ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

INCOMPLETE CHOLESKY FACTORIZATIONS WITH LIMITED
MEMORY

Chih-Jen Lin and Jorge J. Moré

Mathematics and Computer Science Division

Preprint MCS-P682-0897

August 1997

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and Technology Research, U.S. De-
partment of Energy, under Contract W-31-109-Eng-38.

Incomplete Cholesky Factorizations with Limited Memory

Chih-Jen Lin and Jorge J. Moré

Abstract

We propose an incomplete Cholesky factorization for the solution of large-scale trust
region subproblems and positive definite systems of linear equations. This factorization
depends on a parameter p that specifies the amount of additional memory (in multiples
of n, the dimension of the problem) that is available; there is no need to specify a drop
tolerance. Our numerical results show that the number of conjugate gradient iterations
and the computing time are reduced dramatically for small values of p. We also show
that in contrast with drop tolerance strategies, the new approach is more stable in terms
of number of 1terations and memory requirements.

1 Introduction

The incomplete Cholesky factorization is a fundamental tool in the solution of large systems
of linear equations, but its use in the solution of large optimization problems remains
largely unexplored. The main reason for this neglect is that the linear systems that arise
in optimization problems are not guaranteed to be positive definite, while the incomplete
Cholesky factorization was designed for solving positive definite systems. Another reason is
that implementations of the incomplete Cholesky factorization often rely on drop tolerances
to reduce fill, a strategy with unpredictable behavior. From an optimization viewpoint, we
desire a factorization with good performance and predictable memory requirements.

We explore the use of the incomplete Cholesky factorization in the solution of the trust

region subproblem
min {g7w + Lw! Bw : || Dwl|]; < A}, (1.1)

where A is the trust region radius, g € R" is the gradient of the function at the current
iterate, B € R™ ™ is an approximation to the Hessian matrix, and D € IR"*" is a nonsin-
gular scaling matrix. Our techniques are applicable, in particular, to the case where the
solution of (1.1) requires solving the positive definite system of linear equations Bw = —g.

A considerable amount of literature is associated with problem (1.1). In particular, we
mention that there are algorithms that determine the global solution of (1.1) by solving a
sequence of linear systems of the form (B -+, DT D)w = —g for some sequence {\;}. These
algorithms obtain the global minimum of (1.1) even if B is indefinite. See, for example, the

algorithm of Moré and Sorensen [30].

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

In many large-scale problems, time and memory constraints do not permit a direct fac-
torization, and we must then use an iterative scheme. Rendel and Wolkowicz [34], Sorensen
[41], and Santos and Sorensen [37] have recently proposed iterative algorithms that re-
quire only matrix-vector operations to determine the global minimum of (1.1), but these
algorithms do not use preconditioning and thus are unlikely to perform well on difficult
problems. An interesting approach, based on the work of Steihaug [42], is to use a pre-
conditioned conjugate gradient method, with suitable modifications that take into account
the trust region constraint and the possible indefiniteness of B to determine an approx-
imate solution of (1.1). In the implementation of a truncated Newton method proposed
by Bouaricha, Moré and Wu [6], the ellipsoidal trust region is transformed into a spherical

trust region, and then the conjugate gradient method is applied to the transformed problem
min {ﬁTw + %wTEw H|wllz < A}) (1.2)

where
g=D"Tg, B=DTBD

Given an approximate solution w of (1.2), the corresponding solution of (1.1) is D™ 1w.

As suggested in [6], we can use an incomplete Cholesky factorization to generate a
scaling matrix D that clusters the eigenvalues of B. This is a desirable goal because then
the conjugate gradient method is able to solve (1.2) in a few iterations.

The clustering properties of the incomplete Cholesky factorization depend, in part, on
the sparsity pattern & of the incomplete Cholesky factor L. Given &, the incomplete

Cholesky factor is a lower triangular matrix L such that
B=LLT +R, li; =0if (i,5) ¢ S, ri; = 0if (i,7) € S.

We want to choose the sparsity pattern S so that L='BL~T has clustered eigenvalues. This
is certainly the case if R = 0, and tends to happen for reasonable choices of §.

If clustering occurs, then the choice in [6] of D = L7 as the scaling matrix is reasonable.
Unfortunately, it is not clear how to choose the sparsity pattern S so that L='BL~7T has
clustered eigenvalues. In an optimization application it seems reasonable to avoid imple-
mentations that choose § statically, independent of the numerical entries of B, for example,
choosing § as the sparsity pattern of B.

In the implementation of a truncated trust region Newton method in [6], the precondi-
tioner proposed by Jones and Plassmann [25] was chosen because this preconditioner has a
number of advantages:

The sparsity pattern & depends on the numerical entries of the matrix.
The memory requirements of the incomplete Cholesky factorization are predictable.

No drop tolerance is required.

Although the performance of this preconditioner was generally satisfactory, poor perfor-
mance was observed on difficult optimization problems. Performance was particularly poor
on problems that were nearly singular, either positive definite or indefinite.

We propose an incomplete Cholesky factorization for general symmetric matrices with
the best features of the Jones and Plassmann factorization, and with the ability to use ad-
ditional memory to improve performance. In Section 2 we contrast the proposed incomplete
Cholesky factorization with other approaches, in particular, the fixed fill factorization of
Meijerink and van der Vorst [28], the ILUT factorization of Saad [35, 36], the drop tolerance
strategy of Munksgaard [31], and the factorization proposed by Jones and Plassmann [25].
For additional information on incomplete Cholesky factorizations, see Axelsson [3] and Saad
[36].

Section 3 extends the incomplete Cholesky factorization of Section 2 to indefinite ma-
trices. Two main issues arise: scaling the matrix and modifying the matrix so that the
factorization is possible. We use a symmetric scaling of the matrix and Manteuffel’s [27]
shifted approach. We prove that the incomplete Cholesky factorization exists for H-matrices
with positive diagonal elements, and we establish bounds for the number of iterations re-
quired to compute the factorization. We also study how the shift depends on the scaling of
the matrix.

Modifications to the Cholesky factorization in the presence of indefiniteness have re-
ceived considerable attention in the optimization literature. The main approaches are due
to Gill, Murray, and Wright [17, Section 4.4.2.2] and Schnabel and Eskow [39]. Recent work
in this area includes Forsgren, Gill, and Murray [15], Cheng and Higham [8], and Neumaier
[32]. These approaches can be extended to sparse problems (see, for example, [9, Section
3.3.8], [16], [38], and [8]) but only if all the elements in the factorization are retained. Thus,
these approaches lose the advantage of having predictable storage requirements.

Section 4 presents the results of our computational experiments. We test an implementa-
tion icfm of the proposed incomplete Cholesky factorization on a set of ten problems. Three
of these problems arise in large-scale optimization problems; all are highly ill-conditioned,
and two of them are indefinite. We study the performance of the incomplete Cholesky
factorization as the memory parameter p changes, and show that performance improves
significantly for small values of p > 0.

In Section 5 we compare the icfm implementation with two incomplete Cholesky factor-
izations that rely on drop tolerances to reduce fill. We use the ma3l code of Munksgaard
[31] and the choline command of MATLAB (version 5.0). Our conclusion from this com-
parison is that the performance of codes based on drop tolerances is unpredictable, while

the icfm code performs well in all cases.

