2:(8)Since jjvjj2 � jjvxjj2, we are led to the di�erential inequalityddt jjvjj2+ 14�jjvjj2 � 38 23�7 jjujj10:Since from Lemma 2.1, jjujj � jjf jj, we may integrate this di�erential inequality in a standard wayto obtain jjvjj2 � jjfxjj2 + 38 25�8 jjf jj10:(9) Now, we need an estimate for the L2 norm of w = uxx, that satis�es the equationwt = 12H(wx)u + 2H(w)v + 52H(v)w +H(u)wx + �wxx:(10)To proceed, we need estimates for several inner products. First we crudely estimate (w;H(wx)u):j(w;H(wx)u)j � jjujj1jjwjj jjwxjj;� p2jjujj1=2jjvjj1=2jjwjj jjwxjj;� 4jjujj7=6jjwxjj11=6:The above inequalities are a direct consequence of Sobolev's inequalities and of Lemma 8 of [1].Then we integrate by parts (w;H(w)v) and (w;H(v)w), decreasing the derivative order of v andH(v), respectively, and crudely estimate the resulting inner products to obtainj(w;H(w)v)j � 2jjujj1jjwjj jjwxjj � 2p2jjujj1=2jjvjj1=2jjwjj jjwxjj;j(w;H(v)w)j � 2jjH(u)jj1jjwjj jjwxjj � 2p2jjujj1=2jjvjj1=2jjwjj jjwxjj:4



As for the �rst inner product, we crudely estimate (w;H(u)wx) to obtainj(w;H(u)wx)j � jjH(u)jj1jjwjj jjwxjj � p2jjujj1=2jjvjj1=2jjwjj jjwxjj:Therefore, taking the inner product of w with the equation it satis�es, (10), we are led to thedi�erential inequality ddt jjwjj2 � 24jjujj7=6jjwxjj11=6� 2�jjwxjj2:Applying Young's inequality (7) to 24jjujj7=6jjwxjj11=6with a = 24jjujj7=6=�11=12, b = �11=12jjwxjj11=6,p = 12, and q = 12=11, we may rewrite the di�erential inequality asddt jjwjj2 � 234 311�11 jjujj14� �jjwxjj2:Using jjwjj2 � jjwxjj2 and integrating the di�erential inequalityddt jjwjj2+ �jjwjj2 � 234 311�11 jjf jj14;we are led to jjwjj2 � 234 311�12 jjf jj14 + jjfxxjj2:(11)Combining (3), (9), and (11), we obtain jju(�; t)jjH2 � K;where K depends on � and jjf jjH2 but not on T .Note that if jjvjj � jjujj, the inequality (9) would readjjvjj2 � jjfxjj2 + 92�2 jjf jj4;and (11) would read jjwjj2 � jjfxxjj2 + 35214�6 jjf jj8:To obtain the above inequality, we bounded jjujj1jjwjj jjwxjj by p2jjujj jjwjj jjwxjj. We then appliedLemma 8 of [1] and Young's inequality with a = 12p2jjujj4=3=�5=6, b = �5=6jjwxjj5=3, p = 6, andq = 6=5. The inequality jju(�; t)jjH2 � K again holds.We are now in a position to prove the major result of this section.Theorem 2.3 Let the initial condition be C1 and 2�-periodic, and let � > 0. Equation (1a) with� = 1=2 has a unique, 2�-periodic solution u on [0;1), which is in�nitely many times di�erentiable.Proof: Proof of existence follows directly from the arguments in Theorem 4.2.2 in [7]. We have onlyto show uniqueness. Let u and v be solutions of (1a), � = 1=2, that satisfy the same initial condition.Their di�erence w = u� v satis�eswt = H(u)wx + 12H(wx)v + 12H(ux)w +H(w)vx + �wxx;w(x; 0) = 0:Integration by parts of the inner product (w;H(u)wx), decreasing the derivative order of wx, leads usto (w;H(u)wx) = �(w;H(ux)w)=2. The inner products (w;H(wx)v) and (w;H(w)vx) are crudelyestimated by j(w;H(wx)v)j � jjvjj1jjwjj jjwxjj � �2 jjwxjj2 + 12� jjvjj21jjwjj2;j(w;H(w)vx)j � jjvxjj1jjwjj2:5



The above estimates may be used to obtain the di�erential inequalityddt jjwjj2 � � 14� jjvjj21 + jjvxjj1� jjwjj2:Gronwall-Bellman's inequality then implies that w = 0.Finally we can show that all spatial and temporal derivatives of the solution of (1a), � = 1=2,remain bounded for all time provided � > 0. The proof follows the ideas already expressed. Thisresult indicates that there is a limit to how distorted the solution can become.2.2 AnalyticityNow that we have shown that the solution of (1a), � = 1=2, exists for all time when � > 0, we wantto