
An Improved Model Equation with Globally De�ned Flux forthe Vortex Sheet Equation: Analytical ResultsAnne C. Morlet�Department of MathematicsCleveland State UniversityCleveland, OH 441153 September 1997AbstractWe present an improved model for the vortex sheet equation, that combines some of thefeatures of the models of Beale and Schae�er, Dhanak, and Baker et al. We regularize theBeale-Schae�er equation with a second-order viscous regularizing term, and we add a globallyde�ned 
ux term in conservative form. We obtain u�t + iu�x = [H(u�)u� ]x + [ju�xj2u�x]x + �u�xx ,where i2 = �1, and H(u�) is the Hilbert transform of u� . We derive bounds for the solution ofthe equation and its �rst-order spatial derivatives in L2 and in the maximum norm, independentof �. We show that the function u�t satis�es an L2 norm bound that depends linearly on �; allthe other derivatives satisfy bounds that depend on negative powers of �. We show that, for� > 0, the solution exists and is unique. We also prove that, for � > 0, in the limit of � ! 0,the sequence of functions (u� )�>0 has a weak limit; the weak limit may not be unique.1 IntroductionAt high Reynold's numbers, a thin shear layer, generated by shedding vortices from a solid boundary,takes the asymptotic form of a vortex sheet: a layer of vorticity distributed as a delta function ona surface [6]. We restrict ourselves to two-dimensional 
ow where the surface is a curve and thevorticity axis points out of the plane. The equation of motion for the location of the vortex sheet,x(p; t) = (x(p; t); y(p; t)), is given by [18]xt(p; t) = 12�PZ 
(p; t) (y(q; t) � y(p; t); x(p; t)� x(q; t))jx(p; t)� x(q; t)j2 dq;(1a) 
t(p; t) = 0;(1b)where the integral must be evaluated as a principal value. The parametrization variable p is aLagrangian parameter in that the quantity 
 remains constant along the trajectory of a marker onthe sheet labeled by p. Alternatively, p may be regarded as a characteristic variable, and (1a) and(1b) are the equations for the characteristics of a partial di�erential equation that describes thetransport of the vorticity along the sheet.Both analytic [5], [13], and [14] and numerical [10] and [20] evidence suggests that vortex sheetsdevelop curvature singularities in �nite time. Studies concentrate on the long-time evolution ofunstable modes of a slightly perturbed, initially 
at vortex sheet, (p; � sin(kp)). The linearizedmotion about a 
at sheet with uniform strength 
 indicates that the growth rate for such modessatis�es � = 
k=2; that is, the amplitude grows according to � exp(�t). Modes with the largest wavenumber k grow the fastest. Consequently, the motion is linearly ill-posed [19]. Recent studies havedemonstrated that the motion does lead to singularity formation in �nite time.�Current address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 604391



Various regularizations of vortex sheet motion have been used to assess the behavior beyond thetime of singularity formation. Layers of �nite thickness [2] show similar behavior to those whosemotion is viscous [22]: a small vortex core replaces the point of curvature singularity, and a thinlayer spirals around this core. Krasny [10] uses a numerical regularization that keeps the vorticity onthe curve but smoothes the velocity of the markers. His results also show the appearance of a spiral,but without a core. When the vortex sheet represents the interface between two immiscible 
uids ofequal density, surface tension becomes an important physical regularization. Numerical calculationsthat include surface tension e�ects reveal a spiral structure [9], but the arms show oscillations thatmay lead to a breakup of the spiral into detached drops.So far, the results suggest that some form of spiral may be the weak solution to vortex sheetmotion beyond the time of singularity formation. Rigorous theory [7] and [12] establishes the globalexistence in time for vortex sheet motion in a weak class of functions, but it does not clarify thenature of the vortex sheet. The continuum of model equations with globally de�ned 
