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Abstract

To develop an understanding of singularity formation in vortex sheets, we consider model
equations that exhibit shared characteristics with the vortex sheet equation but are slightly
easier to analyze. A model equation is obtained by replacing the flux term in Burgers’ equation
by alternatives that contain contributions depending globally on the solution. We consider the
continuum of partial differential equations w, = §(H (u)u)s + (1 — ) H (v)us + vas, 0 <6 <1,
v > 0, where H(u) is the Hilbert transform of u. We show that when 6§ = 1/2, for v > 0, the
solution of the equation exists for all time and is unique. We also show with a combination of
analytical and numerical means that the solution when # = 1/2 and v > 0 is analytic. Using
a pseudo-spectral method in space and the Adams-Moulton fourth-order predictor-corrector in
time, we compute the numerical solution of the equation with § = 1/2 for various viscosities.
The results confirm that for v > 0, the solution is well behaved and analytic. The numerical
results also confirm that for » = 0 and 6§ = 1/2, the solution becomes singular in finite time
and finite viscosity prevents singularity formation. We also present, for a certain class of initial
conditions, solutions of the equation, with 0 < 8 < 1/3 and § = 1, that become infinite for v > 0
in finite time.

1 Introduction
We consider the continuum of partial differential equations

(1la) up = O(H(uu)g + (1 —0)H(w)uy + vugy,
(1b) u(z,0) = f(a),

with 0 < 0 < 1, v > 0, H(u) the Hilbert transform of u, and 2m-periodic initial and boundary
conditions. This equation is of interest because i1t models the motion of vortex sheets. Here @ is a
parameter varying between 0 and 1 that helps us recast the two partial differential equations

= (Hwu)e + vigs,

up = H(u)ug + vugg,

as a single one. By varying 6 between 0 and 1, we gain further insight about the results previously
obtained in [1] and [8].

Note that (1a) with # = 0 and # = 1 has already been considered in [1] and [8]. In [1], it was
shown that the solution with 8 = 1 develops singularities in finite time for a certain class of initial
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conditions; 1t was also shown that the solution with § = 0 exists for all time provided v > 0. In
[8], it was shown that the solution of (1a) with = 0 has a weak limit in the limit of zero viscosity,
the weak limit belongs to L ([0, 27]) N BV ([0, 27]), and the temporal derivative of the weak limit is
locally measurable. Here we extend the results presented in [1] and [8]; we show that the solution of
(la) with # = 1/2 and v > 0 exists for all time and is unique. This existence proof is obtained first
by using Ball’s theorem [2] to obtain short-term existence and then by proceeding as for Burgers’
equation [7] to obtain long-term existence and uniqueness. Proceeding along the lines of the work
presented in [5], we show that when v > 0 and § = 1/2, the solution of (la) is analytic. We
numerically compute the solution of (1a), § = 1/2, for various viscosities, with a pseudo-spectral
method in space and the Adams-Moulton fourth-order predictor corrector-method in time. The
numerical results confirm that the solution is analytic when v > 0 and that the viscosity prevents
the solution from becoming singular in finite time. The numerical results also indicate that for v = 0
in finite time, the derivatives of the solution become infinite.

In Section 3, we show, that for 0 < § < 1/3 and for symmetric initial conditions, the solution
of (1a) blows up in finite time; the result is obtained by using the Fourier space method of Palais
[3], [4], and [9]: If the system of Fourier modes is cooperative, then the evolution of the i for
any finite subsystem of the original one serves as a lower bound for the uj of the full system. We
also show, using a different approach from that in [1], that in finite time the solution of (1a) with
f = 1 becomes infinite. In both cases, instead of transforming the original equation into Burgers’
equation for the function z = H(u) — iu, we derive an infinite system of differential equations for
the Fourier coefficients and show that, for a certain class of initial conditions, the L? norm of the
solution becomes infinite in finite time.

2 Equation with 0 =1/2

Here we investigate the behavior of the solution of (la) with 27-periodic initial and boundary
conditions. We first prove short-term existence with Ball’s theorem [2], then long-term existence
proceeding as in [1] and [7]. We also show uniqueness of the solution of (la). Proceeding as in
[5] for 3D Navier-Stokes equations, we show that the solution of (1a) is analytic when v > 0. The
difference between our approach and that in [5] is that we use numerical results to confirm that the
differential equation whose solution is obtained by analytical means is representative of the general
behavior of the original equation. We present numerical solutions of (1a) for v > 0. The equation is
approximated with a pseudo-spectral method in space and the Adams-Moulton predictor-corrector
in time. The numerical results confirm that for v > 0, the solution is well behaved and analytic and
that when v = 0 the derivatives of the solution become infinite in finite time.

2.1 Existence and Uniqueness

To prove short-term existence of the solution of (1a) with # = 1/2, we use Ball’s theorem [2], given
below. in [1].

Theorem 2.1 Consider the equation

(2) %u = Au+ f(u),

where A is the generator of a holomorphic semigroup S(t) of bounded operators on a Banach space
X. Suppose that ||S(t)|| < M for some constant M > 0 and allt € RY. Under these hypotheses, the
fractional powers (—A)~™% can be defined for 0 < a < 1, and (—A)* is a closed linear operator with
domain X, = Domain((—A)*) dense in X. Let f(u) be locally Lipschitz; that is, for each bounded
subset U of X, there exists a constant Cy so that

1f(u) = f)I < Cullu—vlla ¥V u, veET.

Then, given ug € X, there exists a finite time interval [0,t) and a unique solution to (2) with
u(+,0) = ug on that time interval, and the solution can be continued uniquely on a mazrimal interval



of existence [0,T%). Moreover, if T* < oo, then necessarily

i Jlu(t)]]a = o.