prove that it is analytic. To do so, we proceed as in [5] for the three-dimensional Navier-Stokesequations and we use a combination of analytical and numerical techniques. The method used in [5]is based on Foias and Teman's work [6]; we can prove that the Fourier coe�cients of the solution of(1a), � = 1=2, decay exponentially. We �rst derive an evolution inequality forjje�j @@x jtuxjj2 =Xk 6=0 e2�jkjtk2jûkj2for some � > 0 and for some time interval [0; t).We derive the exact di�erential equation for the evolution of the square of the L2 norm of e�j @@x jtv,where v is the solution of (6a). Using (6a), we are led toddt jje�j @@x jtvjj2 = 2��e�j @@x jtv; e�j @@x jt ���� @@x ����v� + 2�e�j @@x jtv; e�j @@x jtvt� ;(12a) = 2��e�j @@x jtv; e�j @@x jt ���� @@x ����v� + �e�j @@x jtv; e�j @@x jtH(v)v���e�j @@x jtvx; e�j @@x jtH(v)u� � 2�jje�j @@x jtvxjj2:(12b)We obtain (12b) from (12a), the equation v satis�es, the properties of the Hilbert transform, andintegration by parts, since2(e�j @@x jtv; e�j @@x jtH(u)vx) = �(e�j @@x jtv; e�j @@x jtH(v)v);(e�j @@x jtv; e�j @@x jtH(vx)u) = �(e�j @@x jtvx; e�j @@x jtH(v)u) � (e�j @@x jtv; e�j @@x jtH(v)v):The action of the operator �� @@x�� is de�ned in terms of the Fourier transform as���� @@x ����u(x; t) =Xk 6=0 jkjûk(t)eikx:Since ux and �� @@x ��u have the same norm, the �rst scalar product in (12b) can be estimated as��e�j @@x jtv; e�j @@x jt ���� @@x ���� v� � �jje�j @@x jtvjj jje�j @@x jtvxjj;� �2 jje�j @@x jtvxjj2 + �22� jje�j @@x jtvjj2:Hence (12b) can be rewritten asddt jje�j @@x jtvjj2 � �2� jje�j @@x jtvjj2 + (e�j @@x jtv; e�j @@x jtH(v)v)�(e�j @@x jtvx; e�j @@x jtH(v)u) � �jje�j @@x jtvxjj2:(12c) 6



Now we bound the two scalar products in (12c) that arise from the nonlinear terms in (6a). For the�rst product, using the Fourier expansion of the solution, we obtain���(e�j @@x jtv; e�j @@x jtH(v)v)��� = ������Xk 6=0 e2�jkjtk Xk0+k00=k k0k00sign(k0)(ûk)ûk0 ûk00������ ;� Xk 6=0 e�jkjtjkjjûkj Xk0+k00=k �e�jk0jtjk0jjûk0j��e�jk00jtjk00jjûk00j� ;where (ûk) is the complex conjugate of ûk and the triangular inequality jkj � jk0j + jk00j has beenused. Let us de�ne the periodic function r by its Fourier transform r̂k as r̂k = e�jkjtjûkj. Then the�rst scalar product in (12c) is bounded by����e�j @@x jtv; e�j @@x jtH(v)v���� � Xk 6=0 jkjr̂k Xk0+k00=k jk0j jk00jr̂k0 r̂k00;�  ���� @@x ���� r; ����� @@x ���� r�2! ;� jjrxjj1jjrxjj2;� p2jjrxjj5=2jjrxxjj1=2:The second inequality above is directly derived from the de�nition of r and its derivatives in termsof its Fourier coe�cients; the third inequality is derived from the fact that rx and �� @@x�� r have thesame L2 norm and brute force estimation of the scalar product; the last inequality is derived fromSobolev's inequality.The second scalar product can be bounded similarly. We obtain���(e�j @@x jtvx; e�j @@x jtH(v)u)��� = ������Xk 6=0 e2�jkjtk2 Xk0+k00=k k0sign(k0)(ûk)ûk0ûk00������ ;� Xk 6=0 e�jkjtk2jûkj Xk0+k00=k �e�jk0jtjk0jjûk0j��e�jk00jtjûk00j� :Then, proceeding as for the �rst scalar product, we get���(e�j @@x jtvx; e�j @@x jtH(v)u)��� � Xk 6=0k2r̂k Xk0+k00=k jk0jr̂k0r̂k00 ;� �rxx; ~r ���� @@x ���� r� ;� jj~rjj1jjrxjjjjrxxjj;� p2jjrxjj2jjrxxjj:The second inequality above is derived directly from the de�nition of r and its derivatives in termsof its Fourier coe�cients. The function ~r is obtained from r by setting the zero Fourier mode to 0(note that the function whose Fourier coe�cients are Pk0+k00=k jk0jr̂k0 r̂k00 has zero average). Thethird inequality is derived from the fact that rx and �� @@x�� r have the same L2 norm and brute forceestimation of the scalar product. The last inequality is derived from Sobolev's inequality and thefact that jj~rjj � jjrxjj. Therefore (12c) becomesddt jje�j @@x jtvjj2 � �2� jje�j @@x jtvjj2 +p2jje�j @@x jtvjj5=2jje�j @@x jtvxjj1=2+p2jje�j @@x jtvjj2jje�j @@x jtvxjj � �jje�j @@x jtvxjj2;(12d) � �2� jje�j @@x jtvjj2 + 325=3�1=3 jje�j @@x jtvjj10=3 + 1� jje�j @@x jtvjj4:(12e) 7



