
The Hot List Strategy1byLarry Wos with Gail W. PieperMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439AbstractExperimentation strongly suggests that, for attacking deep questions and hardproblems with the assistance of an automated reasoning program, the more e�ectiveparadigms rely on the retention of deduced information. A signi�cant obstacle ordinar-ily presented by such a paradigm is the deduction and retention of one or more neededconclusions whose complexity sharply delays their consideration. To mitigate the sever-ity of the cited obstacle, I formulated and feature in this article the hot list strategy. Thehot list strategy asks the researcher to choose, usually from among the input statementscharacterizing the problem under study, one or more statements that are conjecturedto play a key role for assignment completion. The chosen statements|conjectured tomerit revisiting, again and again|are placed in an input list of statements, called thehot list. When an automated reasoning program has decided to retain a new conclusionC|before any other statement is chosen to initiate conclusion drawing|the presence ofa nonempty hot list (with an appropriate assignment of the input parameter known asheat) causes each inference rule in use to be applied to C together with the appropriatenumber of members of the hot list. Members of the hot list are used to complete applica-tions of inference rules and not to initiate applications. The use of the hot list strategythus enables an automated reasoning program to brie
y consider a newly retained con-clusion whose complexity would otherwise prevent its use for perhaps many CPU-hours.To give evidence of the value of the strategy, I focus on four contexts: (1) dramaticallyreducing the CPU time required to reach a desired goal, (2) �nding a proof of a theoremthat had previously resisted all but the more inventive automated attempts, (3) discov-ering a proof that is more elegant than previously known, and (4) answering a questionthat had steadfastly eluded researchers relying on an automated reasoning program. Ialso discuss a related strategy, the dynamic hot list strategy (formulated by my colleagueW. McCune), that enables the program during a run to augment the contents of thehot list. In the Appendix, I give useful input �les and interesting proofs. Because offrequent requests to do so, I include challenge problems to consider, commentary on myapproach to experimentation and research, and suggestions to guide one in the use ofMcCune's automated reasoning program OTTER.Keywords: automated reasoning programs, hot list strategy, OTTER1 Paradigms and MotivationTwo distinctly di�erent paradigms exist for automating logical reasoning. A key di�erencebetween the two paradigms concerns whether to accrue new deduced conclusions. Perhaps1This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38. 1



the most e�ective approaches where no new information is retained are based on Prologtechnology. Among the more e�ective approaches in which new information is accruedare the computational logic paradigm and the clause language paradigm [14, 15, 18]. Theformer provides the basis for the Boyer-Moore program [1, 2] (mainly used for program ver-i�cation), and the latter (in the Argonne variant) provides the basis for McCune's OTTER[7, 8]. Based on my own experiments spread over more than thirty years, and supported bycomments from other researchers in automated reasoning, I currently have little doubt thatan automated attack on deep questions and hard problems virtually requires the accrual ofinformation|sometimes more than 300,000 deduced facts, relations, and lemmas.With the retention of so many deduced conclusions, however, the program needs ameans for selecting where next to focus its attention. Typically, the researcher instructsthe program to use either weighting (conclusion complexity) or level saturation. With levelsaturation, in the vast majority of cases, the size of the levels of retained conclusions growsso rapidly that the objective remains out of reach. Therefore, of the two cited directionstrategies, weighting is ordinarily far more e�ective. However, with its use, one encountersa signi�cant obstacle: A needed conclusion may have been retained, but, because of itscomplexity, the program delays focusing on it|sometimes forever.Why does the complexity of a conclusion have this e�ect? The answer rests with thefact that (1) the program typically chooses as the focus of attention retained conclusionsby less complex �rst and (2) the program typically lacks e�ective means for looking aheadand identifying good choices from among very complex conclusions.To address just such an obstacle, I formulated the hot list strategy.1.1 Types of Strategy and the Hot ListFor increasing the power of automated reasoning programs, the area of research that o�ersthe greatest promise is strategy. My preference is for strategy that restricts reasoning, butclearly strategy that directs reasoning is also vital. The hot list strategy perhaps belongsin neither category. Its use rearranges the order in which conclusions are drawn.Speci�cally, the hot list strategy asks the researcher to choose, from among the state-ments characterizing the question under attack, those that might be especially useful andmerit revisiting again and again. The chosen statements are consulted by the program re-peatedly, for completing (rather than initiating) applications of inference rules. Indeed, withthe hot list strategy, members of the hot list are automatically and immediately consideredwith each newly retained clause, before another conclusion is chosen from list(sos) to be thefocus of attention to drive the program's reasoning.1.2 A Motivating ExampleConsider the following theorem from algebra. The theorem asserts that commutativity canbe proved in rings in which, for every element x, the cube of x equals x. The mathematicalproof begins with xxx = x and substitutes the square of v + w for x; in other words,instantiation is employed, an inference rule that is not o�ered by OTTER. (Instantiationshould not be o�ered by a program, for currently no means is known for wisely applying it; inother words, one encounters an important di�erence between mathematics and logic on onehand and automated reasoning on the other.) The left side becomes the cube of v+w, and2



the right side is simply v + w; call this equation (1). After expanding and simplifying withthe hypothesis xxx = x, the left side becomes v+w+vvw+vwv+vww+wvv+wvw+wwv:Call the resulting equation (2). Equation (3) is obtained from equation (2) by subtractingv+w from both sides. For equation (4), set v = w and simplify with the hypothesis xxx = x.One now has the key lemma 0 = 6x, taken from a proof shown to me by S. Winker.From the viewpoint of automated reasoning with paramodulation as the inference rule,the corresponding proof (in clause notation) begins by paramodulating (into the clauseequivalent of) x(xx) = x, with the focus on the into term xx, from the clause equivalent ofleft distributivity, with the focus on the left-hand argument. After appropriate demodula-tion, the result is the clause equivalent of equation (2). No clause equivalent of equation (1)is produced, other than the intermediate result obtained by applying the uni�cation to theinto clause of the preceding paramodulation. Then, to obtain equation (4), the programcan �rst deduce the clause equivalent of equation (3) by various means, for example, a non-standard use of demodulation; see Section 2.2 showing how the hot list strategy can replacesuch an approach. At this point, one has an illustration of the obstacle under discussion:The clause equivalent of equation (3) has weight equal to 37, if measured purely in symbolcount. Such a \heavy" clause will be delayed from consideration|if ever|for a substantialamount of CPU time, for many, many clauses will almost certainly be retained with weightless than 37. Therefore, the clause equivalent of equation (4), the desired lemma, will notbe adjoined to the growing database of deduced conclusions for far, far too long.This situation is not uncommon. Experiments repeatedly encounter the obstacle of theprogram's needing to consider some retained conclusion C whose complexity (weight) is sogreat that far too much CPU time is required before that conclusion is chosen as the focusof attention to initiate applications of some inference rule. When this occurs, the programis prevented from access to those conclusions that would otherwise be deduced.With the hot list strategy, however, the obstacle is far less formidable. Indeed, in thecase under discussion, the obstacle is overcome. Speci�cally, when I attempted to obtain aproof of the 0 = 6x lemma with the hot list strategy, only 0.3 CPU-seconds were required,compared with approximately 17 CPU-seconds without the strategy.1.3 A Brief Glimpse into HistoryMotivated by my wish to give a reasoning program the power to easily prove the citedlemma, 0 = 6x, in the context of the theorem that asserts that rings are commutative inthe presence of xxx = x, I introduced the concept of the hot list in the mid-1980s. Mynotion focused on paramodulation and no other inference rule. Approximately a decadelater (on November 2, 1993), McCune implemented the hot list strategy in OTTER 3.0.Signi�cantly, he generalized my original notion by admitting the use of the hot list for allinference rules. He also generalized the notion of the hot list strategy by formulating adynamic version to complement my static version; see Section 4.1.For historical interest, I now correct an error found in some of my earlier writings.Speci�cally, OTTER was not the �rst program to o�er the hot list strategy. Rather, thestrategy was �rst o�ered in the program ITP [6] in the mid-1980s. This information escapedme because of my lack of experimentation with ITP, in turn explained (in part) by theprogram being menu driven rather than �le driven; I sharply prefer the latter.3



1.4 Areas Bene�ted and Challenges PresentedTo enable researchers to estimate the potential of the hot list strategy, I present (in Section5) the results of various experiments in lattice ordered groups, in Robbins algebra, and inlogic calculi. The evidence (given in Section 5) supporting the value of the hot list strategyfocuses on four areas: dramatically reducing the CPU time required to produce proofs,�nding proofs that had previously resisted all but the more inventive attacks, discoveringproofs more elegant than had been known, and answering a question previously consideredintractable for an automated reasoning program.To encourage researchers|especially mathematicians and logicians|to use the hot liststrategy (as well as other strategies), I include (in the Appendix) various input �les that areacceptable to the powerful automated reasoning program OTTER, and I include interestingproofs as well. (The input clauses and proofs are also available on the Web; see the URLhtpp://www.mcs.anl.gov/home/wos/hotlist-input.html.) Also, to increase the likelihood of success when using the hot liststrategy, I include (in Section 6) diverse hints. Finally, I o�er a challenge problem forresearchers (see Section 7).2 Relation to Other Strategies, Procedures, and InferenceRulesThe hot list strategy shares several features with other strategies and inference rules im-plemented in the automated reasoning program OTTER. In this section, I focus �rst onthe possible relevance of the set of support strategy, then (in order) on demodulation,AC-uni�cation, and linked inference rules.2.1 Set of Support StrategyLike the hot list, the set of support strategy was motivated by the study of a single (andvery simple to prove) theorem: Commutativity can be proved for groups of exponent 2,those in which the square of x (for every element x) is the identity e. My notion (regardingthe set of support strategy) was to restrict the applications of the inference rules in useand to force the search to key on information chosen by the researcher. To implement thestrategy, the researcher places the key information in an input list, the initial set of support.Such is also the case for implementing the hot list strategy: The researcher places what isconjectured to be key information in an input list, the hot list. New conclusions for whichthe set of support strategy plays a role are recursively traceable to the initial set of support;new conclusions for which the hot list strategy plays a role are recursively traceable to theinitial hot list.For a second way in which the two strategies are related, I have always recommendedthat the special hypothesis (clauses) be included in the initial set of support, and I typicallyrecommend that such information also be placed in the initial hot list. For a third similarity,just as the newly retained conclusions in which the set of support strategy plays a role areadded to the set of support list, so also can clauses be added to the hot list if the dynamicversion of the hot list strategy, due to W. McCune, is in use (see Section 4.1 for details).4



Finally, the conclusions that are retained and that are traceable to the initial set of supportcan be used, without violating the set of support strategy, to deduce additional conclusions;such is also the case for clauses deduced with the hot list strategy, depending on the valueassigned to the heat parameter.Of the cited similarities between the two strategies, perhaps the most important concernskeying the program's search on information selected by the researcher.As for a key di�erence, a member from the set of support is chosen to initiate anapplication of an inference rule (when the set of support strategy is in use); in contrast, themembers of the hot list come into play only after a clause has been chosen as the focus ofattention to drive the program's reasoning. Indeed, the members of the hot list are usedonly to complete an application of an inference rule.For a second important di�erence, the main object of the set of support strategy is torestrict the program's reasoning; on the other hand, the object of the hot list strategy is torearrange the order in which conclusions are drawn.2.2 DemodulationDemodulation is used by many programs for simpli�cation and canonicalization. A dramaticimprovement in e�ciency is often due directly to automatically applying various equalities(demodulators) to each deduced conclusion.In the mid-1980s, no doubt in
uenced by the e�ectiveness of using demodulation, Iconjectured that the automatic consideration by paramodulation of each newly retainedclause with each member of a chosen set of equalities might also prove to be a powerfulmove. The chosen set of equalities would be placed on a list to be called the hot list.Of course, for the hot list strategy, two constraints on the actions of the program mustbe relaxed: (1) In contrast to demodulation, rather than requiring that no instantiationof variables be permitted in the into clause, full two-way uni�cation must be permitted;and (2) in contrast to the usual use of inference rules, rather than having the programwait until the newly retained clause is chosen as the focus of attention, the program mustbe allowed to immediately use it as one of the parents in the attempt to draw additionalconclusions. Indeed, with the hot list strategy, members of the hot list are automaticallyand immediately considered by paramodulation, if in use, and by any other inference rulein use (as McCune suggested by way of a generalization) with each newly retained clause,before another conclusion is chosen from list(sos) to be the focus of attention to drive theprogram's reasoning.As noted in Section 1.2, one can also use the hot list strategy to replace certain non-standard uses of demodulation. In particular, the use of demodulation at the literal levelcan enable a program to apply extended cancellation. Instead, clauses that function asnuclei and that capture various types of cancellation can be placed in the (input) hot list,and hyperresolution can be used as one of the inference rules. Then, when the programdecides to retain a new clause, before another clause is chosen as the focus of attention toinitiate applications of inference rules, the clause will be processed with cancellation of thetype present in the hot list. One might �nd this alternative more attractive than either(1) waiting for the clause to be chosen as the focus of attention to then be considered withincluded clauses for cancellation or (2) using demodulation in some usual form or some5



