
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
INCOMPLETE CHOLESKY FACTORIZATIONS WITH LIMITEDMEMORYChih-Jen Lin and Jorge J. Mor�eMathematics and Computer Science DivisionPreprint MCS-P682-0897August 1997

This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. De-partment of Energy, under Contract W-31-109-Eng-38.

Incomplete Cholesky Factorizations with Limited MemoryChih-Jen Lin and Jorge J. Mor�eAbstractWe propose an incomplete Cholesky factorization for the solution of large-scale trustregion subproblems and positive de�nite systems of linear equations. This factorizationdepends on a parameter p that speci�es the amount of additional memory (in multiplesof n, the dimension of the problem) that is available; there is no need to specify a droptolerance. Our numerical results show that the number of conjugate gradient iterationsand the computing time are reduced dramatically for small values of p. We also showthat in contrast with drop tolerance strategies, the new approach is more stable in termsof number of iterations and memory requirements.1 IntroductionThe incomplete Cholesky factorization is a fundamental tool in the solution of large systemsof linear equations, but its use in the solution of large optimization problems remainslargely unexplored. The main reason for this neglect is that the linear systems that arisein optimization problems are not guaranteed to be positive de�nite, while the incompleteCholesky factorization was designed for solving positive de�nite systems. Another reason isthat implementations of the incomplete Cholesky factorization often rely on drop tolerancesto reduce �ll, a strategy with unpredictable behavior. From an optimization viewpoint, wedesire a factorization with good performance and predictable memory requirements.We explore the use of the incomplete Cholesky factorization in the solution of the trustregion subproblem min�gTw + 12wTBw : kDwk2 � �	 ; (1.1)where � is the trust region radius, g 2 IRn is the gradient of the function at the currentiterate, B 2 IRn�n is an approximation to the Hessian matrix, and D 2 IRn�n is a nonsin-gular scaling matrix. Our techniques are applicable, in particular, to the case where thesolution of (1.1) requires solving the positive de�nite system of linear equations Bw = �g.A considerable amount of literature is associated with problem (1.1). In particular, wemention that there are algorithms that determine the global solution of (1.1) by solving asequence of linear systems of the form (B+�kDTD)w = �g for some sequence f�kg. Thesealgorithms obtain the global minimum of (1.1) even if B is inde�nite. See, for example, thealgorithm of Mor�e and Sorensen [30].This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 1

In many large-scale problems, time and memory constraints do not permit a direct fac-torization, and we must then use an iterative scheme. Rendel and Wolkowicz [34], Sorensen[41], and Santos and Sorensen [37] have recently proposed iterative algorithms that re-quire only matrix-vector operations to determine the global minimum of (1.1), but thesealgorithms do not use preconditioning and thus are unlikely to perform well on di�cultproblems. An interesting approach, based on the work of Steihaug [42], is to use a pre-conditioned conjugate gradient method, with suitable modi�cations that take into accountthe trust region constraint and the possible inde�niteness of B to determine an approx-imate solution of (1.1). In the implementation of a truncated Newton method proposedby Bouaricha, Mor�e and Wu [6], the ellipsoidal trust region is transformed into a sphericaltrust region, and then the conjugate gradient method is applied to the transformed problemminnbgTw + 12wT bBw : kwk2 � �o ; (1.2)where bg = D�T g; bB = D�TBD�1:Given an approximate solution w of (1.2), the corresponding solution of (1.1) is D�1w.As suggested in [6], we can use an incomplete Cholesky factorization to generate ascaling matrix D that clusters the eigenvalues of bB. This is a desirable goal because thenthe conjugate gradient method is able to solve (1.2) in a few iterations.The clustering properties of the incomplete Cholesky factorization depend, in part, onthe sparsity pattern S of the incomplete Cholesky factor L. Given S, the incompleteCholesky factor is a lower triangular matrix L such thatB = LLT +R; lij = 0 if (i; j) =2 S; rij = 0 if (i; j) 2 S:We want to choose the sparsity pattern S so that L�1BL�T has clustered eigenvalues. Thisis certainly the case if R = 0, and tends to happen for reasonable choices of S.If clustering occurs, then the choice in [6] of D = LT as the scaling matrix is reasonable.Unfortunately, it is not clear how to choose the sparsity pattern S so that L�1BL�T hasclustered eigenvalues. In an optimization application it seems reasonable to avoid imple-mentations that choose S statically, independent of the numerical entries of B, for example,choosing S as the sparsity pattern of B.In the implementation of a truncated trust region Newton method in [6], the precondi-tioner proposed by Jones and Plassmann [25] was chosen because this preconditioner has anumber of advantages:The sparsity pattern S depends on the numerical entries of the matrix.The memory requirements of the incomplete Cholesky factorization are predictable.No drop tolerance is required. 2

Although the performance of this preconditioner was generally satisfactory, poor perfor-mance was observed on di�cult optimization problems. Performance was particularly pooron problems that were nearly singular, either positive de�nite or inde�nite.We propose an incomplete Cholesky factorization for general symmetric matrices withthe best features of the Jones and Plassmann factorization, and with the ability to use ad-ditional memory to improve performance. In Section 2 we contrast the proposed incompleteCholesky factorization with other approaches, in particular, the �xed �ll factorization ofMeijerink and van der Vorst [28], the ILUT factorization of Saad [35, 36], the drop tolerancestrategy of Munksgaard [31], and the factorization proposed by Jones and Plassmann [25].For additional information on incomplete Cholesky factorizations, see Axelsson [3] and Saad[36].Section 3 extends the incomplete Cholesky factorization of Section 2 to inde�nite ma-trices. Two main issues arise: scaling the matrix and modifying the matrix so that thefactorization is possible. We use a symmetric scaling of the matrix and Manteu�el's [27]shifted approach. We prove that the incomplete Cholesky factorization exists for H-matriceswith positive diagonal elements, and we establish bounds for the number of iterations re-quired to compute the factorization. We also study how the shift depends on the scaling ofthe matrix.Modi�cations to the Cholesky factorization in the presence of inde�niteness have re-ceived considerable attention in the optimization literature. The main approaches are dueto Gill, Murray, and Wright [17, Section 4.4.2.2] and Schnabel and Eskow [39]. Recent workin this area includes Forsgren, Gill, and Murray [15], Cheng and Higham [8], and Neumaier[32]. These approaches can be extended to sparse problems (see, for example, [9, Section3.3.8], [16], [38], and [8]) but only if all the elements in the factorization are retained. Thus,these approaches lose the advantage of having predictable storage requirements.Section 4 presents the results of our computational experiments. We test an implementa-tion icfm of the proposed incomplete Cholesky factorization on a set of ten problems. Threeof these problems arise in large-scale optimization problems; all are highly ill-conditioned,and two of them are inde�nite. We study the performance of the incomplete Choleskyfactorization as the memory parameter p changes, and show that performance improvessigni�cantly for small values of p > 0.In Section 5 we compare the icfm implementation with two incomplete Cholesky factor-izations that rely on drop tolerances to reduce �ll. We use the ma31 code of Munksgaard[31] and the cholinc command of MATLAB (version 5.0). Our conclusion from this com-parison is that the performance of codes based on drop tolerances is unpredictable, whilethe icfm code performs well in all cases. 3

