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Abstract

We present an improved model for the vortex sheet equation, that combines some of the
features of the models of Beale and Schaeffer, Dhanak, and Baker et al. We regularize the
Beale-Schaeffer equation with a second-order viscous regularizing term, and we add a globally
defined flux term in conservative form. We obtain «} + ful = [H(u«”)u”]s + [Ju*ub]s + vul,,
where i = —1, and H (u”) is the Hilbert transform of u”. We derive bounds for the solution of
the equation and its first-order spatial derivatives in L? and in the maximum norm, independent
of v. We show that the function w? satisfies an L? norm bound that depends linearly on »; all
the other derivatives satisfy bounds that depend on negative powers of v. We show that, for
v > 0, the solution exists and is unique. We also prove that, for v > 0, in the limit of v — 0,
the sequence of functions (u"), 5o has a weak limit; the weak limit may not be unique.

1 Introduction

At high Reynold’s numbers, a thin shear layer, generated by shedding vortices from a solid boundary,
takes the asymptotic form of a vortex sheet: a layer of vorticity distributed as a delta function on
a surface [6]. We restrict ourselves to two-dimensional flow where the surface is a curve and the
vorticity axis points out of the plane. The equation of motion for the location of the vortex sheet,

®(p, 1) = ((p, 1), y(p, 1)), is given by [18]

%f o(p, 1y YLD =¥ 1), 2(p, 1) — 20, )
0,

(1a) @(pt) = 2(p, 1) — 2(q,1)[? ’

(1b) 7i(p,t) =

where the integral must be evaluated as a principal value. The parametrization variable p is a
Lagrangian parameter in that the quantity v remains constant along the trajectory of a marker on
the sheet labeled by p. Alternatively, p may be regarded as a characteristic variable, and (1a) and
(1b) are the equations for the characteristics of a partial differential equation that describes the
transport of the vorticity along the sheet.

Both analytic [5], [13], and [14] and numerical [10] and [20] evidence suggests that vortex sheets
develop curvature singularities in finite time. Studies concentrate on the long-time evolution of
unstable modes of a slightly perturbed, initially flat vortex sheet, (p,esin(kp)). The linearized
motion about a flat sheet with uniform strength % indicates that the growth rate for such modes
satisfies ¢ = 7k /2; that is, the amplitude grows according to e exp(ot). Modes with the largest wave
number k grow the fastest. Consequently, the motion is linearly ill-posed [19]. Recent studies have
demonstrated that the motion does lead to singularity formation in finite time.
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Various regularizations of vortex sheet motion have been used to assess the behavior beyond the
time of singularity formation. Layers of finite thickness [2] show similar behavior to those whose
motion is viscous [22]: a small vortex core replaces the point of curvature singularity, and a thin
layer spirals around this core. Krasny [10] uses a numerical regularization that keeps the vorticity on
the curve but smoothes the velocity of the markers. His results also show the appearance of a spiral,
but without a core. When the vortex sheet represents the interface between two immiscible fluids of
equal density, surface tension becomes an important physical regularization. Numerical calculations
that include surface tension effects reveal a spiral structure [9], but the arms show oscillations that
may lead to a breakup of the spiral into detached drops.

So far, the results suggest that some form of spiral may be the weak solution to vortex sheet
motion beyond the time of singularity formation. Rigorous theory [7] and [12] establishes the global
existence in time for vortex sheet motion in a weak class of functions, but it does not clarify the
nature of the vortex sheet. The continuum of model equations with globally defined flux [16], which
included the two particular model equations investigated in [1] and [17], shed some light on the
behavior of equations with globally defined flux, but it did not give sufficient insight to determine
the precise behavior of the vortex sheet in the limit of vanishing viscosity.

