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AbstractIn the Newton/log-barrier method, Newton steps are taken for the log barrier function for a�xed value of the barrier parameter until a certain convergence criterion is satis�ed. The barrierparameter is then decreased and the Newton process is repeated. A naive analysis indicates thatNewton's method does not exhibit superlinear convergence to the minimizer of each instanceof the log-barrier function until it reaches a very small neighborhood of the minimizer. Bypartitioning according to the subspace of active constraint gradients, however, we show that thisneighborhood is actually quite large, thus explaining why reasonably fast local convergence canbe attained in practice. Finally, we show that the overall convergence rate of the Newton/log-barrier algorithm is superlinear in the number of function/derivative evaluations, provided thatthe nonlinear program is formulated with a linear objective and the schedule for decreasingthe barrier parameter is related in a certain way to the convergence criterion for each Newtonprocess.1 IntroductionWe consider the nonlinear programming problemmin f(x) subject to c(x) � 0; (1)where f : IRn ! IR and c : IRn ! IRm are smooth (twice Lipschitz continuously di�erentiable)functions. The logarithmic barrier function for (1) isP (x;�) = f(x)� � mXi=1 ln ci(x): (2)We denote by x(�) a minimizer of P (:;�) for � > 0 and assume that x(�) exists for all su�cientlysmall �. Methods based on (2) approximate x(�) for a sequence of small, decreasing values of� > 0. Under certain conditions (see Fiacco and McCormick [3]), we have lim�#0 x(�) = x�, wherex� is a local minimizer of (1).The Newton/log-barrier method proceeds by �xing � at a certain value and applying Newton'smethod to the unconstrained problem minx P (x;�); (3)�This research was supported by the Mathematics, Information, and Computational Sciences Division subprogramof the O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,Illinois 60439; wright@mcs.anl.gov
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Figure 1: Typical sequence of Newton/log-barrier iteratesstopping the Newton iterations when some tolerance is satis�ed. (Typically, the size of the Newtonstep or of the gradient Px(x;�) is required to fall below a certain threshold that depends on �.) Thebarrier parameter � is then decreased, and the process is repeated. A typical sequence of iteratesis shown in Figure 1.It is well known that the �rst Newton step for each value of �|the one taken immediately after �is decreased from its previous value|usually must be curtailed sharply to avoid leaving the feasibleregion. That is, a step length � considerably smaller than 1 is usually needed (see Conn, Gould, andToint [1], Wright [4], and Wright and Jarre [6]). Often, however, steplengths of 1 can be taken safelyafter a few Newton iterations, yielding quadratic convergence toward x(�). This phenomenon maynot seem surprising, because it is also well known that, under typical nondegeneracy and second-order su�ciency conditions, the Hessian Pxx(x;�) is positive de�nite at and near x = x(�) for smallvalues of �. More investigation makes this simple explanation a little less satisfactory, however,because application of the standard theory seems to imply that