We directly apply Theorem 2.1 to (la) with @ = 1/2, A = v9?/92?, X = L?([0,1]), and

() = S (@) + S H ()

Then X, = H? and

1f(w) = F)ll < [IH(@)]leolltr = || + [|ve|loo || H (w) = H(v)]]
1 1
g llulloo][H (ue) = H(va)ll + 511 (v2)l|oo|Ju = ],
< Cllellmz + lvllz2) [Ju = 0| |-

In the above relations and the rest of the paper, ||u|| denotes the L? norm of u and C' denotes a
constant. To obtain the above inequalities, we use the following properties of the Hilbert transform

[10]:

e Let g be a C°, 27-periodic function. Then H(g) is a C°°, 27-periodic function and
(H(g))e = H(gz).
e The L? norm of H(g) satisfies the bound
[ ()] < llgll-
o H(e™) = isign(k)e’*®.

The final bound for the L? norm of f(u) — f(v) is a direct consequence of Sobolev’s inequalities.
Hence, f is locally Lipschitz continuous on H?. Theorem 2.1 implies that a solution exists in any
time interval in which the H? norm of the solution is controlled.

To prove the existence of a solution for all time, we require bounds on the solution to hold
independent of the length of the time interval. We can obtain such bounds using the following
lemma which establishes an L? norm bound for the solution of (1a), § = 1/2.

Lemma 2.1 Let the initial data f be C™ and 27w-periodic. Let u be a solution of (1a), 6 = 1/2,
that exists for some [0, T]. Then

(3) [luC-, O < [IF1].
Proof: Taking the inner product of u with the equation it satisfies leads to

(4a) %Ilull2 = (u, (H(w)u)e) + (u, H(u)ug) — 20| |ug| [
(4b) = —2w||u|*.

We are led to (4b) because (u, (H(u)u)y) = —(ug, H(u)u). Integration with respect to time of (4b)
gives us the desired bound. "
The following theorem replaces Theorem 4.2.1 in [7] and Theorem 5 in [1].

Theorem 2.2 Let f be a 2w-periodic C*° initial condition, and let u be a C* solution of (1a),
0 = 1/2, defined on [0, T). Then there is a constant K, dependent on the H? norm of the initial
condition and on the viscosity v, but independent of T', such that

() lu( g2 < K,

witht € [0,T7.



Proof: Let v = u,. The equation for v is

(6a) vy = %(H(u)u)m + %(H(u)v)x + Vg,

Taking the inner product of v with the equation it satisfies, we are led to
d
(6b) ol = (o, (H (W)w)e) + (v, (H(w)v)e) = 20[Jva||*

Integrating by parts the inner product (v, (H(u)v); ), expanding (I (u)u)yy, and integrating by parts
the scalar product (v, H(v)v), to decrease the derivative of v, we obtain

(60) S = (0, H (e u) = 20, H () — 200

We need to estimate both inner products in (

6¢)
(v, H(va)u)| < lulleol[o]] []va]],
|(ve, Hv)w)| < [ulloo]|v]] [|ve]]-

Sobolev’s inequality then tells us
lellool 101 1zl < V2L ul 2ol P2 oe || < 257l P4 o] 7.
Recall Young’s inequality, which states that for a, b > 0

1 1 1
(7) ab < —af + =b?,  with + - =1.
P q q

S

Take a = 323/8||u||?/*/v7/® and b = 27/307/3||v,||/*. Then, with p = 8 and ¢ = 8/7, Equation (7)
becomes s

382 7
(8) Blullecllvf Jvall < —=IJull""+ Zvllvo|*.

Since [|v]|? < ||vg]|?, we are led to the differential inequality

d 2 1 2 3823 10
ol + gullel < = [Jull

Since from Lemma 2.1, ||u|| < ||f]|, we may integrate this differential inequality in a standard way
to obtain

2 s 32 10
(9) [[v]]* < ([ fell +7||f|| :
Now, we need an estimate for the L? norm of w = ug,, that satisfies the equation
1 5
(10) wy = §H(wx)u +2H(w)v + §H(v)w + H(u)wy + vwg,.

To proceed, we need estimates for several inner products. First we crudely estimate (w, H(wg)u):

|(w, H (ws)u)] [elloo| ]| [z,

VIl o[ e el
A7 |°.

[VANVARNVAN

The above inequalities are a direct consequence of Sobolev’s inequalities and of Lemma 8 of [1].
Then we integrate by parts (w, H(w)v) and (w, H(v)w), decreasing the derivative order of v and
H(v), respectively, and crudely estimate the resulting inner products to obtain

|(w, H(w)o)| < 2fullocllwl] Twsl| < 2/2[[ul|2[[o]][[w]] [lw.]l,
|(w, Hv)w)| < 2|[H (w)l|oo ][ el | < 292/ Jul 202 Jeo]| |-

A



As for the first inner product, we crudely estimate (w, H(u)w,) to obtain
|(w, H(u)wz )| < [|H (w)]]oo[e0]| [|wa]| < V2| [M2][0] /][] [,

Therefore, taking the inner product of w with the equation it satisfies, (10), we are led to the
differential inequality

d
T llwll® < 240l 7O g | |10 = 20| |2,

Applying Young’s inequality (7) to 24|u||7/%||w,||'*/ with a = 24||u||7/¢ /v 112 b = 1122w, ||M1/6,
p =12, and ¢ = 12/11, we may rewrite the differential inequality as

234 311

||14
pl1

= v]|we|]*.

d
Sl < el

Using [|w]|? < ||wg||? and integrating the differential inequality

d 5 5 234311 14
el P+ vl < =S A,

we are led to
5 234311 14 5
(11) [lwl]” < — 5=l + [l fealI”-

Combining (3), (9), and (11), we obtain
lu(-, )llg> < K,

where K depends on v and ||f||g2 but not on T
Note that if ||v|] < ||u]|, the inequality (9) would read

9
2< i 2 4
ol < AP + 5 1711

and (11) would read
35214
lwll” < 1 feall” + =511
To obtain the above inequality, we bounded ||u||oo||w]| ||we|| by V2]|u|| ||w]|||wz]|. We then applied
Lemma 8 of [1] and Young’s inequality with a = 12/2||u|[*/3/v°/¢, b = v5/||w,||?/3, p = 6, and
q = 6/5. The inequality ||u(-,t)||g= < K again holds. n
We are now in a position to prove the major result of this section.