2 Incomplete Cholesky FactorizationsGiven a symmetric matrix A and a symmetric sparsity pattern S, an incomplete Choleskyfactor of A is a lower triangular matrix L such thatA = LLT +R; lij = 0 if (i; j) =2 S; rij = 0 if (i; j) 2 S:In this section we propose an incomplete Cholesky factorization that combines the bestfeatures of the Jones and Plassmann [25] factorization and the ILUT factorization of Saad[35, 36]. We also compare this approach with other approaches used to compute incompleteCholesky factorizations.Fixed �ll strategies �x the nonzero structure of the incomplete factor prior to the factor-ization. Meijerink and van der Vorst [28] considered two choices of S, the standard settingof S to the sparsity pattern of A, and a setting that allowed more �ll. Many variations arepossible. For example, we could de�ne S so that L is a banded matrix with predeterminedbandwidth. These strategies have predictable memory requirements but are independent ofthe entries of A because the dropped elements depend only on the structure of A.Gustafson [19] introduced a level k factorization where the sparsity pattern Sk is de�nedby setting S0 to be the sparsity pattern of A, and de�ningSk+1 = Sk [Rk;where Rk is the sparsity pattern of LkLTk . A disadvantage of this approach is that thefactorizations are independent of the entries of A. Symbolic factorizations techniques canbe used to determine the memory requirements, but the required memory can increasequickly since the number of nonzeroes in Lk+1 can be signi�cantly larger than those in Lk.Guidelines for the use of these factorizations and descriptions of several implementationscan be found in [10, 29, 44].Drop-tolerance strategies have the advantage that they depend on the entries of A. Inthese strategies nonzeros are included in the incomplete factor if they are larger than somethreshold parameter. For example, Munksgaard [31] drops a(k)ij during the kth step ifja(k)ij j � �qa(k)ii a(k)jj ;where � is the drop tolerance. A disadvantage of drop tolerance strategies is that theirmemory requirements depend in an unpredictable manner on the drop tolerance. In partic-ular, it is not generally possible to determine � so that the memory requirements of L arewithin speci�ed bounds. If � is large, then L will have few nonzero elements but will alsotend to be a poor preconditioner.The strategies described above have unpredictable memory requirements, or the factor-ization is independent of the entries of A. Jones and Plassmann [25] proposed an incomplete4

Cholesky factorization that avoids these requirements. In their approach the incompleteCholesky factor retains the lk largest elements in the lower triangular part of the kth col-umn of L, where lk is the number of elements in the kth column of the lower triangular partof A.Another approach that has predictable storage requirements and depends on the entriesof A is the ILUT factorization of Saad [35, 36]. The ILUT factorization of a general matrixA depends on a memory parameter p and on a drop tolerance � . The drop tolerance isused to drop all elements in L and U smaller than �k, where �k is de�ned as the productof � times the l2 norm of the kth row of A. The ILUT factorization (August 1996 version)retains the p largest elements in magnitude in each row of L and U .The ILUT factorization ignores any symmetry in the matrix A. Even if A is symmetric,the sparsity patterns of L and UT are di�erent. In particular, the product LU produced byILUT is unlikely to be symmetric for a symmetric matrix A.There are several variations of the approaches that we have presented. In particular,in the modi�ed incomplete Cholesky factorization of Gustafsson [19], dropped elementsare added to the diagonal entries of the column. With this modi�cation Re = 0, wheree is the vector of all ones. For additional information on modi�ed incomplete Choleskyfactorizations, see Gustafsson [20, 21], Hackbusch [22], and Saad [36].Other variations arise from the way that the matrix is scaled or from the method usedto deal with breakdowns. Note, in particular, that the incomplete Cholesky factorizationmay fail for a general positive de�nite matrix; success is guaranteed if A is an H-matrixwith positive diagonal elements. We discuss these issues in the next section.We propose an incomplete Cholesky factorization with the best features of the Jonesand Plassmann factorization and the ILUT factorization of Saad. We retain the lk + plargest elements in the lower triangular part of the kth column of L, but unlike the ILUTapproach with � > 0, we do not delete any elements on the basis of size; memory is theonly criterion for dropping elements. We will show that the use of additional memory oftenimproves performance dramatically.Our implementation of the incomplete Cholesky factorization is based on the jki versionof the Cholesky factorization shown in Algorithm 2.1. This factorization is in place with thejth column of L overwriting the jth column of A. Note that diagonal elements are updatedas the factorization proceeds. For an extensive discussion of other forms of the Choleskyfactorization for dense matrices, see Ortega [33].Algorithm 2.2 outlines the incomplete Cholesky factorization with limited memory. Anadvantange of implementations of Algorithm 2.2 is that, unlike factorizations based on droptolerances, they require no dynamic memory management. This advantage translates intosuperior performance. Our implementation follows the Jones and Plassmann [25] implemen-tation. The main implementation issues are the data structures needed to update aij by5

for j = 1:na(j,j) = sqrt(a(j,j))for k = 1:j-1for i = j+1:na(i,j) = a(i,j) - a(i,k)*a(j,k)endendfor i =j+1:na(i,j) = a(i,j)/a(j,j)a(i,i) = a(i,i) - a(i,j)^2endend Algorithm 2.1: Cholesky factorizationaij�aikajk by sparse operations that refer only to nonzero elements, and the algorithm usedto select the largest elements in the current column. We plan to discuss implementationissues elsewhere.for j = 1:na(j,j) = sqrt(a(j,j))col_len = size(i�j:a(i,j) 6= 0)for k = 1:j-1 & a(j,k) 6= 0for i = j+1:n & a(i,k) 6= 0a(i,j) = a(i,j) - a(i,k)*a(j,k)endendfor i = j+1:n & a(i,j) 6= 0a(i,j) = a(i,j)/a(j,j)a(i,i) = a(i,i) - a(i,j)^2endFind largest col_len + p elements in a(:,j) and store.end Algorithm 2.2: Incomplete Cholesky factorizationIn our discussion we have ignored the role played by the ordering in the matrix. Thisis an important issue since the ordering of the matrix a�ects the �ll in the matrix, and thusthe incomplete Cholesky factorization. In particular, Du� and Meurant [13] and Eijkhout[14] have shown that the number of conjugate gradient iterations can double if the minimumdegree ordering is used to reorder the matrix. However, we note that these studies weredone with �xed �ll incomplete Cholesky factorizations, and thus it is not clear that thesame conclusion holds for limited memory preconditioners.6