Inequality (12e) is obtained from (12d), Young's inequality, with a = 21=4jje�j @@x jtvjj5=2=�1=4, b =21=4�1=4jje�j @@x jtvxjj1=2, p = 4=3, and q = 4, and the Cauchy-Schwartz inequality. We want to solve(12e) with initial condition jjfxjj2. The function z = jje�j @@x jtvjj2 satis�es the di�erential inequalityddtz � �2� z + 325=3�1=3z5=3 + 1� z2:(13)If z � 1 and � � 1, then z5=3=�1=3 � z2=�, and the solution y ofddty � �2� y + �1 + 325=3� 1� y2;(14)is an upper bound for z. The closed-form solution of (14) may be obtained by rewriting (14) asddt ~y � �1 + 325=3� 1� e�2t=�[~y]2;(15)with ~y = e��2t=�y, and integrating (15). We are led to~y(t) � jjfxjj2�2�2 � (1 + 3=25=3)jjfxjj2(e�2t=� � 1) :Therefore, z = jje�tj @@x jvjj2 is bounded byjje�tj @@x jvjj2 � �2e�2t=�jjfxjj2�2 � (1 + 3=25=3)jjfxjj2(e�2t=� � 1) ;(16)which is �nite on the interval [0; t�), witht� = ��2 ln�1 + �2(1 + 3=25=3)jjfxjj2� :(17)We �rst want to compare the breakdown times of (13) and (14) and check whether (17) is agood lower bound for the breakdown time of (13). To do so, we solve equations (13) and (14) withMATLAB's function ode45, fourth-/�fth-order Runge-Kutta-Fehlberg method, an initial conditionof 1, and a tolerance of 10�12. The parameters � and � vary from 10�2 to 1, with a step of 10�2.We measure the time t at which the solution of the equations is equal to 1000; we use 1000 to givea lower bound for the time of breakdown.In the left and right graphs of Figure 1, we respectively plot the time at which the amplitude ofthe solutions of (13) and (14) equal 1000 versus � and �, � and � varying between 10�2 and 1 witha step of 10�2. We see that as � increases, � being �xed, the time at which the amplitude of thesolution is 1000 decreases and that as � increases, � being �xed, the time at which the amplitude ofthe solution is 1000 also increases. From Figure 1, we see that the term y2=� has the most in
uenceon the time at which the amplitude of the solution of the di�erential equation reaches the value1000, since both �gures in Figure 1 are similar and that (14) seems to be a legitimate approximationof (13) in the case considered.To better quantify the results, we take cross sections of the surfaces presented in Figure 1, �xingone of the two parameters, and we compare these with the breakdown time of (14) given in (17).In Figure 2, we plot the estimated times at which the amplitude of the solutions of (13) and (14) is1000, as well as the breakdown time of (14) for di�erent values of �, � = :01 (the left �gure) and fordi�erent values of �, � = 1 (the right �gure). The solid curve is the breakdown time of (14), the xcurve is the estimated time at which the amplitude of the solution of (14) is 1000, and the o curveis the estimated time at which the amplitude of the solution of (13) is 1000. Note that the solid andx curves are in quite good agreement and that the o curve is nearly self-similar to the solid and xcurves. The increase in viscosity translates into larger values of the breakdown time and estimatedtimes. We show in Figure 3 the log-log plot of the estimated times at which the amplitude of the8
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+ 21 + �2=((1 + 3=25=3)jjfxjj2))� = 0This �xes � as � =q1 + 3=25=3jjfxjj