2 Incomplete Cholesky Factorizations

Given a symmetric matrix A and a symmetric sparsity pattern §, an incomplete Cholesky

factor of A is a lower triangular matrix L such that
A=LLT + R, Li;=0if (i,5) ¢ S, ri; = 0if (i,7) € S.

In this section we propose an incomplete Cholesky factorization that combines the best
features of the Jones and Plassmann [25] factorization and the ILUT factorization of Saad
[35, 36]. We also compare this approach with other approaches used to compute incomplete
Cholesky factorizations.

Fixed fill strategies fix the nonzero structure of the incomplete factor prior to the factor-
ization. Meijerink and van der Vorst [28] considered two choices of §, the standard setting
of § to the sparsity pattern of A, and a setting that allowed more fill. Many variations are
possible. For example, we could define § so that L is a banded matrix with predetermined
bandwidth. These strategies have predictable memory requirements but are independent of
the entries of A because the dropped elements depend only on the structure of A.

Gustafson [19] introduced a level k factorization where the sparsity pattern Sy is defined
by setting Sp to be the sparsity pattern of A, and defining

Si+1 = S U Ry,

where Ry is the sparsity pattern of LkLz. A disadvantage of this approach is that the
factorizations are independent of the entries of A. Symbolic factorizations techniques can
be used to determine the memory requirements, but the required memory can increase
quickly since the number of nonzeroes in Ly can be significantly larger than those in Ly.
Guidelines for the use of these factorizations and descriptions of several implementations
can be found in [10, 29, 44].

Drop-tolerance strategies have the advantage that they depend on the entries of A. In
these strategies nonzeros are included in the incomplete factor if they are larger than some
threshold parameter. For example, Munksgaard [31] drops agf) during the kth step if
(k)

g

| <7 a(k)a(k) ,

|a it g

where 7 is the drop tolerance. A disadvantage of drop tolerance strategies is that their
memory requirements depend in an unpredictable manner on the drop tolerance. In partic-
ular, it is not generally possible to determine 7 so that the memory requirements of L are
within specified bounds. If 7 is large, then L will have few nonzero elements but will also
tend to be a poor preconditioner.

The strategies described above have unpredictable memory requirements, or the factor-

ization is independent of the entries of A. Jones and Plassmann [25] proposed an incomplete

Cholesky factorization that avoids these requirements. In their approach the incomplete
Cholesky factor retains the / largest elements in the lower triangular part of the kth col-
umn of L, where [j is the number of elements in the kth column of the lower triangular part
of A.

Another approach that has predictable storage requirements and depends on the entries
of A is the ILUT factorization of Saad [35, 36]. The ILUT factorization of a general matrix
A depends on a memory parameter p and on a drop tolerance 7. The drop tolerance is
used to drop all elements in L and U smaller than 73, where 74 is defined as the product
of 7 times the I3 norm of the kth row of A. The ILUT factorization (August 1996 version)
retains the p largest elements in magnitude in each row of L and U.

The ILUT factorization ignores any symmetry in the matrix A. Even if A is symmetric,
the sparsity patterns of L and U7 are different. In particular, the product LU produced by
ILUT is unlikely to be symmetric for a symmetric matrix A.

There are several variations of the approaches that we have presented. In particular,
in the modified incomplete Cholesky factorization of Gustafsson [19], dropped elements
are added to the diagonal entries of the column. With this modification Re = 0, where
e is the vector of all ones. For additional information on modified incomplete Cholesky
factorizations, see Gustafsson [20, 21], Hackbusch [22], and Saad [36].

Other variations arise from the way that the matrix is scaled or from the method used
to deal with breakdowns. Note, in particular, that the incomplete Cholesky factorization
may fail for a general positive definite matrix; success is guaranteed if A is an H-matrix
with positive diagonal elements. We discuss these issues in the next section.

We propose an incomplete Cholesky factorization with the best features of the Jones
and Plassmann factorization and the ILUT factorization of Saad. We retain the I + p
largest elements in the lower triangular part of the kth column of L, but unlike the ILUT
approach with 7 > 0, we do not delete any elements on the basis of size; memory is the
only criterion for dropping elements. We will show that the use of additional memory often
improves performance dramatically.

Our implementation of the incomplete Cholesky factorization is based on the jk¢ version
of the Cholesky factorization shown in Algorithm 2.1. This factorization is in place with the
jth column of L overwriting the jth column of A. Note that diagonal elements are updated
as the factorization proceeds. For an extensive discussion of other forms of the Cholesky
factorization for dense matrices, see Ortega [33].

Algorithm 2.2 outlines the incomplete Cholesky factorization with limited memory. An
advantange of implementations of Algorithm 2.2 is that, unlike factorizations based on drop
tolerances, they require no dynamic memory management. This advantage translates into
superior performance. Our implementation follows the Jones and Plassmann [25] implemen-

tation. The main implementation issues are the data structures needed to update a;; by

for j = 1:n
a(j,j) = sqrta(j,jin
for k = 1:j-1
for i = j+i:n
a(i,j) = a(i,j) - ali,k)*a(j,k)

end
end
for i =j+1:n
a(i,j) = a(i,jr)/adj,j
a(i,i) = a(i,i) - a(i,jr"2
end
end

Algorithm 2.1: Cholesky factorization

a;; — a;a;;, by sparse operations that refer only to nonzero elements, and the algorithm used
to select the largest elements in the current column. We plan to discuss implementation

issues elsewhere.

for j = 1:n
a(j,j) = sqrta(j,jin
col_len = size(i>j:a(i,j) # 0)
for k = 1:j-1 & a(j,k) # O
for i = j+1:n & a(i,k) # O
a(i,j) = a(i,j) - ali,k)*a(j,k)
end
end
for i = j+1:n & a(i,j) # O

a(i,j) = a(i,jr)/adj,j
a(i,i) = a(i,i) - a(i,j)"2
end
Find largest col_len + p elements in a(:,j) and store.
end

Algorithm 2.2: Incomplete Cholesky factorization

In our discussion we have ignored the role played by the ordering in the matrix. This
is an important issue since the ordering of the matrix affects the fill in the matrix, and thus
the incomplete Cholesky factorization. In particular, Duff and Meurant [13] and Eijkhout
[14] have shown that the number of conjugate gradient iterations can double if the minimum
degree ordering is used to reorder the matrix. However, we note that these studies were
done with fixed fill incomplete Cholesky factorizations, and thus it is not clear that the

same conclusion holds for limited memory preconditioners.

3 Scaling and Shifting

The performance of the incomplete Cholesky factorization outlined in Algorithm 2.2 de-
pends on the strategy used to scale the matrix since this affects the choice of the largest
elements that are retained during the factorization. Algorithm 2.2 must also be modified
to handle general positive definite matrices and the indefinite matrices that invariably arise
in optimization applications. Both of these issues are covered in this section.