3 Scaling and ShiftingThe performance of the incomplete Cholesky factorization outlined in Algorithm 2.2 de-pends on the strategy used to scale the matrix since this a�ects the choice of the largestelements that are retained during the factorization. Algorithm 2.2 must also be modi�edto handle general positive de�nite matrices and the inde�nite matrices that invariably arisein optimization applications. Both of these issues are covered in this section.Algorithm 2.2 fails if a negative diagonal element is encountered. The standard solutionfor this problem is to increase the size of the elements in the diagonal until a satisfactoryfactorization is obtained. A common strategy is to increase any nonpositive pivot to apositive threshold as the factorization proceeds. This strategy must be done with care. Forexample, consider the matrixA = 24 1 1 01 1 20 2 1 35 ; 1; 2 2 (0; 1):A computation shows that after the �rst two steps of Algorithm 2.1 we obtain the lowertriangular matrix 24 11 �10 �2 1� �2235 ; �1 =q1� 21 ; �2 = 2�1 :Thus, to compute the Cholesky factorization we would need to add at least �22 � 1 to the(3; 3) diagonal element, a perturbation that is unbounded as 1 approaches 1. On the otherhand, the Cholesky factorization of A+�I succeeds for a small perturbation � > 0. Indeed,as 1 approaches 1, the matrix A approaches241 1 01 1 20 2 1 35 ;which has a unit eigenvalue, and for 2 2 [0; 0:1], two eigenvalues near 2 and �1222 . Thusthe Cholesky factorization of A+ �I , where � > 22 , succeeds.The example above clearly shows that we need to modify the diagonal elements beforewe encounter a negative pivot. This observation has led to several proposed modi�cations tothe Cholesky factorization of the form A+E, with E a diagonal matrix. See, for example,[17, 39, 38, 15, 32]. These approaches are applicable to general inde�nite matrices butonly if all the elements in the factorization are retained. Thus, the advantage of havingpredictable storage requirements is lost.There have been several proposed modi�cations to the incomplete Cholesky factor-ization that are applicable to general positive de�nite matrices. The shifted incomplete7

Cholesky factorization of Manteu�el [26, 27] for the scaled matrixbA = D�1=2AD�1=2; D = diag(aii); (3.1)requires the computation of a suitable � � 0 for which the incomplete Cholesky factorizationof bA+ �I succeeds. Manteu�el used a �xed �ll factorization and showed that if bA + �I isan H-matrix, then the incomplete Cholesky factorization of bA+ �I succeeds. However, hedid not recommend a procedure for determining a suitable �.There have also been proposed modi�cations of the form A + E, with E a diagonalmatrix. Jennings and Malik [24] proposed settinga(k)ii = a(k)ii + �ja(k)ij j; a(k)jj = a(k)jj + 1� ja(k)ij j;if a(k)ij is dropped during the kth pivot step, and proved that if the original matrix Ais positive de�nite, then this modi�cation guarantees that the incomplete factorizationsucceeds for any � > 0. Dickinson and Forsyth [11] reported that � = 1 is generallyan overestimate and that the shifted incomplete Cholesky factorization was preferable forelasticity analysis problems. Hlad��k, Reed, and Swoboda [23] suggested using a parameter! 2 [0; 1] with a(k)ii = a(k)ii + !ja(k)ij j; a(k)jj = a(k)jj + !ja(k)ij j;and used a search procedure to determine an appropriate !. Carr [7] tested a variation ofthis approach with an incomplete LU factorization and a drop tolerance strategy. He showedthat this approach was competitive with the shifted incomplete Cholesky factorization onthree-dimensional structure analysis problems.Algorithm 3.1 speci�es our strategy in detail. Note, in particular, that we scale theinitial matrix by the l2 norm of the columns of A; if A has zero columns we can just applythe algorithm to the submatrix with nonzero columns.Jones and Plassmann [25] used a similar approach for positive de�nite matrices butwith p = 0 in Algorithm 3.1. In their approach the matrix A is scaled as in (3.1), and �F isgenerated by starting with �0 = 0, and incrementing �k by a constant (10�2). The scalingused in (3.1) needs to be modi�ed for general inde�nite matrices since it is not de�ned ifA has negative diagonal elements, and is almost certain to produce a badly scaled matrixif A has small positive diagonal entries. We also note that the strategy of incrementing �kby a constant is not likely to be e�cient in general.An early version of Bouaricha, Mor�e, and Wu [6] used Algorithm 3.1 with �0 = �Sif min(aii) � 0 and �S = 12k bAk1. This strategy leads to termination in at most twoiterations, (since bA2 is diagonally dominant), but also tends to generate a large �F , andthus an incomplete Cholesky factorization that is a poor preconditioner.8

Choose �S > 0 and p � 0.Compute bA = D�1=2AD�1=2 where D = diag(kAeik2).Set �0 = 0 if min(baii) > 0; otherwise �0 = �min(baii) + �S .For k = 0; 1; : : : ;Use Algorithm 2.2 on bAk = bA + �kI ; if successful set �F = �k and exit.Set �k+1 = max(2�k; �S)Algorithm 3.1: Incomplete Cholesky factorization icfm for general matricesThe choice of �0 = 0 is certainly reasonable if A is positive de�nite or, more generally,if A has positive diagonal elements. A reasonable initial choice for �0 is not clear if A is aninde�nite matrix, but our choice of �0 guarantees that bA0 has positive diagonal elements.The choice of �S should be related to the smallest eigenvalue of the submatrix of bAde�ned by S, but this information is not readily available. Note that �S is the smallestpositive perturbation to a positive semide�nite bA, and thus the setting of �S = 10�3 usedin our numerical results is reasonable. We also experimented with �S = 10�6 and obtainedsimilar results. The main disadvantage of choosing a small �S is that Algorithm 3.1 mayrequire a large number of iterations. We discuss this issue in Section 4.We now show that the incomplete Cholesky factorization de�ned by Algorithm 2.2exists when A is an H-matrix. Recall that A 2 IRn�n is an H-matrix if the associatedmatrix M(A) = � jaij j; if i = j;�jaij j; if i 6= j;is an M-matrix, that is, the inverse of M(A) is a nonnegative matrix. In the result belowwe will also need to know that a matrix A in IRn�n with aij � 0 for i 6= j is an M-matrixif and only if there is an x > 0 in IRn such that Ax > 0. This result shows, in particular,that any strictly diagonally dominant matrix is an H-matrix.Maijerink and van der Vorst [28] proved that if A is an M-matrix, then the incompleteLU (Cholesky) factorization exists for any predetermined sparsity pattern S, and Manteu�el[27] extended this result to H-matrices with positive diagonal elements. These results donot apply to Algorithm 2.2, however, because the sparsity pattern S is determined duringthe factorization.The key to proving existence is the observation that each stage of the incompleteCholesky factorization can be viewed as factoring a matrix of the formA = �� vTv B � ; (3.2)deleting some entries in v, and performing the Cholesky decomposition of A to obtain theSchur complement B � 1�wwT ; (3.3)9

