Automatic Differentiation and Navier-Stokes
Computations

Paul Hovland* Bijan Mohammadif Christian Bischof®

We describe the use of automatic differentiation (AD) in, and its application to, a com-
pressible Navier-Stokes model. Within the solver, AD is used to accelerate convergence
by more than an order of magnitude. Outside the solver, AD is used to compute the
derivatives needed for optimization. We emphasize the potential for performance gains
if the programmer does not treat AD as a black box, but instead utilizes high-level
knowledge about the nature of the application.

1. Introduction

The Navier-Stokes equations are frequently used to model the flow of com-
pressible or incompressible fluids. Automatic differentiation (AD) is an
emerging technology for differentiating functions that enables derivatives
to be computed accurately and efficiently, with very little effort on the
part of the programmer. In this paper, we discuss how AD can be used to
enhance a compressible Navier-Stokes solver. Section 2 describes the two-
dimensional Navier-Stokes model and solver used in our studies. Section 3
gives a brief introduction to source transformation tools for automatic dif-
ferentiation. Section 4 discusses how derivatives computed using AD can
be used for shape optimization. Section 5 explains how an explicit solver
can be transformed into an implicit solver using a Jacobian computed using
AD. Section 6 briefly describes how AD might be used in optimal control.
We conclude with a summary of our results and a discussion of how insight
into the high-level mathematics of a computation can greatly reduce the
cost of derivative computations using AD.

2. The Navier-Stokes Solver

The time-dependent Navier-Stokes equation can be written as

ou

5tV EU) = N(U)] =0,
where U is the vector of state variables and F and N are the convective and
diffusive operators. When the Reynolds and/or Raleigh numbers are high,
turbulence models are necessary. Adding the k—e turbulence model to the

Mathematics and Computer Science Division, Argonne National Laboratory, 9700
S. Cass Avenue, Argonne, IL 60439-4844, email: {hovland,bischof}@mcs.anl.gov.

University of Montpellier IT and INRIA, Math. Dept, CC51, 34095 Montpellier
Cedex 5, France, email: Bijan.Mohammadi@inria.fr.

2 P. Hovland, B. Mohammadi, and C. Bischof

equation yields 5

W) - N(U)] = S(U),
where U = (p, pu, pv, pE, pk, pc)* and S contains the source terms of the k—
model. In two dimensions, this provides six equations in seven variables.
We close the system using the equation of state p = p(p, T'). Note that this
model does not take into account turbulent contributions to the pressure
and total energy.

In this paper, we consider the numerical solution of this model using
the NSC2KE program [14]. The numerical solution is based on a finite
volume-Galerkin method for unstructured triangular meshes. The convec-
tive part of the equations can be solved using either a Roe [17] or Osher [16]
approximate Riemann solver. Second order accuracy is obtained by using
a MUSCL-like extension with Van Albada type limiters [1]. Applying this
approach to the k—e¢ equations will not guarantee the positivity of pk and
pe. Therefore, the convective fluxes for k& and ¢ are computed using the
PSI fluctuation splitting scheme [20]. The viscous term is discretized using
a classical piecewise linear finite element method. Time discretization is
based on a four-stage Runge-Kutta scheme. See [14, 15] for more details.

3. Automatic Differentiation via Source Transformation

Automatic differentiation (AD) works by exploiting the fact that all algo-
rithms compute functions through the composition of elementary functions
provided by the programming language. Partial derivatives for these ele-
mentary functions can be obtained by table lookup, and total derivatives
propagated using the chain rule. A thorough description of AD is beyond
the scope of this paper. In the following paragraphs, we briefly discuss one
method for implementing AD; see [8] for an explanation of the theoretical
foundations of AD and [12] for a survey of other methods.