;with 
 the positive root of � 1
2 log(1 + 
2) + 21 + 
2 = 0:Hence, an estimate of the \best" length scale associated with the exponential decay at t = t�=2 is�� = �2
p1 + 3=25=3jjfxjj ln �1 + 
2� :Therefore, jû(k; t�=2)j2 � 1k2 
2e�2��jkjjjfxjj2p1 + 
2[p1 + 
2 � 1] :(19)Since we know that when � > 0, the L2 norm of v is uniformly bounded in time, we know that abound similar to (19) holds at a later time. If we de�ne the uniform length scale � in the spirit of��, � = c �pjjfxjj2 + 38 25jjf jj10=�8 ;(20)where c is a constant independent of time and �, we obtainjû(k; t)j � C0 e��jkjjkj rjjfxjj2 + 38 25�8 jjf jj10:We now present the following theorem.Theorem 2.4 Let f be a 2�-periodic C1 solution and let u be a 2�-periodic C1 solution of (1a),� = 1=2, de�ned on [0;1). Then the solution of (1a), � = 1=2, is analytic and the Fourier coe�cientssatisfy jû(k; t)j � C0 e��jkjjkj rjjfxjj2 + 38 25�8 jjf jj10;with � given by (20) and C0 a constant independent of t, �, and k.2.3 Numerical ResultsSince we are interested in periodic solutions of (1a) with � = 1=2, we use spectral methods toconstruct the solutions numerically. The coe�cients of a Fourier series satisfy the systemddtAk = ��k2Ak + Ĝk;(21)where Ĝk are the coe�cients for [(H(u)u)x+H(u)ux]=2. For large k and � 6= 0, this system is sti�,so we use the alternative form, ddt(e�k2tAk) = e�k2tĜk:(22)We apply the Adams-Moulton fourth-order predictor-corrector to either form, evaluating Ĝk bypseudo-spectral techniques. Given the Fourier coe�cients at some time level, we use the fast inverseFourier transform to obtain u at evenly spaced points. To obtain ux and H(u) at evenly spacedpoints, we must �rst multiply the Fourier coe�cients by ik and isign(k), respectively, before usingthe inverse transform. We then form the products H(u)ux and H(u)u at evenly spaced points.By using the fast Fourier transform, we obtain the Fourier coe�cients for these products. Finally,11
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at sheet. We use 512 Fourier coe�cients toadvance the solution with time step 10�3. The solid curve closest to the y = :2 line is the initialcondition 1 + :8 cosx; the dash curve closest to the y = :2 line is the solution of (1a), � = 1=2, attime t = 1; the dash-dot curve is the solution at time t = 2; the point curve is the solution at timet = 3; the solid curve closest to the y = 1 line is the solution at t = 4; and the dash curve closest tothe y = 1 line is the solution at t = 5. As time evolves, the solution of (1a) tends to a straight line,which is not 1. This is not surprising because the average is not a conserved quantity. Comparingthe solutions of (1a), � = 1=2, for � = :1 and � = :009, we see that the viscosity has smoothinge�ects on the solution of the equation, since the solution with � = :009 has steeper slope in thevicinity of � than the solution with � = :1.In Figure 6, we plot the solution of (1a), � = 1=2, and � = :1, with initial condition 1+ :8 cos x+:2 sinx. We use 512 Fourier coe�cients to advance the solution with time step 10�3. The solid curveclosest to the y = :1 line is the initial condition 1 + :8 cosx + :2 sinx; the dash curve closest to the12



