
Automatic Di�erentiation and Navier-StokesComputationsPaul Hovland� Bijan Mohammadiy Christian Bischof�We describe the use of automatic di�erentiation (AD) in, and its application to, a com-pressible Navier-Stokes model. Within the solver, AD is used to accelerate convergenceby more than an order of magnitude. Outside the solver, AD is used to compute thederivatives needed for optimization. We emphasize the potential for performance gainsif the programmer does not treat AD as a black box, but instead utilizes high-levelknowledge about the nature of the application.1. IntroductionThe Navier-Stokes equations are frequently used to model the 
ow of com-pressible or incompressible 
uids. Automatic di�erentiation (AD) is anemerging technology for di�erentiating functions that enables derivativesto be computed accurately and e�ciently, with very little e�ort on thepart of the programmer. In this paper, we discuss how AD can be used toenhance a compressible Navier-Stokes solver. Section 2 describes the two-dimensional Navier-Stokes model and solver used in our studies. Section 3gives a brief introduction to source transformation tools for automatic dif-ferentiation. Section 4 discusses how derivatives computed using AD canbe used for shape optimization. Section 5 explains how an explicit solvercan be transformed into an implicit solver using a Jacobian computed usingAD. Section 6 brie
y describes how AD might be used in optimal control.We conclude with a summary of our results and a discussion of how insightinto the high-level mathematics of a computation can greatly reduce thecost of derivative computations using AD.2. The Navier-Stokes SolverThe time-dependent Navier-Stokes equation can be written as@U@t +r � [F (U )�N (U )] = 0;where U is the vector of state variables and F and N are the convective anddi�usive operators. When the Reynolds and/or Raleigh numbers are high,turbulence models are necessary. Adding the k�" turbulence model to the�Mathematics and Computer Science Division, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439-4844, email: fhovland,bischofg@mcs.anl.gov.yUniversity of Montpellier II and INRIA, Math. Dept, CC51, 34095 MontpellierCedex 5, France, email: Bijan.Mohammadi@inria.fr.
1



2 P. Hovland, B. Mohammadi, and C. Bischofequation yields @U@t +r � [F (U )� N (U )] = S(U );where U = (�; �u; �v; �E; �k; �")t and S contains the source terms of the k�"model. In two dimensions, this provides six equations in seven variables.We close the system using the equation of state p = p(�; T ). Note that thismodel does not take into account turbulent contributions to the pressureand total energy.In this paper, we consider the numerical solution of this model usingthe NSC2KE program [14]. The numerical solution is based on a �nitevolume-Galerkin method for unstructured triangular meshes. The convec-tive part of the equations can be solved using either a Roe [17] or Osher [16]approximate Riemann solver. Second order accuracy is obtained by usinga MUSCL-like extension with Van Albada type limiters [1]. Applying thisapproach to the k�" equations will not guarantee the positivity of �k and�". Therefore, the convective 
uxes for k and " are computed using thePSI 
uctuation splitting scheme [20]. The viscous term is discretized usinga classical piecewise linear �nite element method. Time discretization isbased on a four-stage Runge-Kutta scheme. See [14, 15] for more details.3. Automatic Di�erentiation via Source TransformationAutomatic di�erentiation (AD) works by exploiting the fact that all algo-rithms compute functions through the composition of elementary functionsprovided by the programming language. Partial derivatives for these ele-mentary functions can be obtained by table lookup, and total derivativespropagated using the chain rule. A thorough description of AD is beyondthe scope of this paper. In the following paragraphs, we brie
y discuss onemethod for implementing AD; see [8] for an explanation of the theoreticalfoundations of AD and [12] for a survey of other methods.Source transformation AD tools work by converting source code forcomputing a function into source code for computing that function and itsderivatives. For example, the ADIFOR tool [5] for AD of Fortran 77converts the subroutine in Figure 1 into the subroutine in Figure 2. Thederivative objects g_x, g_temp and g_y contain the derivatives of x, temp,and y with respect to x. Typically, on entry g_x will contain the n � nidentity matrix and on exit g_y will contain the Jacobian matrix d y=d x.Similarly, the Odyss�ee tool [18] converts the same subroutine into the onein Figure 3. Variables yccl and xccl contain the derivatives of y withrespect to y and x. The save* variables are used to save intermediate val-ues. Typically, on entry yccl will contain the m �m identity matrix andon exit xccl will contain the Jacobian matrix d y=d x. This example alsoillustrates the di�erence between these tools. The ADIFOR tool uses the