ux [16], whichincluded the two particular model equations investigated in [1] and [17], shed some light on thebehavior of equations with globally de�ned 
ux, but it did not give su�cient insight to determinethe precise behavior of the vortex sheet in the limit of vanishing viscosity.We propose the following equationu�t + iu�x = [H(u�)u� ]x + [ju�xj2u�x]x + �u�xx;(2a) u�(x; 0) = f(x);(2b)as an improved model equation for the vortex sheet equation. To derive the equation, we proceedas in [1]: we take Dhanak's equation 
t + (V 
)s = �
ss;(3)where 
 is the e�ective vortex sheet strength assigned to the curve in the center of the layer, sis the arclength along this curve, and V is the tangential component of the velocity generated bythe vortex sheet, that is, the tangential component of (1a). Then we replace the di�usive term by�
ss+[j
sj2
s]s and the tangential component of the Biot-Savart integral (1a) by a one dimensionalanalogue, the Hilbert transform, dxdt = � 1�PZ 1�1 u�(�)� � xd�;(4)where we have used u�(x) in place of 
(p). For (2a), we have 2�-periodic initial and boundaryconditions and i2 = �1; the function H(u�) denotes the Hilbert transform of u� .The new model is a better model of vortex sheet motion because it provides two features: (1) thelinearization of (2a) about a constant 
at sheet leads to the Cauchy-Riemann equation regularizedwith a second-order viscous term; and (2) the model has a globally de�ned 
ux term like the vortexsheet equation. Previous models considered [1], [16], [17] did not have both features. The proposedmodel (2a) is intended to better characterize the weak limit in the limit of vanishing viscosity.In Section 2, assuming that the solution of (2a) exists and that the initial condition is of zero-average, we derive bounds in the L2 and in the maximum norm for the solution of (2a). We �rstderive bounds for u� and u�x in the L2 norm, independent of �. We also get bounds for u� and u�xin the maximum norm, independent of �, the bound for u� being deduced from the L2 norm for u�and u�x and Sobolev's inequality and the bound for u�x by �rst obtaining bounds for the L2p norm ofu�x and then using Arzela-Ascoli's theorem. We obtain a bound for the time integral of the squareof the L2 norm of u�t ; the bound depends linearly on �. We then show that all the other derivativesof u� satisfy bounds, in the L2 and in the maximum norm, that depend on negative powers of �,proceeding as in [15].In Section 3, we prove the long-term existence of the solution of (2a) when � > 0 by proving theshort-term existence of the solution ofv�t + iv�x = [H(v�)v� ]x + (jv�xj2v�x)x + �v�xx � �v�xxxx;(5a) v�(x; 0) = f(x):(5b) 2



The short-term existence of the solution of (5a) is deduced from Ball's theorem. Then we deriveestimates for the solution of (5a), independent of �. These and the a priori bounds of Section 2 letus prove the long-term existence of the solution (2a).In Section 4, we show that the sequence of functions (u�)�>0 has a weak limit inH1([0; 2�]�[0; t])and that for �xed t, ux is in L1([0; 2�]).2 EstimatesIn this section, assuming existence of a C1 solution, we �rst derive estimates for the solution of(2a) subject to 2�-periodic initial and boundary conditions. We derive estimates independent of �for the solution of (2a) and its �rst-order spatial derivative.Without restriction, from now on, we assume that the initial condition f is of zero-average. Theaverage over a period of the solution of (2a) is conserved.Before deriving bounds for the solution of (2a), we �rst recall some of the properties of theHilbert transform [21]:� Let g be a C1, 2�-periodic function. Then H(g) is a C1, 2�-periodic function and[H(g)]x = H(gx):� The L2 norm of H(g) satis�es the boundjjH(g)jj � jjgjj:� H(eikx) = i sign(k)eikx.We summarize the bounds for the solution of (2a) and its �rst-order derivative independent ofthe viscosity � as follows.Lemma 2.1 Let the initial condition f for (2a) be a C1 2�-periodic function and of zero-average.Then the solution of (2a) satis�esjju�(�; t)jj � p8�t+ jjf jj2;(6a) jju�x(�; t)jj � s40�t+ 4jjf jj2 + �������� dfdx��������2;(6b) jju�(�; t)jj1 � p2 �8�t + jjf jj2�1=4 40�t+ 4jjf jj2+ �������� dfdx��������2!1=4(6c) jju�x(�; t)jj2n � C � n32n� 1� 12n  20t+ 4jjf jj21 + �������� dfdx��������21!1� 12n ;(6d) n(n+ 1)2 Z t0 jj[(u�x)(n+1)]x(�; � )jj2d� � 2C2n n32n� 1  20t+ 4jjf jj21 + �������� dfdx��������21!2n�1 ;(6e) jju�x(�; t)jj1 � C  20t+ 4jjf jj21 + �������� dfdx��������21! :(6f)The above bounds depend on time and the initial condition but are independent of the viscosity �.The constant C in (6d), (6e), and (6f) is independent of n and �.The bounds (6a), (6b), and (6c) indicate that the square of the L2 norm of the solution of (2a)and its �rst-order spatial derivatives as well as the square of the maximum norm of the solution of(2a), grow linearly in time. The estimate (6d) tells us that the L2n norm of the solution of (2a)grows nearly linearly in time; more precisely the 2nth power of the L2n norm of the solution of (2a)3



grows like t2n�1. The last bound, (6f), tells us that the weak maximum norm of the �rst-order spatialderivative of the solution of (2a) grows linearly in time.Also, the solution of (2a) satis�es a bound in H1([0; 2�]� [0; t]) that depends on �:Z t0 jju�t (�; � )jj2d� � 8(8�t+ jjf jj2)0@1 + 4p8�t+ jjf jj2s40�t+ 4jjf jj2+ �������� dfdx��������21A+8 20�t+ 4jjf jj2+ �������� dfdx��������2! t+ �������� dfdx ��������44 + 2� �������� dfdx��������2 :(6g)The above estimate tells us that the time integral of the square of the L2 norm of the �rst-ordertemporal derivative of the solution of (2a) grows quadratically in time and linearly in �.Proof: We �rst derive (6a). We take the scalar product of u� with (2a) and integrate by parts thescalar products (u� ; u�xx), (u�; [H(u�)u�]x), and (u� ; [ju�xj2u�x]x), decreasing the derivative order ofu�xx, [H(u�)u�]x, and [ju�xj2u�x]x. We obtainddt jju�jj2 = �i(u� ; u�x) + i(u�x; u�) � (u�x;H(u�)u�) � (H(u�)u�; u�x) � 2�jju�xjj2 � 2jju�xjj44;(7)with jju�jj the L2 norm of u� and jju�jjp its Lp norm. We crudely estimate the scalar products(u� ; u�x) and (u�x;H(u�)u�), and we use the zero-average property of the solution of (2a) and theproperties of the Hilbert transform to obtainj(u�; u�x)j � jju�jj jju�xjj � jju�xjj2 � �2 jju�xjj44+ ��;(8a)j(u�x;H(u�)u�)j � jju�jj jju�u�xjj � �2 jju�u�xjj2 + 12� jju�jj2 � �2 jju�xjj44 + 
4� jju�xjj44 + �2
� :(8b)The inequality (8a) is deduced from the zero-average property of the solution of (2a) and Cauchy-Schwartz's inequality. the inequality (8b) is derived similarly. Then (8a) and (8b), � = � = 
 = 1=2,are used to obtain the di�erential inequalityddt jju�jj2 � 8� � 12 jju�xjj44 � 2�jju�xjj2:(9)Time integration of (9) gives (6a) andZ t0 jju�x(�; � )jj44d� � 16�t+ 2jjf jj2:(10)The function z = u�x satis�eszt + izx = [H(u�)u�]xx + [jzj2z]xx + �zxx;(11a) z(x; 0) = dfdx(x):(11b)We take the scalar product of z with (11a) and integrate by parts the scalar products (z; zxx),(z; [H(u�)u�]xx), and (z; [jzj2z]xx), decreasing the derivative order of zxx, [H(u�)u�]xx, and [jzj2z]xx.We obtainddt jjzjj2 = �i(z; zx) + i(zx; z)� (zx;H(u�)z) � (zx;H(z)u�)� (H(u�)z; zx)� (H(z)u� ; zx)�4jjzzxjj2 � (zx; z2zx)� (z2zx; zx)� 2�jjzxjj2:(12)We crudely estimate the scalar products (z; zx), (zx;H(u�)z), and (zx;H(z)u�), note that j(zx; z2zx)j� jjzzxjj2, and use the zero-average property of the solution of (2a) and the properties of the Hilbert4



transform to obtainj(z; zx)j � p2� jjzzxjj � �2 jjzzxjj2 + ��;(13a) j(zx;H(u�)z)j � jjzzxjj jju�jj � �2 jjzzxjj2 + 12� jju�jj2 � �2 jjzzxjj2 + �4� jjzjj44+ �2�� ;(13b) j(zx;H(z)u�)j � jju�zxjj jjzjj � 