where w is the vector obtained by deleting entries in v. This factorization would agree withthe factorization produced by Algorithm 2.2 if we used only the elements in w to updatethe diagonal elements; instead we use all the elements in v. Hence, the �nal matrix isB � 1� �wwT + diagf(v � w)2g� ; (3.4)where diagf(v�w)2g is the diagonal matrix with entries (vi �wi)2. Since wi 2 f0; vig, thediagonal elements of (3.4) agree with the diagonal elements of the Schur complement of theoriginal matrix (3.2).Both versions of Algorithm 2.2 are of interest. The version based on (3.3) has largerdiagonal elements, and thus decreases the chances of obtaining a negative pivot when theother columns are processed. The version based on (3.4) is the incomplete Cholesky fac-torization proposed by Jones and Plassmann. The numerical results in the appendix showthat the version based on (3.3) has superior performance.Existence of the incomplete Cholesky factorization for M-matrices uses the fact thatif A is an M-matrix, then the Schur complement is also an M-matrix. We also need toknow that if A is an M-matrix, B has nonpositive o�-diagonal elements, and A � Bcomponentwise, then B is also an M-matrix. This result is a direct consequence of thecharacterization of M-matrices as those matrices with nonpositive o�-diagonal entries suchthat Ax > 0 for some x > 0. Axelsson [3, Section 6.1] has proofs of these results, aswell as additional information on M-matrices. The proof that the incomplete Choleskyfactorization exists for M-matrices follows from these results by noting thatB � 1�vvT � B � 1� �wwT + diagf(v � w)2g�for any vector w with wi 2 f0; vig, and that the Schur complement B � (1=�)vvT of theM-matrix (3.2) is also an M-matrix. The proof of the existence of the incomplete Choleskyfactorization for H-matrices is similar.Theorem 3.1 If A 2 IRn�n is a symmetric H-matrix with positive diagonal entries, thenAlgorithm 2.2 computes an incomplete Cholesky decomposition.Proof. If the matrix A de�ned by (3.2) is an H-matrix, thenM(A) = � � �jvjT�jvj M(B)�is also an M-matrix, and thus the Schur complement M(B)� (1=�)jvjjvjT is an M-matrix.We complete the proof by noting that the inequality,M(B)� 1� jvjjvjT �M�B � 1� �wwT + diagf(v � w)2g�� ;10

valid for wi 2 f0; vig, implies that the matrix on the right side of this inequality is anM-matrix, and hence (3.4) is an H-matrix with positive diagonal elements as desired. �We now establish bounds for �F that are independent of the elements in A. Theseresults are of interest because they provide bounds for the number of iterations for Algorithm3.1. We �rst show that if � is the maximum number of nonzeros in any column of A, then2 �1=2 is an upper bound for �F .Theorem 3.2 For any A 2 IRn�n with nonzero columns, de�ne bA = D�1=2AD�1=2 whereD = diag(kAeik2). If � > �1=2, where � is the maximum number of nonzeros in any columnof A, then bA+ �I is an H-matrix with positive diagonal elements.Proof. Since M(D1AD2) = jD1jM(A)jD2j for any diagonal matrices D1 and D2, thede�nition of an H-matrix shows that A is an H-matrix if and only if D1AD2 is an H-matrixfor some nonsingular diagonal matrices D1 and D2. Hence, we need only to prove thatAD�1 + �I is an H-matrix.We can show that AD�1+�I is (column) strictly diagonally dominant by noting thatthe Cauchy-Schwartz inequality implies thatjajj j �Xi jaij j � �1=2kAejk2:Hence, if � > �1=2, then AD�1 + �I is (column) strictly diagonally dominant with positivediagonal elements and hence, an H-matrix. �Theorems 3.1 and 3.2 show that Algorithm 3.1 is successful if �k > �1=2. Thus,�F � 2�1=2, as desired. For the matrices used in the computational experiments of Section 4,the bound 2 �1=2 is a gross overestimate, since �F � 0:512 in all cases. The following resultshows that we can obtain smaller bounds for �F if we are willing to replace the l2 norm bythe l1 norm.Theorem 3.3 For any B 2 IRn�n with nonzero columns, de�ne bBr = D�1=2r BD�1=2r whereDr = diag(kBeikr). If r � s and bBs + �I is an H-matrix with positive diagonal elements,then bBr + �I is also an H-matrix with positive diagonal elements. In particular, if�(r) = inf n� : bBr + �I is an H-matrix with positive diagonal elementso ;then �(r) � �(s) for r � s.Proof. The de�nition of an H-matrix shows that bBr + �I is an H-matrix if and only ifB +�Dr is an H-matrix. Thus, we need only to show that if B +�Ds is an H-matrix, thenB + �Dr is also an H-matrix. First note that if r � s, then kxkr � kxks for any vectorx 2 IRn. Hence, Br + �Dr has positive diagonal elements, andM(B + �Dr) �M(B + �Ds); r � s:11

This inequality shows that if B + �Ds is an H-matrix then B + �Dr is also an H-matrix asdesired. A short computation now shows that �(r) � �(s). �Theorem 3.3 provides a bound for �F in terms of �(r). We show this by noting thatAlgorithm 3.1 is successful if �k > �(r), and thus �F � 2�(r). Since �(r) � �(s) for r � s,Theorem 3.3 suggests that we should scale by the l1 norm in Algorithm 3.1 because thisscaling leads to a smaller bound for �F . An explicit bound for �F with the l1 scaling is notdi�cult to obtain because a modi�cation of the proof of Theorem 3.2 shows that bB1 + I isan H-matrix, and thus �(1) � 1 for the l1 scaling. Hence, �F � 2.We tested Algorithm 3.1 with the l1 scaling and found that in almost every case, assuggested by Theorem 3.3, the �F for the l1 norm was not larger than the �F for the l2norm. However, we also found that the preconditioner generated by the l1 norm did notperform as well in our numerical results as the preconditioner based on the l2 norm, so wedid not pursue this variation further.4 Computational ExperimentsIn our computational experiments we examine the performance of the incomplete Choleskyfactorization de�ned by Algorithm 3.1 as a function of the memory parameter p. We set�S = 10�3 in Algorithm 3.1, but we also experimented with �S = 10�6, with little changein our results.We selected ten problems for the test set. The �rst seven problems are from theHarwell-Boeing sparse matrix collection [12]. The �rst �ve matrices are the matrices used byJones and Plassmann [25] to test their algorithm. We added bcsstk18, a large problem fromthe bcsstk set, and 1138bus, the hardest problem in the set of matrices used by Benzi, Meyer,and Tuma [4] to test their inverse preconditioner. We also selected three matrices thatrequired an excessive number of conjugate gradient during the solution of an optimizationproblem with a truncated Newton method [6]. Matrices jimack and nlmsurf are from theCUTE collection [5], while dgl2 is from the MINPACK-2 collection [2].Table 4.1 describes the test set. In this table n is the order of the matrix and nnzis the number of nonzeros in the lower triangular part of A. The minimal and maximaleigenvalues in absolute value, min eig and max eig, respectively, were computed with theeigs function in MATLAB. The last column provides additional information on the problem.All the problems in Table 4.1 are sparse. The densest matrix A is jimack with about60 elements per row, while the sparsest problem is 1138bus with about 4 elements per row.The �rst �ve problems and the 1138bus problem are relatively well-conditioned. Problemsbcsstk18 and bcsstk19 are badly conditioned. All three optimization problems are extremelybadly conditioned with condition numbers at least 106 larger than any of the problems fromthe Harwell-Boeing collection. 12