Automatic Di�erentiation and Navier-Stokes Computations 3subroutine mv_prod(a,x,y,m,n)integer m,n,i,jreal a(m,n),x(n),y(m),tempdo i=1,my(i) = 0.0enddodo i=1,ntemp = x(i)do j=1,my(j) = y(j) + a(j,i)*tempenddoenddoreturnendFigure 1: Code for computing a simple function (y = Ax).forward mode of AD, propagating derivatives from the independent variablex to the dependent variable y. The code produced by the Odyss�ee tool usesthe reverse mode and propagates derivatives from the dependent variable yto the independent variable x. Note that because the derivative computa-tion of the reverse mode reverses the data 
ow of the function computation,there is a need to save all intermediate values. In general, the reverse modehas much greater memory requirements than the forward mode, but cano�er better performance when the number of scalar independent variablesis signi�cantly greater than the number of scalar dependent variables. Forour example, this occurs when m << n. See [8, 9] for more details.4. Shape OptimizationSimulation of the 
ow around a shape de�ned by certain shape parametersxs typically follows the computational pathxs �! xw �! xm �! U;where xw is the discretized surface, xm is the set of mesh nodes, and U is thecomputed 
ow. For shape optimization, we try to minimize a cost functionJ(U; xw), which may involve constraints on the geometry (g1(xw) � 0) and



4 P. Hovland, B. Mohammadi, and C. BischofC [Disclaimer deleted]C subroutine g_mv_prod(g_p_,a,x,g_x,ldg_x,y,g_y,ldg_y,m,n)C integer m, n, i, jreal a(m, n), x(n), y(m), tempC integer g_pmax_parameter (g_pmax_ = 100)integer g_i_, g_p_, ldg_y, ldg_xreal g_y(ldg_y, m), g_temp(g_pmax_), g_x(ldg_x, n)save g_tempif (g_p_ .gt. g_pmax_) thenprint *, 'Parameter g_p_ is greater than g_pmax_'stopendifdo i = 1, mdo g_i_ = 1, g_p_g_y(g_i_, i) = 0.0enddoy(i) = 0.0C------enddodo i = 1, ndo g_i_ = 1, g_p_g_temp(g_i_) = g_x(g_i_, i)enddotemp = x(i)C------ do j = 1, mdo g_i_ = 1, g_p_g_y(g_i_, j) = g_y(g_i_, j) + a(j, i) * g_temp(g_i_)enddoy(j) = y(j) + a(j, i) * tempC------ enddoenddoC returnendFigure 2: Code for computing a function and its Jacobian, generatedby ADIFOR.



Automatic Di�erentiation and Navier-Stokes Computations 5subroutine mv_prodcl (a, x, y, m, n, xccl, yccl)C [ODYSSEE output edited for brevity]integer m, n, i, jreal a(m,n), x(n), y(m), tempinteger odyn,odymparameter (odyn = 10, odym = 10)dimension yccl(m), xccl(n), save3(1:odym, 1:odyn)dimension save2(1:odyn), save1(1:odym)tempccl = 0.do i = 1, msave1(i) = y(i)y(i) = 0.0end dodo i = 1, nsave2(i) = temptemp = x(i)do j = 1, msave3(j,i) = y(j)y(j) = y(j)+a(j,i)*tempend doend dodo i = n, 1, -1do j = m, 1, -1y(j) = save3(j,i)tempccl = tempccl+yccl(j)*a(j,i)end dotemp = save2(i)xccl(i) = xccl(i)+tempccltempccl = 0.end dotempccl = 0.do i = m, 1, -1y(i) = save1(i)yccl(i) = 0.end doreturnendFigure 3: Code for computing a function and its Jacobian, generatedby Odyss�ee.