We propose the following equation

(2a) wf iy = [Hu" )l + [ Pul]e + vug,,
(2b) u(2,0) = f(x),

as an improved model equation for the vortex sheet equation. To derive the equation, we proceed
as in [1]: we take Dhanak’s equation

(3) Yt + (V7)s = V7ss,

where v is the effective vortex sheet strength assigned to the curve in the center of the layer, s
is the arclength along this curve, and V is the tangential component of the velocity generated by
the vortex sheet, that is, the tangential component of (1a). Then we replace the diffusive term by
v¥ss + [[7s]%7s]s and the tangential component of the Biot-Savart integral (1a) by a one dimensional
analogue, the Hilbert transform,

" b L,

dt TS —

where we have used u”(z) in place of y(p). For (2a), we have 27-periodic initial and boundary
conditions and i? = —1; the function H(u”) denotes the Hilbert transform of u”.

The new model is a better model of vortex sheet motion because it provides two features: (1) the
linearization of (2a) about a constant flat sheet leads to the Cauchy-Riemann equation regularized
with a second-order viscous term; and (2) the model has a globally defined flux term like the vortex
sheet equation. Previous models considered [1], [16], [17] did not have both features. The proposed
model (2a) is intended to better characterize the weak limit in the limit of vanishing viscosity.

In Section 2, assuming that the solution of (2a) exists and that the initial condition is of zero-
average, we derive bounds in the L? and in the maximum norm for the solution of (2a). We first
derive bounds for u” and u¥ in the L? norm, independent of v. We also get bounds for u” and u?
in the maximum norm, independent of v, the bound for v” being deduced from the L? norm for u”
and u% and Sobolev’s inequality and the bound for u” by first obtaining bounds for the L?? norm of
u? and then using Arzela-Ascoli’s theorem. We obtain a bound for the time integral of the square
of the L? norm of u; the bound depends linearly on v. We then show that all the other derivatives
of u” satisfy bounds, in the L? and in the maximum norm, that depend on negative powers of v,
proceeding as in [15].

In Section 3, we prove the long-term existence of the solution of (2a) when v > 0 by proving the
short-term existence of the solution of

(5&) U;/ + “}; = [H(UV)UV]Z‘ + (|U;|2U;)l‘ + VU;x - /’LU;xxxa
(5b) v’ (2,0) = f(z).



The short-term existence of the solution of (5a) is deduced from Ball’s theorem. Then we derive
estimates for the solution of (5a), independent of y. These and the a priori bounds of Section 2 let
us prove the long-term existence of the solution (2a).

In Section 4, we show that the sequence of functions (u”), ¢ has a weak limit in H'([0, 27]x [0,1])
and that for fixed ¢, ug is in L ([0, 27]).

2 Estimates

In this section, assuming existence of a C'°° solution, we first derive estimates for the solution of
(2a) subject to 2w-periodic initial and boundary conditions. We derive estimates independent of v
for the solution of (2a) and its first-order spatial derivative.

Without restriction, from now on, we assume that the initial condition f is of zero-average. The
average over a period of the solution of (2a) is conserved.

Before deriving bounds for the solution of (2a), we first recall some of the properties of the
Hilbert transform [21]:

e Let g be a C°, 27-periodic function. Then H(g) is a C°°, 27-periodic function and
[H(9))e = H(ge)-
e The L? norm of H(g) satisfies the bound
[ ()] < llgll-
o H(e*®) = isign(k)e*®.

We summarize the bounds for the solution of (2a) and its first-order derivative independent of
the viscosity v as follows.

Lemma 2.1 Let the initial condition [ for (2a) be a C™ 2m-periodic function and of zero-average.
Then the solution of (2a) satisfies

(6a) "¢ Ol < v8mt+ [ f]%,

d 2
(6b) sl < ¢407rt+4||f||2+H£ |
1/4
d 2
(6c) e’ )l < V2 (87t +|1F1%) " (407rt—|—4||f||2+H£ )
1 _ L
v 7l3 2n df 2 2n
(6d) (-, )] [an - < c(%_l) (20t—|—4||f||§o+H% ) |
n t . ) , 77,3 , df 2 2n—1
00z [ I LenilPar < 20 o (ol + |4 ,
d 2
(6f) luz( Ollee < 0(20t+4||f||§o+H£ )

The above bounds depend on time and the initial condition but are independent of the viscosity v.
The constant C in (6d), (6e), and (6f) is independent of n and v.