nonstandard form.2.3 AC-Uni�cationIn a limited way, the hot list strategy resembles, and hence can be used in place of,associative-commutative uni�cation. For this objective, one begins by including in the hotlist a clause for associativity and a clause for commutativity, assigning the heat parameterthe value 2, and invokes the use of paramodulation. Then, for each newly retained clausebefore another clause is chosen from list(sos) to be the focus of attention, the program willautomatically apply paramodulation to the new clause together with that for associativityand also apply the inference rule to the new clause together with that for commutativity.For each newly retained clause, the two clauses that are so deduced will have heat level1, and they will be retained depending on the other input parameters and subsumptionand such. Then, because of the assignment of the value 2 to the heat parameter, the heat-level-1 clauses (under discussion) that are retained will each immediately be considered byparamodulation with associativity and also with commutativity. In the case under discus-sion, a limited form of associative-commutative uni�cation is used. Of course, also in usein a limited way in this case is associative uni�cation and commutative uni�cation, at heatlevel 1 and at heat level 2. Also deduced at heat level 2 are clauses to which associativityhas been applied twice and to which commutativity has been applied twice.Use of the hot list strategy in the described manner can produce clauses early in a runthat, because of the reassociation and commuting of terms, admit further canonicalization.By choosing the appropriate assignment of the heat parameter, one has control over theamount of AC-uni�cation that is used. I �nd this alternative to AC-uni�cation appealing,for I have always been wary of a general and full use of that form of uni�cation. Indeed,a full use of AC-uni�cation can drown a program in unwanted conclusions; in general, forpractical considerations, restrictions must be imposed.If associative uni�cation without commutativity is desired, a clause for associativity isincluded in the hot list, and no clause for commutativity is included.2.4 Linked Inference RulesUse of the hot list strategy can also (in e�ect) partially substitute for access to linkedinference rules [11, 26]. Consider the case in which the clause C is deduced, the decisionis to retain C, C has high weight, and, were it not for the fact that a particular term tin C was left associated, paramodulation would apply to C and a clause correspondingto the special hypothesis with the into term being the right association of t. With linkedparamodulation, one could use associativity as a link to right associate t in C to thenpermit the result to unify appropriately with the special hypothesis clause. If one was usingthe hot list strategy with associativity and the special hypothesis clause in the hot list,and if the heat parameter was assigned the value 2, then the decision to retain C wouldimmediately trigger the application of paramodulation to C and the clause for associativity.Then, if the decision was to retain the result, immediately paramodulation would considerthe reassociated version of C with the special hypothesis clause.Linked paramodulation does not work precisely as does the hot list strategy. Among thedi�erences is that concerning so-called intermediate clauses. Speci�cally, once the program6



begins an application of a linked inference rule, the weight of a clause that is temporarilydeduced on the way to the linked conclusion is ignored. Linked paramodulation cannotproduce an intermediate clause whose weight prevents the continuation of the applicationof linked paramodulation. In particular, in the example just discussed, the reassociationof the clause C because of using associativity as a link cannot prevent completion of theapplication of the linked inference rule because of the weight of the reassociated clause. Incontrast, with the hot list strategy, the reassociated C must be retained in order to permitits consideration with the special hypothesis clause. (I am curious about the possible useful-ness of considering each clause with members of the hot list before the decision concerningretention is made.) A second di�erence concerns the possible use of demodulation. Theintermediate clauses resulting from a partial application of a linked inference rule are notsubject to demodulation, but their correspondents are with the hot list strategy.3 Intuitive View of the Hot List StrategyIn the following sense, one sees that the use of the hot list strategy enables an automatedreasoning program to \look ahead". Assume that paramodulation is the only inference rulein use and that a clause A has just been selected to be considered (by paramodulation)with each of the various clauses that have already been chosen as the focus of attention.Let H be a member of the hot list, and assume that the assignment to the appropriateinput parameter (called heat) permits consideration of H with each new clause that theprogram decides to retain. Also assume that the program is choosing where next to focusits attention based purely on symbol count and that the weight (number of symbols) of Ais 12. Let C be a clause with weight 25 that is deduced from A and some earlier-consideredclause such that the program decides to retain C. Finally, assume that, prior to the decisionto retain C, the consideration of A has resulted in the retention of ten new clauses eachwith weight 15.Ordinarily, without the intervention of the hot list strategy, the program would notconsider applying paramodulation to C and another clause until after focusing �rst on theten newly retained clauses each with weight 15. Quite likely the consideration of C wouldbe delayed further, for the focus on the weight 15 clauses would probably result in theretention of additional clauses of weight less than 25.However|and here is how the use of the hot list strategy enables the program to lookahead|before another clause is chosen as the focus of attention, paramodulation is appliedto C and H . If the application yields a clause D with weight 10 that is retained, then theprogram will have almost immediate access to the use of D for initiating applications ofinference rules. Otherwise, without the hot list strategy and assuming that H was availableto be used, the program would be forced to wait for D to be deduced when C is chosenas the focus of attention|if C is ever chosen. Indeed, as soon as A has completed itsrole as the focus of attention, D will be chosen to initiate applications of inference rules ifall eligible clauses have weight greater than 10. In addition to the deduction of D, otherlow-weight clauses might be retained whose parents are C and H , and still others from Cand some other member of the hot list.If the size of the hot list is small, the researcher need not in general worry about theprogram being forced to cope with an avalanche of clauses of the type under discussion. In7



e�ect, the program looks ahead to deduce just those immediate descendants of C whoseother parent is a member of the hot list, assuming that the heat parameter is assigned thevalue 1.Such a deduced clause D has heat level equal to 1 (de�ned formally in Section 4). Ifthe value the researcher assigns to the (input) heat parameter is 2, then after the programdecides to retain a clause D with heat level 1 but before another clause is chosen as thefocus of attention (in this case) paramodulation is applied to D and each member of thehot list, before that newly retained clause is used in its fullest to initiate applications ofinference rules. Any clause that is so deduced has heat level equal to 2. Clauses of heatlevel 2 are immediate descendants of immediate descendants of a newly retained clause. Ifthe program does retain clauses of heat level 2, then the program is looking even furtherahead.4 Formalism, a Powerul Option, and an IllustrationIn this section, I give needed de�nitions, discuss parameters and options, and employ oneor more of the notations acceptable to McCune's program OTTER. I then brie
y turn toa discussion of the dynamic hot list strategy, and I close this section with an illustration ofthe use of the hot list strategy. When I use the phrase \clause or its equivalent", I am notrestricting the de�nitions and terminology to OTTER-like programs. Rather, I intend thatthe appropriate adjustment(s) be made when the program in use requires input in someother form. Often, I use the term \clause" to mean \clause or its equivalent".De�nition, initial and extended hot list. The initial hot list is a (possibly empty)set of clauses (or their equivalent) selected by the researcher and included in the input.Depending on the exercising of appropriate options, the initial hot list can be extendedby adjoining new members to it during a run. Each member of the hot list (initial andextended) is eligible for automatic and immediate consideration to complete applications ofthe inference rules in use, with the requirement that the application of one of those inferencerules be initiated by focusing on a clause (or its equivalent) that the program has decidedto retain. In particular, no inference rule is permitted to apply to a set of clauses all ofwhich are members of the hot list.CHECK THIS De�nition, heat level. The heat level of a clause is 0 if and only if noclauses of the hot list participate in the application of an inference rule; the heat level of aclause is 1 if and only if (1) clauses from the hot list participate and (2) the heat level ofthe clause initiating the application of the inference rule is 0; for n � 2, the heat level ofa clause is n if and only if the heat level of the clause that initiates the application of theinference rule is n� 1.Regarding the eligibility of the members of the hot list, the (input) parameter known asheat must be assigned a value greater than or equal to 1 for members to be eligible for use.In other words, permission must be given to deduce clauses with heat level greater than orequal to 1. To instruct OTTER to attempt to deduce clauses with heat level 1, one addsa single command to the input �le. If the value in the command of the following type isequal to 1, after OTTER decides to retain a newly generated clause A but before anotherclause is chosen as the focus of attention (to drive the program's reasoning), each inferencerule in use is applied to A (as if A were the focus of attention) and the appropriate number8



of clauses H in the hot list, where that number is determined by the inference rule beingapplied.assign(heat,1).The default of the parameter heat is 1.For example, if paramodulation is being applied, then A is considered with each H inthe hot list; if hyperresolution is being applied, then, consistent with the requirements ofnucleus and satellites, all subsets of clauses from the hot list are considered with A. Anyclause B deduced from A and one or more clauses H is treated as all deduced clauses aretreated (with regard to subsumption, weighting, demodulation, and the like). If such aclause B is used in a proof, the proof will show for that clause (heat=1), meaning that itsheat level is 1.To enable OTTER to deduce and possibly use clauses whose heat level equals 2, onemodi�es the preceding command to be the following.assign(heat,2).With this modi�ed command, after OTTER decides to retain a newly generated clause Bwhose heat level equals 1 but before another clause is chosen as the focus of attention, eachinference rule in use is applied to B (as if B were the focus of attention) and the appropriatenumber of clauses H in the hot list, where that number is determined by the inference rulebeing applied. As expected, any clauses that are deduced whose heat level equals 2 aretreated as all deduced clauses are treated.Of course, one can assign to the heat parameter values greater than 2. An assignmentof the value 0 instructs the program not to consult the hot list.4.1 Dynamic Hot List StrategyAs a powerful option, OTTER can also be instructed to dynamically adjoin new clauses tothe hot list during the run. This extension of the hot list, developed by McCune, relies ona command of the following type.assign(dynamic_heat_weight, 20).With this command as part of the input, OTTER will|during a run|adjoin to list(hot)any clause that (1) the program has decided to retain and (2) the program has assigned aweight less than or equal to 20. (Clauses adjoined to list(hot) during a run must have anassigned weight less than or equal to the max weight currently in use.)The dynamic hot list strategy shares some similarity with the set of support strategy.Speci�cally, one expects or intends that clauses dynamically adjoined to list(hot) play a keyrole in a program's attack on the question or problem under study, just as one wishes, ideally,that clauses dynamically adjoined to list(sos) play a key role. Of course, as experimentationrepeatedly shows, the ideal case (for the set of support strategy) is not even approximated:Typically, a few CPU-minutes su�ces to produce a large and growing list(sos), many ofwhose members will never be chosen as the focus of attention to drive the program's rea-soning. The most common cause for a clause not being chosen as the focus of attention isits high weight or complexity. Perhaps in the future, this de�ciency will be sharply reduced9



by having the program automatically (and possibly self-analytically) move certain clausesfrom list(sos) to list(usable) before they are chosen as the focus of attention; see Section13.4 of [18]. List(sos) is the name of the list of clauses that have not yet been chosen asthe focus of attention but are recursively traceable to the initial set of support or were inthe initial set of support. List(usable) consists of the input clauses that were part of theproblem description but not placed in the initial set of support and also the clauses thatwere selected from list(sos) to be the focus of attention to drive the program's reasoning.However, an immediate move of a clause to list(usable) will permit its use only for inferencerule completion, not for inference rule initiation.4.2 An IllustrationFor an example of a somewhat elaborate use of the hot list strategy, consider the followingexcerpt from an input �le, where \j" denotes logical or, \-" denotes logical not, the predicateP can be interpreted as \provable", the function i can be interpreted as \implication", andthe function n as \negation". (When a line contains a \%", the characters from the �rst\%" to the end of the line are treated by the program as a comment.)assign(heat,3).list(hot).% Following is for condensed detachment.-P(i(x,y)) | -P(x) | P(y).% Following is Meredith's single axiom.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))). % CN-CAM% Following were proved in temp.otter3.meredith.hot.outP(i(x,i(y,x))).P(i(i(i(x,y),z),i(y,z))).P(i(x,i(n(x),y))).P(i(n(n(x)),x)).P(i(n(n(x)),x)).P(i(i(i(x,y),z),i(n(x),z))).P(i(x,n(n(x)))).P(i(x,n(n(x)))).P(i(i(n(x),x),x)).P(i(i(x,i(x,y)),i(x,y))).end_of_list.The theorem under study asserts that Meredith's axiom is a single axiom for two-valuedsentential (or propositional) calculus; see [10]. I give Meredith's proof in the Appendix.As one sees, the inference rule used in the study is condensed detachment, used byKalman in his landmark study of equivalential calculus [4, 5]; hyperresolution is used. Typ-ically, in such investigations, the only clauses used to initiate applications of an inferencerule are unit clauses. Therefore, for the hot list strategy to be usable, one must include atleast one nucleus in the hot list; the cited nucleus is the only such clause in the study. Afterall, as commented earlier, with the hot list strategy, all but the initiating clause for theapplication of each inference rule must be members of the hot list. Similarly, because the10



nucleus contains two negative literals, the hot list must also contain at least one other pos-itive clause to permit the use of the hot list strategy to complete applications of condenseddetachment through the use of hyperresolution.In the given example, I included in the hot list Meredith's axiom and various members ofknown axiom systems, each of which had been proved in a prior experiment. The assignmentof the value 3 to the heat parameter instructs OTTER to attempt to deduce clauses withheat level less than or equal to 3. Whether any clauses that are thus deduced are retaineddepends, of course, on other parameters, such as the max weight parameter (which placesan upper bound on the weight of a retained clause).5 ExperimentsAt this point, I present evidence of the power of the hot list strategy by discussing variousexperiments, comparing results with and without the use of this strategy. The experimentsfocus on four separate contexts: (1) reducing the amount of CPU time to complete a proof,(2) producing a proof of a theorem previously out of reach without much intervention bythe researcher, (3) �nding elegant proofs (in terms of length), and (4) answering challengingquestions.5.1 Reducing the CPU TimeIn this subsection, I demonstrate that using the hot list strategy can reduce CPU time.However, since no panacea exists, in Section 5.3 one sees that using the hot list strategycan increase CPU time.I begin with a theorem concerned with lattice ordered groups. The theorem was broughtto my attention by I. Dahn at the 1994 QED workshop. The theorem (which I call LOGT1for Lattice Ordered Groups Theorem 1) asks one to prove that, for each element x in alattice ordered group, x is equal to the product of its positive part pp(x) and its negativepart np(x), where 1 is the identity of the group, pp(x) is the union of x and 1, and np(x)is the intersection of x and 1. The following (in another notation acceptable to OTTER)gives the axioms, needed de�nitions, and various members of a complete set of reductionsfor groups. Regarding the notation in the following, i denotes inverse, 1 the group identity,u union, n intersection, pp positive part, and np negative part; != denotes \not equal".(The anomaly of having associativity of both union and intersection expressed as they areresults from the manner in which I was given the problem; OTTER, when processing theinput, interchanges their respective arguments so that the left-associated argument is onthe left.) The signi�cance of the line of dashes in the following will become clear when Ifocus on the set of support strategy.x = x.(x*y)*z = x* (y*z).1*x = x.x*1 = x.i(x)*x = 1.x*i(x) = 1.i(1) = 1. 11



i(i(x)) = x.i(x*y) = i(y)*i(x).n(x,x) = x.u(x,x) = x.n(x,y) = n(y,x).u(x,y) = u(y,x).n(x,n(y,z)) = n(n(x,y),z).u(x,u(y,z)) = u(u(x,y),z).------------------------------------u(n(x,y),y) = y.n(u(x,y),y) = y.x*u(y,z) = u(x*y,x*z).x*n(y,z) = n(x*y,x*z).u(y,z)*x = u(y*x,z*x).n(y,z)*x = n(y*x,z*x).pp(x) = u(x,1).np(x) = n(x,1).pp(a)*np(a) != a.Dahn noted that the theorem had been proved in 30 CPU-seconds on a SPARCstation-10 by a program called Discount. (Actually, in addition to the SPARCstation-10, simul-taneously two other computers were used, each a SPARCstation-2; after 30 CPU-seconds,Discount announced the theorem provable, but an additional 90 CPU-seconds was requiredto return the proof.)For my study of LOGT1 with OTTER, my colleague McCune in part paved the way;he chose a Knuth-Bendix approach with the following symbol ordering.lex([1,a,u(_,_),n(_,_),*(_,_),i(_),pp(_),np(_)]).McCune assigned max weight the value 15 (for a bound on the complexity of retained con-clusions, measured in symbol count) and assigned the value 4 to the pick given ratio. (Thislatter assignment instructs OTTER to focus on four conclusions based on their complexity,one by �rst come �rst serve, then four, then one, and the like.) Finally, McCune placedall clauses in list(sos), in e�ect instructing OTTER not to use the set of support strategy.On a SPARCstation-2, OTTER found a proof (given in the Appendix), of length 33, inapproximately 19,280 CPU-seconds.Following McCune's lead, I then took up the attack, using a SPARCstation-10 (approx-imately two times faster than the SPARCstation-2). I report here (not in chronologicalorder) the results of two experiments.In the �rst, I chose for the hot list precisely the positive clauses in the initial (input)set of support|the clauses given earlier that follow the line of dashes|assigned the heatparameter the value 1. The experiment produced a proof (given in the Appendix), of length32, in approximately 3148 CPU-seconds. When the run was terminated, after choosing asthe focus of attention 3122 clauses, 12,187 (of which 1714 were hot) were retained and4,670,281 (of which 61,980 were hot) were generated. This experiment provides the inexpe-rienced researcher with a simple rule to follow for choosing clauses for the hot list and forassigning the heat parameter. 12