the neighborhood within whichquadratic convergence occurs becomes exceedingly small as � approaches zero. In this paper, weshow that this neighborhood is in fact not so small, suggesting that the number of Newton iterationsrequired for each value of � is not excessive.We conclude the paper by using earlier results of Wright and Jarre [6] to show that, when theobjective function f is linear and the convergence test for the Newton iterations at each value of� has a certain form, the number of Newton iterates required for each � value can be boundedabove by a modest number. Moreover, � can be decreased at a superlinear rate, so the overallconvergence rate of the process is superlinear in the number of function/derivative evaluations. Insum, the Newton/log-barrier method|a purely primal method|can achieve a superlinear localconvergence rate, just like its primal-dual counterpart.We use the following notation in the rest of the paper. For related positive quantities � and�, we say � = O(�) if there is a constant M such that � � M� for all � su�ciently small. We2



say that � = o(�) if �=� ! 0 as � ! 0, � = 
(�) if � = O(�), and � = �(�) if � = O(�) and� = O(�). It follows that the expression � = O(1) means that � � M for some constant M andall values of � in the domain of interest.2 Assumptions, Notation, and Basic ResultsIn this section, we specify the optimality conditions for the nonlinear program (1), outline ourassumptions on its solution x�, and state an implicit function theorem to be used in the nextsection.The Lagrangian function for (1) isL(x; �) = f(x)� �T c(x); (4)where � is the vector of Lagrange multipliers. The solution x� of (1) satis�es the �rst-orderconditions for optimality, which are that there exists a Lagrange multiplier vector �� such thatc(x�) � 0; �� � 0; (��)T c(x�) = 0; rf(x�) = mXi=1 ��irci(x�): (5)The active constraints are the components of c for which ci(x�) = 0. Without loss of generality weassume these to be the �rst q components of c. We also assume that the solution is nondegenerate,that is, [rc1(x�) j � � � j rcq(x�)] has rank q: (6)(Note that nondegeneracy implies uniqueness of ��.) We also assume strict complementarity, thatis, ��i + ci(x�) > 0; i = 1; 2; : : : ; m: (7)Finally, we assume that second-order su�cient conditions for optimality are satis�ed at (x�; ��),that is, yTLxx(x�; ��)y > 0 for all y 6= 0 with rci(x�)Ty = 0 for all i = 1; 2; : : : ; q. (8)It is easy to see that (x�; ��) is a root of the function F (x; �) de�ned byF (x; �) = " Lx(x; �)�c(x) # = " g �A(x)��c(x) # ; (9)where � = diag(�1; �2; � � � ; �m):The Jacobian of F is rF (x; �) = " Lxx(x; �) �A(x)�A(x)T C(x) # ; (10)where C(x) = diag(c1(x); c2(x); � � � ; cm(x)). When the nondegeneracy, strict complementarity, andsecond-order su�cient conditions hold, rF (x�; ��) is nonsingular. It follows from the assumedsmoothness of f and c that the Jacobian rF (x; �) is nonsingular for all (x; �) close to (x�; ��).3