The bounds (6a), (6b), and (6¢) indicate that the square of the L? norm of the solution of (2a)
and its first-order spatial derivatives as well as the square of the maximum norm of the solution of
(2a), grow linearly in time. The estimate (6d) tells us that the L*™ norm of the solution of (2a)
grows nearly linearly in time; more precisely the 2nth power of the L*™ norm of the solution of (2a)



grows like t?" =Y. The last bound, (6f), tells us that the weak mazimum norm of the first-order spatial
derivative of the solution of (2a) grows linearly in time.

Also, the solution of (2a) satisfies a bound in H([0,27] x [0,1]) that depends on v:
t
Jtenlar < st R | 1+ aVERET f10m il + |
0

ar||?
dr
2
)+l

The above estimate tells us that the time integral of the square of the L? norm of the first-order
temporal derivative of the solution of (2a) grows quadratically in time and linearly in v.

2

daf
dr

df
2 -
+ V‘dl‘

6 8 [ 207t + 4[| F||? -
(68) v ( el + || 4

Proof: We first derive (6a). We take the scalar product of v” with (2a) and integrate by parts the
scalar products (u”,u?%,), (u”, [H(u")u"]s), and (v’ [|u%]?u?];), decreasing the derivative order of

u’,, [H(u”)u"]y, and [|u%|*u”],. We obtain

rx)

d v (v v (v v v vy, v vN, VoV v v
(7) EHU ||22—Z(U aux)—i—l(uxau )—(Ux,H(U )u )—(H(U )u aux)_2V||ux||2_2||ux||?la

with ||u”]| the L? norm of u” and |[u”||, its LP norm. We crudely estimate the scalar products
(u”,u) and (uZ, H(u")u), and we use the zero-average property of the solution of (2a) and the
properties of the Hilbert transform to obtain

v o,V v v v o v T
(8a) | u)l < TRl < gl < S IRl + =
v v,V v v,V 6 v, v 1 v 6 v v v T
(8b)[(ug, H(u")u")[ - < [ Ju"ug ] < 5l uxllz+%|lu 17 < Sl xlli+ﬁlluxlli+—2w~

The inequality (8a) is deduced from the zero-average property of the solution of (2a) and Cauchy-
Schwartz’s inequality. the inequality (8b) is derived similarly. Then (8a) and (8b), &« = = v = 1/2,
are used to obtain the differential inequality

d 1
Q D12 < s - Dl - 2l
Time integration of (9) gives (6a) and

(10) / (-, 7| 4dr < 16 + 21| £

The function z = u¥ satisfies

(11a) 2 +ize = [HW)u"]ee + [|21*2)ee + VZew,
(11b) (0 = T

We take the scalar product of z with (11a) and integrate by parts the scalar products (z, zzs),
(z,[H(u”)u"]ps), and (2, [|2]?2]ee), decreasing the derivative order of zyp, [H (u”)u”]pe, and [|2]22]ss
We obtain
d v v v v
Tl = =iz z) iz, 2) = (o) H(u)2) = (2, H(z)u") = (H(u")z, 20) = (H(2)u”, 20)
(12) —A||zze||* = (20, 2°F0) — (2°Z0, 22) — 20| 2|

We crudely estimate the scalar products (2, 2;,), (22, H(u")z), and (2, H(z)u"), note that |(zy, 2%%,)]
< ||z2||?, and use the zero-average property of the solution of (2a) and the properties of the Hilbert



transform to obtain

(13a) (2, 22)]