The second experiment provided more dramatic evidence of the power of the hot list inreducing CPU time. The hot list consisted of the members of the set of support used inthe just-cited experiment (the positive clauses found after the line of dashes given earlier)augmented by the clauses for commutativity of union and of intersection and the clausesfor left and right inverse. I assigned a value of 2 to the heat parameter. The experimentproduced a proof, of length 42, in approximately 347 CPU-seconds.5.2 Bringing a Theorem within RangeIn the preceding subsection, I provided evidence of the value of using the hot list strategy tosharply reduce the CPU time required to complete an assignment. Here, my focus is on theuse of this strategy to bring within range theorems whose proof resisted various automatedattempts. The area is Robbins algebra, an area that I �nd fascinating mainly for threefactors. First, just three axioms su�ce to study this algebra, the following expressed inyet one more notation acceptable to OTTER, where one can interpret the function n ascomplement and the function + as union.EQ(+(x,y),+(y,x)). % commutativityEQ(+(+(x,y),z),+(x,+(y,z))). % associativityEQ(n(+(n(+(x,y)),n(+(x,n(y))))),x). % Robbins axiomSecond, at least on the surface, Robbins algebra is a natural target for automated reasoning;indeed, one can easily study this �eld by using paramodulation and choosing various optionsto control this inference rule or by using paramodulation within a Knuth-Bendix approach.Third, and so intriguing, the question of whether every Robbins algebra is a Boolean algebrawas open until McCune with his program EQP answered it in the a�rmative [9]; in fact,Tarski and his students failed to answer the question. The question is posed in [3].My focus here is on RAT5, a theorem that provides a splendid challenge for automatedreasoning programs, especially those that do not o�er AC-uni�cation or induction. In termsof the \ordering relation" on the elements of Robbins algebra, the theorem says that theexistence of two elements c and d with d less than or equal to c together with the Robbinsaxioms is all that is needed to imply Boolean. The theorem was �rst proved by Winkerusing induction [12, 13]; McCune later obtained a proof with AC-uni�cation. My goal, foryears, has been to prove the theorem without induction and without AC-uni�cation. In1996, I made yet another attempt.I assigned heat the value 1 and placed in the (input) hot list only the clause correspondingto the special hypothesis, c+d = c. I assigned max weight the value 30, the pick given ratiothe value 3, and max distinct vars the value 3 and included clear(eq units both ways). Re-garding weight templates, in weight list(pick given), I included two to respectively purge associative variants in four and �ve vari-ables, one to purge expressions in which n(n(n(t))) terms occur, and the template for thetail strategy. The inclusion of the template for the tail strategy causes OTTER to preferclauses in the equality predicate whose right-hand argument is short.Success: In approximately 44,926 CPU-seconds, OTTER produced a proof of length 80and level 18, with retention of clause (66147).In fairness, I must admit that I also succeeded without the hot list strategy. Indeed, inapproximately 9770 CPU-seconds, OTTER produced a proof (given in the Appendix) of13



length 78 and level 16, with retention of clause (48308). Nevertheless, my delight at �ndingsuch a proof|for the �rst time, with and without the hot list|remains unbounded.5.3 Finding Elegant ProofsOne measure of the elegance of a proof is its brevity. In this subsection, I show how thehot list strategy has proved useful in the search for elegant proofs, in the context of prooflength. Note that no practical algorithm appears to exist for searching for short proofs, andnote that numerous obstacles, some of which are indeed subtle, are encountered in such asearch; see [18], which takes the form of an experimental notebook. I focus on the formulasknown as XHK and XHN, each of which alone is strong enough to provide a completeaxiomatization for equivalential calculus.P(e(x,e(e(y,z),e(e(x,z),y)))). % XHKP(e(x,e(e(y,z),e(e(z,x),y)))). % XHNTo prove either of the corresponding theorems (by deducing one of the other knownsingle axioms) provides an excellent test for ideas and for programs. Indeed, whethereither is a single axiom was an open question until Winker obtained proofs with excellentinsight, many computer runs, much time, and considerable assistance from one of Argonne'sautomated reasoning programs [24, 25]. As an indication of the di�culty o�ered by the twobenchmark theorems, (not counting the predicate P ) Winker's 84-step proof for XHK relieson the use of a formula of length 71, and his 159-step proof for XHN relies on the use of aformula of length 103.To enable researchers to conduct similar experiments, here is a complete list of theshortest single axioms for equivalential calculus, each expressed in clause notation.% Following are all of the shortest single axioms% for equivalential calculus.P(e(e(x,y),e(e(z,y),e(x,z)))). % P1_YQLP(e(e(x,y),e(e(x,z),e(z,y)))). % P2_YQFP(e(e(x,y),e(e(z,x),e(y,z)))). % P3_YQJP(e(e(e(x,y),z),e(y,e(z,x)))). % P4_UMP(e(x,e(e(y,e(x,z)),e(z,y)))). % P5_XGFP(e(e(x,e(y,z)),e(z,e(x,y)))). % P7_WNP(e(e(x,y),e(z,e(e(y,z),x)))). % P8_YRMP(e(e(x,y),e(z,e(e(z,y),x)))). % P9_YROP(e(e(e(x,e(y,z)),z),e(y,x))). % PYOP(e(e(e(x,e(y,z)),y),e(z,x))). % PYMP(e(x,e(e(y,e(z,x)),e(z,y)))). % XGKP(e(x,e(e(y,z),e(e(x,z),y)))). % XHKP(e(x,e(e(y,z),e(e(z,x),y)))). % XHNFrom various experiments, I had found a 27-step proof showing that XHK is a singleaxiom and a 24-step proof showing that XHN is also a single axiom. I decided next to usethe hot list strategy to attempt to �nd even shorter (more elegant) proofs.14



I began with XHN, using a level-saturation approach, assigning the value of 36 tomax weight and the value of 2 to each of 24 resonators corresponding to the steps of the24-step proof I had obtained. I included in list(passive) the negations of each of the othertwelve shortest single axioms, expecting a deduction of UM only. I assigned the value 1to the heat parameter and placed in the hot list the clauses corresponding to XHN andthe condensed detachment nucleus. In approximately 38 CPU-seconds (on the equivalentof a SPARCstation-2), OTTER deduced UM with a proof of length 22 and level 11, withretention of clause (864). When I then deleted the use of the resonance strategy [16, 20], inapproximately 770 CPU-seconds OTTER deduced UM with a proof of length 20 and level14, with retention of clause (9777).Why did the hot list strategy succeed? A key rests with the e�ect the strategy haswhen level saturation is being used. For an illustration of how this combination causes theprogram to look ahead, assume the heat parameter is assigned the value 1, that condenseddetachment is in use, and that the hot list contains the needed clauses (such as that forcondensed detachment and, say, the shortest single axiom candidate under study). When alevel-1 clause A is deduced and retained and the hot list strategy is in use, A will immediatelybe used to initiate applications of condensed detachment with the clauses needed to completethe applications chosen from the hot list. If condensed detachment succeeds, yielding aclause B, B will have level 2 (and heat level 1). If B is retained, it will be placed among thelevel-1 clauses, even though it has level 2. Keep in mind that, very likely, the program isstill generating level-1 clauses and simply paused, because of the use of the hot list strategy.Then, when the program is using the level-1 clauses to deduce those of level 2, B (of level2) will be used; but its use will generate level-3 clauses, which, if retained will be placedamong the level-2 clauses. In addition, because of the use of the hot list strategy, such alevel-3 clause C will be used immediately. If clauses are deduced and retained, they will beof level 4, but be placed among those of level 2, just as B was deduced and placed amongthe level-1 clauses.Regarding the successful completion of the cited 20-step proof, a glance at the output�le shows that the program was deducing and retaining clauses of level 11 when it foundand used a level-14 clause to complete the proof. In other words, the program, because ofusing the hot list strategy in conjunction with level saturation, was able to look ahead intohigher levels. One thus sees how the program found a di�erent proof, one of length 20, bytraversing a sharply di�erent search path.To determine the e�ect on CPU time, on a computer that is perhaps 1.3 times as fast asa SPARCstation-10, I conducted two experiments. Approximately 38 CPU-seconds su�ceswith level saturation and without the hot list strategy, in contrast to approximately 306CPU-seconds with the combination of level saturation and the hot list strategy. Again,for part of the explanation, one need only glance at the corresponding output �les, �ndingthat level 10 completes with clause (87) when the hot list strategy is not in use, and level10 completes with clause (1488) when it is in use. These two �gures further illustrate howthe hot list strategy, when level saturation is in use, causes the program to look aheadinto higher levels. The �gures also illustrate a disadvantage of using this combination ofstrategies, for the size of the levels can grow far more rapidly.One �nal experiment merits discussion. In the spirit of cursory proof checking (asopposed to rigorous proof checking), both covered in [18], I used as resonators the 20 steps15



of the just-cited proof, assigned a value of 2 to each, and assigned to the max weight thevalue 2. Again, I used the hot list strategy, motivated by a distantly related experiment inanother logic calculus, an experiment that yielded under similar conditions an even shorterproof; see [21] and Section 3.4 of the technical report [23] that is a far longer version of thisarticle. I was not rewarded: OTTER merely returned the 20-step proof already discussed.On a whim, I repeated the experiment with one change, that of omitting the use of thehot list strategy. I was more than startled, for OTTER completed a 19-step proof of level14 (given in the Appendix), showing that a shorter proof can be found with cursory proofchecking either by adding the use of the hot list strategy or (in this case) by removing itsuse. I know of no shorter proof establishing XHN to be a single axiom for equivalentialcalculus, a fact that implicitly poses a possible research question.Next I turned to a study of XHK, applying a similar approach to that which yielded the20-step proof thatXHN is indeed a shortest single axiom for equivalential calculus. In one ofseveral experiments, I assigned max weight the value 48, used ancestor subsumption (and,therefore, used back subsumption), assigned the pick given ratio the value 3, reassignedthe max weight to the value 20 after 30 clauses were chosen as the focus of attention, andused the hot list strategy with the heat parameter assigned the value 1. I placed in thehot list the clauses corresponding to XHK and the condensed detachment nucleus. I usedthe pick and purge weight list and included, for the resonance strategy, weight templatescorresponding to the steps of the earlier-mentioned 27-step proof, which completed with adeduction of YRO. OTTER succeeded in �nding a 26-step proof. Four of the steps re
ectthe use of the hot list strategy, each showing (heat=1).As with XHN, one additional experiment merits citing because of the progress thatresulted. However, rather than cursory proof checking providing the key, parameter changesproved to be crucial. Regarding the changes, I assigned the pick given ratio the value 2rather than 3, instructed the program to reduce the max weight from 48 to 24 after 50clauses were chosen as the focus of attention, and used for resonators weight templatesthat correspond to the 26 steps of the just-cited proof. OTTER succeeded in �nding a 23-step proof of level 19 (given in the Appendix), but, rather than deducing YRO, the proofcompleted with the deduction of YQL. Again, four of the steps re
ect the use of the hotlist strategy, each showing (heat=1).5.4 Answering Challenging QuestionsIn Section 5.1, I focused on the theorem LOGT1 to show how the hot list strategy can beused to sharply reduce the time required to �nd a proof. In this subsection, I focus onanother problem in lattice ordered groups, LOGT2, which provides evidence of how thehot list strategy can be used to obtain a solution to an interesting question whose answerhad eluded researchers. Again, Dahn brought the original theorem to my attention. In thiscase, however, his program had not been able to obtain a proof.One is asked in LOGT2 to prove a relation among inverse, intersection, and union, arelation whose negation is the following, where i denotes inverse, n denotes intersection,and u denotes union.i(n(a,b)) != u(i(a),i(b)). 16