6 P. Hovland, B. Mohammadi, and C. Bischofthe 
ow (g2(U ) � 0). This minimization problem can actually be viewedin two ways:1. Find xs to minimize J(U (xs); xw(xs)).2. Find xw to minimize J(U (xw); xw).The �rst approach is the one more commonly used, in part because thenumber of shape parameters xc is usually smaller than the number of surfacediscretization points xw and also because it is easier to ensure that thesurface remains smooth. However, this approach su�ers from the followinglimitations.1. Computing xw(xc) is hard, especially in three dimensions. Usually,this is done by a \black box" CAD tool. We can't compute @xw@xc ana-lytically, which limits our ability to use a gradient-based optimizationmethod.2. Parameterized shapes may place unnecessary restrictions on the so-lution space Xw.We describe a technique that uses AD and mesh deformation to perform aCAD-free shape optimization using steepest descent.4.1. Computing the GradientWe have a number of options in computing the gradient dJdxw . We could ap-proximate it using �nite di�erences, but this can introduce truncation errorand furthermore is very expensive when there are many surface discretiza-tion points, as is usually the case. We could also implement the adjointcode by hand, but this can be extremely tedious and hence error-prone.Instead, we use the reverse mode of automatic di�erentiation to do this.For our problem, we used the Odyss�ee automatic di�erentiation tool [18].4.2. Adjusting the ShapeOnce we have computed dJdxw , we use steepest descent to compute a per-turbation to xw, �xw. To avoid oscillations, a \local" smoothing operatoris de�ned over the shape. This can be, for instance, a few \local" Jacobiiterations to solve the following system:(I � "�)�~xw = �xw; (1)�~xw = �xw = 0 on wedges,where �~xw is the smoothed shape variation for the shape nodes and �xwis the variation given by the optimization tool. By \local" we mean that



Automatic Di�erentiation and Navier-Stokes Computations 7if the predicted shape is locally smooth, it remains unchanged during thisstep. The regions where the smoothing is applied are identi�ed using adiscontinuity-capturing operator. More precisely, " is set to zero (this isdone during the Jacobi loops) if�ij(�xw)(�xw)T < 10�3;where �ij(�xw) is the di�erence between the variations of the nodes of aboundary edge and (�xw)T is the mean variation on this edge.The following argument illustrates the importance of this step:We want the variation �xw 2 C1(�), if � de�nes a manifold of dimension(n � 1) in a domain 
 2 Rn. From Sobolev inclusions, we know thatHn(�) � C1(�). It is easy to understand that the gradient method willnot necessarily produce C1(�) variations �xw and therefore we need toproject them into Hn(�) (an example of this is given in Figure 4.2).This means that the projected variation (�~xw) is the solution of an ellipticsystem of degree n. However, if we are using a P 1 discretization, a secondorder elliptic system is su�cient because the wedges of the geometry areconsidered as constraints for the design. Therefore we project the variationsonly into H2(�) even in 3D.One advantage of this approach over splines is that singular points (orwedges) may appear if necessary.4.3. Mesh deformationOnce �xw has been determined, we need to extend these variations over allthe mesh. This is done by solving a volumic elasticity system of the sameform as Equation 1: (I � "�)�xm = �xm; (2)�xm = 0 on in
ow and out
ow boundaries,@�xm@n = 0 on slipping boundaries,�xm = �xm on wall nodes,where �xm is the extension of �xw over the mesh de�ned by�xm = �xw for mesh nodes on the wall,�xm = 0 for internal nodes.