Algorithm 2.2 fails if a negative diagonal element is encountered. The standard solution
for this problem is to increase the size of the elements in the diagonal until a satisfactory
factorization is obtained. A common strategy is to increase any nonpositive pivot to a
positive threshold as the factorization proceeds. This strategy must be done with care. For

example, consider the matrix

1 Y1 0
A=1m1 1 7, 71,72 € (0,1).
0 Y2 1

A computation shows that after the first two steps of Algorithm 2.1 we obtain the lower

triangular matrix

1

2 _ T2
71 6 AR o0 =1/1—-77, 52—51-
0 6 162

Thus, to compute the Cholesky factorization we would need to add at least 62 — 1 to the
(3,3) diagonal element, a perturbation that is unbounded as v; approaches 1. On the other
hand, the Cholesky factorization of A+« succeeds for a small perturbation e > 0. Indeed,

as v; approaches 1, the matrix A approaches

—_ =

0
Y2 !
v2 1

o = =

which has a unit eigenvalue, and for v € [0,0.1], two eigenvalues near 2 and —%722. Thus
the Cholesky factorization of A + «l, where @ > 2, succeeds.

The example above clearly shows that we need to modify the diagonal elements before
we encounter a negative pivot. This observation has led to several proposed modifications to
the Cholesky factorization of the form A 4 F, with E a diagonal matrix. See, for example,
[17, 39, 38, 15, 32]. These approaches are applicable to general indefinite matrices but
only if all the elements in the factorization are retained. Thus, the advantage of having
predictable storage requirements is lost.

There have been several proposed modifications to the incomplete Cholesky factor-

ization that are applicable to general positive definite matrices. The shifted incomplete

Cholesky factorization of Manteuffel [26, 27] for the scaled matrix
A=D"2AD=Y2 D = diag(ay), (3.1)

requires the computation of a suitable o > 0 for which the incomplete Cholesky factorization
of 2—|- ol succeeds. Manteuffel used a fixed fill factorization and showed that if 2—|- ol is
an H-matrix, then the incomplete Cholesky factorization of A + ol succeeds. However, he
did not recommend a procedure for determining a suitable a.
There have also been proposed modifications of the form A + F, with F a diagonal
matrix. Jennings and Malik [24] proposed setting
o= o) ol o = a4 Lty
(k)
i
is positive definite, then this modification guarantees that the incomplete factorization

if).’ is dropped during the kth pivot step, and proved that if the original matrix A
succeeds for any ¢ > 0. Dickinson and Forsyth [11] reported that ¢ = 1 is generally
an overestimate and that the shifted incomplete Cholesky factorization was preferable for
elasticity analysis problems. Hladik, Reed, and Swoboda [23] suggested using a parameter
w € [0,1] with

(k)

g

= a) +elal, o) = o)) +elafl)

and used a search procedure to determine an appropriate w. Carr [7] tested a variation of
this approach with an incomplete LU factorization and a drop tolerance strategy. He showed
that this approach was competitive with the shifted incomplete Cholesky factorization on
three-dimensional structure analysis problems.

Algorithm 3.1 specifies our strategy in detail. Note, in particular, that we scale the
initial matrix by the /5 norm of the columns of A; if A has zero columns we can just apply
the algorithm to the submatrix with nonzero columns.

Jones and Plassmann [25] used a similar approach for positive definite matrices but
with p =0 in Algorithm 3.1. In their approach the matrix A is scaled as in (3.1), and o is
generated by starting with ap = 0, and incrementing oy by a constant (1072). The scaling
used in (3.1) needs to be modified for general indefinite matrices since it is not defined if
A has negative diagonal elements, and is almost certain to produce a badly scaled matrix
if A has small positive diagonal entries. We also note that the strategy of incrementing oy,
by a constant is not likely to be efficient in general.

An early version of Bouaricha, Moré, and Wu [6] used Algorithm 3.1 with ap = ag
if min(a;) < 0 and ay = %HEHOO This strategy leads to termination in at most two
iterations, (since 22 is diagonally dominant), but also tends to generate a large o, and

thus an incomplete Cholesky factorization that is a poor preconditioner.

Choose ag > 0 and p > 0.

Compute A = D™Y/2AD~1/2 where D = diag(||Aei|2).

Set ag = 0 if min(a;;) > 0; otherwise ag = — min(a;;) + as.

For k=0,1,..., R R
Use Algorithm 2.2 on Ay = A + ay[; if successful set ay = ay and exit.
Set a1 = max(2ay, ag)

Algorithm 3.1: Incomplete Cholesky factorization icfm for general matrices

The choice of ag = 0 is certainly reasonable if A is positive definite or, more generally,
if A has positive diagonal elements. A reasonable initial choice for aq is not clear if A is an
indefinite matrix, but our choice of oy guarantees that 20 has positive diagonal elements.

The choice of ag should be related to the smallest eigenvalue of the submatrix of A
defined by &, but this information is not readily available. Note that «g is the smallest
positive perturbation to a positive semidefinite ﬁ, and thus the setting of ag = 1073 used
in our numerical results is reasonable. We also experimented with g = 1076 and obtained
similar results. The main disadvantage of choosing a small ag is that Algorithm 3.1 may
require a large number of iterations. We discuss this issue in Section 4.

We now show that the incomplete Cholesky factorization defined by Algorithm 2.2
exists when A is an H-matrix. Recall that A € R™*" is an H-matrix if the associated

matrix

_ la;;], if i=4,
M“)‘{—mm, it i)

is an M-matrix, that is, the inverse of M(A) is a nonnegative matrix. In the result below
we will also need to know that a matrix A in R"*" with a;; < 0 for 7 # j is an M-matrix
if and only if there is an & > 0 in R”™ such that Az > 0. This result shows, in particular,
that any strictly diagonally dominant matrix is an H-matrix.

Maijerink and van der Vorst [28] proved that if A is an M-matrix, then the incomplete
LU (Cholesky) factorization exists for any predetermined sparsity pattern S, and Manteuffel
[27] extended this result to H-matrices with positive diagonal elements. These results do
not apply to Algorithm 2.2, however, because the sparsity pattern § is determined during
the factorization.

The key to proving existence is the observation that each stage of the incomplete
Cholesky factorization can be viewed as factoring a matrix of the form

A= [0‘ %T] 7 (3.2)

v

deleting some entries in v, and performing the Cholesky decomposition of A to obtain the

Schur complement

1
B — —wuw, (3.3)

where w is the vector obtained by deleting entries in v. This factorization would agree with
the factorization produced by Algorithm 2.2 if we used only the elements in w to update

the diagonal elements; instead we use all the elements in v. Hence, the final matrix is
1
B — — (ww! + diag{(v — w)?}), (3.4)
o

where diag{(v — w)?} is the diagonal matrix with entries (v; — w;)?. Since w; € {0, v;}, the
diagonal elements of (3.4) agree with the diagonal elements of the Schur complement of the
original matrix (3.2).

Both versions of Algorithm 2.2 are of interest. The version based on (3.3) has larger
diagonal elements, and thus decreases the chances of obtaining a negative pivot when the
other columns are processed. The version based on (3.4) is the incomplete Cholesky fac-
torization proposed by Jones and Plassmann. The numerical results in the appendix show
that the version based on (3.3) has superior performance.

Existence of the incomplete Cholesky factorization for M-matrices uses the fact that
if A is an M-matrix, then the Schur complement is also an M-matrix. We also need to
know that if A is an M-matrix, B has nonpositive off-diagonal elements, and A < B
componentwise, then B is also an M-matrix. This result is a direct consequence of the
characterization of M-matrices as those matrices with nonpositive off-diagonal entries such
that Az > 0 for some 2 > 0. Axelsson [3, Section 6.1] has proofs of these results, as
well as additional information on M-matrices. The proof that the incomplete Cholesky
factorization exists for M-matrices follows from these results by noting that

B - éva <B- é (wa + diag{(v — w)z})
for any vector w with w; € {0,v;}, and that the Schur complement B — (1/a)vv’ of the
M-matrix (3.2) is also an M-matrix. The proof of the existence of the incomplete Cholesky

factorization for H-matrices is similar.