Theorem 2.3 Let the initial condition be C* and 2w-periodic, and let v > 0. Equation (la) with
0 = 1/2 has a unique, 2w-periodic solution u on [0,00), which is infinitely many times differentiable.

Proof: Proof of existence follows directly from the arguments in Theorem 4.2.2 in [7]. We have only
to show uniqueness. Let u and v be solutions of (1a), @ = 1/2, that satisfy the same initial condition.
Their difference w = u — v satisfies

1 1
wy = H(wwy + §H(wx)v + §H(ux)w + H(w)vy + vy,
w(z,0) = 0.

Integration by parts of the inner product (w, H (u)w,), decreasing the derivative order of wy, leads us
to (w, H(u)wy) = —(w, H(ugz)w)/2. The inner products (w, H(w;)v) and (w, H(w)v,) are crudely
estimated by

g
X
S
8
=
IN

v 1
[[o]oo [l |[wa|| < §|wa||2+ 5llv||§o||w||2,

g
X
£
<

2
IA

12 |oo |10 .



The above estimates may be used to obtain the differential inequality

d 1
Sltoll? < (el + el )l

Gronwall-Bellman’s inequality then implies that w = 0. "

Finally we can show that all spatial and temporal derivatives of the solution of (la), # = 1/2,
remain bounded for all time provided v > 0. The proof follows the ideas already expressed. This
result indicates that there 1s a limit to how distorted the solution can become.

2.2 Analyticity

Now that we have shown that the solution of (1a), § = 1/2, exists for all time when v > 0, we want
to prove that it is analytic. To do so, we proceed as in [5] for the three-dimensional Navier-Stokes
equations and we use a combination of analytical and numerical techniques. The method used in [5]
is based on Foias and Teman’s work [6]; we can prove that the Fourier coefficients of the solution of
(la), 8 = 1/2, decay exponentially. We first derive an evolution inequality for

||ea|%|tux||2 _ Z 62a|k|tk2|ak|2
k20

for some « > 0 and for some time interval [0,1).

We derive the exact differential equation for the evolution of the square of the L? norm of eol3 |tv,
where v is the solution of (6a). Using (6a), we are led to

(12a) %He“l%ltvﬂz = 2« (eal%ltv,ealﬁlt = v) +2 (eal%ltv,ealﬁltvt) ,
x
= 2« (eal%ltv,ealﬁlt . v) + (eal%ltv,ealﬁltf](v)v)
al 2|t al Z |t al 2|t 2
(12b) —(e s l'y,,, e¥os H(v)u) —2v||e*B= Ty, |7,

We obtain (12b) from (12a), the equation v satisfies, the properties of the Hilbert transform, and
integration by parts, since

2(6“|%|tv, el %ltH(u)vx) = —(e zelty, el aa_zltH(v)v),

(eal%ltv,ealﬁltf](vx)u) = —(eal%ltvx,ealﬁltf](v)u)—(eal%ltv,ealﬁltf[(v)v).

The action of the operator |§—x| is defined in terms of the Fourier transform as

u(w,t) =Y [klax(t)e”.

k20

0
Ox
Since u, and |%| u have the same norm, the first scalar product in (12b) can be estimated as

9
oz

) < aflelEEl|||[eE e, |,

IN

2
Sllee B w2 4 el o] 2,
Hence (12b) can be rewritten as

2
%Ilea'%w < el |2 4 (e2lFE 1 F 1 (0)0)
1%

(12¢) — (e, T (v)u) — v)|eIFE |2,



Now we bound the two scalar products in (12c¢) that arise from the nonlinear terms in (6a). For the
first product, using the Fourier expansion of the solution, we obtain

(eal%ltv, eal%ltH(v)v)

= 262a|k|tk Z k/kusign(k/)(ﬂk)ﬂk/ﬂku s

k20 Bk =k
< Zea|k|t|k||ak| Z (ealk'|t|k/||akl|) (6a|kl'|t|k//||ﬂku|) ’
k20 Bk =k

where (4y) is the complex conjugate of @ and the triangular inequality || < [k'| + |&”| has been
used. Let us define the periodic function r by its Fourier transform r; as r; = ea|k|t|ﬂk|. Then the
first scalar product in (12¢) is bounded by

(eal%ltv,ealﬁltf](v)v)‘ < Z|k|fk Z |&'| |k |PgrPr
k#0 B4R =E
_ d a1
—| 7 ||=|r
- oz | || 0z ’
< ||rx||00||rx||2a
< V2Y[rel P2 el

The second inequality above is directly derived from the definition of r and its derivatives in terms
of its Fourier coefficients; the third inequality is derived from the fact that r, and |§—x| r have the
same L2 norm and brute force estimation of the scalar product; the last inequality is derived from
Sobolev’s inequality.

The second scalar product can be bounded similarly. We obtain

(b, HE )| =[RS Ksign(K)(auie .
k¢0 kl+k”:k

Zea|k|tk2|ak| Z (ea|k’|t|k/||akl|) (ea|k//|t|ak”|).