2 jjzzxjj2+ 12
 jjzjj2 � 
2 jjzzxjj2 + �4
 jjzjj44+ �2�
 :(13c)More precisely, we obtain (13a) using Cauchy-Schwartz's inequality and (13b) and (13c) using theproperties of the Hilbert transform, the zero-average property of the solution of (2a), and Cauchy-Schwartz. Then (13a), (13b), (13c), and the inequality j(zx; z2zx)j � jjzzxjj2, � = � = 
 = 1=2, and� = � = 1, are used to obtain the di�erential inequalityddt jjzjj2 � 8� + 2jjzjj44� 12 jjzzxjj2 � 2�jjzxjj2:(14)Time integration of (14) with the bound (10) gives (6b). In the process, we also obtain (6e) forn = 1, since jjf jj � p2�jjf jj1 and jjdf=dxjj � p2�jjdf=dxjj1. Sobolev's inequality, (6a), and (6b)give (6c).To derive (6d) for n � 2, we proceed by induction on n. Using (11a), we obtainddt jjznjj2 = �in(znzn�1; zx) + in(zx; znzn�1) + n(znzn�1; [H(u�)u� ]xx)+n([H(u�)u� ]xx; znzn�1) + n(znzn�1; [jzj2z]xx) + n([jzj2z]xx; znzn�1)+�n(znzn�1; zxx) + �n(zxx; znzn�1):(15a)Integrating by parts the scalar products (znzn�1; [H(u�)u�]xx), (znzn�1; [jzj2z]xx), and (znzn�1;zxx), decreasing the derivative order of [H(u�)u� ]xx, [jzj2z]xx, and zxx, and expanding the terms[H(u�)u� ]x and [jzj2z]x, we obtain(znzn�1; zxx) = �njjzn�1zxjj2 � (n� 1)(znzx; zn�2zx);(znzn�1; [H(u�)u�]xx) = �n(zn�1zzx;H(u�)zn�1) � (n� 1)(znzx;H(u�)zn�1)�n(zn�1zzx; u�H(z)zn�2) � (n � 1)(znzx; u�H(z)zn�2);(znzn�1; [jzj2z]xx) = �(3n� 1)jjznzxjj2 � n(zn�1zx; zn+1zx)� 2(n� 1)(zn+1zx; zn�1zx):We crudely estimate the scalar products (znzn�1; zx), (zn�1zzx;H(u�)zn�1), (znzx;H(u�)zn�1),(zn�1zzx; u�H(z)zn�2), and (znzx; u�H(z)zn�2) and use Young's inequality [8],jabj � jjajjp jjbjjq; with 1p + 1q = 1;(16)to obtain j(znzn�1; zx)j � jjznzxjj jjzn�1jj � �2 jjznzxjj2 + 12� jjzn�1jj2;(17a)j(zn�1zzx;H(u�)zn�1)j � jjznzxjj jjH(u�)jj1jjzn�1jj � �2 jjznzxjj2+ 12� jjH(u�)jj21jjzn�1jj2;(17b) j(znzx;H(u�)zn�1)j � jjznzxjj jjH(u�)jj1jjzn�1jj � �2 jjznzxjj2 + 12� jjH(u�)jj21jjzn�1jj2;(17c)j(zn�1zzx; u�H(z)zn�2)j � jjznzxjj jju�jj1jjH(z)zn�2jj � 
2 jjznzxjj2 + 12
 jju�jj21jjH(z)zn�2jj2� 
2 jjznzxjj2 + 12
 jju�jj21jjH(z)jj22(n�1)jjzjj2(n�2)2(n�1);(17d)j(znzx; u�H(z)zn�2)j � jjznzxjj jju�jj1jjH(z)zn�2jj � 
2 jjznzxjj2 + 12
 jju�jj21jjH(z)zn�2jj2� 
2 jjznzxjj2 + 12
 jju�jj21jjH(z)jj22(n�1)jjzjj2(n�2)2(n�1):(17e) 5



The inequality (17a) is directly deduced from the Cauchy-Schwartz inequality; (17b) and (17c) fromSobolev's inequality and the Cauchy-Schwartz inequality; (17d) and (17e) from Sobolev's inequalityand Young's inequality (16) with a = H(z)H(z), b = zn�2zn�2, p = n� 1, and q = (n� 1)=(n� 2).From the fact that j(zn�1zx; zn+1zx)j � jjznzxjj2, j(znzx; zn�2zx)j � jjzn�1zxjj2, and the crudebounds given above, the L2n norm of z satis�es the di�erential inequalityddt jjzjj2n2n � n(�+ (2n� 1)� + (2n� 1)
)jjznzxjj2 + n� jjzjj2(n�1)2(n�1)+n(2n � 1)� jjH(u�)jj21jjzjj2(n�1)2(n�1)� 2njjznzxjj2+n(2n � 1)
 jju�jj21jjH(z)jj22(n�1)jjzjj2(n�2)2(n�1)� 2�njjzn�1zxjj2:(18a)In (18a) we take � = 1=2, � = 
 = 1=(4n� 2), and we use the Lp bound for the Hilbert transformof z derived in [17] to obtainddt jjzjj2n2n � n �2 + (2n� 1)2jjH(u�)jj21 + 2(2n� 1)2jju�jj21� jjzjj2(n�1)2(n�1)�n2 jjznzxjj2 � 2�njjzn�1zxjj2:(18b)The bounds for u� and H(u�) in the maximum norm, independent of �, the induction assumptionfor the L2(n�1) norm bound of z, and integration of (18b) give usjjzjj2n2n � C2n n32n� 1  20t+ 4jjf jj21 + �������� dfdx��������21!2n�1 ;(19a) n2(n+ 1)2 Z t0 jj[(u�x)(n+1)]x(�; � )jj2d� � C2n n32n� 1  20t+ 4jjf jj21 + �������� dfdx��������21!2n�1 :(19b)In the above inequalities, C is a constant independent of n and �. The bound (6d) is obtainedfrom (19a) by taking its 2nth root; (6e) is deduced from (19b), and (6f) is deduced from (6d),Arzela-Ascoli's theorem, and the fact that limn!1 n1=n = 1.We now derive a bound for the integral over time of the L2 norm of u�t . Taking