Theorem 3.1 If A € R™™" is a symmetric H-matriz with positive diagonal entries, then

Algorithm 2.2 computes an incomplete Cholesky decomposition.

Proof. If the matrix A defined by (3.2) is an H-matrix, then

wen = A_4|<J|9T>]

is also an M-matrix, and thus the Schur complement M (B) — (1/a)|v||v|T is an M-matrix.
We complete the proof by noting that the inequality,

M(B) ~ ~folo]" < M (B (e ding{ (0 - w)2})) ,

10

valid for w; € {0,v;}, implies that the matrix on the right side of this inequality is an

M-matrix, and hence (3.4) is an H-matrix with positive diagonal elements as desired. B

We now establish bounds for aj that are independent of the elements in A. These
results are of interest because they provide bounds for the number of iterations for Algorithm
3.1. We first show that if g is the maximum number of nonzeros in any column of A, then

2 41/% is an upper bound for a.

Theorem 3.2 For any A € R™™" with nonzero columns, define A= D"Y2AD=/2 where
D = diag(||Aesl|2). If a > B2, where 3 is the mazimum number of nonzeros in any column

of A, then A+ al is an H-matriz with positive diagonal elements.

Proof. Since M(D1AD3) = |Di|M(A)|Dz| for any diagonal matrices Dy and Ds, the
definition of an H-matrix shows that A is an H-matrix if and only if D1 AD5 is an H-matrix
for some nonsingular diagonal matrices Dy and D3. Hence, we need only to prove that
AD™! + of is an H-matrix.

We can show that AD™! +«l is (column) strictly diagonally dominant by noting that
the Cauchy-Schwartz inequality implies that

laj;l < lail < 8172 Aejla.
7

Hence, if a > 32, then AD™' 4 ol is (column) strictly diagonally dominant with positive

diagonal elements and hence, an H-matrix. B

Theorems 3.1 and 3.2 show that Algorithm 3.1 is successful if o > B2 Thus,
ap < 2612, as desired. For the matrices used in the computational experiments of Section 4,
the bound 2 3'/2 is a gross overestimate, since ay < 0.512 in all cases. The following result
shows that we can obtain smaller bounds for o, if we are willing to replace the [, norm by

the {; norm.

Theorem 3.3 For any B € R"*" with nonzero columns, define Er = D,,_I/ZBD,,_I/2 where
D, = diag(||Bei|,). If r < s and Bs + ol is an H-matriz with positive diagonal elements,

then Er + af is also an H-matriz with positive diagonal elements. In particular, if
p(r) = inf {a : B, + o is an H-matrix with positive diagonal elements} ,
then pu(r) < u(s) forr <s.

Proof. The definition of an H-matrix shows that Er + o is an H-matrix if and only if
B+ aD, is an H-matrix. Thus, we need only to show that if B+ aD; is an H-matrix, then
B+ aD, is also an H-matrix. First note that if » < s, then ||z||, > ||z||s for any vector

x € R"™. Hence, B, + aD, has positive diagonal elements, and

M(B+aD,) > M(B+ aDy,), r<s.

11

This inequality shows that if B+ aD, is an H-matrix then B + «D, is also an H-matrix as
desired. A short computation now shows that u(r) < u(s). B

Theorem 3.3 provides a bound for a in terms of p(r). We show this by noting that
Algorithm 3.1 is successful if oy, > p(r), and thus ap < 2 p(r). Since p(r) < p(s) for r < s,
Theorem 3.3 suggests that we should scale by the /; norm in Algorithm 3.1 because this
scaling leads to a smaller bound for ay. An explicit bound for e, with the [y scaling is not
difficult to obtain because a modification of the proof of Theorem 3.2 shows that El +1is
an H-matrix, and thus p(1) <1 for the /; scaling. Hence, ap < 2.

We tested Algorithm 3.1 with the /; scaling and found that in almost every case, as
suggested by Theorem 3.3, the o for the [norm was not larger than the o for the [
norm. However, we also found that the preconditioner generated by the I; norm did not
perform as well in our numerical results as the preconditioner based on the l3 norm, so we

did not pursue this variation further.

4 Computational Experiments

In our computational experiments we examine the performance of the incomplete Cholesky
factorization defined by Algorithm 3.1 as a function of the memory parameter p. We set
as = 1072 in Algorithm 3.1, but we also experimented with ag = 1076, with little change
in our results.

We selected ten problems for the test set. The first seven problems are from the
Harwell-Boeing sparse matrix collection [12]. The first five matrices are the matrices used by
Jones and Plassmann [25] to test their algorithm. We added besstk18, a large problem from
the besstk set, and 1138bus, the hardest problem in the set of matrices used by Benzi, Meyer,
and Tuma [4] to test their inverse preconditioner. We also selected three matrices that
required an excessive number of conjugate gradient during the solution of an optimization
problem with a truncated Newton method [6]. Matrices jimack and nlmsurf are from the
CUTE collection [5], while dgl2 is from the MINPACK-2 collection [2].

Table 4.1 describes the test set. In this table n is the order of the matrix and nnz
is the number of nonzeros in the lower triangular part of A. The minimal and maximal
eigenvalues in absolute value, min_eig and max_eig, respectively, were computed with the
eigs function in MATLAB. The last column provides additional information on the problem.

All the problems in Table 4.1 are sparse. The densest matrix A is jimack with about
60 elements per row, while the sparsest problem is 1138bus with about 4 elements per row.
The first five problems and the 1138bus problem are relatively well-conditioned. Problems
bcsstk18 and besstk19 are badly conditioned. All three optimization problems are extremely
badly conditioned with condition numbers at least 10° larger than any of the problems from

the Harwell-Boeing collection.

12

Table 4.1: Characteristics of the test matrices

Problem n nnz | min_eig | max_eig | Description

bcsstk08 1074 7017 2.95e3 7.65e10 | TV studio

bcsstk09 1083 9760 7.10e3 | 6.7603e7 | Square plate clamped

bcsstk10 1086 | 11578 85.35 4.47¢7 | Buckling of a hot washer

bcesstk11 1473 | 17857 2.96 6.56e8 | Ore car

bcsstk18 | 11948 | 80519 1.24e-1 4.30e10 | R.E. Ginna Nuclear Power Station
bcsstk19 817 3835 1.43e3 1.92e14 | Part of a suspension bridge
1138bus 1138 2596 3.5e-3 3.01e4 | Power system networks

dgl2 | 10000 | 67500 | 7.22e-12 29.6 | Superconductivity model
jimack 1029 | 31380 | 1.35e-14 760.52 | Nonlinear elasticity problem
nlmsurf 1024 4930 | 6.04e-17 3.16 | Minimal surface

With the exception of the optimization problems dgl2 and jimack, all the problems in
Table 4.1 are positive definite. The smallest eigenvalues of the dgl2 and jimack problems
are, respectively, near —7.2-107'2 and —3.4-107°.