8 P. Hovland, B. Mohammadi, and C. Bischof
’SHAPE_INITIAL’

’SHAPE_UNSMOOTHED’
’SHAPE_SMOOTHED’

Figure 4: Initial, smoothed and unsmoothed shapes for a transonicdrag reduction problem. Note that the gradient jumps through shocksand also produces a non-smooth shape in leading edge regions afterone iteration of the optimization. Subsequent iterations increase thenon-smoothness.



Automatic Di�erentiation and Navier-Stokes Computations 94.4. Improving Computational E�ciencyThe method discussed thus far is inadequate for solving realistic problems.The reason stems from the tradeo� between storage and time complexitypresent in all adjoint methods. The reverse mode of AD is at one extreme,achieving a time complexity bounded by a constant multiple of that forthe function evaluation, at the cost of a potentially exponential increase instorage complexity [8]. Griewank has demonstrated that it is possible toachieve logarithmic growth in time and space through checkpointing andrecomputation of intermediate values [9].For a large problem that takes many time iterations to reach a steadystate solution, the storage requirements for the basic reverse mode can beenormous. The 
ow solver has the following structure.time = 0repeatforeach triangleupdate triangleendforeach edgeupdate edgeendforeach nodeupdate nodeendtime = time + deltatuntil steady stateEach update typically involves on the order of 102 intermediate values.Thus, if we have k time steps and N triangles, we have on the order of300kN intermediate values that must be stored. For a moderately sizedsystem involving 104 triangles and 103 timesteps, the storage requirementscan exceed 10 gigabytes. Fortunately, by using a little insight into themathematics of the problem and the structure of the computation, we candramatically reduce the memory requirements.The �rst optimization takes advantage of the fact that our cost functiondepends only on the 
ow at the steady state. If our convergence criterionis su�ciently strict [10, 15], it is su�cient to only di�erentiate through onetime step, if we start with an initial state corresponding to the steady statefor a given shape. This reduces the memory requirements by a factor k(the number of time steps). This technique would not apply in the case ofunsteady 
ows.The second optimization relies on a technique called inter-procedural dif-ferentiation [7]. This method can be viewed as a heuristic for checkpointing,



10 P. Hovland, B. Mohammadi, and C. Bischofand relies on the way in which Odyss�ee and other source transformationtools implement the reverse mode for subroutines. A di�erentiated versionof each subroutine is created by adding adjoint computation at the end ofthe function computation, after augmenting the function computation sothat all intermediate variables are saved. Calls to subroutines are replacedin the adjoint phase by calls to the di�erentiated version of the subroutine.Thus,subroutine A compute phase Icall subroutine Bcompute phase IIreturnbecomesdi�erentiated version of subroutine Acompute phase I (save intermediate values)call subroutine Bcompute phase II (save intermediate values)adjoints for phase IIcall di�erentiated version of subroutine Badjoints for phase IreturnNote that the intermediate values computed in subroutine B are notsaved. Instead, they are recomputed by the di�erentiated version of subrou-tine B. This provides the foundation for the interprocedural di�erentiationtechnique. If we use a subroutine to encapsulate the computation in a loop,the di�erentiated version will recompute the intermediate values of the loopbody, rather than storing them. This only doubles the time requirementsfor the di�erentiated loop, but can reduce the memory requirements by afactor equal to the number of intermediate values in the loop body. Byapplying this technique to the loops over triangles, edges, and nodes, wereduce the memory requirements by another factor of 100.4.5. Experimental ResultsIn this section we present some results of constrained optimization prob-lems at various Mach numbers. All computations have been performedon a workstation capable of about 10 Mega
ops with approximately 64Megabytes of memory. The mesh adaptions, gradient computations and
ow solutions require less than 2 hours. Using the optimization describedin the previous section, the reverse mode requires approximately 10 timesmore memory than the direct solver. An estimation of the memory requiredby the direct solver is 50N words, where N is the number of nodes. This is