Given any strictly feasible point x and any positive value of the barrier parameter � in (2), wede�ne a vector of Lagrange multiplier estimates �(x; �) by�(x; �) = �C(x)�1e = � �c1(x) ; : : : ; �cm(x)�T : (11)If x is the exact minimizer x(�) of P (�;�), we de�ne�(�) 4= �(x(�); �): (12)The derivatives of the barrier function (2) arePx(x;�) = rf(x)� mXi=1 �ci(x)rci(x); (13a)Pxx(x;�) = r2f(x) + � mXi=1 " 1c2i (x)rci(x)rci(x)T � 1ci(x)r2ci(x)# : (13b)By combining (11) with (13a), we obtainrf(x) = A(x)�(x; �) + Px(x;�); (14)while for the case x = x(�), we have from (12) that rf(x(�)) = A(x(�))�(�).The following technical lemma, a consequence of the implicit function theorem, is proved inWright and Jarre [6, Lemma 3.1].Lemma 2.1 Let the vector pair (~x(z; �); ~�(z; �)) be de�ned implicitly as the solution of the nonlin-ear system F (~x; ~�) = " z�e # ; (15)for given (z; �) and F de�ned as in (9). Then there are positive constants � > 0 and M > 0 suchthat the following statements hold.(i) (~x(z; �); ~�(z; �)) is a C2 function of (z; �) in the neighborhood de�ned byN� = f(z; �) j kzk+ j�j � �g:(ii) For � > 0 and (z; �) 2 N�, we have ~�i(z; �) > 0 and ci(~x(z; �)) > 0 for i = 1; 2; : : : ; m.(iii) For (z1; �1) and (z2; �2) in N�, we have" ~x(z1; �1)~�(z1; �1) #� " ~x(z2; �2)~�(z2; �2) # = rF (~x(z1; �1); ~�(z1; �1))�1 " z1 � z2(�1 � �2)e #+ r; (16)where krk �M(kz1 � z2k+ j�1 � �2j)2: (17)Uniform nonsingularity of rF in a neighborhood of (x�; ��) implies that the �rst term in theright-hand side of (16) dominates the second-order term for � su�ciently small; that is," ~x(z1; �1)~�(z1; �1) #� " ~x(z2; �2)~�(z2; �2) # = �(kz1 � z2k+ j�1 � �2j): (18)4



3 Convergence of Newton's Method to the Log-Barrier MinimizerWe now analyze the local convergence properties of Newton's method to the minimizer x(�) ofthe barrier function P (x;�), for a �xed value of �. It is well known that under the second-orderassumptions discussed above, the barrier function P (x;�) has a minimizer x(�) at which the Hessianis positive de�nite (though ill conditioned). Moreover, since the objective f(�) and constraintfunctions ci(�), i = 1; 2; : : : ; m are twice Lipschitz continuously di�erentiable, then P (x;�) is alsotwice Lipschitz continuously di�erentiable near x(�). Hence, quadratic convergence follows from astandard result (see, for example, Theorem 5.2.1 of Dennis and Schnabel [2]). If w1; w2; w3; : : : arethe Newton iterates, the standard theory yields the estimatekwt+1 � x(�)k � L1(�)L2(�)kwt � x(�)k2; (19)where L1(�) is a Lipschitz constant for Pxx(x;�) in the vicinity of x(�) and L2(�) is a bound onkPxx(x;�)�1k near x(�). The estimates we derive later in this section show thatL1(�) = O(��2); L2(�) = O(1);so that (19) reduces to kwt+1 � x(�)k = O(��2)kwt � x(�)k2:This expression does not even imply convergence of the iteration sequence unless w1 is in a verysmall neighborhood of the solution, speci�cally,kw1 � x(�)k = O(�2): (20)It appears from this estimate that a number of careful line-search Newton iterations would beneeded to move from the approximation to the minimizer x(��) at the previous value of � into theneighborhood of quadratic convergence for the current value of �.Wright and Jarre [6] investigated the use of a reformulation of (1) in which the objective functionis linear. They show that if the �nal approximation to x(��) obtained at the previous value ��of the barrier parameter is reasonably accurate, then the Newton step for P (�;�) from this pointfor the new value of � passes quite close to the new minimizer x(�). Even in this case, however,the resulting point will not generally lie in the neighborhood (20), except