Source transformation AD tools work by converting source code for
computing a function into source code for computing that function and its
derivatives. For example, the ADIFOR tool [5] for AD of Fortran 77
converts the subroutine in Figure 1 into the subroutine in Figure 2. The
derivative objects g_x, g_temp and g_y contain the derivatives of x, temp,
and y with respect to x. Typically, on entry g_x will contain the n x n
identity matrix and on exit g_y will contain the Jacobian matrix dy/d z.
Similarly, the Odyssée tool [18] converts the same subroutine into the one
in Figure 3. Variables yccl and xccl contain the derivatives of y with
respect to y and x. The save* variables are used to save intermediate val-
ues. Typically, on entry yccl will contain the m x m identity matrix and
on exit xcel will contain the Jacobian matrix d y/d 2. This example also
illustrates the difference between these tools. The ADIFOR tool uses the

Automatic Differentiation and Navier-Stokes Computations 3

subroutine mv_prod(a,x,y,m,n)

integer m,n,i,j
real a(m,n),x(n),y(m),temp

do i=1,m
y(i) = 0.0
enddo
do i=1,n
temp = x(1i)
do j=1,m
y(3) = y(j) + a(j,i)*temp
enddo
enddo

return
end

Figure 1: Code for computing a simple function (y = Ax).

forward mode of AD, propagating derivatives from the independent variable
z to the dependent variable y. The code produced by the Odyssée tool uses
the reverse mode and propagates derivatives from the dependent variable y
to the independent variable #. Note that because the derivative computa-
tion of the reverse mode reverses the data flow of the function computation,
there is a need to save all intermediate values. In general, the reverse mode
has much greater memory requirements than the forward mode, but can
offer better performance when the number of scalar independent variables
is significantly greater than the number of scalar dependent variables. For
our example, this occurs when m << n. See [8, 9] for more details.

4. Shape Optimization
Simulation of the flow around a shape defined by certain shape parameters
x typically follows the computational path

Ty — Ty — Ty — U,

where x,, is the discretized surface, x,, is the set of mesh nodes, and U is the
computed flow. For shape optimization, we try to minimize a cost function
J(U, zy), which may involve constraints on the geometry (g1(zy) < 0) and

P. Hovland, B. Mohammadi, and C. Bischof

C [Disclaimer deleted]
subroutine g_mv_prod(g_p_,a,x,g_x,1dg_x,y,g_y,1dg_y,m,n)

integer m, n, i, j
real a(m, n), x(n), y(m), temp

integer g_pmax_

parameter (g_pmax_ = 100)

integer g_i_, g_p_, ldg_y, ldg_x

real g_y(ldg_y, m), g_temp(g_pmax_), g_x(ldg_x, n)
save g_temp

if (g_p_ .gt. g_pmax_) then
print #, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
doi=1,m
do g i_ =1,
g_y(g_i_,
enddo
y(@i) = 0.0

g-P-
i) = 0.0

do g i_ =1, g_p_
g_temp(g_i_) =

enddo

temp = x(i)

g_x(g_i_, 1)

do j =1,
do g_i_ 1, g_p_
g_y(g_i_, j) =
enddo
y(i) = y(3G) + a(j, i) * temp

s

g-y(g_i_, j) + a(j, i) * g_temp(g_i_)

enddo
enddo

return
end

Figure 2: Code for computing a function and its Jacobian, generated

by ADIFOR.

Automatic Differentiation and Navier-Stokes Computations

subroutine mv_prodcl (a, x, y, m, n, xccl, yccl)
C [ODYSSEE output edited for brevityl

integer m, n, i, j

real a(m,n), x(n), y(m), temp

integer odyn,odym

parameter (odyn = 10, odym = 10)

dimension yccl(m), xccl(n), save3(l:odym, 1:odyn)
dimension save2(1l:odyn), savel(1l:odym)

tempccl = 0.

doi=1,m

savel(i) = y(1)
y(@i) = 0.0
end do

doi=1,n
save2(i) = temp
temp = x(i)
doj=1,m
saved(j,i) = y(j)
y(j) = y(Gr+a(j,i)*temp
end do
end do

doi=mn, 1, -1
doj=m, 1, -1
y(j) = save3(j,i)
tempccl = tempccl+yccl(j)*a(j,i)
end do
temp = save2(i)
xccl(i) = xccl(i)+tempccl
tempccl = 0.
end do
tempccl = 0.
doi=m, 1, -1
y(i) = savel(d)
yccl(i) = 0.
end do
return
end

Figure 3: Code for computing a function and its Jacobian, generated
by Odyssée.