IN

« ™
Var|lezll < Sll=l + 2,

1

(130) [Gzo, B < [lesall 10l € Gllzsel+ 5110 < GllzalP+ 510 + 575
1 o

(130) Nz HE < a2l 21l < Szl + gl < FllezalP 4+ el + 55

More precisely, we obtain (13a) using Cauchy-Schwartz’s inequality and (13b) and (13¢) using the
properties of the Hilbert transform, the zero-average property of the solution of (2a), and Cauchy-
Schwartz. Then (13a), (13b), (13¢), and the inequality |(z,, 2%Z;)| < ||zz:]|?, @ = B = v = 1/2, and
6 =€ =1, are used to obtain the differential inequality

d 1
(14) 217 < 87 4 21205 = Sllzze | - 2wl |l

Time integration of (14) with the bound (10) gives (6b). In the process, we also obtain (6e) for
n =1, since ||f|| < V27||f||oo and ||df/dz|| < V/27||df /dz||c. Sobolev’s inequality, (6a), and (6b)
give (6¢).

To derive (6d) for n > 2, we proceed by induction on n. Using (11a), we obtain

d
EHZHHZ = —in(2"2"7 )+ in(ze, 2" TN + (2" [H ()0 o)
+n([H (u)ulor, 22271 4 0(2 2 |27 2)00) 4 0([[2]2)00, 27707
(15a) —I—I/n(z"E”_l, Zpg) T v Zpyp, z"?"_l).

Integrating by parts the scalar products (272"~ ! [H(u”)u"]es), (272" [|2|%2])ee), and (277771,
Zpr ), decreasing the derivative order of [H(u”)u”]ss, [|2)?#]ex, and zy., and expanding the terms
[H(u”)u”]; and [|z|*z],, we obtain

(7" ) = =l ) = (0= D)(2" 7, 2" ),
(z"?"_l, [H(u")u"]ps) = —n(z"_lizx, H(u”)z"‘l) —(n—1)(z"%,, H(u”)z"‘l)
—n(2" T e u H(2)2"72) — (n — 1)(2" 0, u’ H(2)2"7?),
2 121 2)ee) = —(Bn = D2 2| — n(2" "z, 2" T2 = 2(n — D)(2" T L, 2T ).

We crudely estimate the scalar products (272”71, z.), (2" 1Zz,, H(u")2""1), (2" %, H(u?)z" 1),
(:"1Zz, w’ H(2)z" %), and (:"Z,, u” H(2)z"~%) and use Young’s inequality [8],

. 1 1
(16) lab] < |||y ||B]lg,  with -4 - =1,
P q
to obtaln
1
(17a) 2zl < T S Sl 4 e,
(=" 22, H(u)z" )] s|w%mmwmhwwmsgwwm2
1 v n—
(17b) + o5 I IE]1 P,
n— vy . n— n v n— 6 n 1 v n—
(176) [("Za, H( )" < 2l I )l < G2+ ool )1 P
nN—1l= v n— n v n— Py n 1 v n—
(T W HE ) < s ol ()27 721 < G120+ ool 1 )0
2 n 1 v 2(n—2
(17d) < gl el P+ g I ) 121570,
n— v n— n v n— Py n 1 v n—
(2w HE < el ol H (2027721 < G121 4 gl ol 1))
2 n 1 v 2(n—2
(17¢) < gl el P+ g I ) 121570



The inequality (17a) is directly deduced from the Cauchy-Schwartz inequality; (17b) and (17¢) from
Sobolev’s inequality and the Cauchy-Schwartz inequality; (17d) and (17¢) from Sobolev’s inequality
and Young’s inequality (16) with a = H(2)H(z), b =2""22""% p=n—1,and ¢ = (n — 1)/(n — 2).