perhaps when a stringentstopping criterion of the form kPx(x;�)k = O(�) is used at the previous value of �.In this section, we show that the expressions (19) and (20) are unduly pessimistic and, in fact,that there exists a constant �� > 0 such that quadratic convergence to x(�) can be obtained fromany point w that satis�es kw� x(�)k � C��; for all � 2 (0; ��], (21)where C and � are any given constants satisfying C > 0 and � > 1. That is, the domain ofquadratic convergence for P (�;�) shrinks as � # 0, but the rate of shrinkage is not especially severe.We derive most of the results in an informal style, favoring the use of order notation for clarity.Explicit bounds are introduced for certain important estimates, to ensure that the inductive proofsof quadratic convergence at the end of this section are rigorous.5



Our analysis is based on the following consequence of Taylor's theorem. If w is the currentiterate and s is the Newton step de�ned by s = �Pxx(w;�)�1Px(w;�), we have thatPx(w+ s;�) = Px(w;�) + Pxx(w;�)s+ Z 10 [Pxx(w+ �s;�)� Pxx(w;�)]s d�= Z 10 [Pxx(w + �s;�)� Pxx(w;�)]s d�: (22)In the analysis below, and in the next section, we (implicitly) identify a value of �� such thatcertain estimates are satis�ed by certain functions of the point w satisfying (21). We assume withoutloss of generality that �� is small enough that the neighborhood (21) excludes local minimizers ofP (�;�) other than x(�). Since � > 1 in (21), it follows that the ratio kw�x(�)k=� approaches zeroas � # 0.From the de�nition (12), an application of the implicit function result (18) with(z1; �1) = (0; �); that is, (~x(z1; �1); ~�(z1; �1)) = (x(�); �(�));(z2; �2) = (0; 0); that is, (~x(z2; �2); ~�(z2; �2)) = (x�; ��);yields " x(�)� x��(�)� �� # = O(�):Hence, by using (11), the strict complementarity assumption, and (21), we have for all active indicesi = 1; 2; � � � ; q thatci(w) = ci(x(�)) +O(kw� x(�)k) = ��i(�) +O(��) = ���i + O(�min(2;�)) = �(�): i = 1; 2; : : : ; q;(23)for all � su�ciently small.Next, we examine the structure of Pxx(w;�). By di�erentiating (2) twice, and partitioning thesums into active and inactive indices, we obtainPxx(w;�) = qXi=1 �c2i (w)rci(w)rci(w)T + (r2f(w)� qXi=1 �ci(w)r2ci(w))� mXi=q+1( �c2i (w)rci(w)rci(w)T � �ci(w)r2ci(w)) : (24)We deal with the three terms on the right-hand side in turn. Because of (23), we have�c2i (w) = 
(��1); i = 1; 2; : : : ; q;so by the nondegeneracy assumption, the �rst sum in (24) is a rank-q matrix, whose q nonzeroeigenvalues are all positive with size 
(��1). Using a standard factorization, we can writeqXi=1 �c2i (w)rci(w)rci(w)T = Û(w)D̂(w)Û(w)T ; (25)6



where D̂(w) is a q � q diagonal matrix whose diagonal elements all have size 
(��1) and Û(w) isan n � q orthonormal matrix whose columns span the range space of [rci(w)]qi=1.Since kw� x(�)k=� = o(1) it follows that �=ci(w) � ��i , and the second term in (24) is a smallperturbation of the Lagrangian Hessian Lxx(x�; ��), which by our second-order assumption (8) ispositive de�nite on the null space of [rci(x�)]qi=1. Hence, if we de�ne ~U(w) to be an n � (n � q)orthonormal matrix that spans the nearby null space of [rci(w)]qi=1, (so that [Û(w) j ~U(w)] isorthogonal), straightforward arguments show that the (n� q)� (n� q) matrix G22(w) de�ned by~G22(w) 4= ~U(w)T (r2f(w)� qXi=1 �ci(w)r2ci(w)) ~U(w) = ~U(w)TLxx(x�; ��) ~U(w) + o(1)is positive de�nite, with all eigenvalues of size 