the scalar productof u�t with (2a), we obtain2jju�t jj2 = �i(u�t ; u�x) + i(u�x; u�t ) + (u�t ; [H(u�)u�]x) + ([H(u�)u�]x; u�t ) + (u�t ; [ju�xj2u�x]x)+([ju�xj2u�x)x; u�t ) + �(u�t ; u�xx) + �(u�xx; u�t ):(20a)We integrate by parts the scalar products (u�t ; [ju�xj2u�x]x) and (u�t ; u�xx), decreasing the derivativeorder of [ju�xj2u�x]x and u�xx to obtain(u�t ; [ju�xj2u�x]x) + ([ju�xj2u�x]x; u�t ) = �(u�xu�xt; [u�x]2) � ([u�x]2; u�xu�xt) = �12 ddt jju�xjj44;(21a) (u�t ; u�xx) + (u�xx; u�t ) = �(u�xt; u�x)� (u�x; u�xt) = � ddt jju�xjj2:(21b)We expand the term [H(u�)u�]x and crudely estimate the scalar products on which no algebraicmanipulations have been performed to obtainj(u�t ; u�x)j � jju�t jj jju�xjj � �2 jju�t jj2 + 12� jju�xjj2 � �2 jju�t jj2 + 12� jju�xjj44 + ��;(21c) j(u�t ;H(u�)u�x)j � jjH(u�)jj1jju�t jj jju�xjj � �2 jju�t jj2 + 12� jjH(u�)jj21jju�xjj2� �2 jju�t jj2+ 12� jjH(u�)jj21jju�xjj44 + �� jjH(u�)jj21;(21d) j(u�t ; u�H(u�x))j � jju�jj1jju�t jj jjH(u�x)jj � 
2 jju�t jj2 + 12
 jju�jj21jju�xjj2� 
2 jju�t jj2 + 12
 jju�jj21jju�xjj44 + �
 jju�jj21:(21e) 6



The above inequalities are deduced by using the Cauchy-Schwartz inequality and the zero-averageproperty of the solution of (2a).Substituting in (20a) for the scalar products their upper bounds or an equivalent expression, weobtain 2jju�t jj2 � (�+ � + 
)jju�t jj2 +� 1� + jjH(u�)jj21� + jju�jj21
 � jju�xjj44+2� jjH(u�)jj21� + 2� jju�jj21
 � 12 ddt jju�xjj44 � � ddt jju�xjj2:(22a)Then we take � = � = 
 = 1=2 to obtainjju�t jj2 � 4 �1 + jjH(u�)jj21 + jju�jj21� jju�xjj44 + 8�(jju�jj21 + jjH(u�)jj21)� ddt jju�xjj44 � 2� ddt jju�xjj2:(22b)Time integration of (22b), the properties of the Hilbert transform, and the bounds (6a), (6b), (6c),and (10) give us (6g).Now we derive bounds for the solution of (2a) that depend explicitly on negative powers of �.Lemma 2.2 Let the initial condition f for (2a) be a C1 2�-periodic function of zero-average. Thenthe mixed derivative @k+mu�=@xk@tm is bounded; if m = 0 and k � 2 or if m � 1 and k � 0, thebounds depend on the initial condition, the derivative order, and negative powers of the viscosity �.Proof: The proof proceeds as in [15], since the term [H(u�)u�]x is a lower-order term and since inLemma 2.1 bounds were derived for the maximum norm of H(u�) and u� .We have the following theoremTheorem 2.1 Let the initial condition f for (2a) be a C1 2�-periodic function of zero-average.Then if the solution of (2a) exists, it is in�nitely many times di�erentiable. Furthermore, thefunctions u� , u�x satisfy bounds in L2 and the maximum norm independent of �, the maximum normbound for u�x being in a weak sense; the function u�t also satis�es a bound in L2([0; 2�]� [0; t]), thesquare of its norm depending linearly on �. Bounds for all the other derivatives of the solution of(2a) depend explicitly on negative powers of the viscosity �.Proof: The result is a direct consequence of Lemmas 2.1 and 2.2.3 Existence and UniquenessIn this section, we proceed as in [15] to obtain existence and uniqueness results for the solution of(2a). More precisely, we use Ball's theorem [3], the hyperregularized equation (5a), and the a prioriestimates of the preceding section.Ball's theorem is stated as followsTheorem 3.1 Consider the equation ddtu = Au+ f(u);(23)where A is the generator of a holomorphic semigroup S(t) of bounded operators on a Banach spaceX. Suppose that jjS(t)jj � M for some constant M > 0 and all t 2 R+. Under these hypothesesthe fractional powers (�A)�� can be de�ned for 0 < � < 1, and (�A)�� is a closed linear operatorwith domain X� = Domain((�A)��) dense in X. Let f(u) be locally Lipschitz; that is, for eachbounded subset U of X� there exists a constant CU such thatjjf(u)� f(v)jj � CU jju� vjj 8u; v 2 U:7