As the problem was proposed to me, one is permitted to use essentially the entire underlyingtheory. I began by discarding all nonunit clauses and all new (not in the input for LOGT1)equalities but two, the following.u(x,n(y,z)) = n(u(x,y),u(x,z)).n(x,u(y,z)) = u(n(x,y),n(x,z)).I added in list(sos) the two positive equalities to the input for LOGT1 (of course, omittingthe denial of its conclusion) and added the negative equality to list(passive).I chose a level saturation approach, using the following command.set(sos_queue).I assigned the value 2 to the heat parameter and used the following hot list.list(hot).n(x,y) = n(y,x).u(x,y) = u(y,x).i(x)*x = 1.x*i(x) = 1.u(n(x,y),y) = y.n(u(x,y),y) = y.x*u(y,z) = u(x*y,x*z).x*n(y,z) = n(x*y,x*z).u(y,z)*x = u(y*x,z*x).n(y,z)*x = n(y*x,z*x).u(x,n(y,z)) = n(u(x,y),u(x,z)).n(x,u(y,z)) = u(n(x,y),n(x,z)).end_of_list.I also used resonators from an earlier success, each assigned the value 2. With the hotlist strategy, OTTER produced a proof in approximately 1826 CPU-seconds with length 37and level 15, with retention of clause (6698). By comparison, without the hot list strategy,OTTER produced no proof.The explanation for the success rests with the following. With level saturation and theheat parameter assigned the value 2, when a new clause is retained at, say, level 4, the hotlist strategy will �rst immediately generate clauses of level 5 (and heat level 1) and then,if any of them are retained, use them to immediately generate clauses of level 6 (and heatlevel 2). So, in one sense, the use of the hot list strategy with a breadth-�rst search enablesa program to look ahead; see Section 6.2 for more discussion.Rather than simply turning to another topic, I mention here one additional set of exper-iments concerning LOGT2. The results of the experiments nicely illustrate how narrow canbe the window of opportunity to answer a di�cult question and how intertwined variousprocedures often are. Whereas one of the experiments yielded the shortest proof (given inthe Appendix) of LOGT2 of which I know|a proof of length 22|the other experimentsyielded no proof of any type. The 22-step proof was found by dropping the use of levelsaturation, assigning the value 10 rather than 6 to the pick given ratio, assigning the value17



3 rather than 2 to the heat parameter, and using a hot list consistent with the recommen-dation (given in Section 6.1) concerning \short and simple" clauses that occur in the inputset of clauses. The hot list consisted of the following ten clauses.1*x = x.x*1 = x.i(x)*x = 1.x*i(x) = 1.i(1) = 1.i(i(x)) = x.n(x,x) = x.u(x,x) = x.u(n(x,y),y) = y.n(u(x,y),y) = y.The other options and assignments were the same as were used in the cited successful level-saturation run for LOGT2. Although some of the other experiments from the set failed toyield a proof, they were each most valuable, for their respective failure provides evidenceof how narrow is the window of opportunity. In one of the experiments that failed to yieldany proof, except for dropping the use of level saturation, the experiment was identical tothat which yielded the 37-step proof; in other words, the hot list consisted of the elementsused in the level-saturation experiment that succeeded. In another experiment that failed,the hot list consisted of just the following two clauses.i(x)*x = 1.x*i(x) = 1.In my view, the narrowness of the window of success is not a weakness of the hot liststrategy; rather, it simply re
ects the depth of mathematics and the fact that no panaceaexists.6 Recommendations and Hints for Using the Hot List Strat-egyThis section is devoted to guidance and notions about using the hot list strategy moste�ectively. I begin with a few recommendations, then follow with more speci�c hints forchoosing parameters.6.1 RecommendationsI recommend that an input clause placed in list(hot) also be placed in some other list.(Among the exceptions was that discussed earlier, at the end of Section 2.2, in the contextof cancellation.) For example, if an input clause would ordinarily be included to completethe application of an inference rule rather than initiate the application, then I recommendthat, if the clause is placed in list(hot), it also be placed in list(usable).As an aside, and independent of the hot list strategy, clauses one suspects are bestused to complete rather than initiate inferences belong, in my view, in list(usable). As18



another aside, I conjecture that the e�ectiveness of an automated reasoning program wouldbe increased if, when such a (completion) clause is retained, it were immediately placedin list(usable) rather than being placed in list(sos). This option is not o�ered by OTTERor, for that matter, from what I know by any program, and it might make an interestingresearch problem.When one is studying logic calculi (in which condensed detachment is used in the pres-ence of the inference rule hyperresolution), I recommend placing a clause of the followingtype both in list(usable) and in list(hot).-P(i(x,y)) | -P(x) | P(y).This clause is best used to complete applications of an inference rule, and almost never toinitiate them.On the other hand, if I were using OTTER to apply the hot list strategy to studyrings in which the cube of (every element) x is x, I would place the clause equivalent ofxxx = x both in list(sos) and in list(hot). I would take this action even though such aclause is best used to initiate applications of an inference rule, rather than complete anapplication. One might be puzzled by this recommendation, for clauses in list(sos) are bestused to initiate applications of an inference rule, while clauses in the hot list are used onlyto complete applications. Nevertheless, my experience with the hot list strategy suggeststhat the inclusion (in the hot list) of such clauses adds to the e�ectiveness of this strategy.As a global recommendation, I suggest including in the hot list those clauses that cor-respond to the special hypothesis of the proposed theorem under attack. Such clauses also,in my view, are wisely placed in list(sos).For a related global recommendation, I suggest the hot list consist of those equationsfrom the input set of support having eight or fewer symbols (ignoring parentheses andcommas) whose right-hand argument is a single symbol, constant or variable. Of course,I have in mind that predicates, functions, and the like are represented with single letters.The hot list can also be augmented with all similar \short and simple" clauses taken fromthe usable list.I recommend using the dynamic hot list strategy when one suspects that some of theclauses adjoined during the run merit repeated visiting as hypotheses for completing ap-plications of an inference rule. In particular, I recommend the assignment of a small valuefor the dynamic heat weight, enough to permit new clauses to be adjoined to the hot listduring the run, but not so big as to cause the hot list to become large. Even a small valuecan drown the hot list, if the weight list contains templates that both have smaller valuesassigned to them and are frequently matched during the run. Indeed, one must exercise carewhen combining the dynamic hot list strategy with the resonance strategy. For example,if one includes resonators corresponding to formulas from equivalential calculus, becausemany formulas can match a single resonator, havoc may be the result. A clue is providedwhen one sees that OTTER is spending substantial CPU time on a single clause that ischosen as the focus of attention.Regarding assignments for the values for the heat and the dynamic heat weight parameters|with the exceptions just noted and those discussed in Section 6.2|I can only suggest ex-perimentation. One might pro�tably glance at some of the experiments I feature in Section5; see also [17, 18, 19, 20] and especially [21] and [22]. (Of the various references, [21] is19



the choice for the researcher wishing far more detail concerning tendencies exhibited by theoptions o�ered by OTTER.)Before I turn to hints for using the hot list strategy, the following observation needsutterance. The use of the hot list strategy, as is the case for various options o�ered byOTTER that a�ect the search space, can produce unexpected results. For example, anassignment of the value 2 to the heat parameter can yield for a given problem a shorterproof than previously in hand, where an assignment of the value 1 may yield no proof.Indeed, in the latter case, the program might inform the user that the set of support hasgone empty. The explanation rests with the reordering of the space of drawn conclusions andcanonicalizations that can occur with procedures such as demodulation and subsumption.For a second example, a small hot list may produce no proof, a slightly larger one mayproduce the best proof one has seen, and an even larger hot list may produce a proof oflittle interest. See Section 5.4 for examples of the type just discussed. In general, when onetakes actions that change the search, one can expect that a longer clause might be neededto get a proof or expect other odd occurrences.6.2 Hints regarding the Hot List StrategyTo complement the cited general recommendations, I o�er the following more speci�c sugges-tions and examples. The �rst bulleted item concerns early experimentation; the remainingitems pertain to use of the hot list at any time in one's research.� Especially in the beginning of one's experiments, I recommend that the heat parameterbe assigned the value 1, and I recommend that the (input) hot list consist of theclause or clauses that correspond to the special hypothesis of the theorem underattack. For example, if the theorem concerns groups in which the cube of x is theidentity e, then the special hypothesis is the equation xxx = e: When studying somelogic calculus, for a second recommendation, I suggest the axioms of the theory (iffewer than eight in number) and the nonunit clause (if such is used) correspondingto condensed detachment. For a third recommendation, if the theorem under studyo�ers no special hypothesis, or if the special hypothesis is messy (consisting of severalnonunit clauses, for example), then I suggest putting in the hot list the elements ofthe (input) set of support that take the form of positive unit clauses. On the otherhand, especially when no special hypothesis exists (as when one is studying some logiccalculus), I repeat my second recommendation.� A value of 2 or greater for the heat parameter is suggested when one wishes a recur-sively heavier emphasis on the members of the hot list. The inclusion of an input hotlist (and, of course, the use of the hot list strategy) is suggested when one conjecturesthat certain input clauses have been identi�ed as meriting repeated consideration ashypotheses for drawing conclusions by completing applications of an inference rule.� By placing in the (input) hot list clauses for associativity and commutativity, onecan use the hot list in place of a limited form of AC-uni�cation. The greater thevalue assigned to the heat parameter, the more AC-uni�cation that occurs. However,e�ectiveness can be severely impaired with associativity in the hot list if the heatparameter is assigned the value 3 or greater.20



� Combining a level saturation search with the hot list strategy often produces impres-sive results. For a taste, when the program is adjoining clauses at level 4, with thehot list strategy in use and the heat parameter assigned the value 2, the programalso is deducing (for possible retention) clauses at level 6. In the obvious sense, thecited combination permits the program to look ahead, and the distance is greaterthan or equal to the value assigned to the heat parameter. For example, although theheat parameter was assigned the value 1 when studying XHN, a proof of level 14 wascompleted as the program was deducing clauses of level 11.7 Conclusions and a ChallengeIn this article, I have featured the hot list strategy, presenting numerous pertinent exper-iments. I have also discussed brie
y the dynamic hot list strategy. The hot list strategyasks the researcher to provide an input list (called the hot list) of statements (clauses) thatthe automated reasoning program uses to complete, in contrast to initiate, applications ofthe inference rules in use. Ordinarily, one chooses for the members of the hot list clausesthat are conjectured to merit revisiting repeatedly, clauses on which to key the program'sattack. The dynamic hot list strategy (formulated by McCune) extends the hot list strategyto permit the program to adjoin members to the hot list during the run.Both formulations address the inaccessibility of certain retained clauses, for far too long,because of their complexity. The evidence presented in this article shows that the hot liststrategy can be used successfully in at least four contexts: reducing CPU time, �ndingproofs of theorems previously out of reach without much intervention of the researcher,�nding more elegant proofs, and answering a question whose answer had steadfastly eludedresearchers relying on an automated reasoning program.Continuing in the tradition begun at Argonne National Laboratory approximately threedecades ago (in the early 1960s), I close with a challenging problem for interested researchers.� Evaluate the e�ectiveness of the hot list strategy, using as members of the hot listgenerated clauses, rather than retained clauses. This incarnation or modi�cation of thehot list strategy would permit the program to draw conclusions that are children ofclauses that might be discarded because of being too complex as measured in weight.AppendixAs promised, here I present input �les and proofs. The input �les are intended to facilitatethe further study by researchers of the areas touched on in this article. They also areintended to serve as templates for research in other areas of mathematics and logic. Insome cases, I include lines preceded with \%", which McCune's program OTTER treats asa comment. The input �les, as well as the proofs given here, provide the merest taste ofwhat one can do with OTTER; more is found in my new book [21].One of my main reasons for including speci�c proofs is my strong conviction that likeli-hood of experimentation producing valuable results is sharply increased. Indeed, when theobjective is the formulation of, say, a new strategy or new inference rule or the testing ofa reasoning program, I have always been more than puzzled at the nonchalance of some21



regarding the value of having in hand a proof of the theorem under attack. Few (if any)means are better for measuring progress than seeing how many proof steps of a given proofhave been produced with the new approach or the program under evaluation.I begin with an input �le that can be used to initiate one's attack on �nding a meansfor an automated reasoning program to prove, de�nitely not in a proof checking mode, thatMeredith's single axiom su�ces for an axiom system for two-valued sentential calculus.To aid one's research, I also include (essentially) Meredith's proof; it was produced witha cursory proof-checking run, using his steps as resonators and assigning max weight thevalue 2. Input File for Studying Meredith's Single Axiomset(hyper_res).assign(max_weight, 28).assign(change_limit_after, 2000).assign(new_max_weight, 20).assign(max_proofs, -1).clear(print_kept).clear(back_sub).assign(max_mem, 110000).assign(report, 1800).assign(max_distinct_vars, 7).assign(pick_given_ratio, 3).assign(heat,1).set(order_history).set(input_sos_first).weight_list(pick_given).% The following is Meredith's single axiom.weight(P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))),2).% Following are the 17 from the known axiom systems; using resonance.weight(P(i(i(x,y),i(i(y,z),i(x,z)))),2).weight(P(i(i(n(x),x),x)),2).weight(P(i(x,i(n(x),y))),2).weight(P(i(x,i(y,x))),2).weight(P(i(i(i(x,y),z),i(y,z))),2).weight(P(i(i(x,i(y,z)),i(y,i(x,z)))),2).weight(P(i(i(x,y),i(i(z,x),i(z,y)))),2).weight(P(i(i(x,i(x,y)),i(x,y))),2).weight(P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))),2).weight(P(i(i(i(x,y),z),i(n(x),z))),2).weight(P(i(n(n(x)),x)),2).weight(P(i(x,n(n(x)))),2).weight(P(i(i(x,y),i(n(y),n(x)))),2).weight(P(i(i(n(x),n(y)),i(y,x))),2).weight(P(i(i(x,y),i(i(n(x),y),y))),2).weight(P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))),2).weight(P(i(i(x,i(n(y),z)),i(x,i(i(u,z),i(i(y,u),z))))),2).% Following is for recursive tail strategy.weight(i($(1),$(2)),1).end_of_list.list(usable).% Following is for condensed detachment.-P(i(x,y)) | -P(x) | P(y).% The following disjunctions are known axiom systems.-P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | -P(i(n(n(p)),p)) |-P(i(p,n(n(p)))) | -P(i(i(p,q),i(n(q),n(p)))) | -P(i(i(p,i(q,r)),i(q,i(p,r)))) |22