(1).Since ci(w) = 
(1) for i = q + 1; : : : ; m and all � su�ciently small, the third term in (24) isO(�).By combining all these observations, we �nd thatPxx(w;�) = h Û(w) ~U(w) i " G11(w) G12(w)GT12(w) G22(w) # " Û(w)T~U(w)T # ; (26)where G11(w) 4= Û(w)TPxx(w;�)Û(w) = D̂(w) + O(1);G22(w) 4= ~U(w)TPxx(w;�)~U(w) = ~G22(w) + O(�); (27)G12(w) 4= Û(w)TPxx(w;�)~U(w) = O(1);where D̂(w) and ~G22(w) are de�ned as above.To uncover the properties of Pxx(w;�)�1, we use the following technical result about the inverseof a block 2� 2 matrix; see, for example, Wright [5, Lemma 3.1].Lemma 3.1 Let G be a symmetric matrix partitioned asG = " G11 G12GT12 G22 # ;where G11 and G22 are square. Suppose that G11 and G22 � GT12G�111 G12 are nonsingular. Then Gis nonsingular and G�1 has the form G�1 = " H11 H12HT12 H22 # ; (28)where H11 = G�111 + G�111 G12(G22 �GT12G�111 G12)�1GT12G�111H12 = �G�111 G12(G22 �GT12G�111 G12)�1H22 = (G22 � GT12G�111 G12)�1:7



In our case|the 2� 2 block matrix in (27)|we have D̂(w)�1 = O(�) and soG11(w)�1 = D̂(w)�1(I +O(�))�1 = O(�):By using this estimate, we further obtainhG22(w)�G12(w)TG11(w)�1G12(w)i�1 = h ~G22(w) +O(�)i�1 = ~G22(w)�1 +O(�) = O(1);Hence, from (26) and (28), we obtainPxx(w;�)�1 = h Û(w) ~U(w) i " H11(w) H12(w)HT12(w) H22(w) # " Û(w)T~U(w)T # ; (29)where H11(w) = O(�); H12(w) = O(�); H22(w) = O(1): (30)We now examine the structure of Px(w;�). From (21) and (23) we havekw� x(�)k=ci(w) = O(���1)� 1; i = 1; 2; : : : ; q; (31)for all � su�ciently small. We can use this expression to estimate the di�erence between thereciprocals c�1i (w) and c�1i (x(�)). We havec�1i (x(�)) = [ci(w) +O(kw � x(�)k)]�1= c�1i (w) h1 + O(ci(w)�1kw � x(�)k)i�1= c�1i (w) + c�2i (w)O(kw� x(�)k): (32)From (2), noting that Px(x(�);�) = 0 and partitioning active and inactive indices, we have thatPx(w;�) = Px(w;�)� Px(x(�);�)= qXi=1 � �ci(w)rci(w)� �ci(x(�))rci(x(�))�+ [rf(w)�rf(x(�))] (33)+ mXi=q+1 � �ci(w)rci(w)� �ci(x(�))rci(x(�))� :For the second term on the right-hand side of (33), we have by smoothness of f that rf(w)�rf(x(�)) = O(kw � x(�)k). In the third term, we have for each index i = q + 1; : : : ; m thatci(w) = 
(1) and ci(x(�)) = 
(1). Hence, by smoothness ofrci, this term has size O(�kw�x(�)k).In the �rst term, we have for each active index i, using the smoothness of rci together with(23), (31), and (32), that�ci(x(�))rci(x(�))= " �ci(w) + �c2i (w)O(kw� x(�)k)# [rci(w) + O(kw� x(�)k)]= �ci(w)rci(w) +O(��1kw � x(�)k)rci(w) + O(kw� x(�)k): (34)8



By collecting these observations and substituting into (33), we obtainPx(w;�) = qXi=1O(��1kw� x(�)k)rci(w) +O(kw� x(�)k): (35)From the de�nitions of Û(w) and ~U(w), it follows immediately thatÛ(w)TPx(w;�) = O(��1kw� x(�)k); (36a)~U(w)TPx(w;�) = O(kw� x(�)k): (36b)Meanwhile from (30), we have for the Newton step from w thats = �Pxx(w;�)�1Px(w;�)= h Û(w) ~U(w) i " H11(w) H12(w)HT12(w) H22(w) # " Û(w)TPx(w;�)~U(w)TPx(w;�) #= h Û(w) ~U(w) i " O(�) O(�)O(�) O(1) #" Û(w)TPx(w;�)~U(w)TPx(w;�) # :Hence, by combining with (36), we �nd that we can choose �� in (21) such that for all w and �satisfying (21), we haveksk � O(�kÛ(w)TPx(w;�)k+ k ~U(w)TPx(w;�)k)� C3 h�kÛ(w)TPx(w;�)k+ k ~U(w)TPx(w;�)ki (37a)� C1kw � x(�)k = O(��); (37b)for some positive numbers C1 and C3 independent of �.Note that the naive estimate of ksk obtained by ignoring the structure of Px(w;�) and Pxx(w;�)would be simply ksk � kPxx(w;�)�1kkPx(w;�)k = O(���1), which is too pessimistic for ourpurposes.We now examine the integrand in (22), partitioning it into the subspaces de�ned by the activeconstraint gradients at the next Newton iterate w + s. We start by partitioning the integrand asfollows: [Pxx(w + �s;�)� Pxx(w;�)]s = q1 + q2 + q3 + q4; (38)where � 2 [0; 1] andq1 = qXi=1( �c2i (w+ �s)rci(w + �s)rci(w+ �s)Ts � �c2i (w)rci(w)rci(w)Ts)q2 = � qXi=1� �ci(w+ �s)r2ci(w+ �s)s� �ci(w)r2ci(w)s�q3 = hr2f(w + �s)�r2f(w)is;q4 = mXi=q+1( �c2i (w + �s)rci(w+ �s)rci(w + �s)T s� �c2i (w)rci(w)rci(w)Ts� �ci(w + �s)r2ci(w+ �s)s+ �ci(w)r2ci(w)s� :9



To estimate the �rst term q1, we note from (37b) that ��1ksk = O(���1)� 1. Hence, as in (32),we have 1ci(w + �s) = 1ci(w) + 1c2i (w)O(k�sk) = 1ci(w) + O(��2ksk); i = 1; 2; : : : ; q; (39a)1c2i (w + �s) = 1c2i (w) �1 + 1ci(w)O(k�sk)��2 = 1c2i (w) +O(��3ksk); i = 1; 2; : : : ; q: (39b)By smoothness of rci, we obtain�c2i (w + �s)rci(w + �s)rci(w+ �s)Ts= " �c2i (w) + O(��2ksk)# [rci(w) +O(ksk)] hrci(w)Ts +O(ksk2)i= �c2i (w)rci(w)rci(w)Ts+ O(��2ksk2)rci(w) +O(��1ksk2);where we have used the fact that ��1ksk � 1 (see (37b)) to absorb higher-order terms. Bysubstituting into the de�nition of q1, we obtainq1 = qXi=1O(��2ksk2)rci(w) + O(��1ksk2) = qXi=1O(��2ksk2)rci(w+ s) +O(��1ksk2); (40)where the change of argument from w to w+ s in the �rst term causes a perturbation that can beabsorbed in the second term.For the second term q2, we have from (39a) that�ci(w + �s)r2ci(w+ �s)s = � �ci(w) + O(��1ksk)� hr2ci(w)s+ O(ksk2)i= �ci(w)r2ci(w)s+O(��1ksk2):The remaining terms q3 and q4 are less signi�cant. By Lipschitz continuity of rf , we have q3 =O(ksk2). In q4, the denominators all have size 
(1), so it is easy to show that q4 = O(�ksk2).By collecting all these estimates into (38), performing the integration, and substituting into(22), we obtain Px(w + s;�) = qXi=1O(��2ksk2)rci(w + s) + O(��1ksk2):Hence, after a possible adjustment in �� in (21), we have that there is a positive number C2 inde-pendent of � such that Û(w + s)TPx(w+ s;�) � C2��2ksk2; (41a)~U(w + s)TPx(w+ s;�) � C2��1ksk2; (41b)for any orthonormal matrix Û(w + s) that spans the column space of [rci(x+ s)]qi=1, and for anyorthonormal matrix ~U(w+ s) such that [Û(w+ s) j ~U(w + s)] is orthogonal. (For future reference,we assume without loss of generality that C2 � 1.)10



At this point, we have identi�ed a threshold �� and constants C1, C2, and C3 such that if wlies in the neighborhood de�ned by (21) for given values of C and �, the Newton step s satis�esthe important relationships (37a), (37b), and (41). An important corollary of these relationships isthat if the next Newton iterate w + s also lies in the neighborhood (21), then we have from (37a)and (41) that the next Newton step s+ satis�esks+k � 2C2C3��1ksk2: (42)We now use all these estimates to show that if we choose the starting point w1 for the Newtoniteration in a slightly more restrictive neighborhood than (21), then all Newton iterates will remaininside the full neighborhood (21) and quadratic convergence of the newton sequence to x(�) willbe observed. We state