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On the Convergence of the Newton/Log-Barrier Method*

Stephen Wright!

Abstract

In the Newton/log-barrier method, Newton steps are taken for the log barrier function for a
fixed value of the barrier parameter until a certain convergence criterion is satisfied. The barrier
parameter is then decreased and the Newton process is repeated. A naive analysis indicates that
Newton’s method does not exhibit superlinear convergence to the minimizer of each instance
of the log-barrier function until it reaches a very small neighborhood of the minimizer. By
partitioning according to the subspace of active constraint gradients, however, we show that this
neighborhood 1s actually quite large, thus explaining why reasonably fast local convergence can
be attained in practice. Finally, we show that the overall convergence rate of the Newton/log-
barrier algorithm is superlinear in the number of function/derivative evaluations, provided that
the nonlinear program is formulated with a linear objective and the schedule for decreasing
the barrier parameter is related in a certain way to the convergence criterion for each Newton
process.

1 Introduction
We consider the nonlinear programming problem
min f(x) subject to c(z) >0, (1)

where f : R” - R and ¢ : R® — R” are smooth (twice Lipschitz continuously differentiable)
functions. The logarithmic barrier function for (1) is

Plein) = 1) = p Do) @)

We denote by z(x) a minimizer of P(.;p) for g > 0 and assume that 2 () exists for all sufficiently
small p. Methods based on (2) approximate a(p) for a sequence of small, decreasing values of
g > 0. Under certain conditions (see Fiacco and McCormick [3]), we have lim, o 2 (g) = 2*, where
2* is a local minimizer of (1).

The Newton /log-barrier method proceeds by fixing p at a certain value and applying Newton’s
method to the unconstrained problem

mggin P(a;p), (3)
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Figure 1: Typical sequence of Newton/log-barrier iterates

stopping the Newton iterations when some tolerance is satisfied. (Typically, the size of the Newton
step or of the gradient P, (x; p) is required to fall below a certain threshold that depends on p.) The
barrier parameter p is then decreased, and the process is repeated. A typical sequence of iterates
is shown in Figure 1.

It is well known that the first Newton step for each value of p—the one taken immediately after p
is decreased from its previous value—usually must be curtailed sharply to avoid leaving the feasible
region. That is, a step length « considerably smaller than 1 is usually needed (see Conn, Gould, and
Toint [1], Wright [4], and Wright and Jarre [6]). Often, however, steplengths of 1 can be taken safely
after a few Newton iterations, yielding quadratic convergence toward x(p). This phenomenon may
not seem surprising, because it is also well known that, under typical nondegeneracy and second-
order sufficiency conditions, the Hessian Py, (x; u) is positive definite at and near = x(u) for small
values of p. More investigation makes this simple explanation a little less satisfactory, however,
because application of the standard theory seems to imply that the neighborhood within which
quadratic convergence occurs becomes exceedingly small as p approaches zero. In this paper, we
show that this neighborhood is in fact not so small, suggesting that the number of Newton iterations
required for each value of p is not excessive.

We conclude the paper by using earlier results of Wright and Jarre [6] to show that, when the
objective function f is linear and the convergence test for the Newton iterations at each value of
1 has a certain form, the number of Newton iterates required for each p value can be bounded
above by a modest number. Moreover, i can be decreased at a superlinear rate, so the overall
convergence rate of the process is superlinear in the number of function/derivative evaluations. In
sum, the Newton/log-barrier method—a purely primal method—can achieve a superlinear local
convergence rate, just like its primal-dual counterpart.

We use the following notation in the rest of the paper. For related positive quantities o and
B, we say = O(a) if there is a constant M such that § < Ma for all « sufficiently small. We



say that g = o(a) if /o - 0as a — 0, f = Q(a) if a = O(F), and § = O(«) if § = O(«a) and
a = 0O(f). It follows that the expression § = O(1) means that § < M for some constant M and
all values of § in the domain of interest.

2 Assumptions, Notation, and Basic Results

In this section, we specify the optimality conditions for the nonlinear program (1), outline our
assumptions on its solution z*, and state an implicit function theorem to be used in the next
section.