The preconditioned conjugate gradient method is used to solve the system Az = b
where A is the matrix from the test set. For the Harwell-Boeing problems the vector b is
the vector of all ones, while for the optimization problems the vector b is defined by the
optimization application. We started the conjugate gradient method with the zero vector

and stopped the iteration when
|Az —b|| < o|lb]], o=107". (4.1)

If the matrix was indefinite, then the conjugate gradient method was stopped when a
direction of negative curvature (p’ Ap < 0) was encountered. The maximal number of
conjugate gradient iterations allowed was n, the order of the matrix.

The setting of ¢ = 1073 is used in at least one large-scale Newton code [6] but is not
typical of other codes, or in linear algebra applications. We will discuss how our results
change when o is chosen smaller.

The computational experiments were done on a Sun UltraSPARC1-140 workstation
with 128 MB RAM. The incomplete Cholesky factorization and the preconditioned con-
jugate gradient method are written in FORTRAN and linked to MATLAB (version 5.0)
drivers through C subroutines and cmex scripts. We follow the recommendations in [18]
by using -fast, -xO5, -xdepend, -xchip=ultra, -xarch=v8plus, -xsafe=mem, as the compiler
options.

The results of our computational experiments are shown in Figures 4.1 to 4.3. We
present the number of conjugate gradient iterations, the time required for the conjugate
gradient iterations, and the total computational time. In these figures we present results
for p=0,2,5,10; the value p = 0 is of interest because this corresponds to the choice made

by Jones and Plassmann [25]. Instead of presenting the raw numbers, we present the ratios

13

0.7

ratio
°
2

0.3

0.2

O.1

bcgstkOS bcsstkO9 bcsstk10 bcsstk11l bcsstkl8 bcsstkl9 1138bus dgl2 jimack nimsurf

Figure 4.1: Number of conjugate gradient iterates (p=0<,p=20,p=50,p=10,4)

ratio

bcgstkOS bcsstkO9 bcsstk10 bcsstk11l bcsstkl8 bcsstkl9 1138bus dgl2 jimack nimsurf

Figure 4.2: Time for conjugate gradient iterates (p =0, p=20,p=50,p=10,4)

of p > 0 to p = 0. For example, in Figure 4.1, we show the ratio of the number of conjugate
gradient iterations for p > 0 to the number of iterations for p = 0. The appendix contains
the raw data used to obtain Figures 4.1 to 4.3.

Figure 4.1 shows that when p is increased, the number of conjugate gradient iteration
is reduced. The only exception occurs in problem besstkQ9 when p = 5. The reduction in the
number of iterations was expected, but not the sharp dependence on p. In particular, when
p = b, the number of iterations is reduced by at least a factor of 2 for half the problems. We

emphasize that these are reductions over the p = 0 setting, not over an unpreconditioned

14

ratio

bcgstkos bcsstkO9 bcsstk10 bcsstk11l bcsstkl8 bcsstkl9 1138bus dgl2 jimack nimsurf

Figure 4.3: Total computational time (p=0<,p=20,p=50,p=10,4)

algorithm. The p = 5 setting is of interest for these problems because the increase in storage
is only Hn.

Since the number of nonzeros in L increases with p, the cost of each conjugate gradient
iteration also increases. However, as shown in Figure 4.2, the increase is moderate, and the
total time spent on the conjugate gradient method usually decreases. This can also be
seen from the similarities between the plots in Figure 4.2 and Figure 4.1. In other words,
decreases in the number of conjugate gradient iterations are usually matched by decreases
in computing time.

We now consider the total computing time for the conjugate gradient process, which
consists of the time for the conjugate gradient iterates plus the time for the incomplete
Cholesky factorization. The results in Figure 4.3 show a general decrease in computing
time for p > 0, with reductions of at least 50% achieved on six of the problems.

We emphasize that the results in Figure 4.3 are for the relative tolerance ¢ = 1072 in
the termination criterion (4.1). If we use o = 1079, then the number of conjugate gradient
iterations increases, and thus the relative behavior of p > 0 over p = 0 improves because
the computing time for the incomplete Cholesky factorization is then relatively smaller. In
particular, Figures 4.2 and 4.3 look similar when ¢ is smaller. The improvement is most
noticeable for besstk09, the easiest problem in the test set.

The decrease in computational time for an incomplete Cholesky factorization is not
guaranteed. For example, the results of Duff and Meurant [13] comparing a level 1 factor-
ization with a level 0 incomplete Cholesky factorization on grid problem with five-point and
nine-point stencils showed that the extra work in the factorization and in the computation

of the conjugate gradient iterates was greater than the work saved by the reduction (if any)

15

Table 4.2: Value of az in Algorithm 3.1

Preconditioner | p=0 | p=2 | p=5| p=10
bcsstk08 | 0.001 | 0.001 | 0.000 0.000
bcsstk09 | 0.000 | 0.000 | 0.000 0.001
bcsstk10 | 0.008 | 0.000 | 0.000 0.000
bcesstk1l | 0.032 | 0.032 | 0.032 0.016
bcsstk18 | 0.128 | 0.016 | 0.008 0.002
bcsstk19 | 0.002 | 0.001 | 0.000 0.000
1138bus | 0.000 | 0.000 | 0.000 0.000

dgl2 | 0.512 | 0.256 | 0.128 0.064
jimack | 0.004 | 0.004 | 0.002 0.001
nlmsurf | 0.064 | 0.008 | 0.001 0.001

in the number of iterations.

In many applications the computing time for the incomplete Cholesky factorization
is not significant, for example, when the required accuracy in (4.1) is relatively high (for
example, 0 < 107% in a double precision calculation), or when linear systems with several
right hand sides need to be solved. In general, the computing time for the factorization is
likely to be significant only when just a few conjugate gradient iterations are required. Of
course, in this case the total computing time is likely to be low.

The computing time for the incomplete Cholesky factorization depends on p and the
number of iterations required by Algorithm 3.1. If the matrices have positive diagonal
elements, then the number of iterations [is directly related to the final o by the relation
ar = 21720, for [> 1. Thus, the results in Table 4.2 show that in most cases the number
of iterations is small, with the largest number (eleven) of iterations occurring for the dgl2
problem and p = 0.

We have experimented with various strategies to reduce the number of iterations, but
it is not clear that these strategies are needed because the computing time for the incomplete
Cholesky factorization is not a linear function of the number of iterations. Early iterations
of Algorithm 3.1 are likely to require little computing time because the computation of the
factorization will break down at an early pivot.

The computing time for the incomplete Cholesky factorization usually increases as
p increases since additional operations are needed to compute the additional entries in
L. However, the results in Table 4.2 also show that as p increases «p decreases. This
relationship can be explained by noting that the additional memory allows the algorithm
to retain more elements in the factorization, and thus the modification to A can be smaller.
Hence, if p increases, then the computing time for the incomplete Cholesky factorization

may actually decrease. This situation happens with some of our test cases.

16

5 Software Evaluation

We evaluate the incomplete Cholesky factorization of Algorithm 3.1 by comparing our re-
sults with those obtained with the ma31 code [31] in the Harwell subroutine library (release
10) and the choline command of MATLAB (version 5.0). These two codes are repre-
sentative of codes that rely on drop tolerances. Other implementations of the incomplete
Cholesky factorization include the Ajiz and Jennings [1] code (drop tolerances) and the
Meschach [43] and SLAP [40] codes (fixed fill).