Table 4.1: Characteristics of the test matricesProblem n nnz min eig max eig Descriptionbcsstk08 1074 7017 2.95e3 7.65e10 TV studiobcsstk09 1083 9760 7.10e3 6.7603e7 Square plate clampedbcsstk10 1086 11578 85.35 4.47e7 Buckling of a hot washerbcsstk11 1473 17857 2.96 6.56e8 Ore carbcsstk18 11948 80519 1.24e-1 4.30e10 R.E. Ginna Nuclear Power Stationbcsstk19 817 3835 1.43e3 1.92e14 Part of a suspension bridge1138bus 1138 2596 3.5e-3 3.01e4 Power system networksdgl2 10000 67500 7.22e-12 29.6 Superconductivity modeljimack 1029 31380 1.35e-14 760.52 Nonlinear elasticity problemnlmsurf 1024 4930 6.04e-17 3.16 Minimal surfaceWith the exception of the optimization problems dgl2 and jimack, all the problems inTable 4.1 are positive de�nite. The smallest eigenvalues of the dgl2 and jimack problemsare, respectively, near �7:2 � 10�12 and �3:4 � 10�5.The preconditioned conjugate gradient method is used to solve the system Ax = bwhere A is the matrix from the test set. For the Harwell-Boeing problems the vector b isthe vector of all ones, while for the optimization problems the vector b is de�ned by theoptimization application. We started the conjugate gradient method with the zero vectorand stopped the iteration whenkAx� bk � �kbk; � = 10�3: (4.1)If the matrix was inde�nite, then the conjugate gradient method was stopped when adirection of negative curvature (pTAp � 0) was encountered. The maximal number ofconjugate gradient iterations allowed was n, the order of the matrix.The setting of � = 10�3 is used in at least one large-scale Newton code [6] but is nottypical of other codes, or in linear algebra applications. We will discuss how our resultschange when � is chosen smaller.The computational experiments were done on a Sun UltraSPARC1-140 workstationwith 128 MB RAM. The incomplete Cholesky factorization and the preconditioned con-jugate gradient method are written in FORTRAN and linked to MATLAB (version 5.0)drivers through C subroutines and cmex scripts. We follow the recommendations in [18]by using -fast, -xO5, -xdepend, -xchip=ultra, -xarch=v8plus, -xsafe=mem, as the compileroptions.The results of our computational experiments are shown in Figures 4.1 to 4.3. Wepresent the number of conjugate gradient iterations, the time required for the conjugategradient iterations, and the total computational time. In these �gures we present resultsfor p = 0; 2; 5; 10; the value p = 0 is of interest because this corresponds to the choice madeby Jones and Plassmann [25]. Instead of presenting the raw numbers, we present the ratios13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bcsstk08 bcsstk09 bcsstk10 bcsstk11 bcsstk18 bcsstk19 1138bus dgl2 jimack nlmsurf

rat
io

Figure 4.1: Number of conjugate gradient iterates (p = 0 3; p= 2 2; p = 5 o; p = 10;4)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

bcsstk08 bcsstk09 bcsstk10 bcsstk11 bcsstk18 bcsstk19 1138bus dgl2 jimack nlmsurf

rat
io

Figure 4.2: Time for conjugate gradient iterates (p = 0 3; p = 2 2; p = 5 o; p = 10;4)of p > 0 to p = 0. For example, in Figure 4.1, we show the ratio of the number of conjugategradient iterations for p > 0 to the number of iterations for p = 0. The appendix containsthe raw data used to obtain Figures 4.1 to 4.3.Figure 4.1 shows that when p is increased, the number of conjugate gradient iterationis reduced. The only exception occurs in problem bcsstk09 when p = 5. The reduction in thenumber of iterations was expected, but not the sharp dependence on p. In particular, whenp = 5, the number of iterations is reduced by at least a factor of 2 for half the problems. Weemphasize that these are reductions over the p = 0 setting, not over an unpreconditioned14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

bcsstk08 bcsstk09 bcsstk10 bcsstk11 bcsstk18 bcsstk19 1138bus dgl2 jimack nlmsurf

rat
io

Figure 4.3: Total computational time (p = 0 3; p = 2 2; p = 5 o; p = 10;4)algorithm. The p = 5 setting is of interest for these problems because the increase in storageis only 5n.Since the number of nonzeros in L increases with p, the cost of each conjugate gradientiteration also increases. However, as shown in Figure 4.2, the increase is moderate, and thetotal time spent on the conjugate gradient method usually decreases. This can also beseen from the similarities between the plots in Figure 4.2 and Figure 4.1. In other words,decreases in the number of conjugate gradient iterations are usually matched by decreasesin computing time.We now consider the total computing time for the conjugate gradient process, whichconsists of the time for the conjugate gradient iterates plus the time for the incompleteCholesky factorization. The results in Figure 4.3 show a general decrease in computingtime for p > 0, with reductions of at least 50% achieved on six of the problems.We emphasize that the results in Figure 4.3 are for the relative tolerance � = 10�3 inthe termination criterion (4.1). If we use � = 10�6, then the number of conjugate gradientiterations increases, and thus the relative behavior of p > 0 over p = 0 improves becausethe computing time for the incomplete Cholesky factorization is then relatively smaller. Inparticular, Figures 4.2 and 4.3 look similar when � is smaller. The improvement is mostnoticeable for bcsstk09, the easiest problem in the test set.The decrease in computational time for an incomplete Cholesky factorization is notguaranteed. For example, the results of Du� and Meurant [13] comparing a level 1 factor-ization with a level 0 incomplete Cholesky factorization on grid problem with �ve-point andnine-point stencils showed that the extra work in the factorization and in the computationof the conjugate gradient iterates was greater than the work saved by the reduction (if any)15

Table 4.2: Value of �F in Algorithm 3.1Preconditioner p = 0 p = 2 p = 5 p = 10bcsstk08 0.001 0.001 0.000 0.000bcsstk09 0.000 0.000 0.000 0.001bcsstk10 0.008 0.000 0.000 0.000bcsstk11 0.032 0.032 0.032 0.016bcsstk18 0.128 0.016 0.008 0.002bcsstk19 0.002 0.001 0.000 0.0001138bus 0.000 0.000 0.000 0.000dgl2 0.512 0.256 0.128 0.064jimack 0.004 0.004 0.002 0.001nlmsurf 0.064 0.008 0.001 0.001in the number of iterations.In many applications the computing time for the incomplete Cholesky factorizationis not signi�cant, for example, when the required accuracy in (4.1) is relatively high (forexample, � � 10�6 in a double precision calculation), or when linear systems with severalright hand sides need to be solved. In general, the computing time for the factorization islikely to be signi�cant only when just a few conjugate gradient iterations are required. Ofcourse, in this case the total computing time is likely to be low.The computing time for the incomplete Cholesky factorization depends on p and thenumber of iterations required by Algorithm 3.1. If the matrices have positive diagonalelements, then the number of iterations l is directly related to the �nal �F by the relation�F = 2l�2�S for l > 1. Thus, the results in Table 4.2 show that in most cases the numberof iterations is small, with the largest number (eleven) of iterations occurring for the dgl2problem and p = 0.We have experimented with various strategies to reduce the number of iterations, butit is not clear that these strategies are needed because the computing time for the incompleteCholesky factorization is not a linear function of the number of iterations. Early iterationsof Algorithm 3.1 are likely to require little computing time because the computation of thefactorization will break down at an early pivot.The computing time for the incomplete Cholesky factorization usually increases asp increases since additional operations are needed to compute the additional entries inL. However, the results in Table 4.2 also show that as p increases �F decreases. Thisrelationship can be explained by noting that the additional memory allows the algorithmto retain more elements in the factorization, and thus the modi�cation to A can be smaller.Hence, if p increases, then the computing time for the incomplete Cholesky factorizationmay actually decrease. This situation happens with some of our test cases.16