EZ0 kitkii=k

IN

Then, proceeding as for the first scalar product, we get

(eal%ltvx,ealﬁltf](v)u)‘ S Zszk Z |k/|fk/fk//,
k#0 k'4+kl=k
< (rm,f 9 7“),
Ox
< Flleslrel|reel],
< V2| Pl

The second inequality above is derived directly from the definition of » and its derivatives in terms
of its Fourier coefficients. The function 7 is obtained from r by setting the zero Fourier mode to 0
(note that the function whose Fourier coefficients are 3, . _p [K'|rgi7pn has zero average). The
third inequality is derived from the fact that r, and |%| r have the same L? norm and brute force
estimation of the scalar product. The last inequality is derived from Sobolev’s inequality and the
fact that ||7|| < ||rg]|. Therefore (12¢) becomes

2
Dilerttlz < et g ety o el |12
1%
(12d) +V2|[e T ]2 el g || — w|e 5 |7,
aZ 2 2 1 2
= | 21t,.112 v |21t,.1110/3 - |2 1t,.114
(12e) < y [le*T2= | +25/3V1/3||6a | +V||ea 2<%



Inequality (12e) is obtained from (12d), Young’s inequality, with a = 21/4||e“|%|tv||5/2/1/1/4, b =
21/41/1/4||e“|%|tvx||1/2, p=4/3, and ¢ = 4, and the Cauchy-Schwartz inequality. We want to solve

(12e) with initial condition ||f,||?. The function z = ||e®lz!?p||? satisfies the differential inequality
d a? 5 1
a [T SR £ BT

(13) dtzg Vz—|—25/3y1/3z +1/Z :

If z>1and v <1, then z5/3/0'/3 < 22/, and the solution y of

d o? 3 1
14 —y < — 14+ —— | =12
(14) 7Y < Vy+( +25/3) Y

is an upper bound for z. The closed-form solution of (14) may be obtained by rewriting (14) as

d ~ 3 1 oz2t/1/ ~12
(15) P (1 + m) € [91°,
with § = e‘“2t/"y, and integrating (15). We are led to
. |1 felPo®
1) < _ .
R 7y F A Py
Therefore, z = ||e®!l2zlv||? is bounded by
2 a%t/v 2
(16) ||eat|%|v||2 < are |[fz]]

o = (L 3PP P = 1)

which is finite on the interval [0, "), with

* v az
(17) r=h (1 T 3/25/3>||fx||2) '

We first want to compare the breakdown times of (13) and (14) and check whether (17) is a
good lower bound for the breakdown time of (13). To do so, we solve equations (13) and (14) with
MATLAB’s function odedb, fourth-/fifth-order Runge-Kutta-Fehlberg method, an initial condition
of 1, and a tolerance of 1072, The parameters « and v vary from 1072 to 1, with a step of 1072,
We measure the time ¢ at which the solution of the equations is equal to 1000; we use 1000 to give
a lower bound for the time of breakdown.

In the left and right graphs of Figure 1, we respectively plot the time at which the amplitude of
the solutions of (13) and (14) equal 1000 versus o and v, & and v varying between 1072 and 1 with
a step of 1072, We see that as a increases, v being fixed, the time at which the amplitude of the
solution 1s 1000 decreases and that as v increases, « being fixed, the time at which the amplitude of
the solution is 1000 also increases. From Figure 1, we see that the term y?/v has the most influence
on the time at which the amplitude of the solution of the differential equation reaches the value
1000, since both figures in Figure 1 are similar and that (14) seems to be a legitimate approximation
of (13) in the case considered.

To better quantify the results, we take cross sections of the surfaces presented in Figure 1, fixing
one of the two parameters, and we compare these with the breakdown time of (14) given in (17).
In Figure 2, we plot the estimated times at which the amplitude of the solutions of (13) and (14) is
1000, as well as the breakdown time of (14) for different values of o, v = .01 (the left figure) and for
different values of o, v = 1 (the right figure). The solid curve is the breakdown time of (14), the x
curve is the estimated time at which the amplitude of the solution of (14) is 1000, and the o curve
is the estimated time at which the amplitude of the solution of (13) is 1000. Note that the solid and
x curves are in quite good agreement and that the o curve is nearly self-similar to the solid and x
curves. The increase in viscosity translates into larger values of the breakdown time and estimated
times. We show in Figure 3 the log-log plot of the estimated times at which the amplitude of the
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Figure 1: Time at which the amplitude of the solutions of (13) and (14) equals 1000 versus « and v.
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Figure 2: Comparison of the breakdown time of (14) with the estimated times at which the amplitude
of the solutions of (13) and (14) is 1000, given by o and x, for different values of «, v = .01 (left)
and for different values of o, v = 1 (right).
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Figure 3: Log-log plot of the breakdown time of (14) and of the estimated times at which the
amplitude of the solutions of (13) and (14) is 1000 for different values of «, v = .01 (left) and for
different values of o, v = 1 (right).
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Figure 4: Log-log plot of the breakdown time of (14) and of the estimated times at which the
amplitude of the solutions of (13) and (14) is 1000 for different values of v, & = .01 (left) and for
different values of v, & = 1 (right).

solutions of (13) and (14) is 1000 as well as the breakdown time of (14) for different values of «,
v = .01 (left) and for different values of o, v =1 (right). As in Figure 2, we see that the solid and
x curves are superimposed and that for small «, the three curves are self-similar. We also find, for
our purposes, that (14) is a better approximation of (13) in the regime small «, independently of
the value of v.

Now we look at sections where « is fixed and v varies. In Figure 4, we present the log-log plot of
the estimated times at which the amplitude of the solutions of (13) and (14) is 1000, as well as the
breakdown time of (14) for different values of v, & = .01 (left) and for different values of v, o = 1
(right). We see that the solid and x curves are superimposed and that for small v, the three curves
are parallel to each other. Note that the increase in the parameter « translates into smaller values
of breakdown time and estimated times.

From this numerical comparison of the solutions of (13) and (14), we find that (14) gives a rather
good estimate of the breakdown time of (13) despite the fact that it underestimates it. Estimating
the breakdown time by finding the time at which the amplitude of the solution is 1000 thus appears
to be acceptable because the solid and x curves superimpose.