6 P. Hovland, B. Mohammadi, and C. Bischof

the flow (g2(U) < 0). This minimization problem can actually be viewed
in two ways:

1. Find z, to minimize J(U(x;), 2y (x5)).
2. Find #, to minimize J(U(2y), #w).

The first approach is the one more commonly used, in part because the
number of shape parameters x. is usually smaller than the number of surface
discretization points z, and also because it is easier to ensure that the
surface remains smooth. However, this approach suffers from the following
limitations.

1. Computing () is hard, especially in three dimensions. Usually,
this is done by a “black box” CAD tool. We can’t compute % ana-
lytically, which limits our ability to use a gradient-based optimization
method.

2. Parameterized shapes may place unnecessary restrictions on the so-
lution space Xy, .

We describe a technique that uses AD and mesh deformation to perform a
CAD-free shape optimization using steepest descent.

4.1. Computing the Gradient

We have a number of options in computing the gradient — I We could ap-
proximate 1t using finite differences, but this can mtroduce truncation error
and furthermore is very expensive When there are many surface discretiza-
tion points, as is usually the case. We could also implement the adjoint
code by hand, but this can be extremely tedious and hence error-prone.
Instead, we use the reverse mode of automatic differentiation to do this.
For our problem, we used the Odyssée automatic differentiation tool [18].

4.2. Adjusting the Shape

Once we have computed %, we use steepest descent to compute a per-

turbation to z,, 6z, . To avoid oscillations, a “local” smoothing operator
is defined over the shape. This can be, for instance, a few “local” Jacobi
iterations to solve the following system:

(I — eA)§iy = b0, (1)

0%y = bz, =0 on wedges,

where 6%, 1s the smoothed shape variation for the shape nodes and éx,,
is the variation given by the optimization tool. By “local” we mean that

Automatic Differentiation and Navier-Stokes Computations 7

if the predicted shape is locally smooth, it remains unchanged during this
step. The regions where the smoothing is applied are identified using a
discontinuity-capturing operator. More precisely, £ is set to zero (this is
done during the Jacobi loops) if

bij (baw)

1 -3
(Gra)y 107

where 8;; (61,) is the difference between the variations of the nodes of a
boundary edge and (8)7 is the mean variation on this edge.

The following argument illustrates the importance of this step:

We want the variation 8z, € C*(T'), if I defines a manifold of dimension
(n — 1) in a domain & € R™. From Sobolev inclusions, we know that
H™{T) c CHT). It is easy to understand that the gradient method will
not necessarily produce C*(T') variations éz,, and therefore we need to
project them into H™(T') (an example of this is given in Figure 4.2).
This means that the projected variation (8%,) is the solution of an elliptic
system of degree n. However, if we are using a P! discretization, a second
order elliptic system is sufficient because the wedges of the geometry are
considered as constraints for the design. Therefore we project the variations
only into H?(T') even in 3D.

One advantage of this approach over splines is that singular points (or
wedges) may appear if necessary.

4.3. Mesh deformation

Once éz,, has been determined, we need to extend these variations over all
the mesh. This is done by solving a volumic elasticity system of the same
form as Equation 1:

(I —eAYoay, = b, (2)
dxpy, =0 on inflow and outflow boundaries,
0Ty, . .
661‘ =0 on slipping boundaries,
n

o6, = 6x, on wall nodes,

where éx,, 1s the extension of éx,, over the mesh defined by
o0, = bxy for mesh nodes on the wall,

bx,, =0 for internal nodes.