5 Software EvaluationWe evaluate the incomplete Cholesky factorization of Algorithm 3.1 by comparing our re-sults with those obtained with the ma31 code [31] in the Harwell subroutine library (release10) and the cholinc command of MATLAB (version 5.0). These two codes are repre-sentative of codes that rely on drop tolerances. Other implementations of the incompleteCholesky factorization include the Ajiz and Jennings [1] code (drop tolerances) and theMeschach [43] and SLAP [40] codes (�xed �ll).The main aim in these computational experiments is to emphasize the di�culty ofchoosing appropriate drop tolerances while keeping memory requirements predictable. Thetesting environment is the same as described in Section 4, but we now focus on the numberof conjugate gradient iterations and the amount of memory used by the codes.We do not report computational time, but we note that the time for the conjugate gra-dient iterations is directly proportional to the memory required for the incomplete Choleskyfactorization because the computing time is determined by the number of operations re-quired to work with L. Thus, if two algorithms require the same number of conjugategradient iterations, then the algorithm with the least amount of memory is almost certainlythe faster algorithm.Our results are summarized in Tables 5.1 and 5.2. In these tables, icfm(p) refers toAlgorithm 3.1 with a given p. The notation cholinc(q) denotes the MATLAB cholinc with adrop tolerance of 10q. The ma31 subroutine depends on a drop tolerance � and a memoryparameter r that speci�es the total amount of memory allowed for the factorization. Thenotation ma31(q; r) means that ma31 was used with a drop tolerance of � = 10q andr � nnz+ 2 � n memory locations to store L, where nnz is the number of nonzero elementsin the lower triangular part of A.The MATLAB procedure cholinc uses two additional parameters: michol and rdiag. Wespeci�ed a standard incomplete Cholesky factorization with the default value formichol. Onthe other hand, we set the parameter rdiag to 1, since this speci�es that any zeros on thediagonal of the upper triangular factor are replaced.Our results clearly show that the performance of ma31 is erratic. The performance ofma31 is adequate if given a reasonable amount (nnz(L) � 2 nnz) of memory. Comparisonof icfm(5) with ma31(-3,2) shows that icfm almost always works better, although icfm usesless memory than ma31. The performance of ma31(-1,1) is poor. Comparison of icfm(5)with ma31(-1,1) shows that icfm always works better and uses less memory than ma31.The performance of cholinc as a function of the drop tolerance is also erratic. Theperformance of cholinc with a drop tolerance of 10�1 is poor. The performance improvesconsiderably if the tolerance is decreased to 10�3, but then the memory requirements in-crease in an unpredictable manner. These results illustrate the di�culty of choosing anadequate value for the drop tolerance. 17

Table 5.1: Number of conjugate gradient iterationsPreconditioner icfm(0) ma31(-1,1) icfm(5) ma31(-3,2) cholinc(-1) cholinc(-3)bcsstk08 16 36 9 5 52 14bcsstk09 24 508 17 84 69 6bcsstk10 36 1086� 14 11 1086� 8bcsstk11 721 1473� 671 1473� 1473� 1262bcsstk18 559 11948� 147 14 4893 54bcsstk19 622 817� 21 31 817� 1271138bus 117 258 23 4 148 31dgl2 186 10000� 97 10000� 1760 215jimack 133 1029� 93 126 1029� 128nlmsurf 121 1024� 30 17 168 12�: exceeds maximal number of iterationsTable 5.2: Memory usage of incomplete Cholesky factorization codes: nnz(L)=nnzPreconditioner icfm(0) ma31(-1,1) icfm(5) ma31(-3,2) cholinc(-1) cholinc(-3)bcsstk08 1.00 1.31 1.73 2.31 0.36 2.88bcsstk09 1.00 1.22 1.55 2.22 0.44 2.32bcsstk10 1.00 1.19 1.46 2.19 0.46 1.50bcsstk11 1.00 1.16 1.39 2.16 0.46 2.36bcsstk18 1.00 1.30 1.56 2.30 0.37 1.92bcsstk19 1.00 1.43 2.02 2.43 0.43 1.711138bus 1.00 1.88 2.19 2.88 0.95 2.95dgl2 1.00 1.30 1.74 2.30 0.42 4.52jimack 1.00 1.07 1.16 2.07 0.37 0.86nlmsurf 1.00 1.42 2.00 2.42 0.69 3.06The algorithm used by cholinc to compute the incomplete Cholesky factor is unusual.Given a symmetric matrix A, the procedure cholinc calls the MATLAB procedure luincwhich uses an incomplete LU factorization with pivoting; reference is made to Saad [36].The rows of the upper triangular matrix U obtained from luinc are scaled by the squareroot of the absolute value of the diagonal element in that row, and the scaled matrix is thenthe incomplete (upper triangular) Cholesky factor.AcknowledgmentsThe work presented in this paper bene�tted from interactions with Michele Benzi, NickGould, David Keyes, Margaret Wright, and Zhijun Wu. Paul Plassmann deserves specialcredit for sharing his insights into the world of incomplete factorizations. We also thank GailPieper for her careful reading of the manuscript; her comments improved the presentation.18