$ANSWER(step_allFrege_18_35_39_40_46_21). % 21 is dependent.-P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(q,i(p,r)))) | -P(i(i(q,r),i(i(p,q),i(p,r)))) |-P(i(p,i(n(p),q))) | -P(i(i(p,q),i(i(n(p),q),q))) | -P(i(i(p,i(p,q)),i(p,q))) |$ANSWER(step_allHilbert_18_21_22_3_54_30). % 30 is dependent.-P(i(q,i(p,q))) | -P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | -P(i(i(n(p),n(q)),i(q,p))) |$ANSWER(step_allBEH_Church_FL_18_35_49).-P(i(i(i(p,q),r),i(q,r))) | -P(i(i(i(p,q),r),i(n(p),r))) | -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) |$ANSWER(step_allLuka_x_19_37_59).-P(i(i(i(p,q),r),i(q,r))) | -P(i(i(i(p,q),r),i(n(p),r))) |-P(i(i(s,i(n(p),r)),i(s,i(i(q,r),i(i(p,q),r))))) | $ANSWER(step_allWos_x_19_37_60).-P(i(i(p,q),i(i(q,r),i(p,r)))) | -P(i(i(n(p),p),p)) | -P(i(p,i(n(p),q))) |$ANSWER(step_allLuka_1_2_3).end_of_list.list(sos).% The following is Meredith's single axiom.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))). % CN-CAM% The following three are Luka, 1 2 3.% P(i(i(x,y),i(i(y,z),i(x,z)))).% P(i(i(n(x),x),x)).% P(i(x,i(n(x),y))).end_of_list.list(passive).-P(i(i(p,q),i(i(q,r),i(p,r)))) | $ANSWER(step_L1).-P(i(i(n(p),p),p)) | $ANSWER(step_L2).-P(i(p,i(n(p),q))) | $ANSWER(step_L3).-P(i(q,i(p,q))) | $ANSWER(step_18).-P(i(i(i(p,q),r),i(q,r))) | $ANSWER(step_19).-P(i(i(p,i(q,r)),i(q,i(p,r)))) | $ANSWER(step_21).-P(i(i(q,r),i(i(p,q),i(p,r)))) | $ANSWER(step_22).-P(i(i(p,i(p,q)),i(p,q))) | $ANSWER(step_30).-P(i(i(p,i(q,r)),i(i(p,q),i(p,r)))) | $ANSWER(step_35).-P(i(i(i(p,q),r),i(n(p),r))) | $ANSWER(step_37).-P(i(n(n(p)),p)) | $ANSWER(step_39).-P(i(p,n(n(p)))) | $ANSWER(step_40).-P(i(i(p,q),i(n(q),n(p)))) | $ANSWER(step_46).-P(i(i(n(p),n(q)),i(q,p))) | $ANSWER(step_49).-P(i(i(p,q),i(i(n(p),q),q))) | $ANSWER(step_54).-P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANSWER(step_59).-P(i(i(s,i(n(p),r)),i(s,i(i(q,r),i(i(p,q),r))))) | $ANSWER(step_60).-P(i(n(n(a)),a)) | $ANSWER(lemma_24).-P(i(a,n(n(a)))) | $ANSWER(lemma_29).-P(i(i(a,b),i(i(c,a),i(c,b)))) | $ANSWER(lemma_25).-P(i(i(a,b),i(n(b),n(a)))) | $ANSWER(lemma_36).end_of_list.list(demodulators).% (n(n(x)) = junk).(n(n(n(x))) = junk).% (i(i(x,x),y) = junk).% (i(y,i(x,x)) = junk).% (i(n(i(x,x)),y) = junk).% (i(y,n(i(x,x))) = junk).(i(junk,x) = junk).(i(x,junk) = junk).(n(junk) = junk).(P(junk) = $T).end_of_list. 23



list(hot).% Following is for condensed detachment.-P(i(x,y)) | -P(x) | P(y).% Following is Meredith's single axiom.P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))). % CN-CAMend_of_list. Meredith's Proof-----> EMPTY CLAUSE at 1.35 sec ----> 58 [hyper,6,57,47,38]$ANSWER(Luka,[1,2,3]).Length of proof is 41. Level of proof is 30.---------------- PROOF ----------------1 [] -P(i(x,y)) | -P(x) |P(y).6 [] -P(i(i(p,q),i(i(q,r),i(p,r)))) | -P(i(i(n(p),p),p)) | -P(i(p,i(n(p),q))) |$ANSWER(Luka,[1,2,3]).7 [] P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).------------------------------------8 [hyper,1,7,7] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u)))).9 [hyper,1,7,8] P(i(i(i(x,i(n(y),z)),u),i(y,u))).10 [hyper,1,7,9] P(i(i(i(x,x),y),i(z,y))).11 [hyper,1,10,10] P(i(x,i(y,i(z,z)))).13 [hyper,1,7,11] P(i(i(i(x,i(y,y)),z),i(u,z))).15 [hyper,1,7,13] P(i(i(i(x,y),z),i(y,z))).17 [hyper,1,15,7] P(i(x,i(i(x,y),i(z,y)))).18 [hyper,1,15,17] P(i(x,i(i(i(y,x),z),i(u,z)))).19 [hyper,1,17,9] P(i(i(i(i(i(x,i(n(y),z)),u),i(y,u)),v),i(w,v))).20 [hyper,1,7,18] P(i(i(i(i(i(x,i(i(i(y,z),i(n(u),n(v))),u)),w),i(v6,w)),y),i(v,y))).21 [hyper,1,7,19] P(i(i(i(x,y),i(z,i(n(n(y)),u))),i(v,i(z,i(n(n(y)),u))))).22 [hyper,1,7,20] P(i(i(i(x,y),i(z,i(i(i(y,u),i(n(v),n(x))),v))),i(w,i(z,i(i(i(y,u),i(n(v),n(x))),v))))).23 [hyper,1,21,7] P(i(x,i(i(y,z),i(n(n(y)),z)))).24 [hyper,1,22,17] P(i(x,i(i(i(y,z),u),i(i(i(z,v),i(n(u),n(y))),u)))).25 [hyper,1,23,23] P(i(i(x,y),i(n(n(x)),y))).26 [hyper,1,7,23] P(i(i(i(i(x,y),i(n(n(x)),y)),z),i(u,z))).27 [hyper,1,24,24] P(i(i(i(x,y),z),i(i(i(y,u),i(n(z),n(x))),z))).29 [hyper,1,10,25] P(i(x,i(n(n(y)),y))).30 [hyper,1,27,18] P(i(i(i(x,y),i(n(i(i(i(z,i(u,x)),v),i(w,v))),n(u))),i(i(i(z,i(u,x)),v),i(w,v)))).31 [hyper,1,17,29] P(i(i(i(x,i(n(n(y)),y)),z),i(u,z))).32 [hyper,1,7,30] P(i(i(i(i(i(x,i(y,i(z,u))),v),i(w,v)),z),i(v6,z))).33 [hyper,1,7,32] P(i(i(i(x,y),i(z,i(u,i(y,v)))),i(w,i(z,i(u,i(y,v)))))).34 [hyper,1,33,7] P(i(x,i(i(y,i(y,z)),i(u,i(y,z))))).35 [hyper,1,34,34] P(i(i(x,i(x,y)),i(z,i(x,y)))).36 [hyper,1,35,35] P(i(x,i(i(y,i(y,z)),i(y,z)))).37 [hyper,1,36,36] P(i(i(x,i(x,y)),i(x,y))).38 [hyper,1,9,37] P(i(x,i(n(x),y))).39 [hyper,1,37,31] P(i(i(i(x,i(n(n(y)),y)),z),z)).40 [hyper,1,37,26] P(i(i(i(i(x,y),i(n(n(x)),y)),z),z)).42 [hyper,1,25,39] P(i(n(n(i(i(x,i(n(n(y)),y)),z))),z)).43 [hyper,1,7,40] P(i(i(n(x),x),i(y,x))).46 [hyper,1,18,42] P(i(i(i(x,i(n(n(i(i(y,i(n(n(z)),z)),u))),u)),v),i(w,v))).47 [hyper,1,37,43] P(i(i(n(x),x),x)).48 [hyper,1,7,46] P(i(i(i(x,n(i(i(y,i(n(n(z)),z)),n(u)))),v),i(u,v))).49 [hyper,1,48,47] P(i(x,n(i(i(y,i(n(n(z)),z)),n(x))))).50 [hyper,1,18,49] P(i(i(i(x,i(y,n(i(i(z,i(n(n(u)),u)),n(y))))),v),i(w,v))).52 [hyper,1,37,50] P(i(i(i(x,i(y,n(i(i(z,i(n(n(u)),u)),n(y))))),v),v)).53 [hyper,1,7,52] P(i(i(x,y),i(i(i(z,i(n(n(u)),u)),n(n(x))),y))).54 [hyper,1,53,53] P(i(i(i(x,i(n(n(y)),y)),n(n(i(z,u)))),i(i(i(v,i(n(n(w)),w)),n(n(z))),u))).55 [hyper,1,7,54] P(i(i(i(i(i(x,i(n(n(y)),y)),n(n(z))),u),v),i(i(z,u),v))).57 [hyper,1,55,7] P(i(i(x,y),i(i(y,z),i(x,z)))).58 [hyper,6,57,47,38] $ANSWER(Luka,[1,2,3]). 24



I now give an input �le for proving LOGT1. Through appropriate modi�cation, onecan use the �le to study lattice ordered groups. The 32-step proof I give immediately afterthe �le is obtained by assigning the heat parameter the value 1 (rather than 2) and bycommenting out in the hot list the clauses for commutativity of union and of intersectionand those for inverse. I then give McCune's 33-step proof of LOGT1.Input File for Studying LOGT1set(knuth_bendix).lex([1,a,u(_,_),n(_,_),*(_,_),i(_),pp(_),np(_)]).assign(max_weight, 15).assign(max_proofs, 36).assign(max_mem, 40000).assign(pick_given_ratio, 6).assign(heat, 2).assign(report, 900).% set(really_delete_clauses).clear(print_kept).clear(print_new_demod).clear(print_back_demod).list(usable).x = x.(x*y)*z = x* (y*z).1*x = x.x*1 = x.i(x)*x = 1.x*i(x) = 1.i(1) = 1.i(i(x)) = x.i(x*y) = i(y)*i(x).n(x,x) = x.u(x,x) = x.n(x,y) = n(y,x).u(x,y) = u(y,x).n(x,n(y,z)) = n(n(x,y),z).u(x,u(y,z)) = u(u(x,y),z).end_of_list.list(sos).u(n(x,y),y) = y.n(u(x,y),y) = y.x*u(y,z) = u(x*y,x*z).x*n(y,z) = n(x*y,x*z).u(y,z)*x = u(y*x,z*x).n(y,z)*x = n(y*x,z*x).pp(x) = u(x,1).np(x) = n(x,1).pp(a)*np(a) != a.end_of_list.list(passive).pp(a)*np(a) != a | $ANSWER(step_d33).i(q)*q*r != r | $ANSWER(step_d01).u(n(q,r),q) != q | $ANSWER(step_d02).u(q,n(r,q)) != q | $ANSWER(step_d03).n(u(q,r),q) != q | $ANSWER(step_d04).u(q,u(r,q)) != u(r,q) | $ANSWER(step_d05).u(q,n(q,r)) != q | $ANSWER(step_d06).n(q,n(r,q)) != n(r,q) | $ANSWER(step_d07).u(q,u(q,r)) != u(q,r) | $ANSWER(step_d08).u(n(q,r),n(q,n(r,s))) != n(q,r) | $ANSWER(step_d09).25



u(i(u(q,r))*q,i(u(q,r))*r) != 1 | $ANSWER(step_d10).n(i(n(q,r))*q,i(n(q,r))*r) != 1 | $ANSWER(step_d11).n(u(x,x*x),u(x,1)) = x | $ANSWER(step_d12).n(u(x,x*x),u(1,x)) = x | $ANSWER(step_d13).u(i(u(q,r))*q,1) != 1 | $ANSWER(step_d14).u(i(u(1,q)),1) != 1 | $ANSWER(step_d15).u(i(u(q,r))*q*s,s) != s | $ANSWER(step_d16).n(1,i(u(1,q))) != i(u(1,q)) | $ANSWER(step_d17).n(i(n(q,r))*r,1) != 1 | $ANSWER(step_d18).n(i(n(q,1)),1) != 1 | $ANSWER(step_d19).u(1,i(n(q,1))) != i(n(q,1)) | $ANSWER(step_d20).n(u(1,x),u(x,x*x)) = x | $ANSWER(step_d21).u(n(q,1),n(q,i(u(1,r)))) != n(q,1) | $ANSWER(step_d22).u(i(u(q,r)),i(q)) != i(q) | $ANSWER(step_d23).u(i(u(i(q),r)),q) != q | $ANSWER(step_d24).u(i(u(q,i(r))),r) != r | $ANSWER(step_d25).u(q,i(u(r,i(q)))) != q | $ANSWER(step_d26).n(q,i(u(r,i(q)))) != i(u(r,i(q))) | $ANSWER(step_d27).u(i(q),i(n(q,r))) != i(n(q,r)) | $ANSWER(step_d28).u(n(q,1),i(u(1,i(q)))) != n(q,1) | $ANSWER(step_d29).i(n(q,1)) != u(1,i(q)) | $ANSWER(step_d30).n(u(q*r,r),u(r,i(q)*r)) != r | $ANSWER(step_d31).n(u(1,q),u(q,q*q)) != q | $ANSWER(step_d32).end_of_list.list(hot).% (x*y)*z = x* (y*z).n(x,y) = n(y,x).u(x,y) = u(y,x).% n(n(x,y),z) = n(x,n(y,z)).% u(u(x,y),z) = u(x,u(y,z)).pp(x) = u(x,1).np(x) = n(x,1).i(x)*x = 1.x*i(x) = 1.u(n(x,y),y) = y.n(u(x,y),y) = y.x*u(y,z) = u(x*y,x*z).x*n(y,z) = n(x*y,x*z).u(y,z)*x = u(y*x,z*x).n(y,z)*x = n(y*x,z*x).end_of_list. A Quicker Proof of LOGT1----> UNIT CONFLICT at 3148.67 sec ----> 23567 [binary,23565.1,85.1] $F.Length of proof is 32. Level of proof is 13.---------------- PROOF ----------------36 [] u(n(x,y),y) = y.37 [] n(u(x,y),y) = y.40 [] u(y,z)*x = u(y*x,z*x).41 [] n(y,z)*x = n(y*x,z*x).44,43 [] (x*y)*z = x*y*z.46,45 [] 1*x = x.48,47 [] x*1 = x.50,49 [] i(x)*x = 1.51 [] x*i(x) = 1.54,53 [] i(1) = 1.56,55 [] i(i(x)) = x.63 [] n(x,y) = n(y,x).64 [] u(x,y) = u(y,x).66,65 [] n(n(x,y),z) = n(x,n(y,z)).68,67 [] u(u(x,y),z) = u(x,u(y,z)). 26