The Lagrangian function for (1) is

Lla,N) = fla) - ATe(a), (1)

where X is the vector of Lagrange multipliers. The solution z* of (1) satisfies the first-order
conditions for optimality, which are that there exists a Lagrange multiplier vector A* such that

(@) >0, A>0, A\ Te(@®) =0, V()= fyyvq(x*). (5)

The active constraints are the components of ¢ for which ¢;(2*) = 0. Without loss of generality we
assume these to be the first ¢ components of ¢. We also assume that the solution is nondegenerate,
that is,

[Ver(2%)| -+ | Veg(2™)]  has rank g. (6)

(Note that nondegeneracy implies uniqueness of A\*.) We also assume strict complementarity, that
is,

AT+ ¢(2%) > 0, i=1,2,...,m. (7)
Finally, we assume that second-order sufficient conditions for optimality are satisfied at (a*, A*),
that is,

YT Lop(z*, X))y >0 for all y # 0 with Ve (2®) Ty =0forall i=1,2,...,4q. (8)

It is easy to see that (z*, A*) is a root of the function F(z, A) defined by

ren = | | = [l "

where

A= diag(/\l, A27 teey Am)
The Jacobian of I is

| Lap(z, ) —A(2)
VF(z,A) = l AA(x)T Cx) | (10)
where C'(z) = diag(cq(z), c2(2), -+, ¢;n(2)). When the nondegeneracy, strict complementarity, and
second-order sufficient conditions hold, VF(z*, A*) is nonsingular. It follows from the assumed

smoothness of f and ¢ that the Jacobian VF(z, ) is nonsingular for all (z, A) close to (z*, A*).



Given any strictly feasible point z and any positive value of the barrier parameter p in (2), we
define a vector of Lagrange multiplier estimates A(z, u) by

T
p p
A C e= s . 11
() =)o = [ (1)
If 2 is the exact minimizer z(u) of P(-; i), we define
A
M) = Ma (), ). (12)
The derivatives of the barrier function (2) are

o~ [

P.(a;p) = Vf(z)-— Z C'(x)Vci(x), (13a)
i=1 "
= 1 1

Poy(z;p) Vici(z)| . (13b)

sz(w)‘ﬂiz: ()

By combining (11) with (13a), we obtain

V() = A()M e, 1) + Pl ), (14)
while for the case = 2(p), we have from (12) that V f(z(u)) = Az () A ().

The following technical lemma, a consequence of the implicit function theorem, is proved in
Wright and Jarre [6, Lemma 3.1].

Lemma 2.1 Let the vector pair (2(z, (), :\(Z7 C)) be defined implicitly as the solution of the nonlin-
ear system

ren=| 5] (13

for given (z,¢) and I defined as in (9). Then there are positive constants € > 0 and M > 0 such
that the following statements hold.

(i) (#(z,0),M(2,0)) is a C? function of (z,() in the neighborhood defined by
Ne =A==zl +1¢] < €}
(ii) For ¢ > 0 and (z,¢) € N, we have \(z,¢) > 0 and ¢;(#(2,)) >0 fori=1,2,...,m
(iii) For (z1,(1) and (23,C3) in N, we have
[ #(21,G1) ] B [ #(22,C2)
A(z1,G1) A(z2,G2)

= VF(&(21,01), Az, 1)) ™ l (él__éz)e ] +r, (16)

where

el < M([[z1 = 22l + 16 = )™ (17)

Uniform nonsingularity of VF in a neighborhood of (z*, A*) implies that the first term in the
right-hand side of (16) dominates the second-order term for € sufficiently small; that is,

o) ][5 1 oot s (e
(0] [0 oo o



3 Convergence of Newton’s Method to the Log-Barrier Minimizer

We now analyze the local convergence properties of Newton’s method to the minimizer x(u) of
the barrier function P(z;p), for a fixed value of p. It is well known that under the second-order
assumptions discussed above, the barrier function P(z;u) has a minimizer x(u) at which the Hessian
is positive definite (though ill conditioned). Moreover, since the objective f(-) and constraint
functions ¢;(+), ¢ = 1,2,...,m are twice Lipschitz continuously differentiable, then P(z;pu) is also
twice Lipschitz continuously differentiable near z(u). Hence, quadratic convergence follows from a
standard result (see, for example, Theorem 5.2.1 of Dennis and Schnabel [2]). If wq, w2, ws, ... are
the Newton iterates, the standard theory yields the estimate

lwesr = ()] < L () La(p) lwe = 2 ()%, (19)

where Lq(p) is a Lipschitz constant for P, (2;u) in the vicinity of #(p) and La(p) is a bound on
| Prox (3 1) Y| near z(p). The estimates we derive later in this section show that