The main aim in these computational experiments is to emphasize the difficulty of
choosing appropriate drop tolerances while keeping memory requirements predictable. The
testing environment is the same as described in Section 4, but we now focus on the number
of conjugate gradient iterations and the amount of memory used by the codes.

We do not report computational time, but we note that the time for the conjugate gra-
dient iterations is directly proportional to the memory required for the incomplete Cholesky
factorization because the computing time is determined by the number of operations re-
quired to work with L. Thus, if two algorithms require the same number of conjugate
gradient iterations, then the algorithm with the least amount of memory is almost certainly
the faster algorithm.

Our results are summarized in Tables 5.1 and 5.2. In these tables, icfm(p) refers to
Algorithm 3.1 with a given p. The notation cholinc(g) denotes the MATLAB cholinc with a
drop tolerance of 109. The ma3l subroutine depends on a drop tolerance 7 and a memory
parameter r that specifies the total amount of memory allowed for the factorization. The
notation ma31(q,r) means that ma3l was used with a drop tolerance of 7 = 107 and
r *nnz + 2 * n memory locations to store L, where nnz is the number of nonzero elements
in the lower triangular part of A.

The MATLAB procedure cholinc uses two additional parameters: michol and rdiag. We
specified a standard incomplete Cholesky factorization with the default value for michol. On
the other hand, we set the parameter rdiag to 1, since this specifies that any zeros on the
diagonal of the upper triangular factor are replaced.

Our results clearly show that the performance of ma31 is erratic. The performance of
ma3l is adequate if given a reasonable amount (nnz(L) = 2nnz) of memory. Comparison
of icfm(5) with ma31(-3,2) shows that icfm almost always works better, although icfm uses
less memory than ma31l. The performance of ma31(-1,1) is poor. Comparison of icfm(5)
with ma31(-1,1) shows that icfm always works better and uses less memory than ma31.

The performance of cholinc as a function of the drop tolerance is also erratic. The
performance of cholinc with a drop tolerance of 10~! is poor. The performance improves
considerably if the tolerance is decreased to 1072, but then the memory requirements in-
crease in an unpredictable manner. These results illustrate the difficulty of choosing an

adequate value for the drop tolerance.

17

Table 5.1: Number of conjugate gradient iterations

Preconditioner | icfm(0) | ma31(-1,1) | icfm(5) | ma31(-3,2) | cholinc(-1) | cholinc(-3)
bcsstk08 16 36 9 5 52 14
bcsstk09 24 508 17 84 69 6
besstk10 36 1086* 14 11 1086* 8
besstk11 721 1473* 671 1473* 1473* 1262
besstk18 559 11948* 147 14 4893 54
besstk19 622 817" 21 31 817" 127

1138bus 117 258 23 4 148 31
dgl2 186 10000* 97 10000* 1760 215
Jjimack 133 1029* 93 126 1029* 128
nlmsurf 121 1024* 30 17 168 12

*: exceeds maximal number of iterations

Table 5.2: Memory usage of incomplete Cholesky factorization codes: nnz(L)/nnz

Preconditioner | icfm(0) | ma31(-1,1) | icfm(5) | ma31(-3,2) | cholinc(-1) | cholinc(-3)
bcsstk08 1.00 1.31 1.73 2.31 0.36 2.88
bcsstk09 1.00 1.22 1.55 2.22 0.44 2.32
besstk10 1.00 1.19 1.46 2.19 0.46 1.50
besstk11 1.00 1.16 1.39 2.16 0.46 2.36
besstk18 1.00 1.30 1.56 2.30 0.37 1.92
besstk19 1.00 1.43 2.02 2.43 0.43 1.71

1138bus 1.00 1.88 2.19 2.88 0.95 2.95
dgl2 1.00 1.30 1.74 2.30 0.42 4.52
Jjimack 1.00 1.07 1.16 2.07 0.37 0.86
nlmsurf 1.00 1.42 2.00 2.42 0.69 3.06

The algorithm used by cholinc to compute the incomplete Cholesky factor is unusual.
Given a symmetric matrix A, the procedure cholinc calls the MATLAB procedure luinc
which uses an incomplete LU factorization with pivoting; reference is made to Saad [36].
The rows of the upper triangular matrix U obtained from luinc are scaled by the square
root of the absolute value of the diagonal element in that row, and the scaled matrix is then

the incomplete (upper triangular) Cholesky factor.

Acknowledgments

The work presented in this paper benefitted from interactions with Michele Benzi, Nick
Gould, David Keyes, Margaret Wright, and Zhijun Wu. Paul Plassmann deserves special
credit for sharing his insights into the world of incomplete factorizations. We also thank Gail

Pieper for her careful reading of the manuscript; her comments improved the presentation.

18

A Numerical Results

This appendix presents the data that was used to generate the figures in this paper. The
preconditioner icfm(p) is the incomplete Cholesky factorization specified by Algorithm 3.1,
while the preconditioner icfm2(p) is the version of the incomplete Cholesky, mentioned in
Section 3, in which we update the diagonal elements of the factorization with the largest
elements selected by Algorithm 2.2.

In these tables « is the final o generated by Algorithm 2.2. Thus, the incomplete
Cholesky factorization of A+ apl is computed succesfully. The total time required to
compute the incomplete Cholesky factorization with Algorithm 2.2 is specified by icf-time,
while the time required to compute the incomplete Cholesky factorization of A+ apl is
specified by icf-ap-time. Note that these results show that, as expected, if ay = 0 then
icf-time and icf-az-time are nearly equal.

The number of conjugate gradient iterations required to satisfy (4.1) or to generate
a direction of negative curvature is iter, while the time to compute the conjugate gradient
iterates is specified by cg-time.

The number of nonzeros in the lower triangular part of A is specified by nnz and the

number of nonzeroes in L is nnz(L). Thus, nnz(L) = nnz for p = 0.

Table A.1: bcsstk08

Preconditioner ar | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm(O) 0.001000 16 1.000000 | 0.123291 0.066406 | 0.048096

icfm(2) 0.001000 13 1.291293 | 0.159668 0.078125 | 0.042480

icfm(5) 0.000000 9 1.734217 | 0.085205 0.080566 | 0.033936
icfm(lO) 0.000000 8 2.469289 | 0.107178 0.101562 | 0.035156
icfm2(0) 0.001000 15 1.000000 | 0.108887 0.058594 | 0.045410
icfm2(2) 0.001000 12 1.291293 | 0.135010 0.065674 | 0.039551
icfm2(5) 0.000000 10 1.734787 | 0.080078 0.075439 | 0.037109

)

icfm2(10 0.000000 8 2.469289 | 0.108643 0.103027 | 0.035645

Table A.2: bcsstk09

Preconditioner ar | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm(O) 0.000000 24 1.000000 | 0.023438 0.018555 | 0.088379

icfm(2) 0.000000 14 1.219160 | 0.028564 0.023438 | 0.051270

icfm(5) 0.000000 17 1.549898 | 0.037842 0.031982 | 0.076416
icfm(lO) 0.001000 7 2.091803 | 0.099365 0.047852 | 0.036377
icfm2(0) 0.000000 24 1.000000 | 0.023193 0.018555 | 0.083740
icfm2(2) 0.000000 14 1.219160 | 0.028320 0.023193 | 0.052002
icfm2(5) 0.000000 17 1.550205 | 0.037842 0.031982 | 0.075439