70,69 [] u(n(x,y),y) = y.71 [] n(u(x,y),y) = y.74,73 [] x*u(y,z) = u(x*y,x*z).76,75 [] x*n(y,z) = n(x*y,x*z).78,77 [] u(x,y)*z = u(x*z,y*z).82,81 [] pp(x) = u(x,1).84,83 [] np(x) = n(x,1).------------------------------------85 [demod,82,84,76,78,46,48] n(u(a*a,a),u(a,1)) != a.------------------------------------88 [para_into,69.1.1.1,63.1.1] u(n(x,y),x) = x.94 (heat=1) [para_into,88.1.1.1,37.1.1] u(x,u(y,x)) = u(y,x).100 [para_from,69.1.1,67.1.1.1] u(n(x,y),u(y,z)) = u(y,z).103,102 (heat=1) [para_into,100.1.1.1,37.1.1] u(x,u(x,y)) = u(x,y).107 [para_into,71.1.1.1,64.1.1] n(u(x,y),x) = x.111,110 [para_into,71.1.1,63.1.1] n(x,u(y,x)) = x.123 [para_from,88.1.1,67.1.1.1] u(n(x,y),u(x,z)) = u(x,z).141 [para_into,107.1.1,63.1.1] n(x,u(x,y)) = x.152,151 [para_into,73.1.1,49.1.1] u(i(u(x,y))*x,i(u(x,y))*y) = 1.154 (heat=1) [para_from,151.1.1,37.1.1.1] n(1,i(u(x,y))*y) = i(u(x,y))*y.307,306 [para_from,123.1.1,141.1.1.2,demod,66] n(x,n(y,u(x,z))) = n(x,y).818 [para_into,151.1.1.1.1.1,102.1.1,demod,103,74,152] u(i(u(x,y))*x,1) = 1.833 (heat=1) [para_from,818.1.1,40.1.1.1,demod,46,44,46] u(i(u(x,y))*x*z,z) = z.866 [para_into,818.1.1.1,47.1.1] u(i(u(1,x)),1) = 1.931 [para_from,866.1.1,306.1.1.2.2] n(i(u(1,x)),n(y,1)) = n(i(u(1,x)),y).957 (heat=1) [para_from,931.1.1,36.1.1.1] u(n(i(u(1,x)),y),n(y,1)) = n(y,1).1413 [para_into,833.1.1.1.2,51.1.1,demod,48] u(i(u(x,y)),i(x)) = i(x).1416 [para_into,833.1.1.1.2,49.1.1,demod,48] u(i(u(i(x),y)),x) = x.1443 [para_into,1416.1.1.1.1,94.1.1] u(i(u(x,i(y))),y) = y.1460 [para_into,1416.1.1,64.1.1] u(x,i(u(i(x),y))) = x.1567 [para_from,1443.1.1,141.1.1.2] n(i(u(x,i(y))),y) = i(u(x,i(y))).1662,1661 [para_into,1413.1.1.1.1,88.1.1] u(i(x),i(n(x,y))) = i(n(x,y)).1684 [para_from,1413.1.1,141.1.1.2] n(i(u(x,y)),i(x)) = i(u(x,y)).1705 (heat=1) [para_into,1684.1.1.1.1,36.1.1,demod,70] n(i(x),i(n(y,x))) = i(x).1910 [para_into,1705.1.1.1,53.1.1,demod,54] n(1,i(n(x,1))) = 1.1933,1932 (heat=1) [para_from,1910.1.1,36.1.1.1] u(1,i(n(x,1))) = i(n(x,1)).7237,7236 [para_into,957.1.1.1,1567.1.1] u(i(u(1,i(x))),n(x,1)) = n(x,1).7252,7251 [para_from,7236.1.1,1460.1.1.2.1,demod,68,1662,1933] i(n(x,1)) = u(1,i(x)).7302 [para_from,7236.1.1,154.1.1.2.1.1,demod,7252,76,78,46,50,48,307,111,7237,7252,76,78,46,50,48]n(u(x,1),u(1,i(x))) = 1.7338 (heat=1) [para_from,7302.1.1,41.1.1.1,demod,46,78,46,78,46] n(u(x*y,y),u(y,i(x)*y)) = y.23565 [para_into,7338.1.1.2.2,51.1.1,demod,56,56,56,56] n(u(x*x,x),u(x,1)) = x.23567 [binary,23565.1,85.1] $F.McCune's 33-Step Proof of LOGT1----> UNIT CONFLICT at 19280.59 sec ----> 34171 [binary,34169.1,1674.1] $F.Length of proof is 33. Level of proof is 10.---------------- PROOF ----------------3,2 [] (x*y)*z = x*y*z.5,4 [] 1*x = x.7,6 [] x*1 = x.8 [] i(x)*x = 1.10 [] x*i(x) = 1.15,14 [] i(i(x)) = x.20 [] u(x,x) = x.22 [] n(x,y) = n(y,x).23 [] u(x,y) = u(y,x).24 [] n(n(x,y),z) = n(x,n(y,z)).27,26 [] u(u(x,y),z) = u(x,u(y,z)).28 [] u(n(x,y),y) = y.30 [] n(u(x,y),y) = y.33,32 [] x*u(y,z) = u(x*y,x*z). 27



35,34 [] x*n(y,z) = n(x*y,x*z).37,36 [] u(x,y)*z = u(x*z,y*z).39,38 [] n(x,y)*z = n(x*z,y*z).41,40 [] pp(x) = u(x,1).43,42 [] np(x) = n(x,1).------------------------------------44 [demod,41,43,35,37,5,7] n(u(a*a,a),u(a,1)) != a.------------------------------------46,45 [para_from,8.1.1,2.1.1.1,demod,5] i(x)*x*y = y.60 [para_into,28.1.1.1,22.1.1] u(n(x,y),x) = x.62 [para_into,28.1.1,23.1.1] u(x,n(y,x)) = x.64 [para_into,30.1.1.1,23.1.1] n(u(x,y),x) = x.70 [para_into,60.1.1.1,30.1.1] u(x,u(y,x)) = u(y,x).74 [para_into,60.1.1,23.1.1] u(x,n(x,y)) = x.79,78 [para_from,62.1.1,30.1.1.1] n(x,n(y,x)) = n(y,x).88,87 [para_into,26.1.1.1,20.1.1] u(x,u(x,y)) = u(x,y).107 [para_into,74.1.1.2,24.1.1] u(n(x,y),n(x,n(y,z))) = n(x,y).120,119 [para_into,32.1.1,8.1.1] u(i(u(x,y))*x,i(u(x,y))*y) = 1.134,133 [para_into,34.1.1,8.1.1] n(i(n(x,y))*x,i(n(x,y))*y) = 1.211 [para_into,44.1.1.1,23.1.1] n(u(a,a*a),u(a,1)) != a.555 [para_into,211.1.1.2,23.1.1] n(u(a,a*a),u(1,a)) != a.637 [para_into,119.1.1.1.1.1,87.1.1,demod,88,33,120] u(i(u(x,y))*x,1) = 1.671 [para_into,637.1.1.1,6.1.1] u(i(u(1,x)),1) = 1.683 [para_from,637.1.1,36.1.1.1,demod,5,3,5] u(i(u(x,y))*x*z,z) = z.725 [para_from,671.1.1,64.1.1.1] n(1,i(u(1,x))) = i(u(1,x)).934 [para_into,133.1.1.1.1.1,78.1.1,demod,79,35,134] n(i(n(x,y))*y,1) = 1.1117 [para_into,934.1.1.1,6.1.1] n(i(n(x,1)),1) = 1.1169,1168 [para_from,1117.1.1,60.1.1.1] u(1,i(n(x,1))) = i(n(x,1)).1674 [para_into,555.1.1,22.1.1] n(u(1,a),u(a,a*a)) != a.1783 [para_from,725.1.1,107.1.1.2.2] u(n(x,1),n(x,i(u(1,y)))) = n(x,1).2464 [para_into,683.1.1.1.2,10.1.1,demod,7] u(i(u(x,y)),i(x)) = i(x).2466 [para_into,683.1.1.1.2,8.1.1,demod,7] u(i(u(i(x),y)),x) = x.2490 [para_into,2466.1.1.1.1,70.1.1] u(i(u(x,i(y))),y) = y.2567 [para_into,2490.1.1,23.1.1] u(x,i(u(y,i(x)))) = x.2599 [para_from,2490.1.1,64.1.1.1] n(x,i(u(y,i(x)))) = i(u(y,i(x))).2649,2648 [para_into,2464.1.1.1.1,60.1.1] u(i(x),i(n(x,y))) = i(n(x,y)).19584 [para_into,1783.1.1.2,2599.1.1] u(n(x,1),i(u(1,i(x)))) = n(x,1).19808 [para_from,19584.1.1,2567.1.1.2.1,demod,27,2649,1169] i(n(x,1)) = u(1,i(x)).20017 [para_from,19808.1.1,45.1.1.1,demod,39,5,35,37,5,46,37,5] n(u(x*y,y),u(y,i(x)*y)) = y.34169 [para_into,20017.1.1.1.1,8.1.1,demod,15] n(u(1,x),u(x,x*x)) = x.34171 [binary,34169.1,1674.1] $F.The following input �le can be used, with suitable modi�cations, to study Robbinsalgebra. It was used to prove RAT5. The commented-out weight templates illustrate, ifcomments are removed, how one can used the resonance strategy by keying on the positiveproof steps from a related theorem.Input File for Studying Robbins Algebraset(knuth_bendix).clear(eq_units_both_ways).set(index_for_back_demod).set(dynamic_demod_lex_dep).% set(lex_rpo).set(process_input).% set(display_terms).set(input_sos_first).clear(print_kept).clear(print_new_demod).clear(print_back_demod).assign(max_proofs, 2).assign(report, 1800). 28



assign(max_weight, 30).assign(pick_given_ratio, 3).assign(max_mem, 80000).% assign(heat,1).% assign(dynamic_heat_weight, 2).assign(max_distinct_vars, 3).lex([a, b, c, d, e, f, g(x), n(x), +(x,x)]).% lrpo_lr_status([+(x,x)]).weight_list(pick_given).% Following is hypothesis.% weight(EQ(+(c,d),c),2).% Following are positive steps from a 31-step proof of +(c,c) = c,% the union of c and c = c, modified to not mention constants.% weight(EQ(n(+(n(+(x,y)),n(+(y,n(x))))),y),2).% weight(EQ(n(+(n(+(x,y)),n(+(n(y),x)))),x),2).% weight(EQ(n(+(n(+(x,+(y,z))),n(+(z,n(+(x,y)))))),z),2).% weight(EQ(n(+(n(+(x,y)),n(+(n(x),y)))),y),2).% weight(EQ(n(+(n(+(x,n(y))),n(+(y,x)))),x),2).% weight(EQ(n(+(n(+(n(x),y)),n(+(y,x)))),y),2).% weight(EQ(n(+(n(+(x,+(y,z))),n(+(y,n(+(x,z)))))),y),2).% weight(EQ(n(+(n(+(x,+(y,z))),n(+(x,n(+(z,y)))))),x),2).% weight(EQ(n(+(n(+(x,+(y,z))),n(+(n(+(x,z)),y)))),y),2).% weight(EQ(n(+(n($(1)),n(+($(1),n($(1)))))),$(1)),-2).% weight(EQ(+($(1),+($(1),x)),+($(1),x)),-1).% weight(EQ(n(+($(1),n(+(n($(1)),+($(1),n($(1))))))),n($(1))),-3).% weight(EQ(n(+(n(+($(1),x)),n(+(n($(1)),+(x,n(+($(1),n($(1))))))))),x),-2).% weight(EQ(+($(1),+(x,$(1))),+($(1),x)),-1).% weight(EQ(n(+(n($(!)),n(+(n($(1)),+($(1),n($(1))))))),$(1)),-3).% weight(EQ(n(+(n($(1)),+($(1),n($(1))))),n(+($(1),n($(1))))),-3).% weight(EQ(n(+($(1),n(+($(1),n($(1)))))),n($(1))),-2).% weight(EQ(n(+(n($(1)),n(+(n($(1)),+($(1),n(+($(1),n($(1))))))))),$(1)),-4).% weight(EQ(n(+(n(+($(1),x)),n(+(n($(1)),+(x,$(1)))))),+(x,$(1))),-2).% weight(EQ(+($(1),+(x,+($(1),y))),+($(1),+(x,y))),-1).% weight(EQ(+($(1),n(+($(1),n($(1))))),$(1)),-2).% weight(EQ(+($(1),+(x,n(+($(1),n($(1)))))),+($(1),x)),-2).% weight(EQ(+(x,n(+($(1),n($(1))))),x),0).% weight(EQ(+(n(+($(1),n($(1)))),x),x),0).% weight(EQ(n(+(n(x),n(+($(1),+(x,n($(1))))))),x),0).% weight(EQ(n(+(n(x),n(n(x)))),n(+($(1),n($(1))))),0).% weight(EQ(n(+(x,n(x))),n(+($(1),n($(1))))),0).% weight(EQ(n(n(+(x,n(n(x))))),x),2).% weight(EQ(n(n(x)),x),2).% weight(EQ(+(n(+(y,x)),n(+(n(y),x))),n(x)),2).% Following are to pitch associative variants.weight(EQ(+(x,+(x,+(x,x))),+(x,+(x,+(x,x)))), 500).weight(EQ(+(x,+(x,+(x,+(x,x)))),+(x,+(x,+(x,+(x,x))))), 500).% Following is for tail strategy.weight(EQ($(1),$(2)), 1).% Following is for discarding triple n.weight(n(n(n(1))), 500).end_of_list.list(usable).EQ(x,x).EQ(+(x,y),+(y,x)).EQ(+(+(x,y),z),+(x,+(y,z))).end_of_list.list(sos).EQ(n(+(n(+(x,y)),n(+(x,n(y))))),x). % Robbins axiomEQ(+(c,d),c). % hypothesis-EQ(+(n(+(a,n(b))),n(+(n(a),n(b)))),b). % denial of Huntington axiomend_of_list. 29