Li(p) =O0(n™?%), Ly(p) = 0(1),

so that (19) reduces to

Jwers = ()| = O(u™)|lwe — ().
This expression does not even imply convergence of the iteration sequence unless wy is in a very
small neighborhood of the solution, specifically,

lwr = 2 (w)|| = O(p?). (20)

It appears from this estimate that a number of careful line-search Newton iterations would be
needed to move from the approximation to the minimizer z(u_) at the previous value of y into the
neighborhood of quadratic convergence for the current value of p.

Wright and Jarre [6] investigated the use of a reformulation of (1) in which the objective function
is linear. They show that if the final approximation to x(u_) obtained at the previous value p_
of the barrier parameter is reasonably accurate, then the Newton step for P(-; ) from this point
for the new value of p passes quite close to the new minimizer x(u). Even in this case, however,
the resulting point will not generally lie in the neighborhood (20), except perhaps when a stringent
stopping criterion of the form || Py (z; p)|| = O(p) is used at the previous value of p.

In this section, we show that the expressions (19) and (20) are unduly pessimistic and, in fact,
that there exists a constant g > 0 such that quadratic convergence to z(p) can be obtained from
any point w that satisfies

Jw—a() < Cue,  for all j € (0,1, (21)

where C' and o are any given constants satisfying C' > 0 and ¢ > 1. That is, the domain of
quadratic convergence for P(-; 1) shrinks as u | 0, but the rate of shrinkage is not especially severe.

We derive most of the results in an informal style, favoring the use of order notation for clarity.
Explicit bounds are introduced for certain important estimates, to ensure that the inductive proofs
of quadratic convergence at the end of this section are rigorous.



Our analysis is based on the following consequence of Taylor’s theorem. If w is the current
iterate and s is the Newton step defined by s = — Py, (w; u) 71 P, (w; p), we have that

Palwt i) = Palwsp) 4 Palwss+ [ [Prolut rsig) - Pos(ws )] sds
= [Pt rs) P s (2

In the analysis below, and in the next section, we (implicitly) identify a value of i such that
certain estimates are satisfied by certain functions of the point w satisfying (21). We assume without
loss of generality that g is small enough that the neighborhood (21) excludes local minimizers of
P(-; p) other than 2 (p). Since o0 > 11in (21), it follows that the ratio ||w —z(u)||/p approaches zero

as u |} 0.
From the definition (12), an application of the implicit function result (18) with

(217C1) = (Omu)v that is, (j(ZhCl)v E\(thl)) = (x(:u)v /\(:u))v
(22,C2) = (0,0), thatis, (¥(22,C2), A(22,C2)) = (27, A7),

yields
o) — o
« | =0).
[0 =50]] =0
Hence, by using (11), the strict complementarity assumption, and (21), we have for all active indices
1=1,2,---,q that

ei(w) = e () + 0w — z(w)]) = Af@) +O(") = L+ 0™ ) = O(n). i=1.2....q,

(23)
for all p sufficiently small.
Next, we examine the structure of P, (w;u). By differentiating (2) twice, and partitioning the
sums into active and inactive indices, we obtain

Poy(w;p) = Z 2” Vci(w)Vci(w)T—l— {VZf(w) - Z

c?(w) P ci(w)

- i { z'ztw)VCi(w)Vci(w)T— a Vzci(w)}. (24)

il G ciw)

Vzci(w)}

We deal with the three terms on the right-hand side in turn. Because of (23), we have

2“ :Q(M_1)7 i:1727"'7q7

so by the nondegeneracy assumption, the first sum in (24) is a rank-¢ matrix, whose ¢ nonzero
eigenvalues are all positive with size Q(u™1). Using a standard factorization, we can write

S Vei(w) Ve (w)T = U(w) D(w) U (w)7, (25)

2




where D(w) is a ¢ X q diagonal matrix whose diagonal elements all have size Q(u~") and U(w) is
an n X ¢ orthonormal matrix whose columns span the range space of [Ve;(w)]?_;.