y = :1 line is the solution of (1a), � = 1=2, at time t = 1; the dash-dot curve is the solution attime t = 2, the point curve is the solution at t = 3; the solid curve closest to the y = 1:1 line is thesolution at t = 4; and the dash curve closest to the y = 1:1 line is the solution at t = 5. It appearsthat viscosity stops the solution from having an in�nite slop at x = �. The average of the solutionis an increasing function of time.In Figure 7, we plot the solutions of (1a) at time t = 1, 2, 3, 4, and 5, with � = 1=2, initialcondition 1 + :8 cosx, and di�erent values of �, � = :1, :07, :04, and :01. We use 512 Fouriercoe�cients to advance the solutions with time step 10�3. For the top left �gure, the solution of theequation at t = 1, the solid curve is the solution of (1a), with � = 1=2, and � = :1; the dash-dotcurve is the solution with � = :07; the dash curve is the solution with � = :04; and the point curveis the solution with � = :01. As � is decreased in the vicinity of �, the slope of the solution of (1a),� = 1=2, gets steeper and steeper. For the top right �gure, the solution of the equation at t = 2,the solid curve is the solution of (1a), with � = 1=2, and � = :1; the dash-dot curve is the solutionwith � = :07; the dash curve is the solution with � = :04; and the point curve is the solution with� = :01. As at time t = 1, as � is decreased in the vicinity of �, the slope of the solution of (1a),� = 1=2 gets steeper and steeper; the solutions at t = 2 for a given � are not as steep as at t = 1.Also, at this time the four curves intersect at points closer to the tip of the curve than at the earliertime. For the left middle �gure, the solution of the equation at t = 3, the solid curve is the solutionof (1a), with � = 1=2, and � = :1; the dash-dot curve is the solution with � = :07; the dash curveis the solution with � = :04, and the point curve is the solution with � = :01. As � is decreased, inthe vicinity of � the slope of the solution of (1a), � = 1=2 gets steeper and steeper; nevertheless, thesolutions do not present gradients as sharp as at earlier times. As pointed out, as time evolves, thelocation at which the four curves intersect moves toward the tip of the curves. For the middle right�gure, the solution of the equation at t = 4, the solid curve is the solution of (1a), with � = 1=2, and� = :1; the dash-dot curve is the solution with � = :07; the dash curve is the solution with � = :04;and the point curve is the solution with � = :01. As � is decreased in the vicinity of �, the slope ofthe solution of (1a), � = 1=2 gets steeper and steeper. Compared to earlier times, the slopes of thesolutions are not as steep; the location at which the four curves intersect is very close to the tip ofthe curves. For the lowest �gure, the solution of the equation at t = 5, the solid curve is the solutionof (1a), with � = 1=2, and � = :1; the dash-dot curve is the solution with � = :07; the dash curveis the solution with � = :04; and the point curve is the solution with � = :01. As � is decreased inthe vicinity of �, the slope of the solution of (1a), � = 1=2 gets steeper and steeper, but for �xed �,they are not as steep as at earlier times. Now, the curves no longer intersect.From the study of the equation (1a), � = 1=2, with 2�-periodic initial and boundary conditions,we see that despite the fact that the solution exists for all time and is analytic when � > 0,the analyticity bandwidth is proportional to �5. Hence, one may encounter di�culties when onecomputes numerical solution of (1a) for small �. Despite the analyticity result obtained here, thesolution of (1a), � = 1=2, does not seem to be as well as behaved as the solution of (1a), � = 0: thesolution of (1a), � = 1=2 and � > 0, satis�es only an L2 norm bound independent of �; the solutionof (1a), � = 0 and � > 0, satis�es a maximum norm bound independent of �.3 Singularities Formation with 