From the fact that |(z"'z,, 2" T12,.)| < ||2"2|)%, [(2" %%, 2" " 220)] < ||2" 7 '2:||%, and the crude
bounds given above, the L?® norm of z satisfies the differential inequality

d n n n ne
N3 < n(a+ @n—1)8+ @n = Dyl + Zlll50 7))

n(2n —1 Y e n
22D — 2l
n(2n—-1) , , n— n—
(18) 2O B 1 - 2wl

In (18a) we take o = 1/2, f =y = 1/(4n — 2), and we use the LP bound for the Hilbert transform
of z derived in [17] to obtain

d e
Sl <[220 = DA + 200 - DA IR N0

(18b) —g”z"zx”z — w2 ||

The bounds for «” and H(u”) in the maximum norm, independent of v, the induction assumption
for the L2?~1) norm bound of z, and integration of (18b) give us

2n—1
3 df 2
1 o< o (20t + 4l f]1% + || =
(199 g < c 2n_1(0+ I1E +|| Oo) ,
3 df 9 2n—1
(n-l—l) 2 < m_ N 2 aj
190) 5 [ iPer < C 2n_1(20t+4||f||oo+de Oo)

In the above inequalities, C' is a constant independent of n and v. The bound (6d) is obtained
from (19a) by taking its 2nth root; (6e) is deduced from (19b), and (6f) is deduced from (6d),
Arzela-Ascoli’s theorem, and the fact that lim, . n'/? = 1.

We now derive a bound for the integral over time of the L norm of u”. Taking the scalar product
of uY with (2a), we obtain

20/ I* = =il ul) + iy u]) + (uf, TH (") ]e) + (H (@) u ], uf) + (uf, (g ug]e)
(20a) (e )e, w)) + v(uf ugy) + v(ug,, uy).

We integrate by parts the scalar products (u?, [|u%|?u%],) and (u?,uZ,), decreasing the derivative
order of [|u%|?u%], and u%, to obtain

v v v v v,V v v v, v ld
(21&) (ut ’ [|ux|2ux]l‘) + (HU |2 ]l‘a ut) = _(uxuxt’ [ux]z) - ([ux]z’ uxuxt) = 2 dt” x||4a
v v v d v
(21b) (ut ) uxx) + (uxxa ut) = _(uxta ux) (uxa uxt) EHutz

We expand the term [H(u”)u”], and crudely estimate the scalar products on which no algebraic
manipulations have been performed to obtain

(21¢) |(uf', ug)| [ || ] < 5 [ i’||2+—|| J < Sl i’||2+—|| x||4+—

IN

—
<
-
X
<

<
s
<
<
=
A

ol 1 2l < 212 + 6|IH(U”)|I§OIIUZIIZ

v v ﬂ- v
(21d) < DNt P gl I+ T 2
20 g
v v v v v v "}/ v 1 v v
@ w HG)| < [l ||oo||ut||||H<ux>||s—||ut||2+g||u 2 1)
v v ﬂ- v
(21e) 211 + el T



The above inequalities are deduced by using the Cauchy-Schwartz inequality and the zero-average
property of the solution of (2a).

Substituting in (20a) for the scalar products their upper bounds or an equivalent expression, we
obtain

- g
[ ()12, lw"ll3, 1d
22 p 2 m Al E S P Ll | = e
(22a) +27 3 + 27 " 57

v v U HH@)IE 2N
20l II* < (a+ﬁ+7)llutllz+<5+ +— ]l

d
lul13 = v Tugl .

dt

Then we take « = 3 =+ = 1/2 to obtain

laf 17 < 4@+ I @) + [l l12) ]z + Sl |12 + 1 ()12

d v|4 d V|2
(22b) - Sl = 20 ]

Time integration of (22b), the properties of the Hilbert transform, and the bounds (6a), (6b), (6¢),
and (10) give us (6g). .

Now we derive bounds for the solution of (2a) that depend explicitly on negative powers of v.