list(passive).-EQ(+(x,x),x) | $ANS(step_thm).-EQ(n(n(n(n(a)+b)+n(a+b)+e)+n(e+b)),e) | $ANS(step_winker01).-EQ(n(n(n(a+b)+n(a)+b)+b),n(a+b)) | $ANS(step_winker02).-EQ(n(n(c+c+n(d+n(a))+n(d+a))+n(d+n(c))),c+c) | $ANS(step_winker03).-EQ(n(n(n(a+b)+n(a)+b+b)+n(a+b)),b) | $ANS(step_winker04).-EQ((n(n(c)+n(d+n(c)))),d) | $ANS(step_m01).-EQ((n(n(c+a+b)+n(d+n(c+a)+b))),d+b) | $ANS(step_m02).-EQ((n(d+n(c+n(d+n(c))))),n(d+n(c))) | $ANS(step_m03).-EQ((n(n(n(n(a)+b)+n(a+b)+e)+n(b+e))),e) | $ANS(step_m04).-EQ((n(n(n(n(a)+b)+a+b)+b)),n(n(a)+b)) | $ANS(step_m05).-EQ((n(n(c)+n(d+n(c+n(a))+n(c+a)))),d) | $ANS(step_m06).-EQ((n(n(d+n(c+n(d+n(c)))+a)+n(n(d+n(c))+a))),a) | $ANS(step_m07).-EQ((n(n(c+n(d+n(c)))+n(d+n(c)))),d) | $ANS(step_m08).-EQ((n(n(c+n(c+n(d+n(c))))+n(c+n(d+n(c))))),c) | $ANS(step_m09).-EQ((n(d+n(d+n(c)+n(c+n(d+n(c)))))),n(c+n(d+n(c)))) | $ANS(step_m10).-EQ((n(d+n(n(c)+n(n(d+n(c))+n(a))+n(n(d+n(c))+a)))),n(c)) | $ANS(step_m11).-EQ((n(n(n(n(n(a)+b)+a+b)+b+e)+n(n(n(a)+b)+e))),e) | $ANS(step_m12).-EQ((n(c+n(d+n(c)))),n(c)) | $ANS(step_m13).-EQ((n(n(c)+n(c+n(c)))),c) | $ANS(step_m14).-EQ((n(n(c+a)+n(n(c)+n(c+n(c))+a))),a) | $ANS(step_m15).-EQ((n(n(c+c+n(c+n(c)))+n(c+n(c)))),c) | $ANS(step_m16).-EQ((n(c+n(c+n(c)+n(c+c+n(c+n(c)))))),n(c+c+n(c+n(c)))) | $ANS(step_m17).-EQ((n(c+c+n(c+n(c)))),n(c)) | $ANS(step_m18).-EQ((d+n(c+n(c))),d) | $ANS(step_m19).-EQ((c+n(c+n(c))),c) | $ANS(step_m20).-EQ((n(c+n(c))+a),a) | $ANS(step_m21).end_of_list.% list(demodulators).% EQ(+(x,y),+(y,x)).% EQ(+(+(x,y),z),+(x,+(y,z))).% EQ(n(+(n(+(x,y)),n(+(x,n(y))))),x). % Robbins axiom% end_of_list.% list(hot).% EQ(+(c,d),c). % hypothesis% EQ(n(+(n(+(x,y)),n(+(x,n(y))))),x). % Robbins axiom% EQ(+(x,y),+(y,x)).% EQ(+(+(x,y),z),+(x,+(y,z))).% end_of_list.In view of the historical signi�cance of �nding a proof of RAT5 without induction andwithout AC-uni�cation, I include the following proof.A Historically Signi�cant Proof of RAT5----> UNIT CONFLICT at 9770.64 sec ----> 48310 [binary,48308.1,1.1] $ANS(step_thm).Length of proof is 78. Level of proof is 16.---------------- PROOF ----------------1 [] -EQ(x+x,x) | $ANS(step_thm).29,28 [] EQ(x+y,y+x).31,30 [] EQ((x+y)+z,x+y+z).32 [] EQ(n(n(x+y)+n(x+n(y))),x).35,34 [] EQ(c+d,c).------------------------------------37 [para_into,32.1.1.1.1.1,30.1.1,demod,31] EQ(n(n(x+y+z)+n(x+y+n(z))),x+y).39 [para_into,32.1.1.1.1.1,28.1.1] EQ(n(n(x+y)+n(y+n(x))),y).41 [para_into,32.1.1.1.1,32.1.1] EQ(n(x+n(n(x+y)+n(n(x+n(y))))),n(x+y)).43 [para_into,32.1.1.1.2.1.2,32.1.1,demod,29] EQ(n(n(x+y)+n(x+n(y+z)+n(y+n(z)))),x).45 [para_into,32.1.1.1.2.1,28.1.1] EQ(n(n(x+y)+n(n(y)+x)),x).30



52,51 [para_from,34.1.1,30.1.1.1] EQ(c+d+x,c+x).61 [para_into,37.1.1.1.1.1.2,28.1.1] EQ(n(n(x+y+z)+n(x+z+n(y))),x+z).63 [para_into,37.1.1.1.1.1,28.1.1,demod,31] EQ(n(n(x+y+z)+n(z+x+n(y))),z+x).71 [para_from,37.1.1,32.1.1.1.2,demod,29,31] EQ(n(x+y+n(n(x+y+z)+x+y+n(z))),n(x+y+z)).75 [para_into,51.1.1.2,28.1.1] EQ(c+x+d,c+x).79 [para_from,51.1.1,32.1.1.1.1.1] EQ(n(n(c+x)+n(c+n(d+x))),c).81 [para_into,75.1.1.2,30.1.1] EQ(c+x+y+d,c+x+y).90,89 [para_from,75.1.1,30.1.1.1,demod,31,31] EQ(c+x+d+y,c+x+y).95 [para_into,39.1.1.1.1.1,34.1.1] EQ(n(n(c)+n(d+n(c))),d).97 [para_into,39.1.1.1.1.1,30.1.1] EQ(n(n(x+y+z)+n(z+n(x+y))),z).101 [para_into,39.1.1.1.1,39.1.1] EQ(n(x+n(n(x+n(y))+n(n(y+x)))),n(x+n(y))).115 [para_into,39.1.1.1.2.1,28.1.1] EQ(n(n(x+y)+n(n(x)+y)),y).119 [para_into,39.1.1.1,28.1.1] EQ(n(n(x+n(y))+n(y+x)),x).126,125 [para_from,39.1.1,32.1.1.1.1] EQ(n(x+n(n(y+x)+n(n(x+n(y))))),n(y+x)).131 [para_into,41.1.1.1.2.1.1.1,28.1.1,demod,126] EQ(n(x+y),n(y+x)).166,165 [para_into,131.1.1.1,30.1.1] EQ(n(x+y+z),n(z+x+y)).173 [para_from,131.1.1,39.1.1.1.2.1.2,demod,31] EQ(n(n(x+y+z)+n(z+n(y+x))),z).195 [para_into,45.1.1.1.2.1.1,39.1.1] EQ(n(n(x+n(y+z)+n(z+n(y)))+n(z+x)),x).199 [para_into,45.1.1.1.2,95.1.1,demod,29,29] EQ(n(d+n(c+n(d+n(c)))),n(d+n(c))).203 [para_into,45.1.1.1.2,45.1.1,demod,166,29,29] EQ(n(x+n(y+x+n(n(y)+x))),n(n(y)+x)).209 [para_into,45.1.1.1,28.1.1] EQ(n(n(n(x)+y)+n(y+x)),y).229 [para_into,43.1.1.1.1,95.1.1] EQ(n(d+n(n(c)+n(n(d+n(c))+x)+n(n(d+n(c))+n(x)))),n(c)).267 [para_into,115.1.1.1.1.1,30.1.1] EQ(n(n(x+y+z)+n(n(x+y)+z)),z).325 [para_into,119.1.1.1.1.1,30.1.1] EQ(n(n(x+y+n(z))+n(z+x+y)),x+y).329 [para_from,119.1.1,43.1.1.1.2.1.2.2,demod,166,29,29] EQ(n(n(x+n(y+n(z)))+n(x+y+n(y+z+n(y+n(z))))),x).361 [para_into,209.1.1.1.2.1,30.1.1] EQ(n(n(n(x)+y+z)+n(y+z+x)),y+z).411 [para_into,79.1.1.1.1.1,28.1.1] EQ(n(n(x+c)+n(c+n(d+x))),c).551 [para_into,411.1.1.1,28.1.1] EQ(n(n(c+n(d+x))+n(x+c)),c).739 [para_into,81.1.1.2,28.1.1,demod,31,90] EQ(c+x+y,c+y+x).755 [para_into,739.1.1.2,739.1.1,demod,29] EQ(c+c+x+y,c+c+y+x).862,861 [para_from,61.1.1,32.1.1.1.2,demod,29,31] EQ(n(x+y+n(n(x+z+y)+x+y+n(z))),n(x+z+y)).889 [para_into,97.1.1.1.1.1.2,75.1.1,demod,31] EQ(n(n(x+c+y)+n(y+d+n(x+c))),y+d).903 [para_into,97.1.1.1.1.1,28.1.1,demod,31] EQ(n(n(x+y+z)+n(y+n(z+x))),y).1000,999 [para_into,63.1.1.1.1.1.2,739.1.1,demod,31,31] EQ(n(n(x+c+y+z)+n(z+y+x+n(c))),z+y+x).1047 [para_into,63.1.1.1,28.1.1] EQ(n(n(x+y+n(z))+n(y+z+x)),x+y).1829 [para_into,71.1.1.1.2.2.1.1.1.2,28.1.1,demod,862] EQ(n(x+y+z),n(x+z+y)).1997 [para_into,173.1.1.1.2.1.2.1,75.1.1,demod,31] EQ(n(n(x+d+c+y)+n(y+n(c+x))),y).2087,2086 [para_from,173.1.1,119.1.1.1.2,demod,29] EQ(n(x+n(n(x+n(y+z))+n(n(z+y+x)))),n(x+n(y+z))).2410 [para_into,267.1.1.1.1.1.2,28.1.1] EQ(n(n(x+y+z)+n(n(x+z)+y)),y).2416 [para_into,267.1.1.1.1.1,28.1.1,demod,31] EQ(n(n(x+y+z)+n(n(z+x)+y)),y).3178 [para_into,903.1.1.1.2.1.2.1,51.1.1,demod,31] EQ(n(n(d+x+y+c)+n(y+n(c+x))),y).3294 [para_into,101.1.1.1.2.1.1.1.2,131.1.1,demod,31,2087] EQ(n(x+n(y+z)),n(x+n(z+y))).4032 [para_into,2410.1.1.1.2.1.1,32.1.1,demod,29] EQ(n(n(x+y)+n(n(x+z)+y+n(x+n(z)))),y).4064 [para_into,2416.1.1.1.2.1.1.1,75.1.1,demod,31] EQ(n(n(x+d+y+c)+n(n(c+x)+y)),y).4887,4886 [para_into,165.1.1.1.2,28.1.1] EQ(n(x+y+z),n(y+x+z)).5674 [para_into,1829.1.1.1,28.1.1,demod,31] EQ(n(x+y+z),n(z+y+x)).7392 [para_into,1997.1.1.1.2.1.2.1,34.1.1] EQ(n(n(d+d+c+x)+n(x+n(c))),x).7562 [para_into,7392.1.1.1.1.1.2.2,28.1.1] EQ(n(n(d+d+x+c)+n(x+n(c))),x).7710 [para_into,7562.1.1.1,28.1.1] EQ(n(n(x+n(c))+n(d+d+x+c)),x).9589,9588 [para_into,195.1.1.1.2.1,34.1.1,demod,29] EQ(n(n(c)+n(d+n(x+c)+n(c+n(x)))),d).9834 [para_into,4064.1.1.1.1.1,28.1.1,demod,31,31] EQ(n(n(d+x+c+y)+n(n(c+y)+x)),x).9998 [para_from,199.1.1,3178.1.1.1.2,demod,29,35,29,4887,52,29] EQ(n(n(d+n(c))+n(c+n(d+n(c)))),d).10020 [para_from,199.1.1,551.1.1.1.1.1.2,demod,29] EQ(n(n(c+n(d+n(c)))+n(c+n(c+n(d+n(c))))),c).10049,10048 [para_from,9998.1.1,2416.1.1.1.2,demod,29,4887,29] EQ(n(d+n(d+n(c)+n(c+n(d+n(c))))),n(c+n(d+n(c)))).12883,12882 [para_into,229.1.1.1.2.1.2.2,7710.1.1,demod,29,35,29,35,29,35,29,29,4887,10049]EQ(n(c+n(d+n(c))),n(c)).12889,12888 [back_demod,10020,demod,12883,12883] EQ(n(n(c)+n(c+n(c))),c).12954 [para_from,12888.1.1,203.1.1.1.2.1.2.2,demod,29,12889] EQ(n(n(c+n(c))+n(c+c+n(c+n(c)))),c).16947,16946 [para_from,12954.1.1,9834.1.1.1.2,demod,29,31,4887,52,29] EQ(n(c+n(c+n(c)+n(c+c+n(c+n(c))))),n(c+c+n(c+n(c)))).19738 [para_into,325.1.1.1.1,5674.1.1] EQ(n(n(n(x)+y+z)+n(x+z+y)),z+y).31