Automatic Di�erentiation and Navier-Stokes Computations 11more than what is necessary in a structured solver because the data struc-tures involved are much more complicated in an unstructured approach.In the following examples, when global constraints are present, the dif-ferent penalty coe�cients in the cost function are initially chosen for thedi�erent quantities involved to have variations of the same order of mag-nitude. During optimization, they are reduced with the same ratio as thecost function.The same drag reduction problem with constraints on the lift and thevolume has been considered for various airfoils, wing and a full aircraft.The cost function for all these cases is given by:J(x) = Cd + �jCl � C0l j+ �jV ol � V ol0j;where � and � are penalty parameters, Cd is the drag coe�cient, Cl andC0l are the actual and initial lift coe�cients and V ol and V ol0 the actualand initial volumes. The adaptive optimization algorithm has been used.To guarantee that the solutions are mesh-independent, a �nal computationhas been done on the �nal shape until convergence. For these cases, weshow the initial and �nal meshes and the iso-Mach distributions.4.5.1. Drag reduction for a Naca 0012The initial airfoil is the NACA 0012. The design takes place at Mach num-ber 0.754 and 2 degrees of incidence. The drag coe�cient has been reducedby more than 10 percent while the lift and volume slightly increased.4.5.2. Drag reduction for a supersonic 
owOur aim here is to show that this approach does not su�er from a changein the nature of the equations when passing from transonic to supersonicregime. The design takes place at Mach number of 2. Again, the initialpro�le is a NACA0012. For the shock to be attached, the leading edge hasto be sharp. But the initial shape has a smooth leading edge. This meansthat the optimization procedure has to be able to treat the apparition ofsingular points. As we have noted, this cannot be done if we use splines forinstance. No particular treatment has been done for this case.The drag has been reduced by about 20 percent (from 0:09 to 0:072)as the shock is now attached while the volume has been conserved (from0:087 to 0:086). The initial lift coe�cient should be zero as the airfoil issymmetric. Due to numerical errors, the lift varies from �0:001 to 0:0008.This means that the �nal shape is almost symmetric.



12 P. Hovland, B. Mohammadi, and C. Bischof

Figure 5: Transonic drag reduction: iso-Mach curves for the initial and�nal (after 20 iterations) designs.



Automatic Di�erentiation and Navier-Stokes Computations 13

Figure 6: Supersonic drag reduction: iso-Mach curves for the initial and�nal (after 11 iterations) designs.



14 P. Hovland, B. Mohammadi, and C. Bischof5. Switching to an Implicit SolverFor many problems, the time scale of the physical system being simulatedis so large that explicit methods converge very slowly, if at all. Therefore,implicit time integration becomes necessary. Developing an implicit solverfor a nonlinear PDE often demands a great deal of additional work beyondthe construction of an explicit solver.One way to develop an implicit solver for a nonlinear PDE is to linearizethe system using a �rst-order Taylor expansion. After discretization, manynonlinear PDEs can be rewritten using the general form�u�t + 	(u) = 0;where u is the discretized state and 	(u) is a nonlinear function of u. Onecan then linearize 	(u) as	(un +�u) � 	(un) + 	u(un)�u:For a complicated function 	(u) such as the one used in NSC2KE, de-veloping by hand the code to compute the Jacobian matrix 	u(u) can beextremely time-consuming.However, using AD, it is a relatively simple task to convert an explicitsolver to an implicit one. Since the computation of 	(u) has already beenimplemented for use in the explicit method, we can apply AD to this codeand automatically generate code for computing the Jacobian 	u(u). Then,given iterate un and a timestep �t, we can �nd un+1 by solving the linearsystem � 1�tI + 	u(un)��u = �	(un) (3)and letting un+1 = un+�u. We can solve (3) using GMRES [19] with ILUpreconditioning. We used the linear equation solver provided by the PETSctoolkit for scienti�c computing [4]. Note that without preconditioning, theimplicit solver may converge very slowly, if at all.5.1. Improving Computational E�ciencyWe have thus far demonstrated that using readily available tools for scien-ti�c computing, it is a simple task to transform an explicit method into animplicit method based on the linearized system. However, there is room forimprovement in the implicit method. The computation of the Jacobian canbe accelerated by employing the technique of Averick et al [2] to computea compressed Jacobian using dense derivative vectors. An additional smallimprovement can be achieved through the use of the interface contractiontechnique described in [11]. Finally, the nonlinearity of the function 	(u)