P. Hovland, B. Mohammadi, and C. Bischof

'SHAPE_INITIAL" —
'SHAPE_UNSMOOTHED'’ ----
'SHAPE_SMOOTHED’ -----

Figure 4: Initial, smoothed and unsmoothed shapes for a transonic
drag reduction problem. Note that the gradient jumps through shocks
and also produces a non-smooth shape in leading edge regions after
one iteration of the optimization. Subsequent iterations increase the
non-smoothness.

Automatic Differentiation and Navier-Stokes Computations 9

4.4. Improving Computational Efficiency

The method discussed thus far is inadequate for solving realistic problems.
The reason stems from the tradeoff between storage and time complexity
present in all adjoint methods. The reverse mode of AD is at one extreme,
achieving a time complexity bounded by a constant multiple of that for
the function evaluation, at the cost of a potentially exponential increase in
storage complexity [8]. Griewank has demonstrated that it is possible to
achieve logarithmic growth in time and space through checkpointing and
recomputation of intermediate values [9].

For a large problem that takes many time iterations to reach a steady
state solution, the storage requirements for the basic reverse mode can be
enormous. The flow solver has the following structure.

time = 0
repeat
foreach triangle
update triangle
end
foreach edge
update edge
end
foreach node
update node
end
time = time + deltat
until steady state

Each update typically involves on the order of 10? intermediate values.
Thus, if we have k time steps and N triangles, we have on the order of
300k N intermediate values that must be stored. For a moderately sized
system involving 10* triangles and 10® timesteps, the storage requirements
can exceed 10 gigabytes. Fortunately, by using a little insight into the
mathematics of the problem and the structure of the computation, we can
dramatically reduce the memory requirements.

The first optimization takes advantage of the fact that our cost function
depends only on the flow at the steady state. If our convergence criterion
is sufficiently strict [10, 15], it is sufficient to only differentiate through one
time step, if we start with an initial state corresponding to the steady state
for a given shape. This reduces the memory requirements by a factor &
(the number of time steps). This technique would not apply in the case of
unsteady flows.

The second optimization relies on a technique called inter-procedural dif-
ferentiation [7]. This method can be viewed as a heuristic for checkpointing,

10 P. Hovland, B. Mohammadi, and C. Bischof

and relies on the way in which Odyssée and other source transformation
tools implement the reverse mode for subroutines. A differentiated version
of each subroutine is created by adding adjoint computation at the end of
the function computation, after augmenting the function computation so
that all intermediate variables are saved. Calls to subroutines are replaced
in the adjoint phase by calls to the differentiated version of the subroutine.
Thus,
subroutine A compute phase [
call subroutine B
compute phase I1
return
becomes
differentiated version of subroutine 4
compute phase I (save intermediate values)
call subroutine B
compute phase I (save intermediate values)
adjoints for phase I1
call differentiated version of subroutine B
adjoints for phase I
return

Note that the intermediate values computed in subroutine B are not
saved. Instead, they are recomputed by the differentiated version of subrou-
tine B. This provides the foundation for the interprocedural differentiation
technique. If we use a subroutine to encapsulate the computation in a loop,
the differentiated version will recompute the intermediate values of the loop
body, rather than storing them. This only doubles the time requirements
for the differentiated loop, but can reduce the memory requirements by a
factor equal to the number of intermediate values in the loop body. By
applying this technique to the loops over triangles, edges, and nodes, we
reduce the memory requirements by another factor of 100.