Lemma 2.2 Let the initial condition f for (2a) be a C™° 2m-periodic function of zero-average. Then
the mized derivative 0%t u” /0x*0t™ is bounded; if m = 0 and k > 2 or if m > 1 and k > 0, the
bounds depend on the initial condition, the derivative order, and negative powers of the viscosity v.

Proof: The proof proceeds as in [15], since the term [H(u”)u”], is a lower-order term and since in
Lemma 2.1 bounds were derived for the maximum norm of H(u”) and u". "
We have the following theorem

Theorem 2.1 Let the initial condition [ for (2a) be a C° 2xw-periodic function of zero-average.
Then if the solution of (2a) exists, it is infinitely many times differentiable. Furthermore, the
functions u”, u’, satisfy bounds in L? and the mazimum norm independent of v, the mazimum norm
bound for u’ being in a weak sense; the function u? also satisfies a bound in L*([0,27] x [0,¢]), the
square of its norm depending linearly on v. Bounds for all the other derivatives of the solution of
(2a) depend explicitly on negative powers of the viscosity v.

Proof: The result is a direct consequence of Lemmas 2.1 and 2.2. "

3 Existence and Uniqueness

In this section, we proceed as in [15] to obtain existence and uniqueness results for the solution of
(2a). More precisely, we use Ball’s theorem [3], the hyperregularized equation (5a), and the a prior:
estimates of the preceding section.

Ball’s theorem is stated as follows

Theorem 3.1 Consider the equation

(23) %u = Au+ f(u),

where A is the generator of a holomorphic semigroup S(t) of bounded operators on a Banach space
X. Suppose that ||S(t)|| < M for some constant M > 0 and all t € RY. Under these hypotheses
the fractional powers (—A)™% can be defined for 0 < o < 1, and (—A)~™% is a closed linear operator
with domain X, = Domain((—A)~%) dense in X. Let f(u) be locally Lipschitz; that is, for each
bounded subset U of X, there exists a constant Cy such that

[|f(u) = f()|]| < Cullu—v]| VYu, vel.



Then, given ug € X, there exists a finite time interval [0,1) and a unique solution to (23) with
u(+,0) = ug on that time interval, and the solution can be continued uniquely on a mazrimal interval
of existence [0,T%). Moreover, if T* < oo, then necessarily

i Jlu(t)]]a = o.

We directly apply Theorem 3.1 to (5a) with A = —ud*/d2*, X = L%(]0, 27]), and
flu) = —tuy + [H(w)ul, + [Jte|*te]e + Vitge.
Then X, = H3 and

1F(u) = F@)Il < (T4 olloo + [T (@)oo + [[te + velloo + 2|Jue]loo
+2l[velleo]llvzelloo) llte = voll + (I1H (te)lloo + [[valloo) 1 = ]|
+Bue % + ¥)lltee — veall,
< O (Ut lullz + lollm= + Hlullzrs + 1lollzs) llw = vll=.

The above bounds are a direct consequence of the properties of the Hilbert transform and of Sobolev’s
inequalities. So, f is locally Lipschitz on H3. Theorem 3.1 implies that a solution exists on any
time interval in which the H? norm of the solution is controlled.

Then one derives bounds for the solution of (5a) independent of u; the a priori bounds of the
preceding section, the bounds for the solution of (5a) independent of y, together with the short-term
existence of this section, imply that the solution of (2a) exists for all time when v > 0.

Theorem 3.2 Let the initial condition be C*° and 27w-periodic, and let v > 0. Equation (2a) has a
unique, 2m-periodic solution u on [0,00), which is infinitely many time differentiable.

Proof: Existence follows from the short-term existence result, a priori bounds for (5a), a priori
bounds for (2a), and the arguments in Theorem 4.2.2 in [11]. We have only to show uniqueness.
Let w and v be solutions of (2a) that satisfy the same initial condition. Their difference w = u — v
satisfies

wy = —iwy + H(w)wy + vH (wy) + H(ug)w + vy H(w) + 20 Wer + [te])* ey
(243) +2Up Voo Wy + (Qvaxx + UpVypy + Uxaxx)wx + Vg,

(24b) w(x,0) = 0.