Since ||w — z(p)||/1 = o(1) it follows that p/c;(w) = A¥, and the second term in (24) is a small
perturbation of the Lagrangian Hessian £, (2, A*), which by our second-order assumption (8) is
positive definite on the null space of [Ve;(2*)]%_,. Hence, if we define U(w) to be an n x (n — q)
orthonormal matrix that spans the nearby null space of [Ve;(w)]l,, (so that [[(w)|U(w)] is
orthogonal), straightforward arguments show that the (n — ¢) x (n — ¢) matrix Gaz(w) defined by

q

Gas(w) 2 U(w)T {v?ﬂw) -3 a v%i(w)} U(w) = U(w) Lo (@, AT (w) + o(1)

is positive definite, with all eigenvalues of size Q(1).
Since ¢;(w) = Q(1) for ¢ = ¢+ 1,...,m and all p sufficiently small, the third term in (24) is
O(p).

By combining all these observations, we find that

2 " 11w 12w i w)T
Pt = [ 01wy o) ] | gpte) G| [ H (26
where
Gu(w) £ U(w)! P (w; p)U(w) = D(w) + O(1),
Goa(w) & U (w)T Po(w; ) U(w) = Ga(w) + O(p), (27)
Gra(w) £ U (w)! Po(w; ) U(w) = O(1),

where D(w) and Gao(w) are defined as above.
To uncover the properties of P,,.(w;p) ™!, we use the following technical result about the inverse
of a block 2 x 2 matrix; see, for example, Wright [5, Lemma 3.1].

Lemma 3.1 Let G be a symmetric matriz partitioned as

G Gll G12
g s
l Gl G ]

where G11 and Gog are square. Suppose that Gy and Gag — GlTQGl_llGlg are nonsingular. Then GG
is nonsingular and G=1 has the form

Hy H
G—l — 11 12 7 28
lHlTQ Hys (28)

where

Hyp = G1_11 + G1_11G12(G22 - G1T2G1_11G12)_1G1T2G1_11
H12 = _G;11G12(G22 - G?2G1_11G12)_1
Hyy = (Gag— G1T2G1_11G12)_1'



In our case—the 2 x 2 block matrix in (27)—we have D(w)~! = O(x) and so
Gu(w)™ = D(w)™ (I +0() ™" = O(n).

By using this estimate, we further obtain

[Ga () = Graw) "G (w) " Craw)] T = [Ganlw) + O)] " = Gaalw)™ + 0n) = O(1),

Hence, from (26) and (28), we obtain

~ - 11w 12\W T(w)T
Protuw )™ = [ U(w) wm}[ﬁﬁﬁ ;g&][g<>17 (20)

where

Hyy(w) = O(p),  Hiz(w) = O(u), Ha(w)=0(1). (30)
We now examine the structure of P,(w;p). From (21) and (23) we have
Hw_QU(H)H/Cz(w):O(HU_l)<<17 2217277(]7 (31)

for all p sufficiently small. We can use this expression to estimate the difference between the
reciprocals ¢; ! (w) and ¢; ! (z(u)). We have

Me(w) = Teiw) +O(lw - e ()"
= ¢ w) [1+ Oe(w) e — ()]
= 7 w) + 2 (@)O(||w — 2(w)]). (32)
From (2), noting that P,(x(y); ) = 0 and partitioning active and inactive indices, we have that

Po(wip) = Po(w;p) — Pe(a(u); p)

q H ' _ o ola o )
Zﬂqwﬁhw>(wmmvx<mﬂ+Wﬂ> Vi) (33)
[ o) - — Ve
—I_i:Zq;-l [Ci(w)VQ( ) Ci(ac(ﬂ))v il (H))]'

For the second term on the right-hand side of (33), we have by smoothness of f that V f(w) —
Vf(z(p) = O(||lw — «(p)|]). In the third term, we have for each index ¢ = ¢ + 1,...,m that
ci(w) = Q1) and ¢;(z(p)) = Q2(1). Hence, by smoothness of V¢;, this term has size O (p||w—z(p)]|).