Automatic Di�erentiation and Navier-Stokes Computations 15can be handled better if we solve the system of nonlinear equations directlyrather than �rst linearizing the system.5.1.1. Compressed JacobianSince the Jacobian being computed is very sparse, we use the SparsLinClibrary [6], which provides support for sparse derivative vectors. SparsLinCo�ers considerably better performance than would a dense Jacobian com-putation. However, because of the overhead associated with manipulatingthe sparse derivative vectors, the cost is considerably more than it wouldbe for a computation involving dense vectors of the same length. In [2],Averick et al describe a technique for compressing the Jacobian based ona coloring algorithm that identi�es structurally orthogonal columns of theJacobian. We adapted this technique to our method.The �rst time the Jacobian is computed, the sparsity structure is notknown, so we use SparsLinC to compute a sparse Jacobian. Because themesh does not change, subsequent iterations have the same sparsity pattern.By coloring the Jacobian matrix from the �rst iteration, we are able tocompute a compressed Jacobian for subsequent iterations.5.1.2. Interface ContractionIn [11], Hovland et al describe a heuristic for reducing the cost of computingderivatives based on the observation that the number of parameters passedto a subroutine is usually quite small. If the number of such variables issmall relative to the number of independent variables, it is referred to asan interface contraction. Our model did not exhibit this property, becauseall variables were passed between subroutines using common blocks. How-ever, we were able to easily isolate a main computational kernel within asubroutine with a relatively small number of parameters. We then appliedthe interface contraction technique to this subroutine.5.1.3. Reformulating as a system of nonlinear equationsThe implicit method described thus far relies on a linearization of the func-tion 	(u) as 	(u) � 	(un) + 	u(un)(u � un) together with the use of alinear equation solver. We can instead use a nonlinear equation solver tosolve the nonlinear systemun+1 � un�t + 	(un+1) = 0directly. PETSc provides nonlinear equation solvers based on linesearch andtrust region methods. We used PETSc to implement an inexact Newtonmethod with linesearching, using GMRES with ILU preconditioning for thelinear system solve and a cubic linesearch.



16 P. Hovland, B. Mohammadi, and C. Bischof5.2. Experimental resultsWe applied automatic di�erentiation to the function 	(u) computed byNSC2KE, the 2-dimensional compressible Navier-Stokes solver describedearlier. This function is implemented using approximately 1500 lines ofFortran. We used ADIFOR version 2.0 with the SparsLinC library. Weused the linear and nonlinear equation solvers provided by PETSc. Wethen computed the 
ow in a room with isothermal walls and gravity, butwithout turbulence.Figure 7 illustrates that the steady state solutions found by the implicitand explicit solvers are virtually identical. Figure 8 shows the 
owcomputed. Figure 9 demonstrates the necessity for preconditioning, andthe superior performance of the implicit method compared to the explicitmethod. All timings were performed on a Hewlett Packard K9000 withstandard (level 2) optimization.Figure 10 shows the e�ects of the improvements described in Section 5.1.For the problem considered, the time to �nd a solution was reduced from371 cpu seconds for the basic implicit method to 116 cpu seconds for themethod based on the nonlinear formulation. Most of this improvement isdue to the use of compressed Jacobians. The compressed Jacobian compu-tation is approximately 7 times faster than the sparse Jacobian computa-tion, reducing the overall solution time by almost a factor of 3. The useof interface contraction reduces the cost of the compressed Jacobian com-putation by about 15%, which results in a reduction of about 5% in theoverall solution time. This is only a modest improvement, and indeed wasless than our original expectations, but it also required only a few hoursof e�ort. Finally, switching to a true nonlinear equation solver reduces theoverall solution time by about 20%.6. Future WorkWe are currently using AD on the outside of NSC2KE for use in an op-timal control problem. In this scenario, we try to optimize the lift anddrag properties of a 4-element airfoil by rotating the leading element. Weuse a smooth mesh transformation to prevent numerical variation due tore-meshing. Preliminary results indicate that the optimization of the con-trol parameter converges faster and with greater accuracy using derivativescomputed using AD rather than �nite di�erence approximations.We hope to speed up the 
ow solver used in this problem by switchingto the implicit version described in Section 5. In order to compute thederivative of the cost function J with respect to the angles of rotation �,we will need to di�erentiate through this solver. This will provide furtherdemonstration of the usefulness of AD, as well as another opportunity fortaking advantage of high-level mathematical insight into a problem. Rather