A Numerical ResultsThis appendix presents the data that was used to generate the �gures in this paper. Thepreconditioner icfm(p) is the incomplete Cholesky factorization speci�ed by Algorithm 3.1,while the preconditioner icfm2(p) is the version of the incomplete Cholesky, mentioned inSection 3, in which we update the diagonal elements of the factorization with the largestelements selected by Algorithm 2.2.In these tables �F is the �nal � generated by Algorithm 2.2. Thus, the incompleteCholesky factorization of bA + �F I is computed succesfully. The total time required tocompute the incomplete Cholesky factorization with Algorithm 2.2 is speci�ed by icf-time,while the time required to compute the incomplete Cholesky factorization of bA + �F I isspeci�ed by icf-�F -time. Note that these results show that, as expected, if �F = 0 thenicf-time and icf-�F -time are nearly equal.The number of conjugate gradient iterations required to satisfy (4.1) or to generatea direction of negative curvature is iter, while the time to compute the conjugate gradientiterates is speci�ed by cg-time.The number of nonzeros in the lower triangular part of A is speci�ed by nnz and thenumber of nonzeroes in L is nnz(L). Thus, nnz(L) = nnz for p = 0.Table A.1: bcsstk08Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.001000 16 1.000000 0.123291 0.066406 0.048096icfm(2) 0.001000 13 1.291293 0.159668 0.078125 0.042480icfm(5) 0.000000 9 1.734217 0.085205 0.080566 0.033936icfm(10) 0.000000 8 2.469289 0.107178 0.101562 0.035156icfm2(0) 0.001000 15 1.000000 0.108887 0.058594 0.045410icfm2(2) 0.001000 12 1.291293 0.135010 0.065674 0.039551icfm2(5) 0.000000 10 1.734787 0.080078 0.075439 0.037109icfm2(10) 0.000000 8 2.469289 0.108643 0.103027 0.035645Table A.2: bcsstk09Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.000000 24 1.000000 0.023438 0.018555 0.088379icfm(2) 0.000000 14 1.219160 0.028564 0.023438 0.051270icfm(5) 0.000000 17 1.549898 0.037842 0.031982 0.076416icfm(10) 0.001000 7 2.091803 0.099365 0.047852 0.036377icfm2(0) 0.000000 24 1.000000 0.023193 0.018555 0.083740icfm2(2) 0.000000 14 1.219160 0.028320 0.023193 0.052002icfm2(5) 0.000000 17 1.550205 0.037842 0.031982 0.075439icfm2(10) 0.001000 7 2.091803 0.104004 0.048096 0.03442419

Table A.3: bcsstk10Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.008000 36 1.000000 0.039551 0.022949 0.140625icfm(2) 0.000000 16 1.185438 0.032471 0.026367 0.069580icfm(5) 0.000000 14 1.460874 0.037598 0.031250 0.064453icfm(10) 0.000000 5 1.757644 0.051270 0.043945 0.025391icfm2(0) 0.008000 33 1.000000 0.038086 0.021729 0.138672icfm2(2) 0.000000 18 1.185438 0.031982 0.025879 0.077393icfm2(5) 0.000000 13 1.460874 0.038086 0.031738 0.061035icfm2(10) 0.000000 5 1.757644 0.050537 0.043457 0.025391Table A.4: bcsstk11Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.032000 721 1.000000 0.081543 0.040039 4.268799icfm(2) 0.032000 692 1.156801 0.119385 0.046875 4.569824icfm(5) 0.032000 671 1.390491 0.191406 0.056885 4.809082icfm(10) 0.016000 534 1.775326 0.262695 0.086182 4.238525icfm2(0) 0.032000 701 1.000000 0.102783 0.040039 4.252686icfm2(2) 0.032000 684 1.156801 0.133057 0.047119 4.388672icfm2(5) 0.016000 632 1.390211 0.132812 0.056396 4.432373icfm2(10) 0.016000 494 1.775270 0.254883 0.085205 4.038330Table A.5: bcsstk18Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.128000 559 1.000000 0.497803 0.185303 24.370850icfm(2) 0.016000 232 1.228232 0.511475 0.228516 10.854248icfm(5) 0.008000 147 1.564972 0.735352 0.302979 7.636230icfm(10) 0.002000 79 2.106472 0.853271 0.461670 4.673340icfm2(0) 0.128000 530 1.000000 0.515137 0.179932 23.219727icfm2(2) 0.016000 223 1.228195 0.510498 0.229004 10.510010icfm2(5) 0.008000 147 1.564972 0.779053 0.295898 7.587402icfm2(10) 0.002000 79 2.106521 0.841797 0.448242 4.611572Table A.6: bcsstk19Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.002000 622 1.000000 0.017334 0.006104 1.145508icfm(2) 0.001000 374 1.406258 0.020752 0.008789 0.768555icfm(5) 0.000000 21 2.019035 0.016602 0.013672 0.050781icfm(10) 0.000000 18 2.974967 0.024902 0.021729 0.050537icfm2(0) 0.001000 450 1.000000 0.011230 0.006592 0.824707icfm2(2) 0.000000 27 1.408344 0.011230 0.009033 0.054688icfm2(5) 0.000000 21 2.019035 0.015869 0.012939 0.049316icfm2(10) 0.000000 17 2.974967 0.024902 0.021484 0.04394520

Table A.7: 1138busPreconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.000000 117 1.000000 0.005859 0.003906 0.221436icfm(2) 0.000000 43 1.508089 0.009277 0.007080 0.087891icfm(5) 0.000000 23 2.190293 0.012695 0.010254 0.054932icfm(10) 0.000000 13 3.280046 0.017822 0.014648 0.035400icfm2(0) 0.000000 93 1.000000 0.006104 0.004150 0.172119icfm2(2) 0.000000 42 1.508089 0.008301 0.006104 0.089844icfm2(5) 0.000000 23 2.190293 0.011719 0.009521 0.053223icfm2(10) 0.000000 13 3.280046 0.020264 0.017334 0.035889Table A.8: dgl2Preconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.512000 186 1.000000 1.875488 0.171875 6.986572icfm(2) 0.256000 133 1.294385 2.144043 0.235352 5.389893icfm(5) 0.128000 97 1.737881 2.441650 0.313721 4.324463icfm(10) 0.064000 71 2.480296 3.433350 0.519775 3.807373icfm2(0) 0.256000 160 1.000000 1.678223 0.171875 5.860596icfm2(2) 0.128000 110 1.294148 1.906006 0.221924 4.374023icfm2(5) 0.128000 97 1.737881 2.391602 0.300293 4.283203icfm2(10) 0.064000 71 2.480296 3.350342 0.501953 3.799805Table A.9: jimackPreconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.004000 133 1.000000 0.444580 0.135254 1.157227icfm(2) 0.004000 131 1.064818 0.466309 0.140869 1.189697icfm(5) 0.002000 93 1.161855 0.372314 0.160889 0.873291icfm(10) 0.001000 64 1.322849 0.243408 0.190918 0.650146icfm2(0) 0.004000 129 1.000000 0.416504 0.125732 1.099121icfm2(2) 0.004000 130 1.064818 0.480225 0.143799 1.169678icfm2(5) 0.002000 95 1.161855 0.356689 0.153809 0.882812icfm2(10) 0.001000 65 1.322849 0.238525 0.185791 0.695312Table A.10: nlmsurfPreconditioner �F iter nnz(L)/nnz icf-time icf-�F -time cg-timeicfm(0) 0.064000 121 1.000000 0.029785 0.008301 0.288086icfm(2) 0.008000 64 1.404057 0.067139 0.013428 0.181641icfm(5) 0.001000 30 1.998986 0.039062 0.017334 0.085205icfm(10) 0.001000 24 2.973022 0.060059 0.027344 0.087158icfm2(0) 0.032000 118 1.000000 0.027588 0.008057 0.271729icfm2(2) 0.004000 68 1.403043 0.050781 0.011230 0.184814icfm2(5) 0.001000 30 1.998580 0.039551 0.017578 0.087646icfm2(10) 0.001000 24 2.973428 0.060059 0.027588 0.08764621