the result formally as a theorem.Theorem 3.2 Let the constants C > 0 and � > 1 be given, and let C1, C2, C3, and �� be de�nedas above, in such a way that the relationships (37a), (37b), (41), and (42) hold. Let the constantsC0 > 0 and ��0 be chosen in such a way that the following inequalities are satis�ed:(1 + 2C1)C0 � C; 2C0C1C2C3����10 � 1=4: (43)Then if � 2 (0; ��0] and w1 is any point that satis�eskw1 � x(�)k � C0��; (44)then Newton's method with full steps, applied to the function P (�;�) and starting from w1, convergesQ-quadratically to x(�).Proof. By (37b), we have that the �rst Newton step s1 satis�esks1k � C1kw1 � x(�)k; (45)and so, because of the de�nition of C0 in (43), the next iterate w2 = w1 + s1 satis�eskw2 � x(�)k � kw1 � x(�)k+ ks1k � (1 + C1)kw1 � x(�)k � C0(1 + C1)�� < C�� :Hence, w2 also lies in the neighborhood (21), so we can apply (42) to obtain the following estimatefor the next Newton step s2: ks2k � 2C2C3��1ks1k2: (46)From (44) and (45), we have that ��1ks1k � C0C1���1;so by substituting (46) and using the de�nition (43), we obtainks2k � 2C0C1C2C3���1ks1k � (1=4)ks1k:Hence, for the next Newton iterate w3 = w2 + s2, we havekw3 � x(�)k� kw1 � x(�)k+ ks1k+ ks2k � kw1 � x(�)k+ (5=4)ks1k � C0(1 + (5=4)C1)�� < C��;11



so that w3 also lies in the neighborhood de�ned by (21).The argument continues inductively. We �nd in general that for all t = 1; 2; 3 : : :, we havekst+1k � 2C2C3��1kstk2 � (2C2C3��1ks1k)kstk � (1=4)kstk; (47)and that kwt+1 � x(�)k � kw1 � x(�)k+ tXj=1 ksjk� kw1 � x(�)k+ tXj=1 4�(j�1)ks1k� C0(1 + (4=3)C1)�� < C�� ;so that all Newton iterates w1; w2; w3; : : : belong to the neighborhood (21).From (47), we have that kstk, t = 1; 2; 3 : : : decreases geometrically (in fact, quadratically) tozero. Therefore, fwtg is a Cauchy sequence, so it converges, say to a point w�(�). It follows from(41) that this limit point must satisfy Px(w�(�);�) = 0:Moreover, by the second-order condition (8), we have by the choice of �� and the discussion aboutthe Hessian Pxx(�;�) and its inverse that Pxx(w;�) is positive de�nite for all w satisfying (21).Hence, w�(�) is a local minimizer of P (�;�). Since x(�) is the only local minimizer of this functionin the neighborhood (21) by assumption, we must have w�(�) = x(�).To prove that the convergence of fwtg to x(�) is quadratic, we estimate the error kwt � x(�)kin terms of kstk. By using (47), we have for all t = 1; 2; 3; : : : thatkwt � x(�)k =  1Xj=t sj � 1Xj=t ksjk � 1Xj=t 4�(j�1)kstk � (4=3)kstk:Similarly, we have that kwt � x(�)k � kstk � 1Xj=t+1 ksjk � (2=3)kstk:Hence, from (42), we havekwt+1 � x(�)k � (4=3)kst+1k � (8=3)C2C3��1kstk2 � (128=27)C2C3��1kwt � x(�)k2;indicating that the convergence is Q-quadratic, as claimed.Note from (44), (45), and (47) that we havekst+1k � [2C0C1C2C3]2t (2C2C3)�1�2t(��1)+1; t = 0; 1; 2; : : : ;and therefore from (41) we havekPx(wt+1;�)k � 2C2��2kstk2 � [2C0C1C2C3]2t (2C2C23)�1�2t(��1); t = 1; 2; 3; : : : : (48)12