In the first term, we have for each active index ¢, using the smoothness of Ve¢; together with

(23), (31), and (32), that

P Sein(n))

ci(@(n))
@+ @Ol = 2| Fei(w) + Ol = ()]
- ﬁv@(w) + O Yw — 2 (w)])) Ves(w) + O(||w — x(u)]). (34)



By collecting these observations and substituting into (33), we obtain

Py (w;p) = ZO(M_IHW — e Vei(w) +O((Jw =z (W) (35)

From the definitions of U (w) and U(w), it follows immediately that
Ow) Powip) = O fw—w(u)]). (362)
U(w) Po(wip) = O(lw— (). (36b)

Meanwhile from (30), we have for the Newton step from w that

s = —Pu(w;p) " Po(wip)
B R ~ Hll(w) ng(w) ﬁ(w)TPl’(wmu)
= [ Uw) T | l Hy(w)  Hyy(w) ] l U (w)" Pu(w; p) ]
o . O(u) O || Uw)TPy(w; )
= [Ow) U(w) ] [ O(n) O(1) ] [ U(w)! Py (w; p) ] '

Hence, by combining with (36), we find that we can choose g in (21) such that for all w and p
satisfying (21), we have

Isl < OGlT ()T Pulw; ) + 10 () Po (s )]
< G |pl|0 (w)" Pe(w; )| + 110 (w) " Py (w3 o) (37a)
< Cillw -2 () = 0, (37b)

for some positive numbers €7 and C'5 independent of p.

Note that the naive estimate of ||s|| obtained by ignoring the structure of P, (w; ) and Py, (w; p)
would be simply [|s|| < || Ppz(w; ) ||| Pe(w; )| = O(u"t), which is too pessimistic for our
purposes.

We now examine the integrand in (22), partitioning it into the subspaces defined by the active
constraint gradients at the next Newton iterate w + s. We start by partitioning the integrand as
follows:

[Pro(w + 785 11) — Pop(w; p)] s = 1 + g2 + g3 + qa, (38)
where 7 € [0, 1] and
7@ = Z_:{ )VCZ(U)—I—TS)VCZ(M—I—TS) 62’210) .(w)vci(w)TS}
= q 20 (w+ T8)s — — V2 (w)s
@ = ZZ:{CZU)—FTS)V i(w+7s) ci(w)v il )}
g = |[Vf(w+7s) = Vif(w)]s,
_ 0y P Vew+ ) Ve (w4 78)Ts — ——Ve c;(w)”
" i:zq;q{cz?(w‘FTS)VZ( T re)Veilw ) C?(w)vl( w)Vei(w)s
N . 20 (w4 75)s M 20 (w0)s
Ci(w—|-7'8)v i(w+7s) —I_ci(w)v il )}



To estimate the first term ¢;, we note from (37b) that u=1||s|| = O(u"~!) < 1. Hence, as in (32),
we have

1 1 1 1 Sy, X
cotrs) = a2l = 0w, 1,200, (392)
1 1 1 - 1 -3 L
T [Hq(w)O(”””)] = 27y POWTI, =120 (390)
By smoothness of Ve;, we obtain
# c;\w TS c;\w TS TS
C?(U)—I—TS)V ilw+ rs)Vei(w +7)
= Lﬁw+ow*wmhvwm+owwﬂWqWF&HNWWﬂ
= szw)%(w)vcz’(w)TﬁO(u‘szH?)Wi(w)+O(u‘1HsH?)7

where we have used the fact that p™!||s|| < 1 (see (37b)) to absorb higher-order terms. By
substituting into the definition of ¢;, we obtain

q

0= ZO(M‘QHSHQWQ(M) +O ) = 202 Is*) Vei(w+ 5) + O (™" [|s]1*),  (40)

=1

where the change of argument from w to w + s in the first term causes a perturbation that can be
absorbed in the second term.
For the second term ¢z, we have from (39a) that

bVt rs)s = [ O sl)| [Fetw)s + OGP

ci(w+ T1s) ci(w)

Viei(w)s + O (" [|s]*).

ci(w)

The remaining terms g3 and ¢4 are less significant. By Lipschitz continuity of V f, we have ¢3 =
O(||s||*)- In g4, the denominators all have size (1), so it is easy to show that g4 = O(y/|s||?).
By collecting all these estimates into (38), performing the integration, and substituting into

(22), we obtain
q

Po(w+ ;) = Y O™ [|s|*) Vei(w + 5) + O (™" |Is]%).