0 < � < 1=3 and � = 1In the preceding section and in [1], we have shown that the solution of (1a), � = 0 and � = 1=2, existsfor all time if � > 0. We also have shown in [1] that, for certain initial conditions, the solution of(1a), � = 1 blows up in �nite time. In this section, we show, for a certain class of initial conditions,and for 0 < � < 1=3 and � = 1, that the solution of (1a) forms singularities in �nite time. Insteadof using the properties of the Hilbert transform and showing that the function H(u) � iu satis�esBurgers' equation as in [1], we derive the system of ordinary di�erential equations for the Fouriercoe�cients of the solution of (1a). For 0 < � < 1=3, we show that for symmetric initial conditions,the solution of (1a) blows up in �nite time using the Fourier space method of Palais [3], [4], and [9].We show, that if the Fourier modes of the initial condition are all strictly positive and such thatûk(0) = û�k(0), the system for the Fourier modes is cooperative. To prove that some solutions blow13
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up in �nite time, we then use Palais' result that the evolution of the ûk for any �nite subsystem ofthe original one serves as a lower bound for the ûk of the full system. Hence, using Palais' method,we can prove that, for a certain class of initial conditions, the solution of the equation blows up in�nite time. For � = 1, we explicitly solve the system of di�erential equations the Fourier coe�cientsof the solution of (1a) satisfy. The method, in the case � = 1, has limited application, since for mostof the nonlinear partial di�erential equations of interest, we cannot obtain an explicit expression forthe Fourier coe�cients.The Fourier coe�cients of the solution of (1a) satisfy the in�nite system of di�erential equations,if k 6= 0,ddt ûk(t) = ��kXl6=0 sign(l)ûlûk�l � (1� �) Xl6=0;k�l6=0 sign(l)(k � l)ûlûk�l � �k2ûk;(23a)and ddtû0(t) = (1 � �)Xl6=0 sign(l)lûlû�l = 2(1� �)Xl>0 ljûlj2:(23b)To obtain the equations for the Fourier coe�cients of (1a), we used the fact thatH(u) = iXk 6=0 sign(k)ûkeikx;ux = iXk 6=0 kûkeikx;H(u)u = i 1Xk=�1Xl6=0 sign(l)ûlûk�leikx;H(u)ux = � 1Xk=�1 Xl6=0;k�l6=0 sign(l)(k � l)ûlûk�leikx;(H(u)u)x = �Xk 6=0 kXl6=0 sign(l)ûlûk�leikx:Rewriting the expression for the kth Fourier coe�cient of (H(u)u)x, we haved((H(u)u)x)k = �kXl>0 ûlûk�l + kXl>0 û�lûk+l;(24a) = �kXl>0 ûlûk�l + kXl>k ûlûk�l;(24b) = 8<: 0 if k = 0�kP0<l<k ûlûk�l if k > 0kPk<l<0 ûlûk�l if k < 0 :(24c)We obtain (24b) by making the change of variable l0 = k + l in the second sum of (24a) and bydropping the 0 on l. We arrive at (24c) by considering the three cases k = 0, k > 0, and k < 0. Alsonote that if û�l = ûl for l � 0, then d((H(u)u)x)k = d((H(u)u)x)�k.We also obtain for the kth Fourier coe�cient of H(u)ux,d(H(u)ux)k = � Xl>0;k�l6=0(k � l)ûlûk�l + Xl>0;k�l6=0(k + l)û�lûk+l;(25a) = � Xl>0;k�l6=0(k � l)ûlûk�l +Xl>k lûlûk�l;(25b) = 8<: 2Pl>0 ljûlj2 if k = 0;P0<l<k(k � l)ûlûk�l +Pl>k(2l � k)ûlûk�l if k > 0;Pk<l<0 lûlûk�l +Pl>0(2l � k)ûlûk�l if k < 0:(25c) 15