References[1] M. A. Ajiz and A. Jennings, A robust incomplete Cholesky-conjugate gradient al-gorithm, Int. J. Num. Meth. Eng., 20 (1984), pp. 949{966.[2] B. M. Averick, R. G. Carter, J. J. Mor�e, and G.-L. Xue, The MINPACK-2test problem collection, Preprint MCS-P153-0694, Mathematics and Computer ScienceDivision, Argonne National Laboratory, 1992.[3] O. Axelsson, Iterative Solution Methods, Cambridge Univeristy Press, 1994.[4] M. Benzi, C. D. Meyer, and M. Tuma, A sparse approximate inverse precondi-tioner for the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135{1149.[5] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: Con-strained and Unconstrained Testing Environment, ACM Trans. Math. Software, 21(1995), pp. 123{160.[6] A. Bouaricha, J. J. Mor�e, and Z. Wu, Newton's method for large-scale optimiza-tion, Preprint MCS-P635-0197, Argonne National Laboratory, Argonne, Illinois, 1997.[7] E. Carr, Preconditioning and performance issues for the solution of ill-conditionedthree-dimensional structural analysis problems, Master's thesis, Department of Com-puter Science, University of Waterloo, Waterloo, Ontario, Canada, 1997.[8] S. H. Cheng and N. J. Higham, A modi�ed Cholesky algorithm based on a symmetricinde�nite factorization, Numerical Analysis Report No. 289, University of Manchester,Manchester M13 9PL, England, April 1996.[9] A. R. Conn, N. I. M. Gould, and P. L. Toint, LANCELOT, Springer Series inComputational Mathematics, Springer-Verlag, 1992.[10] E. F. D'Azevedo, P. A. Forsyth, and W. P. Tang, Towards a cost e�ective ILUpreconditioner with high level �ll, BIT, 31 (1992), pp. 442{463.[11] J. K. Dickinson and P. A. Forsyth, Preconditioned conjugate gradient methods forthree-dimensional linear elasticity, Int. J. Num. Meth. Eng., 37 (1994), pp. 2211{2234.[12] I. S. Duff, R. Grimes, J. Lewis, and B. Poole, Sparse matrix test prob-lems, ACM Trans. Math. Softw., 15 (1989), pp. 1{14. Currently available inhttp://math.nist.gov/MatrixMarket.[13] I. S. Duff and G. A. Meurant, The e�ect of ordering on preconditioned conjugategradients, BIT, 29 (1989), pp. 635{657.22

[14] V. Eijkhout, Analysis of parallel incomplete point factorizations, Linear Algebra andits Application, 154-156 (1991), pp. 723{740.[15] A. Forsgren, P. E. Gill, and W. Murray, Computing modi�ed Newton directionsusing a partial Cholesky factorization, SIAM J. Sci. Comput., 16 (1995), pp. 139{150.[16] P. E. Gill, W. Murray, D. B. Poncel�eon, and M. A. Saunders, Preconditionersfor inde�nite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 (1992),pp. 292{311.[17] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, AcademicPress, 1981.[18] K. Goebel, Getting more out of your new UltraSPARCTM machine, Sun DeveloperNews, 1 (1996).[19] I. Gustafsson, A class of �rst order factorization methods, BIT, 18 (1978), pp. 142{156.[20] ,Modi�ed incomplete Cholesky (MIC) methods, in Preconditioning Methods: The-ory and Applications, D. Evans, ed., Gordon and Breach, 1983, pp. 265{293.[21] , A class of preconditioned conjugate gradient methods applied to the �nite elementequations, in Preconditioning Conjugate Gradient Methods, O. Axelsson and L. Y.Koltilina, eds., Springer-Verlag, 1990, pp. 44{57.[22] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, AppliedMathematical Sciences 95, Springer-Verlag, 1994.[23] I. Hlad�ik, M. B. Reed, and G. Swoboda, Robust preconditioners for linear elas-ticity FEM analysis, Int. J. Num. Meth. Eng., 40 (1997), pp. 2109{2117.[24] A. Jennings and G. M. Malik, Partial elimination, J. Inst. Maths. Appl., 20 (1977),pp. 307{316.[25] M. T. Jones and P. E. Plassmann, An improved incomplete Cholesky factorization,ACM Trans. Math. Software, 21 (1995), pp. 5{17.[26] T. A. Manteuffel, Shifted incomplete Cholesky factorization, in Sparse Matrix Pro-ceedings, SIAM, Philadelphia, 1979, pp. 41{61.[27] , An incomplete factorization technique for positive de�nite linear systems, Math.Comp., 34 (1980), pp. 307{327. 23

[28] J. A. Meijerink and H. A. Van der Vorst, An iterative solution method forlinear equations systems of which the coe�cient matrix is a symmetric M-matrix, Math.Comp., 31 (1977), pp. 148{162.[29] , Guidelines for the usage of incomplete decompositions in solving sets of linearequations as they occur in practical problems, J. Comput. Phys., 44 (1981), pp. 134{155.[30] J. J. Mor�e and D. C. Sorensen, Computing a trust region step, SIAM J. Sci.Statist. Comput., 4 (1983), pp. 553{572.[31] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditionedconjugate gradients, ACM Trans. Math. Software, 6 (1980), pp. 206{219.[32] A. Neumaier, On satisfying second-order optimality conditions using modi�edcholesky factorizations, Technical Report, Universitat Wien, Vienna, Austria, 1997.[33] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, PlenumPress, New York, 1988.[34] F. Rendel and H. Wolkowicz, A semide�nite framework for trust region subprob-lems with applications to large scale minimization, Math. Programming, 77 (1997),pp. 273{299.[35] Y. Saad, ILUT: A dual threshold incomplete LU factorization, Numer. Linear AlgebraAppl., 4 (1994), pp. 387{402.[36] , Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,1996.[37] S. A. Santos and D. C. Sorensen, A new matrix-free algorithm for the large-scaletrust-region subproblem, Technical Report TR95-20, Rice University, Houston, Texas,1995.[38] T. Schlick, Modi�ed Cholesky factorizations for sparse preconditioners, SIAM J. Sci.Comput., 14 (1993), pp. 424{445.[39] R. B. Schnabel and E. Eskow, A new modi�ed Cholesky factorization, SIAM J.Sci. Statist. Comput., 11 (1990), pp. 1136{1158.[40] M. K. Seager, A SLAP for the Masses, Technical Report UCRL-100267, LawrenceLivermore National Laboratory, Livermore, California, December 1988.[41] D. C. Sorensen,Minimization of a large scale quadratic function subject to a sphericalconstraint, SIAM J. Optimization, 7 (1997), pp. 141{161.24

[42] T. Steihaug, The conjugate gradient method and trust regions in large scale optimiza-tion, SIAM J. Numer. Anal., 20 (1983), pp. 626{637.[43] D. E. Stewart and Z. Leyk, Meschach : Matrix computations in C, vol. 32 ofProceedings of the Center of Mathematics and Its Application, Austrian National Uni-versity, 1994.[44] D. P. Young, R. Melvin, F. T. Johnson, J. E. Bussoletti, and S. S. Samant,Application of sparse matrix solvers as e�ective preconditioners, SIAM J. Sci. Comput.,10 (1989), pp. 1186{1199.

25