From the expression (16), we see that each Fourier mode amplitude can be individually controlled,

since
(o)

eIk, ) < 3 IR agk, )] = ||eE o (- )|,
k=—o0
Hence, the amplitude of the kth Fourier is bounded explicitly by
a26a2t/u—2a|k|t||fx||2

1
18 ik, H))? < =
( ) |U( ) )| = k2 az_(1+3/25/3)||fx||2(6a2t/y _1)a

on the interval [0,¢*) with ¢* defined in (17). The upper bound in (18) exhibits a local mininum for
t €[0,t*), the location and value of which depend on the value of & considered as well as the choice
of a. We first choose ¢, then adjust « to get explicit bounds.

The exponential decay length of the spectrum at time ¢ < ¢* is «at. Let us choose t = ¢*/2
and define the associated length A* = at*/2 = 3= 1In (1 + m) Note that since A* is a
concave function of & > 0, we may maximize it over the choices of a. The extremum satisfies the
equation

o _ v [ (L+3/22) L7 (s )
bo T RTH3FPNLIEL @ RISV ZRTAE

10



2
+ =0
1+ a?/((1 +3/25/3)||fx||2))]
This fixes « as

L+3/2°3| fol,

with v the positive root of

1
—Fmgu+7%+ =0.

14~2

Hence, an estimate of the “best” length scale associated with the exponential decay at ¢t = ¢*/2 is

v
A= In (144?).
29/ 14 3/2°/3]| f2 ( :

Therefore,
1 2 —2)\*|k|||fx||2 1_1_,.}/2
(19) jalk, £/ < 57 VAT
(V1492 —1]

Since we know that when v > 0, the L? norm of v is uniformly bounded in time, we know that a
bound similar to (19) holds at a later time. If we define the uniform length scale A in the spirit of
A"
(20) Y=c v ,

VI + 38 28] [ FI[10 /w8

where ¢ 1s a constant independent of time and v, we obtain

—Ak|\/
<
ik, 1] < Co ==/l +

We now present the following theorem.

Theorem 2.4 Let f be a 2m-periodic C™ solution and let u be a 2mw-periodic C™ solution of (1a),
0 =1/2, defined on [0,00). Then the solution of (1a), 0 = 1/2, is analytic and the Fourier cocfficients
satisfy

) e Mkl 3525
|uk, )] < Co 7 1112+ —= I,

with X given by (20) and Cy a constant independent of t, v, and k.

2.3 Numerical Results

Since we are interested in periodic solutions of (la) with § = 1/2, we use spectral methods to
construct the solutions numerically. The coefficients of a Fourier series satisfy the system

d
(21) EAk = —vk? Ap + Gk,

where (i are the coefficients for [(H (u)u)y + H(u)u,]/2. For large k and v # 0, this system is stiff,
so we use the alternative form,

(22) d

E(ekatAk) — 6Vk2tGk.

We apply the Adams-Moulton fourth-order predictor-corrector to either form, evaluating e by
pseudo-spectral techniques. Given the Fourier coefficients at some time level, we use the fast inverse
Fourier transform to obtain u at evenly spaced points. To obtain u, and H(u) at evenly spaced
points, we must first multiply the Fourier coefficients by ¢k and dsign(k), respectively, before using
the inverse transform. We then form the products H(u)u, and H(u)u at evenly spaced points.
By using the fast Fourier transform, we obtain the Fourier coefficients for these products. Finally,
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Figure 5: Solution of (1a) at times ¢ = 0, 1, 2, 3, 4, and 5 with § = .5, dt = .001, N = 512, initial
condition 1+ .8cosz, and v = .1 (left) and v = .009 (right).

Figure 6: Solution of (1a) at times ¢ =0, 1,2, 3,4, and 5 with § = 1/2, v = .1, dt = .001, N = 512,
and initial condition 1 + .8 cosz + .2sin z.

to obtain the Fourier coefficient of (H(u)u),, we multiply the Fourier coefficient of H(u)u by ik.
We must use a truncated Fourier series to perform these operations, and we update only those
coefficients in the truncated series through either (21) or (22). For all calculations reported in this
paper, we took N = 2P Fourier coefficients.

In Figure 5, we plot the solution of (la), # = 1/2 and v = .1 and v = .009 at different times,
with initial condition 1 + .8 cos, a perturbation of a flat sheet. We use 512 Fourier coefficients to
advance the solution with time step 1073. The solid curve closest to the y = .2 line is the initial
condition 1+ .8 cosz; the dash curve closest to the y = .2 line is the solution of (1a), § = 1/2, at
time ¢t = 1; the dash-dot curve is the solution at time ¢ = 2; the point curve is the solution at time
t = 3; the solid curve closest to the y = 1 line is the solution at ¢ = 4; and the dash curve closest to
the y = 1 line is the solution at ¢ = 5. As time evolves, the solution of (1a) tends to a straight line,
which is not 1. This is not surprising because the average is not a conserved quantity. Comparing
the solutions of (1a), # = 1/2, for v = .1 and v = .009, we see that the viscosity has smoothing
effects on the solution of the equation, since the solution with v = .009 has steeper slope in the
vicinity of 7 than the solution with v = .1.

In Figure 6, we plot the solution of (1a), # = 1/2, and v = .1, with initial condition 1+ .8 cos x +
2sinz. We use 512 Fourier coefficients to advance the solution with time step 10~3. The solid curve
closest to the y = .1 line is the initial condition 1+ .8 cosz + .2sin z; the dash curve closest to the
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y = .1 line is the solution of (1a), # = 1/2, at time ¢ = 1; the dash-dot curve is the solution at
time ¢ = 2, the point curve is the solution at ¢ = 3; the solid curve closest to the y = 1.1 line is the
solution at ¢ = 4; and the dash curve closest to the y = 1.1 line is the solution at ¢ = 5. It appears
that viscosity stops the solution from having an infinite slop at « = m. The average of the solution
is an increasing function of time.