Automatic Di�erentiation and Navier-Stokes Computations 17
0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

’Temp-implicit’
’Temp-explicit’

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

’Pres-implicit’
’Pres-explicit’

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

’Mach-implicit’
’Mach-explicit’

Figure 7: The steady state solutions found by the explicit (solid lines)and explicit (dashed lines) solvers are virtually identical. Top to bottomare iso-curves for temperature, pressure, and mach.



18 P. Hovland, B. Mohammadi, and C. Bischof

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: The 
ow computed by the implicit solver.



Automatic Di�erentiation and Navier-Stokes Computations 19
1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0 100 200 300 400 500 600 700 800 900 1000

R
es

id
ua

l

CPU time (s)

’explicit’
’implicit’

’implicit+precond’

Figure 9: An implicit method based on GMRES with ILU precondi-tioning o�ers performance superior to that of an explicit Runge-Kuttamethod and the implicit method without preconditioning.
1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0 50 100 150 200 250 300 350 400

’implicit+precond’
’implicit+precond+compression’

’implicit+precond+compression+ic’
’implicit+nonlinear’

Figure 10: Use of coloring to compute a compressed Jacobian and re-formulation as a nonlinear problem o�ers further improvements in per-formance.



20 P. Hovland, B. Mohammadi, and C. Bischofthan di�erentiating through the PETSc nonlinear equation solver, we can�rst compute the steady state solution u1(�), then use the incrementaliterative method described by Sherman et al [13] (See also [3]) to computethe derivative d u=d�.7. ConclusionsAD tools can enhance Navier-Stokes calculations in a variety of ways. Theycan be used to generate code for computing the Jacobian matrix used in animplicit solver. They can also be used to generate sensitivities of the 
ow(or a cost function based on this 
ow) with respect to the input parameters,including shape and physical parameters. These sensitivities can be usedin optimal design or control problems, or they can be used to construct atangent linear model of the behavior of the system when a parameter suchas angle of attack is altered. No matter what purpose AD tools are used for,there is a bene�t to be gained from a high-level understanding of how thetools work and the structure and function of the code being di�erentiated.AcknowledgmentsA portion of this research was performed at the Summer MathematicalCenter for Advanced Research in Scienti�c Computing (CEMRACS) spon-sored by the French National Center for Scienti�c Research, the FrenchMinistry in charge of Universities and Research, and the European Math-ematics Society. We thank the organizers, particularly Yvon Maday, forproviding a forum for collaborative, interdisciplinary research; the CentreInternational de Rencontre en Math�ematiques for hosting the center; andRadu Lupsa for conducting numerical experiments to identify appropri-ate parameters for the implicit methods. Thomas Slawig developed thealgorithm for wing rotation and conducted the preliminary experimentsdiscussed in Section 6. This work was also supported by the Mathematical,Information, and Computational Sciences Division subprogram of the O�ceof Computational and Technology Research, U.S. Department of Energy,under Contract W-31-109-Eng-38.References[1] G. Albada and B. V. Leer. Flux vector splitting and runge-kuttamethods for the euler equations. Technical Report 84-27, ICASE, 1984.[2] B. Averick, J. Mor�e, C. Bischof, A. Carle, and A. Griewank. Com-puting large sparse Jacobian matrices using automatic di�erentiation.SIAM Journal on Scienti�c Computing, 15(2):285{294, 1994.