)

icfm2(10 0.001000 7 2.091803 | 0.104004 0.048096 | 0.034424

19

Table A.3: bcsstk10

Preconditioner ar | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm() 0.008000 36 1.000000 | 0.039551 0.022949 | 0.140625
icfm() 0.000000 16 1.185438 | 0.032471 0.026367 | 0.069580
icfm(5) 0.000000 14 1.460874 | 0.037598 0.031250 | 0.064453
icfm(0) 0.000000 5 1.757644 | 0.051270 0.043945 | 0.025391
icfm2(0) 0.008000 33 1.000000 | 0.038086 0.021729 | 0.138672
icfm2(2) 0.000000 18 1.185438 | 0.031982 0.025879 | 0.077393
icfm2(5) 0.000000 13 1.460874 | 0.038086 0.031738 | 0.061035
|Cfm2(10) 0.000000 5 1.757644 | 0.050537 0.043457 | 0.025391
Table A.4: besstk11
Preconditioner arp | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
Icfm() 0.032000 | 721 1.000000 | 0.081543 0.040039 | 4.268799
Icfm() 0.032000 | 692 1.156801 | 0.119385 0.046875 | 4.569824
|Cfm(5) 0.032000 | 671 1.390491 | 0.191406 0.056885 | 4.809082
Icfm(0) 0.016000 | 534 1.775326 | 0.262695 0.086182 | 4.238525
|Cfm2(0) 0.032000 | 701 1.000000 | 0.102783 0.040039 | 4.252686
|Cfm2(2) 0.032000 | 684 1.156801 | 0.133057 0.047119 | 4.388672
|Cfm2(5) 0.016000 | 632 1.390211 | 0.132812 0.056396 | 4.432373
|Cfm2(10) 0.016000 | 494 1.775270 | 0.254883 0.085205 | 4.038330
Table A.5: besstk18
Preconditioner ar | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm() 0.128000 | 559 1.000000 | 0.497803 0.185303 | 24.370850
icfm() 0.016000 | 232 1.228232 | 0.511475 0.228516 | 10.854248
icfm(5) 0.008000 | 147 1.564972 | 0.735352 0.302979 7.636230
icfm(0) 0.002000 79 2.106472 | 0.853271 0.461670 4.673340
icfm2(0) 0.128000 | 530 1.000000 | 0.515137 0.179932 | 23.219727
icfm2(2) 0.016000 | 223 1.228195 | 0.510498 0.229004 | 10.510010
icfm2(5) 0.008000 | 147 1.564972 | 0.779053 0.295898 7.587402
|Cfm2(10) 0.002000 79 2.106521 | 0.841797 0.448242 4.611572
Table A.6: besstk19
Preconditioner arp | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm() 0.002000 | 622 1.000000 | 0.017334 0.006104 | 1.145508
icfm() 0.001000 | 374 1.406258 | 0.020752 0.008789 | 0.768555
icfm(5) 0.000000 21 2.019035 | 0.016602 0.013672 | 0.050781
icfm(0) 0.000000 18 2.974967 | 0.024902 0.021729 | 0.050537
icfm2(0) 0.001000 | 450 1.000000 | 0.011230 0.006592 | 0.824707
icfm2(2) 0.000000 27 1.408344 | 0.011230 0.009033 | 0.054688
icfm2(5) 0.000000 21 2.019035 | 0.015869 0.012939 | 0.049316
|Cfm2(10) 0.000000 17 2.974967 | 0.024902 0.021484 | 0.043945

20

Table A.7: 1138bus

Preconditioner arp | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
Icfm() 0.000000 | 117 1.000000 | 0.005859 0.003906 | 0.221436

Icfm() 0.000000 43 1.508089 | 0.009277 0.007080 | 0.087891
|Cfm(5) 0.000000 23 2.190293 | 0.012695 0.010254 | 0.054932

Icfm(0) 0.000000 13 3.280046 | 0.017822 0.014648 | 0.035400
|Cfm2(0) 0.000000 93 1.000000 | 0.006104 0.004150 | 0.172119
|Cfm2(2) 0.000000 42 1.508089 | 0.008301 0.006104 | 0.089844
|Cfm2(5) 0.000000 23 2.190293 | 0.011719 0.009521 | 0.053223
|Cfm2(10) 0.000000 13 3.280046 | 0.020264 0.017334 | 0.035889

Table A.8: dgl2

Preconditioner arp | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm() 0.512000 | 186 1.000000 | 1.875488 0.171875 | 6.986572

icfm() 0.256000 | 133 1.294385 | 2.144043 0.235352 | 5.389893
icfm(5) 0.128000 97 1.737881 | 2.441650 0.313721 | 4.324463

icfm(0) 0.064000 71 2.480296 | 3.433350 0.519775 | 3.807373
icfm2(0) 0.256000 | 160 1.000000 | 1.678223 0.171875 | 5.860596
icfm2(2) 0.128000 | 110 1.294148 | 1.906006 0.221924 | 4.374023
icfm2(5) 0.128000 97 1.737881 | 2.391602 0.300293 | 4.283203
|Cfm2(10) 0.064000 71 2.480296 | 3.350342 0.501953 | 3.799805

Table A.9: jimack

Preconditioner arp | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm() 0.004000 | 133 1.000000 | 0.444580 0.135254 | 1.157227

icfm() 0.004000 | 131 1.064818 | 0.466309 0.140869 | 1.189697
icfm(5) 0.002000 93 1.161855 | 0.372314 0.160889 | 0.873291

icfm(0) 0.001000 64 1.322849 | 0.243408 0.190918 | 0.650146
icfm2(0) 0.004000 | 129 1.000000 | 0.416504 0.125732 | 1.099121
icfm2(2) 0.004000 | 130 1.064818 | 0.480225 0.143799 | 1.169678
icfm2(5) 0.002000 95 1.161855 | 0.356689 0.153809 | 0.882812
|Cfm2(10) 0.001000 65 1.322849 | 0.238525 0.185791 | 0.695312

Table A.10: nlmsurf

Preconditioner arp | iter | nnz(L)/nnz icf-time | icf-ap-time cg-time
icfm() 0.064000 | 121 1.000000 | 0.029785 0.008301 | 0.288086

icfm() 0.008000 64 1.404057 | 0.067139 0.013428 | 0.181641
icfm(5) 0.001000 30 1.998986 | 0.039062 0.017334 | 0.085205

icfm(0) 0.001000 24 2.973022 | 0.060059 0.027344 | 0.087158
icfm2(0) 0.032000 | 118 1.000000 | 0.027588 0.008057 | 0.271729
icfm2(2) 0.004000 68 1.403043 | 0.050781 0.011230 | 0.184814
icfm2(5) 0.001000 30 1.998580 | 0.039551 0.017578 | 0.087646
|Cfm2(10) 0.001000 24 2.973428 | 0.060059 0.027588 | 0.087646

21

References

[1]

[2]

[13]

M. A. AJiz AND A. JENNINGS, A robust incomplete Cholesky-conjugate gradient al-
gorithm, Int. J. Num. Meth. Eng., 20 (1984), pp. 949-966.