We obtain (25b) by making the change of variable l0 = k + l in the second sum of (25a) and bydropping the 0 on l. We arrive at (25c) by considering the three cases k = 0, k > 0, and k < 0. Alsonote that if û�l = ûl for l � 0, then d(H(u)ux)k = d(H(u)ux)�k.If we take into account the above expressions for d((H(u)u)x)k and d(H(u)ux)k, the equation (23a)becomesddt ûk + �k2ûk =� P0<l<k[(1� 2�)k � (1� �)l]ûlûk�l + (1� �)Pl>k(2l � k)ûlûk�l; if k > 0;Pk<l<0[�(k � l) + l]ûlûk�l + (1� �)Pl>0(2l � k)ûlûk�l: if k < 0:(26)From now on, we restrict ourselves to symmetric initial conditions, that is, initial conditions forwhich ûk(0) = û�k(0). Then, from the symmetry properties, (26) reduces toddt û0 = 2(1� �)Xl>0 ljûlj2;(27a) ddt û2k+1 + �(2k + 1)2û2k+1 = (2k + 1)(1� 3�) X1�l�k ûlû2k+1�l+(1� �) Xl>2k+1(2l � (2k + 1))ûlûl�2k�1; k � 0(27b) ddt û2k + 4�k2û2k = 2k(1� 3�) X1�l�k�1 ûlû2k�l + k(1� 3�)[ûk]2+2(1� �) Xl>2k(l � k)ûlûl�2k; k � 1:(27c)Now we can prove the equivalent of Lemma 3.2 of [4] for the solution of (27a), (27b), and (27c).Lemma 3.1 If the solution is such that ûk(0) = û�k(0) > 0, for all k, and if 0 < � � 1=3, then forall subsequent times (such that a solution exists),ûk(t) > 0:(28)Proof: Suppose that ûm is the �rst coe�cient to violate (28) at time t� such that ûm(t�) = 0. Thenit follows from (27a), (27b), and (27c) thatûm(t�) = ûm(0)e��m2t� + e��m2t� Z t�0 f(� )d�;(29)with the function f given by2(1� �)Xl>0 ljûlj2; if m = 0,e�(2k+1)2t24(2k + 1)(1� 3�) X1�l�k ûlû2k+1�l+(1� �) Xl>2k+1(2l � 2k � 1)ûlûl�2k�1# ; if m = 2k + 1, k � 0,e4�k2t242k(1� 3�) X1�l�k�1 ûlû2k�l + k(1� 3�)[ûk]2+2(1� �)Xl>2k(l � k)ûlûl�2k# ; if m = 2k, k � 1,16



Note that if 0 < � � 1=3, all the terms in the right-hand side of (29) are positive for 0 � t < t�.Thus, (29) is strictly positive, which is a contradiction.Now that we have shown that the system for the Fourier modes ûk is cooperative [3], we usePalais' method [9] to prove that the solution of (27a), (27b), and (27c) becomes in�nite in �nitetime. Palais shows that the evolution of the ûk for any �nite subsystem of (27a), (27b), and (27c)serves as a lower bound for the ûk of the full system provided that the full system is cooperativeand that the initial condition satis�es ûk(0) � 0 for all k.Lemma 3.2 Let u be a solution tout = �(H(u)u)x + (1� �)H(u)ux + �uxx;(30a) u(x; 0) = f(x);(30b)f a 2�-periodic function, and 0 < � < 1=3. There exists initial data f that produces a solution thatblows up in �nite time.Proof: From Palais' work and Lemma 3.1, we need to show there exists a subsystem of (27a), (27b),and (27c) whose solution becomes in�nite in �nite time. If 0 < � < 1=3, consider the systemddtp = (1 � �)pq � �p;(31a) ddtq = (1 � 3�)p2 � 4�q;(31b)which is obtained from (27b) and (27c) by taking k = 0 and 1. If û1(0) = p(0) and û2(0) =q(0), then û1(t) > p(t) and û2(t) > q(t) 8t > 0. The system (31a) and (31b) has an attractivenode at (0,0) (the eigenvalues of the Jacobian are �� and �4�) and an instable �xed point at(2�=p(1� 3�)(1 � �); �=(1� �)) (the eigenvalues of the Jacobian are 2�(1 + i) and 2�(1� i)). Ifp = q, then ddtp = (1� �)q2 � �q; ddtq = (1� 3�)q2 � 4�q:So, if q > 4�=(1 � 3�), then 0 < dq=dp < 1 and if at t = 0, p > q, then p(t) > q(t) for all t > 0provided q(t) > 4�=(1� 3�). Suppose that 4�=(1� 3�) < q < p. Thenddtq > (1� 3�)q2 � 4�q:(32)Therefore dq=dt > 0 and q(t) > 4�=(1� 3�) for all t > 0. Integration of (32) gives usq(t) > 4�q(0)(1� 3�)q(0) + (4� � (1� 3�)q(0))e4�t :(33)So q(t) blows up at a �nite time T , withT < 14� ln� (1 � 3�)q(0)(1� 3�)q(0) � 4�� :Therefore p and q solution of (31a) and (31b) blow up in �nite time; The solution of (27a), (27b),and (27c) blows up at a time t � T .We can also show that the solution of (1a) with � = 1 blows up in �nite time using a di�er-ent approach from Palais' comparison method and the explicit construction of a \traveling wave"solution, presented in [1], that blows up in �nite time. Instead, we derive the system the Fouriercoe�cients satisfy, and we solve the system.Lemma 3.3 Let u be a solution to ut = (H(u)u)x + �uxx;u(x; 0) = f(x);f a 2�-periodic function. There exists initial data f that produces a solution that blows up in �nitetime. 17