In Figure 7, we plot the solutions of (la) at time ¢ = 1, 2, 3, 4, and 5, with § = 1/2, initial
condition 1 + .8cosz, and different values of v, v = .1, .07, .04, and .01. We use 512 Fourier
coefficients to advance the solutions with time step 1073, For the top left figure, the solution of the
equation at ¢ = 1, the solid curve is the solution of (la), with # = 1/2, and v = .1; the dash-dot
curve 1s the solution with ¥ = .07; the dash curve is the solution with v = .04; and the point curve
is the solution with v = .01. As v is decreased in the vicinity of &, the slope of the solution of (1a),
6 = 1/2, gets steeper and steeper. For the top right figure, the solution of the equation at ¢ = 2,
the solid curve is the solution of (la), with ¢ = 1/2, and v = .1; the dash-dot curve is the solution
with v = .07; the dash curve is the solution with ¥ = .04; and the point curve is the solution with
v = .01. As at time ¢t = 1, as v is decreased in the vicinity of =, the slope of the solution of (1a),
6 = 1/2 gets steeper and steeper; the solutions at ¢ = 2 for a given v are not as steep as at ¢t = 1.
Also, at this time the four curves intersect at points closer to the tip of the curve than at the earlier
time. For the left middle figure, the solution of the equation at ¢ = 3, the solid curve is the solution
of (la), with 8 = 1/2, and v = .1; the dash-dot curve is the solution with v = .07; the dash curve
is the solution with v = .04, and the point curve is the solution with » = .01. As v is decreased, in
the vicinity of 7 the slope of the solution of (1a), # = 1/2 gets steeper and steeper; nevertheless, the
solutions do not present gradients as sharp as at earlier times. As pointed out, as time evolves, the
location at which the four curves intersect moves toward the tip of the curves. For the middle right
figure, the solution of the equation at ¢ = 4, the solid curve is the solution of (1a), with # = 1/2, and
v = .1; the dash-dot curve is the solution with v = .07; the dash curve is the solution with v = .04;
and the point curve is the solution with v = .01. As v is decreased in the vicinity of m, the slope of
the solution of (1a), # = 1/2 gets steeper and steeper. Compared to earlier times, the slopes of the
solutions are not as steep; the location at which the four curves intersect is very close to the tip of
the curves. For the lowest figure, the solution of the equation at ¢ = 5, the solid curve is the solution
of (la), with 8 = 1/2, and v = .1; the dash-dot curve is the solution with v = .07; the dash curve
is the solution with v = .04; and the point curve is the solution with » = .01. As v is decreased in
the vicinity of m, the slope of the solution of (1a), # = 1/2 gets steeper and steeper, but for fixed v,
they are not as steep as at earlier times. Now, the curves no longer intersect.

From the study of the equation (1a), # = 1/2, with 2z-periodic initial and boundary conditions,
we see that despite the fact that the solution exists for all time and is analytic when v > 0,
the analyticity bandwidth is proportional to »®. Hence, one may encounter difficulties when one
computes numerical solution of (1a) for small v. Despite the analyticity result obtained here, the
solution of (1a), @ = 1/2, does not seem to be as well as behaved as the solution of (1a), § = 0: the
solution of (1a), # = 1/2 and v > 0, satisfies only an L? norm bound independent of v; the solution
of (1a), # = 0 and v > 0, satisfies a maximum norm bound independent of v.

3 Singularities Formation with 0 <0 < 1/3 and 6 =1

In the preceding section and in [1], we have shown that the solution of (1a), ¢ = 0 and # = 1/2, exists
for all time if v > 0. We also have shown in [1] that, for certain initial conditions, the solution of
(la), # = 1 blows up in finite time. In this section, we show, for a certain class of initial conditions,
and for 0 < # < 1/3 and # = 1, that the solution of (1a) forms singularities in finite time. Instead
of using the properties of the Hilbert transform and showing that the function H(u) — iu satisfies
Burgers’ equation as in [1], we derive the system of ordinary differential equations for the Fourier
coefficients of the solution of (1a). For 0 < ¢ < 1/3, we show that for symmetric initial conditions,
the solution of (1a) blows up in finite time using the Fourier space method of Palais [3], [4], and [9].
We show, that if the Fourier modes of the initial condition are all strictly positive and such that
45 (0) = 4_1(0), the system for the Fourier modes is cooperative. To prove that some solutions blow
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Figure 7: Solution of (1a) with ¢ = .5 at time ¢t = 1 (top left), ¢ = 2 (top right), t = 3 (middle left),
t =4 (middle right), and ¢t = 5, (lower), and different values of v, v = .1, .07, .04, and .01 and initial
condition 1+ .8cosz.
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up in finite time, we then use Palais’ result that the evolution of the u; for any finite subsystem of
the original one serves as a lower bound for the u; of the full system. Hence, using Palais’ method,
we can prove that, for a certain class of initial conditions, the solution of the equation blows up in
finite time. For 6§ = 1, we explicitly solve the system of differential equations the Fourier coefficients
of the solution of (1a) satisfy. The method, in the case # = 1, has limited application, since for most
of the nonlinear partial differential equations of interest, we cannot obtain an explicit expression for
the Fourier coefficients.