19912 [para_into,329.1.1.1.1,12888.1.1,demod,4887,16947] EQ(n(c+c+n(c+n(c))),n(c)).22688 [para_into,361.1.1.1.2.1,28.1.1,demod,31] EQ(n(n(n(x)+y+z)+n(z+x+y)),y+z).23276 [para_from,755.1.1,63.1.1.1.1.1,demod,31,1000,29] EQ(x+y+c,c+x+y).24330 [para_from,23276.1.1,30.1.1.1,demod,31,31,31] EQ(c+x+y+z,x+y+c+z).24334 [para_from,23276.1.1,28.1.1,demod,31] EQ(c+x+y,y+c+x).24970 [para_into,24334.1.1.2,28.1.1] EQ(c+x+y,x+c+y).30025,30024 [para_from,3294.1.1,131.1.1] EQ(n(x+n(y+z)),n(n(z+y)+x)).41187,41186 [para_into,22688.1.1.1.2.1.2,24970.1.1,demod,31,31] EQ(n(n(n(c)+x+y+z)+n(z+x+c+y)),x+y+z).43403,43402 [para_from,24330.1.1,19738.1.1.1.2.1,demod,31,41187] EQ(x+y+z,z+x+y).43621,43620 [para_into,43402.1.1.2,28.1.1] EQ(x+y+z,y+x+z).43961,43960 [para_into,43620.1.1,43402.1.1] EQ(x+y+z,z+y+x).48174 [para_into,889.1.1.1.1,19912.1.1,demod,43961,43621,9589,29] EQ(d+n(c+n(c)),d).48245,48244 [para_from,48174.1.1,4032.1.1.1.2.1.2.2.1,demod,43621,52,43403]EQ(n(n(d+x)+n(n(d)+n(c+n(c))+x)),x).48308 [para_from,48174.1.1,1047.1.1.1.2.1.2,demod,43403,30025,48245] EQ(n(c+n(c))+x,x).48310 [binary,48308.1,1.1] $ANS(step_thm).Next, for those interested in equivalential calculus, I give two short proofs. The �rst isthe shortest of which I know that the formula XHN implies the formula UM, and the secondis the shortest of which I know that the formula XHK implies the formula YQL.A Short Proof for XHN Implies UM----> UNIT CONFLICT at 0.30 sec ----> 38 [binary,37.1,6.1] $ANSWER(P4_UM).Length of proof is 19. Level of proof is 14.---------------- PROOF ----------------1 [] -P(e(x,y)) | -P(x) | P(y).2 [] P(e(x,e(e(y,z),e(e(z,x),y)))).6 [] -P(e(e(e(a,b),c),e(b,e(c,a)))) | $ANSWER(P4_UM).------------------------------------18 [hyper,1,2,2] P(e(e(x,y),e(e(y,e(z,e(e(u,v),e(e(v,z),u)))),x))).19 [hyper,1,18,18] P(e(e(e(e(x,e(y,e(e(z,u),e(e(u,y),z)))),v),e(w,e(e(v6,v7),e(e(v7,w),v6)))),e(v,x))).20 [hyper,1,18,2] P(e(e(e(e(x,y),e(e(y,z),x)),e(u,e(e(v,w),e(e(w,u),v)))),z)).21 [hyper,1,19,20] P(e(e(x,e(e(y,z),e(e(z,x),y))),e(e(e(u,v),e(e(v,e(w,e(v6,e(e(v7,v8),e(e(v8,v6),v7))))),u)),w))).22 [hyper,1,18,20] P(e(e(x,e(y,e(e(z,u),e(e(u,y),z)))),e(e(e(v,w),e(e(w,x),v)),e(v6,e(e(v7,v8),e(e(v8,v6),v7)))))).23 [hyper,1,21,2] P(e(e(e(x,y),e(e(y,e(z,e(u,e(e(v,w),e(e(w,u),v))))),x)),z)).24 [hyper,1,2,23] P(e(e(x,y),e(e(y,e(e(e(z,u),e(e(u,e(v,e(w,e(e(v6,v7),e(e(v7,w),v6))))),z)),v)),x))).25 [hyper,1,24,2] P(e(e(e(e(x,y),e(e(y,z),x)),e(e(e(u,v),e(e(v,e(w,e(v6,e(e(v7,v8),e(e(v8,v6),v7))))),u)),w)),z)).26 [hyper,1,20,25] P(e(e(x,e(e(x,y),e(z,e(e(u,v),e(e(v,z),u))))),e(y,e(w,e(e(v6,v7),e(e(v7,w),v6)))))).27 [hyper,1,26,22] P(e(e(e(e(x,e(e(y,z),e(e(z,x),y))),u),u),e(v,e(e(w,v6),e(e(v6,v),w))))).28 [hyper,1,22,27] P(e(e(e(x,y),e(e(y,e(e(e(z,e(e(u,v),e(e(v,z),u))),w),w)),x)),e(v6,e(e(v7,v8),e(e(v8,v6),v7))))).30 [hyper,1,20,28] P(e(e(e(x,e(e(y,z),e(e(z,x),y))),u),u)).31 [hyper,1,19,28] P(e(e(e(e(x,e(e(y,z),e(e(z,x),y))),e(e(e(u,e(e(v,w),e(e(w,u),v))),v6),v6)),v7),v7)).32 [hyper,1,25,30] P(e(e(e(e(x,y),z),e(y,e(u,e(e(v,w),e(e(w,u),v))))),e(z,x))).33 [hyper,1,30,31] P(e(e(x,y),e(e(y,e(e(z,e(e(u,v),e(e(v,z),u))),e(e(e(w,e(e(v6,v7),e(e(v7,w),v6))),v8),v8))),x))).34 [hyper,1,20,32] P(e(e(x,e(e(y,z),e(e(z,e(u,x)),y))),u)).35 [hyper,1,32,33] P(e(e(e(e(e(x,e(e(y,z),e(e(z,x),y))),u),u),v),e(e(w,v6),e(e(v6,v),w)))).36 [hyper,1,32,35] P(e(x,e(e(y,e(e(z,u),e(e(u,y),z))),e(e(e(v,w),e(e(w,e(v6,x)),v)),v6)))).37 [hyper,1,34,36] P(e(e(e(x,y),z),e(y,e(z,x)))).38 [binary,37.1,6.1] $ANSWER(P4_UM). 32



A Short Proof for XHK Implies YQL----> UNIT CONFLICT at 380.90 sec ----> 4789 [binary,4788.1,3.1] $ANSWER(P1_YQL).Length of proof is 23. Level of proof is 19.---------------- PROOF ----------------1 [] -P(e(x,y)) | -P(x) | P(y).2 [] P(e(x,e(e(y,z),e(e(x,z),y)))).3 [] -P(e(e(a,b),e(e(c,b),e(a,c)))) | $ANSWER(P1_YQL).16 [] -P(e(x,y)) | -P(x) | P(y).17 [] P(e(x,e(e(y,z),e(e(x,z),y)))).------------------------------------18 [hyper,1,2,2] P(e(e(x,y),e(e(e(z,e(e(u,v),e(e(z,v),u))),y),x))).19 (heat=1) [hyper,16,17,18] P(e(e(x,y),e(e(e(e(z,u),e(e(e(v,e(e(w,v6),e(e(v,v6),w))),u),z)),y),x))).20 (heat=1) [hyper,16,18,17] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(u,v),e(e(w,v),u))),w)).21 [hyper,1,18,18] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(e(u,e(e(v,w),e(e(u,w),v))),v6),v7)),e(v7,v6))).27 [hyper,1,19,18] P(e(e(e(e(x,y),e(e(e(z,e(e(u,v),e(e(z,v),u))),y),x)),e(e(e(w,e(e(v6,v7),e(e(w,v7),v6))),v8),v9)),e(v9,v8))).35 (heat=1) [hyper,16,27,17] P(e(e(e(e(e(x,y),e(e(e(z,e(e(u,v),e(e(z,v),u))),y),x)),w),e(v6,e(e(v7,v8),e(e(v6,v8),v7)))),w)).47 [hyper,1,21,20] P(e(e(e(x,y),e(e(e(e(z,e(e(u,v),e(e(z,v),u))),w),y),x)),w)).58 [hyper,1,35,47] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(u,e(e(v,w),e(e(u,w),v)))),e(e(e(v6,e(e(v7,v8),e(e(v6,v8),v7))),v9),v10)),e(v10,v9))).77 [hyper,1,58,21] P(e(x,e(e(e(e(y,e(e(z,u),e(e(y,u),z))),x),e(e(v,w),e(e(v6,w),v))),v6))).81 [hyper,1,77,47] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(e(u,v),e(e(e(e(w,e(e(v6,v7),e(e(w,v7),v6))),v8),v),u)),v8)),e(e(v9,v10),e(e(v11,v10),v9))),v11)).91 [hyper,1,20,81] P(e(e(e(x,y),e(e(z,e(e(u,v),e(e(z,v),u))),x)),y)).93 [hyper,1,77,91] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(e(u,v),e(e(w,e(e(v6,v7),e(e(w,v7),v6))),u)),v)),e(e(v8,v9),e(e(v10,v9),v8))),v10)).97 [hyper,1,91,47] P(e(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(u,e(e(v,w),e(e(u,w),v))),e(v6,v7))),v7),v6)).121 [hyper,1,20,93] P(e(e(e(x,e(e(y,z),e(e(u,z),y))),u),x)).133 [hyper,1,121,121] P(e(x,e(e(y,z),e(e(e(e(u,v),e(e(x,v),u)),z),y)))).154 [hyper,1,18,133] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(e(u,v),e(e(e(e(w,v6),e(e(v7,v6),w)),v),u))),v7)).177 [hyper,1,97,154] P(e(e(e(x,y),e(e(z,y),x)),e(e(u,v),e(e(z,v),u)))).181 [hyper,1,121,177] P(e(e(e(e(e(x,y),e(e(z,y),x)),u),z),u)).197 [hyper,1,121,181] P(e(e(e(x,y),e(e(e(e(z,u),e(e(v,u),z)),y),x)),v)).219 [hyper,1,181,197] P(e(e(e(e(x,y),e(e(z,y),x)),e(e(z,u),v)),e(v,u))).240 [hyper,1,18,219] P(e(e(e(x,e(e(y,z),e(e(x,z),y))),e(u,v)),e(e(e(w,v6),e(e(v7,v6),w)),e(e(v7,v),u)))).4776 [hyper,1,219,240] P(e(e(e(x,y),e(e(z,u),e(e(v,w),e(e(y,w),v)))),e(e(x,u),z))).4788 (heat=1) [hyper,16,4776,17] P(e(e(x,y),e(e(z,y),e(x,z)))).4789 [binary,4788.1,3.1] $ANSWER(P1_YQL).To close this article, I give the shortest proof of which I know for LOGT2.A Short Proof of LOGT2----> UNIT CONFLICT at 3566.71 sec ----> 19786 [binary,19784.1,1.1] $ANSWER(step_thm).Length of proof is 22. Level of proof is 10.---------------- PROOF ----------------1 [] i(n(a,b)) != u(i(a),i(b))|$ANSWER(step_thm).4 [] i(x)*x = 1.5 [] x*i(x) = 1.10 [] u(n(x,y),y) = y.11 [] n(u(x,y),y) = y.13 [] x*y*z = (x*y)*z.15,14 [copy,13,flip.1] (x*y)*z = x*y*z.17,16 [] 1*x = x.19,18 [] x*1 = x.20 [] i(x)*x = 1.34 [] n(x,y) = n(y,x).35 [] u(x,y) = u(y,x).39 [] u(x,u(y,z)) = u(u(x,y),z). 33



40 [copy,39,flip.1] u(u(x,y),z) = u(x,u(y,z)).46 [] u(n(x,y),y) = y.51,50 [] x*u(y,z) = u(x*y,x*z).54 [] u(x,y)*z = u(x*z,y*z).61 [] n(x,u(y,z)) = u(n(x,y),n(x,z)).------------------------------------65 [para_into,46.1.1.1,34.1.1] u(n(x,y),x) = x.70,69 (heat=1) [para_into,65.1.1.1,11.1.1] u(x,u(y,x)) = u(y,x).73 [para_from,46.1.1,40.1.1.1,flip.1] u(n(x,y),u(y,z)) = u(y,z).76,75 (heat=1) [para_into,73.1.1.1,11.1.1] u(x,u(x,y)) = u(x,y).151,150 [para_into,50.1.1,20.1.1,flip.1] u(i(u(x,y))*x,i(u(x,y))*y) = 1.164 [para_into,150.1.1.1.1.1,75.1.1,demod,76,51,151] u(i(u(x,y))*x,1) = 1.166 [para_into,150.1.1.1.1.1,69.1.1,demod,70,51,151] u(i(u(x,y))*y,1) = 1.342 [para_into,54.1.1.1,166.1.1,demod,17,15,17,flip.1] u(i(u(x,y))*y*z,z) = z.344 [para_into,54.1.1.1,164.1.1,demod,17,15,17,flip.1] u(i(u(x,y))*x*z,z) = z.354 (heat=1) [para_into,342.1.1.1.2,4.1.1,demod,19] u(i(u(x,i(y))),y) = y.356 (heat=1) [para_into,344.1.1.1.2,5.1.1,demod,19] u(i(u(x,y)),i(x)) = i(x).371,370 (heat=2) [para_into,356.1.1.1.1,10.1.1] u(i(x),i(n(y,x))) = i(n(y,x)).514 [para_into,344.1.1,35.1.1] u(x,i(u(y,z))*y*x) = x.518 (heat=1) [para_into,514.1.1.2.2,4.1.1,demod,19] u(x,i(u(i(x),y))) = x.526 (heat=2) [para_from,518.1.1,11.1.1.1] n(x,i(u(i(x),y))) = i(u(i(x),y)).599,598 [para_into,356.1.1.1.1,65.1.1] u(i(x),i(n(x,y))) = i(n(x,y)).1009 [para_from,354.1.1,61.1.1.2,flip.1] u(n(x,i(u(y,i(z)))),n(x,z)) = n(x,z).1033 [para_into,518.1.1,40.1.1] u(x,u(y,i(u(i(u(x,y)),z)))) = u(x,y).13284 [para_into,1009.1.1.1,526.1.1] u(i(u(i(x),i(y))),n(x,y)) = n(x,y).19784 [para_from,13284.1.1,1033.1.1.2.2.1,demod,371,599] i(n(x,y)) = u(i(x),i(y)).19786 [binary,19784.1,1.1] $ANSWER(step_thm).References[1] Boyer, R., and Moore, J, A Computational Logic. New York: Academic Press, 1979.[2] Boyer, R. S., and Moore,J S., A Computational Logic Handbook, 2nd ed., New York: Academic Press, 1998(also Web information ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/index.html).[3] Henkin, L., Monk, J., and Tarski, A., Cylindric Algebras, Part I, North-Holland, Ams-terdam, 1971.[4] Kalman, J., \A shortest single axiom for the classical equivalential calculus", NotreDame J. Formal Logic 19, 141{144 (1978).[5] Kalman, J., \Condensed detachment as a rule of inference", Studia Logica 42, 443{451(1983).[6] Lusk, E., and Overbeek, R., The Automated Reasoning System ITP, Technical ReportANL-84-27, Argonne National Laboratory, Argonne, Illinois, 1984.[7] McCune, W., OTTER 2.0 Users Guide, Technical Report ANL-90/9, Argonne NationalLaboratory, Argonne, Illinois, 1990.[8] McCune, W., OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6,Argonne National Laboratory, Argonne, Illinois, 1994.[9] McCune, W., \Solution of the Robbins problem", J. Automated Reasoning, accepted forpublication, 1997. 34
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