=1
Hence, after a possible adjustment in g in (21), we have that there is a positive number C inde-
pendent of p such that

Con™?|ls]]%. (112)
o™ 5], (11b)

O(w + )T Pa(w + s 1)

<
U(w+ )" Pe(w+s50) <

for any orthonormal matrix ﬁ(w + s) that spans the column space of [Vei(z + s)]7_,, and for any
orthonormal matrix U(w + s) such that [U(w + s) | U(w + s)] is orthogonal. (For future reference,
we assume without loss of generality that Cy > 1.)
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At this point, we have identified a threshold i and constants Cy, C5, and C5 such that if w
lies in the neighborhood defined by (21) for given values of C' and o, the Newton step s satisfies
the important relationships (37a), (37b), and (41). An important corollary of these relationships is
that if the next Newton iterate w + s also lies in the neighborhood (21), then we have from (37a)
and (41) that the next Newton step s satisfies

41 < 2C2Csp~" s (42)

We now use all these estimates to show that if we choose the starting point wy for the Newton
iteration in a slightly more restrictive neighborhood than (21), then all Newton iterates will remain
inside the full neighborhood (21) and quadratic convergence of the newton sequence to x(u) will
be observed. We state the result formally as a theorem.

Theorem 3.2 Let the constants C' > 0 and o > 1 be given, and let Cy, Cy, C5, and p be defined
as above, in such a way that the relationships (37a), (37b), (41), and (42) hold. Let the constants
Co > 0 and jig be chosen in such a way that the following inequalities are satisfied:

(1+2C)Co < C, 2C0C 1 CoCaif ™ < 1/4. (43)
Then if p € (0, fig] and wy is any point that satisfies
s — 2()l] < Con. (44)

then Newton’s method with full steps, applied to the function P(-; i) and starting from wy, converges
Q-quadratically to x ().

Proof. By (37b), we have that the first Newton step s; satisfies
[s1]] < Caffwy = z(p)]], (45)
and so, because of the definition of Cy in (43), the next iterate wy = wq 4 51 satisfies
Jwz — 2 (W] < [Jwr —z(w]| + [[s1]] < A1+ C)lJwr — ()] < Co(1 4 Cr)p” < Cp”.

Hence, w; also lies in the neighborhood (21), so we can apply (42) to obtain the following estimate

for the next Newton step s;:
2] < 2C2Cap™" 51|, (46)

From (44) and (45), we have that
pHs1]] < CoCrp”
so by substituting (46) and using the definition (43), we obtain
[[2[] < 2CoC1CoCpu" ™ |s1]] < (1/4) |-
Hence, for the next Newton iterate w3 = wq + s3, we have

[[ws = (u)]
< lor =2 (@l llsall + [lsell < Jlwr = 2(@)[] + (/4) ls1ll < Co(1 + (5/4)C)p” < Cp?,

11



so that ws also lies in the neighborhood defined by (21).

The argument continues inductively. We find in general that for all £ = 1,2,3 ..., we have
[se1]] < 2C2Cap™ lsel* < 2C2Cap™ Isalllsell < (1/4)[1s:ll, (47)
and that
¢
lwer = ()] < [lwr =2 ()]l + > lIsl
=1
t .
< lor =2l + 3470 s
=1

< Co(l+ (4/3)Cp” < Cp?,

so that all Newton iterates wy, wg, ws, ... belong to the neighborhood (21).

From (47), we have that [|s;]|, ¢ = 1,2,3... decreases geometrically (in fact, quadratically) to
zero. Therefore, {w;} is a Cauchy sequence, so it converges, say to a point w.(p). It follows from
(41) that this limit point must satisfy

Py (wi(p); ) = 0.

Moreover, by the second-order condition (8), we have by the choice of i and the discussion about
the Hessian Py, (-;p) and its inverse that P,,(w;p) is positive definite for all w satisfying (21).
Hence, w, () is a local minimizer of P(; ). Since () is the only local minimizer of this function
in the neighborhood (21) by assumption, we must have w,(u) = ().