4 Superlinear Convergence When the Objective Function Is Lin-earThe �nal result deals with the special case in which the objective function f(�) in (1) is linear.For background, we state a result due to Wright and Jarre [6], which shows that when we have asu�ciently good approximation to the log-barrier minimizer x(��) at the current barrier value ��,and we then reduce �� to � (but not too rapidly), then the Newton step for Px(�;�) passes quiteclose to the new minimizer x(�). Moreover, the steplength � = �=�� is asymptotically optimal.The result is a combination of Theorems 3.2 and 3.3 from [6].Theorem 4.1 Suppose that f is linear and that the barrier parameter values �� and � satisfy thecondition � 2 [�min�~��; �max��]; (49)where �min > 0, �max 2 (0; 1), and ~� 2 (1; 2] are constants. Suppose too that the boundkPx(x;��)k � ��̂=2� (50)is satis�ed at the current value of x, where �̂ 2 (~�; 2]. Then if s is the Newton direction for P (�;�)from x, the line segment x + �(�=��)s, � 2 [0; 1] is strictly feasible. Moreover the function�(�) 4= P (x+ �(�=��)s;�)has a local minimizer �� such that 1� �� = O(��̂�1):Finally, for the value � = 1, we havekx+ (�=��)s� x(�)k = O(kPx(x;��)k2 + �2�) = O(��̂�): (51)If we de�ne w1 4= x+ (�=��)sto be the point obtained by taking this truncated Newton step, we have from (49) and (51) thatkw1 � x(�)k = O(��̂=~�): (52)Choosing � in the range (1; �̂=~�), we �nd that there is a threshold ��1 2 (0; ��0] such thatkw1 � x(�)k = O(��̂=~���)�� � C0�� for all � 2 (0; ��1]:Hence, the results of Theorem 3.2, and in particular the relation (48), apply when � is su�cientlysmall in this sense. If we use a convergence criterion of the form (50) at this iteration too, that is,kPx(wt+1;�)k � ��̂=2; (53)we can prove the following theorem about the number of Newton iterations needed to satisfy thisbound. 13



Theorem 4.2 Suppose that the assumptions of Theorem 4.1 hold and that, given some choice of �in the range (1; �̂=~�), the assumptions and notation of Theorem 3.2 hold as well. Assume withoutloss of generality that 2C2C23 � 1. De�ne the constant ��2 by��2 4= min(1; ��1; ��20):Then for � 2 (0; ��2], the criterion (53) is satis�ed for all t witht � log(�̂=(� � 1))log 2 : (54)Proof. Because log� � 2 log ��0, we have from (43) thatlog(2C0C1C2C3) + � � 12 log � � log(2C0C1C2C3) + (� � 1) log ��0 < 0:Hence, for the log of the right-hand side of (48), and using 2C2C23 � 1, we have that2t log(2C0C1C2C3)� log(2C2C23) + 2t(� � 1) log� � 2t� � 12 log�:Hence, we see that (53) is satis�ed if 2t� � 12 log� � �̂2 log�;which, since log� < 0, is equivalent to 2t(� � 1) � �̂:The result follows immediately.For reasonable values of ~� and �̂, the required values of t are quite small. We give two examples:(i) �̂ = 2 and ~� = 1:5, giving a convergence tolerance of kPx(x;�)k � �. We choose � = 1:3 tolie in the range (1; 2=1:5) = (1; 4=3). Then (54) yields the bound t � 3.(ii) �̂ = 1:5 and ~� = 1:25, giving a convergence tolerance of kPx(x;�)k � �:75. We choose� = 1:15 to lie in the range (1; 1:5=1:25) = (1; 1:2). Then (54) yields t � 4.In both cases, we can take a \superlinear" decrease in �|with � = O(�1:5� ) and � = O(�1:25� ),respectively|and take at most four or �ve Newton steps to move from an approximate minimizerof P (�;��) to an approximate minimizer of P (�;�). The number of Newton steps per value of � isbounded by a constant, so the overall rate of convergence of the Newton/log-barrier process to x�is superlinear.AcknowledgmentI am extremely grateful to Florian Jarre for his advice and many helpful comments on earlier draftsof this paper. 14
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