The Fourier coefficients of the solution of (1a) satisfy the infinite system of differential equations,

if k£ 0,

d . L . . .
(23a) Eak(t) = bk Z&gn(l)uluk_l —(1-6) Z sign(l)(k — Dagtiy—1 — vk y,,
1£0 1£0, k—1£0
and d
~ _ . S _ ~ 12
(23b) audw_(y_@%;s%momw_%_ﬂ1_@%;uwy

To obtain the equations for the Fourier coefficients of (1a), we used the fact that

Hu) = i Z sign(k)ag e,

k#0
Uy = iZk&ke“”,

k#0

Huwu = i Z Zsign(l)alﬁk_leikx,
k=—o0 I#0

H(uwu, = — > > sign(l)(k — Dugig_re™™,
k=—co I#0,k—I#£0

(H(uwu), = —> kY sign(l)igi_ ™.

E#£0  1#£0

Rewriting the expression for the kth Fourier coefficient of (H(u)u),, we have

(24a) (Hwe)e = —kY ttp_i+kY iy,

>0 >0
(24b) = —kZﬂlﬂk_l—l—kZﬂlﬂk_l,
>0 >k
0 ifk=0
(24(3) = _k20<l<k wug—; k>0
k<l<0alak—l if k<0

We obtain (24b) by making the change of variable I’ = k£ + [ in the second sum of (24a) and by
dropping the ' on {. We arrive at (24c) by considering the three cases £ =0, k¥ > 0, and k¥ < 0. Also

note that if a4_; = 4; for [ > 0, then ((H(u)u)z)r = ((H(w)u)g)—p.
We also obtain for the kth Fourier coefficient of H(u)u,,

(25a) (Huue)e = — > (k=Dwae_r+ > (k+Di_rigg,

150, k—12£0 150, k—12£0
(25b) = - Z (k—l)ﬂlﬂk_l—l—Zlﬂlﬂk_l,

1>0,k—1#£0 I>k

2 o llul” k=0,
(25(3) = Zo<l<k(k — l)uluk_l + Zl>k(21 — k)uluk_l if k>0,

Zk<l<0 lalak—l+zl>0(21_k)alak—l if k< 0.
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We obtain (25b) by making the change of variable I’ = k£ + [ in the second sum of (25a) and by
dropping the ' on {. We arrive at (25¢) by considering the three cases £ =0, k¥ > 0, and ¥ < 0. Also

JE—

note that if a_; = @; for [ > 0, then (H(u)ug)r = (H(w)tg)_p.

L

If we take into account the above expressions for ((H (u)u)z)r and (H(Z)\ux)k, the equation (23a)
becomes
d
Eak + I/]Czﬂk =

(26) { 20<l<k[(1 — 29)]6‘ — (1 — g)l]ﬂlﬂk_l + (1 — 9) Zl>k(21 — k‘)ﬂlﬂk_l, if k>0,
Zk<l<0[6(k — l) + l]ﬂlﬂk_l + (1 — 9) Zl>0(21 — k‘)ﬂlﬂk_l. if k< 0.

From now on, we restrict ourselves to symmetric initial conditions, that is, initial conditions for
which 45(0) = @_%(0). Then, from the symmetry properties, (26) reduces to

d

(27a) o = 21— 0)Y lul,
>0
d . o
7 U2k +v(2k + D%iog 1 = (2 +1)(1— 30) Z Utk 411
1<I<k
(27b) H(1=6) > (2= 2k+1)ai_ox_1, k>0
I>2k+1
d . . .
Euzk—l-ﬁllszuzk = 2k(1-360) Z uluzk_l—i—k(l—i%ﬁ)[uk]z
1<I<k—1
(27¢) +2(1—0) Y (1= k)iy_sg, k> 1.
>2k

Now we can prove the equivalent of Lemma 3.2 of [4] for the solution of (27a), (27b), and (27¢).

Lemma 3.1 If the solution is such that 45 (0) = u_1(0) > 0, for all k, and if 0 < 0 < 1/3, then for
all subsequent times (such that a solution exists),

(28) ar(t) > 0.

Proof: Suppose that @, is the first coefficient to violate (28) at time ¢* such that @,,(¢*) = 0. Then
it follows from (27a), (27b), and (27¢) that

o

(29) U (t°) = (0)e T 4Tt / f(r)dr,
0

with the function f given by

20-0)> lwl*, ifm=0,

>0

e’ VM 2k + 1)(1 - 30) > dwrtingyr—
1<I<k

+(1—6) Y (2-2k- 1)@,@,_%_1] ,  ifm=2k+1,k>0,
I>2k+1

Gkt 2k(1 — 30) Z Uptha—1 + k(1 — 39)[%]2
1<i<k—1

+2(1-0) Y (- k)a,a,_%] . ifm=2k k>1,
>2k
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Note that if 0 < @ < 1/3, all the terms in the right-hand side of (29) are positive for 0 < ¢ < t*.
Thus, (29) is strictly positive, which is a contradiction. "

Now that we have shown that the system for the Fourier modes uy is cooperative [3], we use
Palais’ method [9] to prove that the solution of (27a), (27b), and (27¢) becomes infinite in finite
time. Palais shows that the evolution of the 1y for any finite subsystem of (27a), (27b), and (27¢)
serves as a lower bound for the u; of the full system provided that the full system is cooperative
and that the initial condition satisfies @;(0) > 0 for all .

Lemma 3.2 Let u be a solution to
(30a) up = O(H(uu)g + (1 —0)H(w)uy + vugy,
(30b) u(@,0) = fla),

I a 2m-periodic function, and 0 < 68 < 1/3. There exists initial data f thal produces a solution that
blows up in finite time.

Proof: From Palais’ work and Lemma 3.1, we need to show there exists a subsystem of (27a), (27b),
and (27¢) whose solution becomes infinite in finite time. If 0 < # < 1/3, consider the system

d
1 “p = (1-0)pg—
(31a) i (1 —0)pg —vp,
d
(31b) i (1—30)p” — 4vq,

which is obtained from (27b) and (27¢) by taking & = 0 and 1. If 41(0) = p(0) and w2(0) =
q(0), then @1(¢) > p(t) and @2(¢) > ¢(t) ¥¢ > 0. The system (31a) and (31b) has an attractive
node at (0,0) (the eigenvalues of the Jacobian are —v and —4v) and an instable fixed point at

2uv//(1 =30 (1 —0),v/(1 — 0)) (the eigenvalues of the Jacobian are 2v(1 4+ ¢) and 2v(1 — ¢)). If

p = q, then

d—(1 0)q* d—(1 30)¢” — 4

P = ¢ -ve, 4= ¢ —4vq.