Automatic Di�erentiation and Navier-Stokes Computations 21[3] Y. Y. Azmy. Post-convergence automatic di�erentiation of iterativeschemes. Nuclear Science and Engineering, 125:12{18, 1997.[4] S. Balay, W. Gropp, L. C. McInnes, and B. Smith. PETSc 2.0 usersmanual. Technical Report ANL-95/11 - Revision 2.0.17, Argonne Na-tional Laboratory, Oct. 1996.[5] C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Au-tomatic di�erentiation of Fortran 77 programs. IEEE ComputationalScience & Engineering, 3(3):18{32, 1996.[6] C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland. ADIFOR2.0 user's guide (Revision C). Technical Memorandum ANL/MCS-TM-192, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, 1995.[7] C. Faure. Splitting of algebraic expressions for automatic di�erenti-ation. In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors,Computational Di�erentiation: Techniques, Applications, and Tools,pages 117{128, Philadelphia, PA, 1996. SIAM.[8] A. Griewank. On automatic di�erentiation. InMathematical Program-ming: Recent Developments and Applications, pages 83{108, Amster-dam, 1989. Kluwer Academic Publishers.[9] A. Griewank. Achieving logarithmic growth of temporal and spatialcomplexity in reverse automatic di�erentiation. Optimization Methodsand Software, 1(1):35{54, 1992.[10] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson.Derivative convergence of iterative equation solvers. OptimizationMethods and Software, 2:321{355, 1993.[11] P. Hovland, C. Bischof, D. Spiegelman, and M. Casella. E�cientderivative codes through automatic di�erentiation and interface con-traction: An application in biostatistics. SIAM Journal on Scienti�cComputing, 18(4):1056{1066, July 1997.[12] D. Juedes. A taxonomy of automatic di�erentiation tools. InA. Griewank and G. Corliss, editors, Proceedings of the Workshopon Automatic Di�erentiation of Algorithms: Theory, Implementation,and Application, pages 315{330, Philadelphia, PA, 1991. SIAM.[13] V. Korivi, L. Sherman, A. Taylor, G. Hou, L. Green, and P. New-man. First- and second-order aerodynamic sensitivity derivatives via



22 P. Hovland, B. Mohammadi, and C. Bischofautomatic di�erentiation with incremental iterative methods. In Pro-ceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multi-disciplinary Analysis and Optimization, AIAA 94-4262, pages 87{120.American Institute of Aeronautics and Astronautics, 1994.[14] B. Mohammadi. CFD with NSC2KE: an user guide. Technical Report164, INRIA, 1994.[15] B. Mohammadi. A new optimal shape design procedure for inviscid andviscous turbulent 
ows. International Journal for Numerical Methodsin Fluids, 25:183{203, 1997.[16] S. Osher and F. Solomon. Upwind di�erence schemes for the hy-perbolic systems of conservation laws. Mathematics of Computation,38(158):339{374, 1982.[17] P.L.Roe. Approximate Riemann solvers, parameters vectors and dif-ference schemes,. Journal of Computational Physics, 43, 1981.[18] N. Rostaing, S. Dalmas, and A. Galligo. Automatic di�erentiation inOdyssee. Tellus, 45a(5):558{568, October 1993.[19] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residualalgorithm for solving nonsymmetric linear systems. SIAM Journal onScienti�c and Statistical Computing, 7:856{869, 1986.[20] R. Struijs, H. Deconinck, P. de Palma, P. Roe, and G.G.Powel.Progress on multidimensional upwind euler solvers for unstructuredgrids. AIAA paper 91-1550, 1991.