Then, given u0 2 X, there exists a �nite time interval [0; t) and a unique solution to (23) withu(�; 0) = u0 on that time interval, and the solution can be continued uniquely on a maximal intervalof existence [0; T ?). Moreover, if T ? <1, then necessarilylimt!T? jju(t)jj� =1:We directly apply Theorem 3.1 to (5a) with A = ��@4=@x4, X = L2([0; 2�]), andf(u) = �iux + [H(u)u]x + [juxj2ux]x + �uxx:Then X� = H3 andjjf(u)� f(v)jj � �1 + jjvjj1 + jjH(u)jj1 + [jjux + vxjj1 + 2jjuxjj1+2jjvxjj1]jjvxxjj1�jjux � vxjj+ (jjH(ux)jj1 + jjvxjj1)jju� vjj+(3jjuxjj21 + �)jjuxx� vxxjj;� C �1 + jjujjH2 + jjvjjH2 + jjujj2H3 + jjvjj2H3� jju� vjjH2 :The above bounds are a direct consequence of the properties of the Hilbert transform and of Sobolev'sinequalities. So, f is locally Lipschitz on H3. Theorem 3.1 implies that a solution exists on anytime interval in which the H3 norm of the solution is controlled.Then one derives bounds for the solution of (5a) independent of �; the a priori bounds of thepreceding section, the bounds for the solution of (5a) independent of �, together with the short-termexistence of this section, imply that the solution of (2a) exists for all time when � > 0.Theorem 3.2 Let the initial condition be C1 and 2�-periodic, and let � > 0. Equation (2a) has aunique, 2�-periodic solution u on [0;1), which is in�nitely many time di�erentiable.Proof: Existence follows from the short-term existence result, a priori bounds for (5a), a prioribounds for (2a), and the arguments in Theorem 4.2.2 in [11]. We have only to show uniqueness.Let u and v be solutions of (2a) that satisfy the same initial condition. Their di�erence w = u � vsatis�es wt = �iwx +H(u)wx + vH(wx) +H(ux)w + vxH(w) + 2juxj2wxx + [ux]2wxx+2uxvxxwx + (2vxvxx + uxvxx + vxvxx)wx + �wxx;(24a) w(x; 0) = 0:(24b)Integration by parts of the inner products (w; juxj2wxx) and (w; [ux]2wxx), decreasing the derivativeorder of wxx and wxx, leads us to �jjuxwxjj2� (w; uxuxxwx)� (w; uxxuxwx) and �(wx; [ux]2wx)�2(w; uxuxxwx). The inner products (w; uxuxxwx), (w; uxxuxwx), and (w; uxuxxwx) are crudelyestimated byj(w; uxuxxwx)j � jjuxjj1jjuxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjuxjj21jjuxxjj21jjwjj2;j(w; uxuxxwx)j � jjuxjj1jjuxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjuxjj21jjuxxjj21jjwjj2;j(w; uxuxxwx)j � jjuxjj1jjuxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjuxjj21jjuxxjj21jjwjj2:The above bounds are directly deduced from Sobolev's and the Cauchy-Schwarz inequality. Notethat j(wx; [ux]2wx)j � jjuxwxjj2. We also estimate crudely the contributions from the low-orderterms in (24a):j(w;wx)j � jjwjj jjwxjj � �15 jjwxjj2+ 154� jjwjj2;j(w;H(u)wx)j � jjH(u)jj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjH(u)jj21jjwjj2;8



j(w; vH(wx))j � jjvjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjvjj21jjwjj2;j(w; uxvxxwx)j � jjuxjj1jjvxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjuxjj21jjvxxjj21jjwjj2;j(w; vxvxxwx)j � jjvxjj1jjvxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjvxjj21jjvxxjj21jjwjj2;j(w; vxvxxwx)j � jjvxjj1jjvxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjvxjj21jjvxxjj21jjwjj2;j(w; uxvxxwx)j � jjuxjj1jjvxxjj1jjwjj jjwxjj � �15 jjwxjj2 + 154� jjvxjj21jjvxxjj21jjwjj2:The above bounds are directly deduced from Sobolev's and the Cauchy-Schwarz inequality.The above estimates may be used to obtain the di�erential inequalityddt jjwjj2 � h152� �6jjuxjj21jjuxxjj21 + 1 + jjH(u)jj21 + jjvjj21 + 3jjvxjj21jjvxxjj21+3jjuxjj21jjvxxjj21� + 2 (jjH(ux)jj1 + jjvxjj1) ijjwjj2:Gronwall-Bellman's inequality implies that w = 0.4 Weak LimitWe have shown in Section 2 that the solution of (2a) and its �rst-order spatial derivative satisfybounds independent of � in L2 and in the maximum norms; we also have derived a bound for u�tin L2([0; 2�]� [0; t]). In this section, we prove that, in the limit of � ! 