4.5. Experimental Results

In this section we present some results of constrained optimization prob-
lems at various Mach numbers. All computations have been performed
on a workstation capable of about 10 Megaflops with approximately 64
Megabytes of memory. The mesh adaptions, gradient computations and
flow solutions require less than 2 hours. Using the optimization described
in the previous section, the reverse mode requires approximately 10 times
more memory than the direct solver. An estimation of the memory required
by the direct solver 1s 50N words, where NV is the number of nodes. This is

Automatic Differentiation and Navier-Stokes Computations 11

more than what is necessary in a structured solver because the data struc-
tures involved are much more complicated in an unstructured approach.

In the following examples, when global constraints are present, the dif-
ferent penalty coefficients in the cost function are initially chosen for the
different quantities involved to have variations of the same order of mag-
nitude. During optimization, they are reduced with the same ratio as the
cost function.

The same drag reduction problem with constraints on the lift and the
volume has been considered for various airfoils, wing and a full aircraft.
The cost function for all these cases is given by:

J(x) = Cq+ a|Cr— CP|+ BIVol — Voly |,

where a and 3 are penalty parameters, Cy 1s the drag coefficient, (7 and
C’lo are the actual and initial lift coefficients and Vol and Voly the actual
and 1initial volumes. The adaptive optimization algorithm has been used.
To guarantee that the solutions are mesh-independent, a final computation
has been done on the final shape until convergence. For these cases, we
show the initial and final meshes and the iso-Mach distributions.

4.5.1. Drag reduction for a Naca 0012

The initial airfoil is the NACA 0012. The design takes place at Mach num-
ber 0.754 and 2 degrees of incidence. The drag coefficient has been reduced
by more than 10 percent while the lift and volume slightly increased.

4.5.2. Drag reduction for a supersonic flow

Our aim here is to show that this approach does not suffer from a change
in the nature of the equations when passing from transonic to supersonic
regime. The design takes place at Mach number of 2. Again, the initial
profile is a NACAQ012. For the shock to be attached, the leading edge has
to be sharp. But the initial shape has a smooth leading edge. This means
that the optimization procedure has to be able to treat the apparition of
singular points. As we have noted, this cannot be done if we use splines for
instance. No particular treatment has been done for this case.

The drag has been reduced by about 20 percent (from 0.09 to 0.072)
as the shock is now attached while the volume has been conserved (from
0.087 to 0.086). The initial lift coefficient should be zero as the airfoil is
symmetric. Due to numerical errors, the lift varies from —0.001 to 0.0008.
This means that the final shape is almost symmetric.

12 P. Hovland, B. Mohammadi, and C. Bischof

Figure 5: Transonic drag reduction: iso-Mach curves for the initial and
final (after 20 iterations) designs.

Automatic Differentiation and Navier-Stokes Computations

13

Figure 6: Supersonic drag reduction: iso-Mach curves for the initial and
final (after 11 iterations) designs.

14 P. Hovland, B. Mohammadi, and C. Bischof

5. Switching to an Implicit Solver

For many problems, the time scale of the physical system being simulated
is so large that explicit methods converge very slowly, if at all. Therefore,
implicit time integration becomes necessary. Developing an implicit solver
for a nonlinear PDE often demands a great deal of additional work beyond
the construction of an explicit solver.

One way to develop an implicit solver for a nonlinear PDE is to linearize
the system using a first-order Taylor expansion. After discretization, many
nonlinear PDEs can be rewritten using the general form

Au
2% (u) =0
A PP =0,

where w is the discretized state and ¥(w) is a nonlinear function of u. One
can then linearize ¥(u) as

U(u" + Au) m U(uy) + Uy (un)Au.

For a complicated function ¥(wu) such as the one used in NSC2KE, de-
veloping by hand the code to compute the Jacobian matrix ¥, (u) can be
extremely time-consuming.

However, using AD, it is a relatively simple task to convert an explicit
solver to an implicit one. Since the computation of ¥(u) has already been
implemented for use in the explicit method, we can apply AD to this code
and automatically generate code for computing the Jacobian ¥, (u). Then,
given iterate u” and a timestep At, we can find «”*! by solving the linear
system

(LI + \I!u(u")) Ay = —-T(u") (3)
At
and letting v ! = u™ + Au. We can solve (3) using GMRES [19] with ILU
preconditioning. We used the linear equation solver provided by the PETSc
toolkit for scientific computing [4]. Note that without preconditioning, the
implicit solver may converge very slowly, if at all.