Integration by parts of the inner products (w, |uz|*we,) and (w, [uz])*Wye ), decreasing the derivative
order of wg, and Wy, leads us to —||uywy||? — (W, Uplprwy) — (W, UpgUpw,) and —(wy, [ug]*We ) —
2(w, uptpy; Wy ). The inner products (w, uyUppty), (W, upslipzwy), and (w, uztiyy Wy, ) are crudely
estimated by

_ v 15

[(w, Upttee@e )| < ||t |foo||tee|oo| [w]] |we|] < Ellwxll%r @Iluxlliollumlliollwllz,
_ v 1

[(w, wellzrwe)| < [|te|foo||tee|oo| [w]] [|ws|] < Ellwxll%r @Iluxlliollumlliollwllz,
_ v 15

(W, Uottzews)| < [|te|foo|[tee|oo| [w]] ||ws|] < Ellwxll%r @Iluxlliollumlliollwllz~

The above bounds are directly deduced from Sobolev’s and the Cauchy-Schwarz inequality. Note
that |(we, [ue]*Ws)| < ||uzws||?. We also estimate crudely the contributions from the low-order
terms in (24a):

15
|(w, wg)| - < IIwIIIwaIIS%Ilwxll%r@llwllz,

v 15
[(w, H(u)ws)| < ||H(u)||00||w||||wl‘||§E||wl‘||2+EHH(U)Hion”za



|(w, vH (wz))] < Jvleo[[w]] ||| < 15|| xllz+gllvlliollwllz,

|(w, tpvep )| < tlool[0ze oo [[w][ [ < 11/—5||wa|2+i—ylluxlliollvwlliollwllz,
|(w, Tpvpowe)| < {|ve oo [0z ||oo |w]] ]wsl| < 11/—5||wacllz+§llvacll2 [[vzel 211w,
|(w, vV wz)| < Ve |loo [0z ||oo | ] ]wsl| < 15|| x||2+—|| 2|26 vaa |26 1],
|(w, tpTozwr)| < tglool[vzeloo [[w][ [ < 15|| x||2+—||vx|| [[vza 21w .

The above bounds are directly deduced from Sobolev’s and the Cauchy-Schwarz inequality.
The above estimates may be used to obtain the differential inequality

d 15
Sl <[5 (OlluallZ anal 2 T+ I + el + 31 o2 e 2
3wl 12 vewl[2) + 2 (11H (ua) oo + [Jva]loo) | ] .
Gronwall-Bellman’s inequality implies that w = 0. "

4 Weak Limit

We have shown in Section 2 that the solution of (2a) and its first-order spatial derivative satisfy
bounds independent of v in L? and in the maximum norms; we also have derived a bound for uY
in L%([0,27] x [0,¢]). In this section, we prove that, in the limit of v — 0, ¥ > 0, the sequence of
functions (u”),0, u” solution of (2a), has a limit u in a weak sense. To do so, we use the a priori
bounds of Lemma 2.1 independent of v or depending linearly on v, and we show that [H(u”)u”],
satisfies a bound independent of v in the L? norm.

Lemma 4.1 Let u” be the solution of (2a). Then the L? norm [H(u")u"], is bounded by

2) 3/4

The above bound tells us that the square of the L* norm of [H(u")u”], grows linearly in time.

d
2v/3 (87t + [|£]%) (407Tt+4||f||2 + \ e

Proof: The bound for the L? norm of [H(u”)u"], is immediately deduced from (6a), (6b), the

properties of the Hilbert transform, and Sobolev’s inequality. "
We now have to show that if u is a limit of the sequence (u”),sq, in the limit of v — 0,
then w® = lim,_q H(u”)u” is equal to H(u)u and w! = lim,_q |u%|*u’ is equal to |uz|?us, in

L%([0, 27] x [0,1]), in a weak sense. To do so, we proceed as in Section 5 of [15]. We show only that
w® = H(u)u, since it has been shown in [15] that w! = |uy|?u,.
Let ¢ be a test function in L?([0,27] x [0,¢]). Then

//%w ~ H(uyu)bdadr = //%w — H(u" )" ¢dxdr+//2ﬂH e = ulgdrdr
+/0 /O%U[H(UV) — H(u)|édadr.