B. M. AvERrICK, R. G. CARTER, J. J. MoRE, aAND G.-L. XUE, The MINPACK-2
test problem collection, Preprint MCS-P153-0694, Mathematics and Computer Science
Division, Argonne National Laboratory, 1992.

O. AXELSSON, [lterative Solution Methods, Cambridge Univeristy Press, 1994.

M. Benzi, C. D. MEYER, AND M. TUMA, A sparse approzimate inverse precondi-
tioner for the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135~
1149.

I. BonGgarTz, A. R. Conn, N. I. M. GourLp, anp P. L. Toint, CUTE: Con-
strained and Unconstrained Testing Fnvironment, ACM Trans. Math. Software, 21
(1995), pp. 123-160.

A. BouaRricHA, J. J. MORE, AND Z. WU, Newton’s method for large-scale optimiza-
tion, Preprint MCS-P635-0197, Argonne National Laboratory, Argonne, Illinois, 1997.

E. CARR, Preconditioning and performance issues for the solution of ill-conditioned
three-dimensional structural analysis problems, Master’s thesis, Department of Com-

puter Science, University of Waterloo, Waterloo, Ontario, Canada, 1997.

S. H. CHENG AND N. J. HicHAM, A modified Cholesky algorithm based on a symmetric

indefinite factorization, Numerical Analysis Report No. 289, University of Manchester,
Manchester M13 9PL, England, April 1996.

A. R. Conn, N. I. M. GouLp, aND P. L. ToinT, LANCELQOT, Springer Series in
Computational Mathematics, Springer-Verlag, 1992.

E. F. D’Azevepo, P. A. ForsyTH, AND W. P. TaNG, Towards a cost effective ILU
preconditioner with high level fill, BIT, 31 (1992), pp. 442-463.

J. K. DickINsON AND P. A. FORSYTH, Preconditioned conjugate gradient methods for
three-dimensional linear elasticity, Int. J. Num. Meth. Eng., 37 (1994), pp. 2211-2234.

I. S. Durr, R. GriMEs, J. LeEwis, AND B. PooLE, Sparse matriz test prob-
lems, ACM Trans. Math. Softw., 15 (1989), pp. 1-14. Currently available in
http://math.nist.gov/MatrixMarket.

[. 5. Durr aND G. A. MEURANT, The effect of ordering on preconditioned conjugate
gradients, BIT, 29 (1989), pp. 635-657.

22

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

V. ELUKHOUT, Analysis of parallel incomplete point factorizations, Linear Algebra and
its Application, 154-156 (1991), pp. 723-740.

A. ForsGREN, P. E. GILL, AND W. MURRAY, Computing modified Newton directions
using a partial Cholesky factorization, SIAM J. Sci. Comput., 16 (1995), pp. 139-150.

P. E. GiLL, W. MURRAY, D. B. PONCELEON, AND M. A. SAUNDERS, Preconditioners
for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 292-311.

P. E. GiLL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization, Academic
Press, 1981.

K. GOEBEL, Getting more out of your new UltraSPARCTM machine, Sun Developer
News, 1 (1996).

I. GUSTAFSsON, A class of first order factorization methods, BIT, 18 (1978), pp. 142
156.

——, Modified incomplete Cholesky (MIC) methods, in Preconditioning Methods: The-
ory and Applications, D. Evans, ed., Gordon and Breach, 1983, pp. 265-293.

—, A class of preconditioned conjugate gradient methods applied to the finite element
equations, in Preconditioning Conjugate Gradient Methods, O. Axelsson and L. Y.
Koltilina, eds., Springer-Verlag, 1990, pp. 44-57.

W. HAcKBUSCH, [terative Solution of Large Sparse Systems of FEquations, Applied
Mathematical Sciences 95, Springer-Verlag, 1994.

I. HLaDiK, M. B. REED, AND G. SWOBODA, Robust preconditioners for linear elas-
ticity FEM analysis, Int. J. Num. Meth. Eng., 40 (1997), pp. 2109-2117.

A. JENNINGS AND G. M. MALIK, Partial elimination, J. Inst. Maths. Appl., 20 (1977),
pp. 307-316.

M. T. JoNEs AND P. E. PLASSMANN, An improved incomplete Cholesky factorization,
ACM Trans. Math. Software, 21 (1995), pp. 5-17.

T. A. MANTEUFFEL, Shifted incomplete Cholesky factorization, in Sparse Matrix Pro-
ceedings, SIAM, Philadelphia, 1979, pp. 41-61.

[27] ——, An incomplete factorization technique for positive definite linear systems, Math.

Comp., 34 (1980), pp. 307-327.

23

[28]

[29]

J. A. MEUERINK AND H. A. VAN DER VORST, An iterative solution method for

linear equations systems of which the coefficient matriz is a symmetric M-matriz, Math.
Comp., 31 (1977), pp. 148-162.

——, Guidelines for the usage of incomplete decompositions in solving sets of linear

equations as they occur in practical problems, J. Comput. Phys., 44 (1981), pp. 134-155.

J. J. MorE AND D. C. SoRENSEN, Computing a trust region step, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 553-572.

N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by preconditioned
conjugate gradients, ACM Trans. Math. Software, 6 (1980), pp. 206-219.

A. NEUMAIER, On satlisfying second-order optimality conditions using modified

cholesky factorizations, Technical Report, Universitat Wien, Vienna, Austria, 1997.

J. M. ORTECA, Introduction to Parallel and Vector Solution of Linear Systems, Plenum
Press, New York, 1988.

F. RENDEL AND H. WoLKOWICZ, A semidefinite framework for trust region subprob-
lems with applications to large scale minimization, Math. Programming, 77 (1997),
pp- 273-299.

Y. SAAD, ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra
Appl., 4 (1994), pp. 387-402.

—, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
1996.

S. A. SANTOS AND D. C. SORENSEN, A new matriz-free algorithm for the large-scale
trust-region subproblem, Technical Report TR95-20, Rice University, Houston, Texas,
1995.

T. ScHLICK, Modified Cholesky factorizations for sparse preconditioners, SIAM J. Sci.
Comput., 14 (1993), pp. 424-445.

R. B. ScHNABEL AND E. Eskow, A new modified Cholesky factorization, STAM J.
Sci. Statist. Comput., 11 (1990), pp. 1136-1158.

M. K. SEACGER, A SLAP for the Masses, Technical Report UCRL-100267, Lawrence

Livermore National Laboratory, Livermore, California, December 1988.

D. C. SORENSEN, Minimization of a large scale quadratic function subject to a spherical
constraint, SIAM J. Optimization, 7 (1997), pp. 141-161.

24

[42] T. STtEIHAUG, The conjugate gradient method and trust regions in large scale optimiza-
tion, SIAM J. Numer. Anal., 20 (1983), pp. 626-637.

[43] D. E. STEWART AND Z. LEYK, Meschach : Matriz computations in C, vol. 32 of
Proceedings of the Center of Mathematics and Its Application, Austrian National Uni-
versity, 1994.

[44] D. P. Young, R. MELVIN, F. T. Jounson, J. E. BUSSOLETTI, AND S. S. SAMANT,
Application of sparse matriz solvers as effective preconditioners, SIAM J. Sci. Comput.,
10 (1989), pp. 1186-1199.

25