5.1. Improving Computational Efficiency

We have thus far demonstrated that using readily available tools for scien-
tific computing, it is a simple task to transform an explicit method into an
implicit method based on the linearized system. However, there is room for
improvement in the implicit method. The computation of the Jacobian can
be accelerated by employing the technique of Averick et al [2] to compute
a compressed Jacobian using dense derivative vectors. An additional small
improvement can be achieved through the use of the interface contraction
technique described in [11]. Finally, the nonlinearity of the function ¥(u)

Automatic Differentiation and Navier-Stokes Computations 15

can be handled better if we solve the system of nonlinear equations directly
rather than first linearizing the system.

5.1.1. Compressed Jacobian

Since the Jacobian being computed is very sparse, we use the SparsLinC
library [6], which provides support for sparse derivative vectors. SparsLinC
offers considerably better performance than would a dense Jacobian com-
putation. However, because of the overhead associated with manipulating
the sparse derivative vectors, the cost is considerably more than it would
be for a computation involving dense vectors of the same length. In [2],
Averick et al describe a technique for compressing the Jacobian based on
a coloring algorithm that identifies structurally orthogonal columns of the
Jacobian. We adapted this technique to our method.

The first time the Jacobian is computed, the sparsity structure is not
known, so we use SparsLinC to compute a sparse Jacobian. Because the
mesh does not change, subsequent iterations have the same sparsity pattern.
By coloring the Jacobian matrix from the first iteration, we are able to
compute a compressed Jacobian for subsequent iterations.

5.1.2. Interface Contraction

In [11], Hovland et al describe a heuristic for reducing the cost of computing
derivatives based on the observation that the number of parameters passed
to a subroutine is usually quite small. If the number of such variables is
small relative to the number of independent variables, it is referred to as
an interface contraction. Our model did not exhibit this property, because
all variables were passed between subroutines using common blocks. How-
ever, we were able to easily isolate a main computational kernel within a
subroutine with a relatively small number of parameters. We then applied
the interface contraction technique to this subroutine.

5.1.3. Reformulating as a system of nonlinear equations

The implicit method described thus far relies on a linearization of the func-
tion ¥(u) as ¥(u) = U(u") + ¥u(u")(u — uy,) together with the use of a
linear equation solver. We can instead use a nonlinear equation solver to
solve the nonlinear system
un+1 —un N
N + U =0

directly. PETSc provides nonlinear equation solvers based on linesearch and
trust region methods. We used PETSc to implement an inexact Newton
method with linesearching, using GMRES with ILU preconditioning for the
linear system solve and a cubic linesearch.

16 P. Hovland, B. Mohammadi, and C. Bischof

5.2. Experimental results

We applied automatic differentiation to the function ¥(w) computed by
NSC2KE, the 2-dimensional compressible Navier-Stokes solver described
earlier. This function is implemented using approximately 1500 lines of
Fortran. We used ADIFOR, version 2.0 with the SparsLinC library. We
used the linear and nonlinear equation solvers provided by PETSc. We
then computed the flow in a room with isothermal walls and gravity, but
without turbulence.

Figure 7 illustrates that the steady state solutions found by the implicit
and explicit solvers are virtually identical. Figure 8 shows the flow
computed. Figure 9 demonstrates the necessity for preconditioning, and
the superior performance of the implicit method compared to the explicit
method. All timings were performed on a Hewlett Packard K9000 with
standard (level 2) optimization.