The first integral in the above expression can be made smaller than ¢/3 because w
of H(u")u”; the second integral can also be made smaller than ¢/3 because H(u”) is bounded in the
maximum norm and because u is a weak limit of u”; similarly, the third integral can also be made
smaller than ¢/3 because u is bounded in the maximum norm and because H(u) is a weak limit of
H(u”). (To prove that, we use the fact that I (u”) is weakly convergent and has a weak limit g.

Uis a weak limit



The weak limit g is equal to H(u) because ||¢ — H(u)|| = lim, o || H (v — w)|| < limy g ||u” — ul]).
So w® = H(u)u in a weak sense.

With the estimates of Lemmas 2.1 and 4.1 and the fact that w® = H(u)u and w! = |u,|*u,, we
have shown that a weak limit u satisfies

(25a) up + tuy = [H(u)u]x+[|ux|2ux]x,
(25b) u(z,0) = f(=),

in a weak sense.

Theorem 4.1 A weak limit of the sequence of functions (u”)yso satisfies (25a). The function u
belongs to H([0,27] x [0,1]), and for each fized t, u, belongs to L°°([0,27]). The function u may
not be unique.

5 Conclusions and Open Questions

In this paper, we have derived a new model for the vortex sheet equation that seems to be better than
those studied in [1], [4], and [6] in the sense that it has a globally defined flux and its linearization
about a constant state gives us the Cauchy-Riemann equation. In our previous work [1] and [16], we
showed that the globally defined flux cannot always be controlled by a linear second-order viscous
regularization and that Burgers’ equation was not a good enough model because when the local flux
is replaced by a global flux, for a certain class of initial conditions, delta function singularities form
in finite time [1]. The solution of our new model seems to have similar properties to the solution of
the vortex sheet equation: without a second-order viscous regularizing term, the solution ceases to
exist in finite time, and if a singularity forms, the second-order spatial derivative and higher-order
spatial derivatives of the solution become infinite. We were able to show that a weak limit, in the
limit of zero viscosity, exists but it may not be unique.
Several open questions remain to be addressed:

e What is the effect of the nonlinear term [H (u”)u”], on the numerical solution of the equation?
How do the numerical solutions of (2a) and of

(26&) Yt +iYs = [|yx|2yx]x + VY,
(26h) y(z,0) = f(=x).
differ?

e Can we characterize a weak limit of (2a), in the limit of ¥ — 0 using asymptotics?
e Can we show that a weak limit is an infinite spiral?

The result presented here could be generalized to the case where the term [H (u”)u”]y in (2a) is
replaced by the term [f(u”)u”]; with f(u”) satisfying the bound

1F )] < K

u”|| + Ko,

where K and Kj are constant independent of . Then the estimates of Section 2 hold. That is, the
square of the L? norm of the solution of the new equation and of its first-order spatial derivative and
of the square of the maximum norm of the solution of the modified equation grow linearly in time;
the L?” norm of the first-order spatial derivative of the solution of the modified equation is nearly a
linear function of time; the weak maximum norm bound for the first-order spatial derivative of the
solution of the modified equation is a quadratic function in time; the bound for the time integral of
the square of the L? norm of the solution of the modified equation is a quadratic function of time.
The solution of the modified equation would have a weak limit in the limit of zero viscosity because
the equivalent of Lemma 4.1 holds.
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