Proof: If � = 1, (23b) and (26) reduce toddtû0(t) = 0;(34a) ddt ûk(t) + �k2ûk(t) = � �kP0<l<k ûlûk�l; if k > 0;kPk<l<0 ûlûk�l; if k < 0:(34b)Since we have previously shown that, if ûk(0) = û�k(0), ûk real, then ûk(t) = û�k(t), we constructby induction an explicit solution of (34a) and (34b). More precisely, we look for the solution of thesystem with initial condition û0(0) 6= 0, û1(0) = û�1(0) 6= 0, and ûk(0) = û�k(0) = 0 for k � 2.Integration of (34a) and (34b) for k = 1 and 2 givesû0(t) = û0(0);û1(t) = û1(0) exp(��t);û2(t) = �[û1(0)]2 e�2�t � e�4�t� :Now, we can use an induction process to derive the expression for ûk, k � 3. Assume thatûk(t) = � [û1(0)]k�k�1 X0<l<k fl(t)fk�l(t);with fl(t), 1 � l < k, positive function for t � 0, fl(t) = PmC lme��lmt, Clm and �lm constantsdepending only on m and l. From the di�erential equation (34b), we �nd thatddt �e�(k+1)2tûk+1(t)� = �e�(k+1)2t [û1(0)]k+1�k�1 (k + 1) X0<l<k+1fl(t)fk+1�l(t);with the function e�(k+1)2tP0<l<k+1 fl(t)fk+1�l(t) again a positive function for t � 0. From theexpression of fl(t), we conclude thatûk+1(t) = � [û1(0)]k+1�k X0<l<k+1 gl(t);with gl(t) = e��(k+1)2t(k + 1) Z t0 e�(k+1)2� fl(� )fk+1�l(� )d�;which is of the formPmDlme��lmt, with Dlm a constant depending only on m and l.So the L2 norm of the solution of (1a) with � = 1 and the initial condition û0(0) 6= 0, û1(0) =û�1(0) is jju(�; t)jj2 = jû0(0)j2 + 2 1Xk=1 [û1(0)]2k�2(k�1) " X0<l<k fl(t)fk�l(t)#2 :(35)The function f1(t) is strictly positive for t � 0 and tends to 0 as t!1; the function fl(t), l � 2, is0 at t = 0, is strictly positive for t > 0, and tends to 0 as t!1. Let a(t) be the minimum of fk(t)over k; the minimum is strictly positive when t > 0, since each term is strictly positive. Then (35)becomes jju(�; t)jj2 � jû0(0)j2 + 2[û1(0)]2[a(t)]2 1Xk=0k2� [û1(0)]2�2 �k :(36)The in�nite series in the right-hand side of (36) converges provided jû1(0)j=� < 1. Hence, if jû1(0)j >�, there exists a time t� <1 for which the L2 norm of u is in�nite.Note that to simplify the algebra, we look for a solution with an initial condition of the forma0 + a1 cosx; the result extends to any initial condition of the formP1k=0 ak cos(kx).18



4 Conclusion and Open QuestionsFrom the study of the continuum of partial di�erential equation (1a) and the work obtained in [1] and[8], we conclude that second-order viscous regularization prevents singularity formation in �nite timeonly in two cases: when the nonlinear contribution only contains the 
ux term in nonconservativeform and when the contribution of the 
ux term in conservative form balances the contribution ofthe 
ux term in nonconservative form for the L2 scalar product with the solution of the equation.From the results obtained in Section 3, it seems that the 
ux term in conservative form cannot bebalanced by the 
ux term in nonconservative form and second-order viscous regularization, evenwhen (1 � �) > �, 0 < � < 1=3.A few open questions remain, whose answers would shed some light on the behavior of thesolutions of the continuum of partial di�erential equations:� Does a weak limit of the sequence of solutions (u�;1=2)�>0 exist? If so, to which space does itbelong?� What is the decay rate of the Fourier coe�cients of the solution of (1a), � = 1=2, when � = 0before singularity forms? What type of singularity forms when � = 0?� What kind of viscous regularization should be introduced to control the nonlinear 
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