To prove that the convergence of {w;} to z(u) is quadratic, we estimate the error [|w; — z(u)]]
in terms of ||s¢||. By using (47), we have for all t =1,2,3,... that

o= 2(oll = [ S 55] < S lsill € 45Vl < (4/3) s
7=t 7=t 7=t

Similarly, we have that

lwr = ()l = llsell = > lls;ll = (2/3)[1s:ll-

J=t+1
Hence, from (42), we have
[wipr = 2 ()] < (4/3) seall < (8/3)CoCsp Isel|* < (128/27)CoClap™ wy — 2 (w)1*,

indicating that the convergence is Q-quadratic, as claimed. [
Note from (44), (45), and (47) that we have

HSH-IH S [200010203]2t (20203)—11u2t(0—1)+17 t= 07 17 27 sy
and therefore from (41) we have

P2 (wegrs )] < 20207 se]? < [2C0CHCoCa)™ (20,C3) 71 070 1 =1,2,3,... (48)
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4 Superlinear Convergence When the Objective Function Is Lin-
ear

The final result deals with the special case in which the objective function f(-) in (1) is linear.
For background, we state a result due to Wright and Jarre [6], which shows that when we have a
sufficiently good approximation to the log-barrier minimizer z(u—) at the current barrier value p_,
and we then reduce p_ to p (but not too rapidly), then the Newton step for P,(-; i) passes quite
close to the new minimizer z(u). Moreover, the steplength o = p/u_ is asymptotically optimal.
The result is a combination of Theorems 3.2 and 3.3 from [6].

Theorem 4.1 Suppose that [ is linear and that the barrier parameter values p_ and p satisfy the
condition

JINS [pmin,uiypmax,u—]v (49)
where pmin > 0, pmax € (0,1), and & € (1,2] are constants. Suppose too that the bound
G /2
P2 o)) < (50)

is satisfied at the current value of x, where 6 € (7,2]. Then if s is the Newton direction for P(-; u)
from z, the line segment & + 1(p/p—)s, T € [0,1] is strictly feasible. Moreover the function

$(r) 2 Pla +7(p/n_)s; )

has a local minimizer 7™ such that
-7 =0 .

Finally, for the value T = 1, we have

2+ (n/p=)s = 2 ()| = O Pelas p) | + 12 ) = O(ul). (51)

If we define A
wy =+ (p/p-)s
to be the point obtained by taking this truncated Newton step, we have from (49) and (51) that
[ = 2 ()| = O (/7). (52)

Choosing o in the range (1,6/5), we find that there is a threshold iy € (0, jig] such that

[wy — 2(p)]] = O(u/7=7)u” < Cop”  for all u € (0, ).

Hence, the results of Theorem 3.2, and in particular the relation (48), apply when g is sufficiently
small in this sense. If we use a convergence criterion of the form (50) at this iteration too, that is,

| Pe(wegrs )| < 72, (53)

we can prove the following theorem about the number of Newton iterations needed to satisfy this

bound.
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Theorem 4.2 Suppose that the assumptions of Theorem 4.1 hold and that, given some choice of o
in the range (1,6/&), the assumptions and notation of Theorem 3.2 hold as well. Assume without
loss of generality that 2C,C% > 1. Define the constant jiz by

A o
H2 = mln(L M1, :u(z))
Then for p € (0, fig], the criterion (53) is satisfied for all t with

t >
- log 2

Proof. Because log i < 2log fig, we have from (43) that

2

1
log(QCOClCQCg) + 7 log,u < log(QCoCngCg) + (O’ — 1) logﬂo < 0.

Hence, for the log of the right-hand side of (48), and using 2C5C% > 1, we have that

9 log (20001 CoCs) — log(205C2) + 24(o — 1) log p < 212 > Liog .
Hence, we see that (53) is satisfied if
217 S L og i < glogm
which, since log p < 0, is equivalent to
2o — 1) > 5.
The result follows immediately. [

For reasonable values of & and &, the required values of ¢ are quite small. We give two examples:

(i) 6 =2 and ¢ = 1.5, giving a convergence tolerance of || P;(z;u)|| < p. We choose o0 = 1.3 to
lie in the range (1,2/1.5) = (1,4/3). Then (54) yields the bound ¢ > 3.

(i) & = 1.5 and & = 1.25, giving a convergence tolerance of ||P.(z;u)|| < ™. We choose
o = 1.15 to lie in the range (1,1.5/1.25) = (1,1.2). Then (54) yields ¢t > 4.

In both cases, we can take a “superlinear” decrease in p—with g = O(pl%) and p = O(ul?),

respectively—and take at most four or five Newton steps to move from an approximate minimizer
of P(-;p_) to an approximate minimizer of P(-; ). The number of Newton steps per value of y is
bounded by a constant, so the overall rate of convergence of the Newton /log-barrier process to z*

is superlinear.
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