0, � > 0, the sequence offunctions (u�)�>0, u� solution of (2a), has a limit u in a weak sense. To do so, we use the a prioribounds of Lemma 2.1 independent of � or depending linearly on �, and we show that [H(u�)u� ]xsatis�es a bound independent of � in the L2 norm.Lemma 4.1 Let u� be the solution of (2a). Then the L2 norm [H(u�)u�]x is bounded by2p2 �8�t+ jjf jj2�1=4 40�t+ 4jjf jj2 + �������� dfdx��������2!3=4 :The above bound tells us that the square of the L2 norm of [H(u�)u� ]x grows linearly in time.Proof: The bound for the L2 norm of [H(u�)u� ]x is immediately deduced from (6a), (6b), theproperties of the Hilbert transform, and Sobolev's inequality.We now have to show that if u is a limit of the sequence (u�)�>0, in the limit of � ! 0,then w0 = lim�!0H(u�)u� is equal to H(u)u and w1 = lim�!0 ju�xj2u�x is equal to juxj2ux, inL2([0; 2�]� [0; t]), in a weak sense. To do so, we proceed as in Section 5 of [15]. We show only thatw0 = H(u)u, since it has been shown in [15] that w1 = juxj2ux.Let � be a test function in L2([0; 2�]� [0; t]). ThenZ t0 Z 2�0 (w0 �H(u)u)�dxd� = Z t0 Z 2�0 (w0 �H(u�)u�)�dxd� + Z t0 Z 2�0 H(u�)[u� � u]�dxd�+ Z t0 Z 2�0 u[H(u�) �H(u)]�dxd�:The �rst integral in the above expression can be made smaller than �=3 because w0 is a weak limitof H(u�)u� ; the second integral can also be made smaller than �=3 because H(u�) is bounded in themaximum norm and because u is a weak limit of u� ; similarly, the third integral can also be madesmaller than �=3 because u is bounded in the maximum norm and because H(u) is a weak limit ofH(u�). (To prove that, we use the fact that H(u�) is weakly convergent and has a weak limit g.9



The weak limit g is equal to H(u) because jjg�H(u)jj = lim�!0 jjH(u� � u)jj � lim�!0 jju� � ujj).So w0 = H(u)u in a weak sense.With the estimates of Lemmas 2.1 and 4.1 and the fact that w0 = H(u)u and w1 = juxj2ux, wehave shown that a weak limit u satis�esut + iux = [H(u)u]x + [juxj2ux]x;(25a) u(x; 0) = f(x);(25b)in a weak sense.Theorem 4.1 A weak limit of the sequence of functions (u�)�>0 satis�es (25a). The function ubelongs to H1([0; 2�]� [0; t]), and for each �xed t, ux belongs to L1([0; 2�]). The function u maynot be unique.5 Conclusions and Open QuestionsIn this paper, we have derived a new model for the vortex sheet equation that seems to be better thanthose studied in [1], [4], and [6] in the sense that it has a globally de�ned 
ux and its linearizationabout a constant state gives us the Cauchy-Riemann equation. In our previous work [1] and [16], weshowed that the globally de�ned 
ux cannot always be controlled by a linear second-order viscousregularization and that Burgers' equation was not a good enough model because when the local 
uxis replaced by a global 
ux, for a certain class of initial conditions, delta function singularities formin �nite time [1]. The solution of our new model seems to have similar properties to the solution ofthe vortex sheet equation: without a second-order viscous regularizing term, the solution ceases toexist in �nite time, and if a singularity forms, the second-order spatial derivative and higher-orderspatial derivatives of the solution become in�nite. We were able to show that a weak limit, in thelimit of zero viscosity, exists but it may not be unique.Several open questions remain to be addressed:� What is the e�ect of the nonlinear term [H(u�)u�]x on the numerical solution of the equation?How do the numerical solutions of (2a) and ofyt + iyx = [jyxj2yx]x + �yxx;(26a) y(x; 0) = f(x):(26b)di�er?� Can we characterize a weak limit of (2a), in the limit of � ! 0 using asymptotics?