So, if ¢ > 4v /(1 — 30), then 0 < d¢/dp < 1 and if at t = 0, p > ¢, then p(t) > ¢(t) for all t > 0

provided ¢(¢) > 4v/(1 — 36). Suppose that 4v/(1 —30) < ¢ < p. Then
d
(32) L > (1—30)¢* — 4vq.

Therefore dg/dt > 0 and ¢q(t) > 4v/(1 — 36) for all t > 0. Integration of (32) gives us

4vq(0)
(1—30)q(0) + (4v — (1 — 30)q(0))e*t"

So ¢(t) blows up at a finite time 7', with

1 (1-30)q(0)
r<g ((1 ~30)9(0) — 41/) '

Therefore p and ¢ solution of (31a) and (31b) blow up in finite time; The solution of (27a), (27b),
and (27¢) blows up at a time ¢ < 7. "

We can also show that the solution of (la) with § = 1 blows up in finite time using a differ-
ent approach from Palais’ comparison method and the explicit construction of a “traveling wave”
solution, presented in [1], that blows up in finite time. Instead, we derive the system the Fourier
coefficients satisfy, and we solve the system.

(33) q(t) >

Lemma 3.3 Let u be a solution to

up = (Hu)u)y + vig,,
w(z,0) = f(z),

f a 2mw-periodic function. There exists initial data f that produces a solution that blows up in finite
time.
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Proof: If 6 = 1, (23b) and (26) reduce to

(34a) Zio(t) = 0,

—k 3 ocicy wtk—1, if k>0,

d 2. _
(34b) —ug(t) + vkTap(t) = { wig_;, ifk<0.

k<i<0
Since we have previously shown that, if 4;(0) = #_;(0), 4y, real, then 4 () = @_x(t), we construct
by induction an explicit solution of (34a) and (34b). More precisely, we look for the solution of the
system with initial condition #(0) # 0, 41(0) = @_1(0) # 0, and @4x(0) = 4_z(0) = 0 for k > 2.
Integration of (34a) and (34b) for k = 1 and 2 gives

uo(t) = uo(0),

ur(t) = a1(0)exp(—vt),
6—21/t _ 6—41/t

ug(t) = —[w(0))?

v

Now, we can use an induction process to derive the expression for ug, k& > 3. Assume that

iy (t) = V,H Zf ) fre—i(t

0<i<k

with fi(t), 1 < I < k, positive function for t > 0, fi(t) = >, C’,lne"almt, C!. and o!, constants
depending only on m and [. From the differential equation (34b), we find that

d - B 2, [11(0)]
_(y(k+1) tuk+1(t)) = —¢ (’“’1“% k+1) Z Ji@) frv1-i(t),

dt v
0<i<k+1

with the function e’(k+1)7 Zo<l<k+1 Fi@®) feg1-1(t) again a positive function for ¢ > 0. From the
expression of fi(¢), we conclude that
5 _ [ai(0))+!
upaa(t) = - > alt),
0<I<k+1

with .
gl(t) — e—y(k+1)2t(k + 1)/ 6V(k+1)2Tfl(T)fk+1—l(7')dT,
0

which is of the form " DL e"almt, with D!, a constant depending only on m and .
So the L? norm of the solution of (1a) with @ = 1 and the initial condition wg(0) # 0, u1(0) =
a_l(O) 18

(35) lu(, 0l = |2+2Z ol [Z Fi0) il ] .

0<i<k

The function fi(t) is strictly positive for ¢ > 0 and tends to 0 as t — oo; the function fi(¢), { > 2, is
0 at t = 0, is strictly positive for ¢ > 0, and tends to 0 as t — co. Let a(t) be the minimum of f(?)
over k; the minimum is strictly positive when ¢ > 0, since each term is strictly positive. Then (35)
becomes

(36) DI > Jaa(O) + 2 Zkz (—]) |

The infinite series in the right-hand side of (36) converges provided |41(0)|/v < 1. Hence, if |@1(0)] >
v, there exists a time t* < oo for which the L? norm of u is infinite.

Note that to simplify the algebra, we look for a solution with an initial condition of the form
ag + ap cos x; the result extends to any initial condition of the form ZZO:O ay, cos(kx). n
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4 Conclusion and Open Questions

From the study of the continuum of partial differential equation (1a) and the work obtained in [1] and
[8], we conclude that second-order viscous regularization prevents singularity formation in finite time
only in two cases: when the nonlinear contribution only contains the flux term in nonconservative
form and when the contribution of the flux term in conservative form balances the contribution of
the flux term in nonconservative form for the L? scalar product with the solution of the equation.
From the results obtained in Section 3, it seems that the flux term in conservative form cannot be
balanced by the flux term in nonconservative form and second-order viscous regularization, even
when (1—-0)>0,0<0<1/3.

A few open questions remain, whose answers would shed some light on the behavior of the
solutions of the continuum of partial differential equations:

e Does a weak limit of the sequence of solutions (u"’l/z),,>0 exist? If so, to which space does it
belong?

e What is the decay rate of the Fourier coefficients of the solution of (1a), # = 1/2, when v =0
before singularity forms? What type of singularity forms when v = 07

e What kind of viscous regularization should be introduced to control the nonlinear flux term
in conservative form?

e Do singularities form in finite time when 1/3 <8 < 1/2 and 1/2 < 6 < 17
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