� Can we show that a weak limit is an in�nite spiral?The result presented here could be generalized to the case where the term [H(u�)u�]x in (2a) isreplaced by the term [f(u�)u� ]x with f(u�) satisfying the boundjjf(u�)jj � Kjju�jj+K0;where K and K0 are constant independent of �. Then the estimates of Section 2 hold. That is, thesquare of the L2 norm of the solution of the new equation and of its �rst-order spatial derivative andof the square of the maximum norm of the solution of the modi�ed equation grow linearly in time;the L2n norm of the �rst-order spatial derivative of the solution of the modi�ed equation is nearly alinear function of time; the weak maximum norm bound for the �rst-order spatial derivative of thesolution of the modi�ed equation is a quadratic function in time; the bound for the time integral ofthe square of the L2 norm of the solution of the modi�ed equation is a quadratic function of time.The solution of the modi�ed equation would have a weak limit in the limit of zero viscosity becausethe equivalent of Lemma 4.1 holds. 10



AcknowledgmentsI thank Drs. G. R. Baker and G. K. Leaf for several stimulating discussions and suggestions.The preparation of this work was supported in part by the Mathematical, Information, and Com-putational Sciences Division subprogram of the O�ce of Computational and Technology Research,U.S. Department of Energy, under contract W-31-109-Eng-38.References[1] G. R. Baker, X. Li, and A. C. Morlet. Analytic structure of 2 1D transport equations withnonlocal 
uxes. Physica, 91D:349{375, 1996.[2] G. R. Baker and M. J. Shelley. On the connection between thin vortex layers and vortex sheets.J. Fluid Mech., 215:161{194, 1990.[3] J. M. Ball. Remarks on blow{up and nonexistence theorems for nonlinear evolution equations.Quart. J. Math., 28:473{486, 1977.[4] J. T. Beale and D. G. Schae�er. Nonlinear behavior of model equations which are linearlyill-posed. Commun. in Partial Di�erential Equations, 13:423{467, 1988.[5] R. E. Ca
isch and O. Orellana. Singular solutions and ill-posedness for the evolution of vortexsheets. SIAM J. Math. Anal., 20:293{307, 1989.[6] M. R. Dhanak. Equation of motion of a di�using vortex sheet. J. Fluid Mech., 269:265{281,1994.[7] J. Duchon and O. Robert. Global vortex sheet solutions of Euler equation in the plane. J. Di�.Equ., 73:215{224, 1988.[8] D. Gilbarg and N. S. Trudinger. Elliptic Partial Di�erential Equations of Second Order.Springer{Verlag, second edition, 1983.[9] T. Hou, J. Lowengrub, and M. Shelley. Removing the sti�ness from interfacial 
ows with surfacetension. J. Comp. Phys., 114:312{338, 1994.[10] R. Krasny. On singularity formation in a vortex sheet and the point vortex approximation. J.Fluid Mech., 167:65{93, 1986.[11] H.-O. Kreiss and J. Lorenz. Initial-Boundary Value Problems and the Navier{Stokes Equations.Academic Press, 1989.[12] A. Majda. Remarks on weak solutions for vortex sheets with a distinguished sign. IndianaUniv. Math. J., 42:921{939, 1993.[13] D. I. Meiron, G. R. Baker, and S. A. Orszag. Analytic structure of vortex sheets dynamics partI. Kelvin{Helmholtz instability. J. Fluid Mech., 114:283{298, 1982.[14] D. W. Moore. The spontaneous appearance of a singularity in the shape of an evolving vortex.Proc. Roy. Soc. London, A365:105{119, 1979.[15] A. C. Morlet. The e�ect of a nonlinear viscous regularization on the solution of a Cauchy-Riemann equation. J. Math. Anal. Appl., 204:236{282, 1996.[16] A. C. Morlet. Further properties of a continuum of model equations with globally de�ned 
ux.Preprint ANL/MCS-P678-0897, 1997.[17] A. C. Morlet. Some further results for a one-dimensional transport equation with nonlocal 
ux.To Appear in Comm. Appl. Anal., 1997. 11



[18] P. G. Sa�man. Vortex Dynamics. Cambridge University Press, 1992.[19] P. G. Sa�man and G. R. Baker. Vortex interactions. Ann. Rev. Fluid Mech., 11:95{122, 1979.[20] M. J. Shelley. A study of singularity formation in vortex-sheet motion by a spectrally accuratevortex method. J. Fluid Mech., 244:493{526, 1992.[21] E. M. Stein. Singular Integrals and Di�erentiability Properties of Functions. Princeton Univer-sity Press, 1970.[22] G. Tryggvason, W. J. A. Dahm, and K. Sbeih. Fine structure of vortex sheet roll-up by viscousand inviscid simulation. ASME J. Fluid Engin., 113:31{36, 1991.

12