Figure 10 shows the effects of the improvements described in Section 5.1.
For the problem considered, the time to find a solution was reduced from
371 cpu seconds for the basic implicit method to 116 cpu seconds for the
method based on the nonlinear formulation. Most of this improvement is
due to the use of compressed Jacobians. The compressed Jacobian compu-
tation is approximately 7 times faster than the sparse Jacobian computa-
tion, reducing the overall solution time by almost a factor of 3. The use
of interface contraction reduces the cost of the compressed Jacobian com-
putation by about 15%, which results in a reduction of about 5% in the
overall solution time. This i1s only a modest improvement, and indeed was
less than our original expectations, but it also required only a few hours
of effort. Finally, switching to a true nonlinear equation solver reduces the
overall solution time by about 20%.

6. Future Work

We are currently using AD on the outside of NSC2KE for use in an op-
timal control problem. In this scenario, we try to optimize the lift and
drag properties of a 4-element airfoil by rotating the leading element. We
use a smooth mesh transformation to prevent numerical variation due to
re-meshing. Preliminary results indicate that the optimization of the con-
trol parameter converges faster and with greater accuracy using derivatives
computed using AD rather than finite difference approximations.

We hope to speed up the flow solver used in this problem by switching
to the implicit version described in Section 5. In order to compute the
derivative of the cost function J with respect to the angles of rotation «,
we will need to differentiate through this solver. This will provide further
demonstration of the usefulness of AD, as well as another opportunity for
taking advantage of high-level mathematical insight into a problem. Rather

Automatic Differentiation and Navier-Stokes Computations 17

T
7/ Temp-implicit +——
"Temp-explicit’ {------

06

04

T
“Pres-implicit’ {——

*Pres-explicit’ {------
08 — 1
06 g
04 E
_

02 g

0

06 0.4 02 0 02 04 06

06

04

02

Figure 7: The steady state solutions found by the explicit (solid lines)
and explicit (dashed lines) solvers are virtually identical. Top to bottom
are iso-curves for temperature, pressure, and mach.

P. Hovland, B. Mohammadi, and C. Bischof

18

P MSURUSRNNN
Vv B N NN
P e e R R R
P e R R R R

N N

I/ /At s e s m s S SNRRN
\\\\\\\\\\\x\xvvvvr/r;/f/
IS ALl NENENENE
Jl1ddddsveees RN
JAJ il e [ENENENENE
NN EEEEN [NESENRNRNR
NN RSN
RN SESESES
IR v
IR R R NN
RN NN
IR R Chanva
Phddiui e S
IR o
PRl TR
IR Caa
Pyt R
IR IR
IR R C
BRI -
AR I L
BRI I R L
R R R e
R R R i b e
PAALAAAA YN NN S S s s P
R R I i s
R R R R R e died P
LA AAN S NN NSNS NN m eSS
NN s
NN NS N N e e e e e e e b e e e 5 22
N e
[N S

I I I

0.5

| |)
1
M ™~ @ 0 < ™]
IS} S S S a S

t solver.

1cl

|

mp

The flow computed by the

Figure 8

Automatic Differentiation

and Navier-Stokes Computations

19

0.0001 T T

1le-05

1le-06

Residual

le-07

1le-08

"implicit’

‘implicit+precond’ -

T —
"explicit’

! ! ! ! ! !

1le-09 L L
0 100 200

300 400 500
CPU time (s)

900

1000

Figure 9: An implicit method based on GMRES with ILU precondi-
tioning offers performance superior to that of an explicit Runge-Kutta
method and the implicit method without preconditioning.

0.0001

1le-05

1e-06

1e-07

1e-08 -

1le-09

"implicit+precond+compression’

"implicit+precond+compression+ic’ -

‘implicit+nonlinear’

T T
"implicit+precond’ ———

le-10 L
0

L
50 100

L L L L L
150 200 250 300 350

400

Figure 10: Use of coloring to compute a compressed Jacobian and re-
formulation as a nonlinear problem offers further improvements in per-

formance.

20 P. Hovland, B. Mohammadi, and C. Bischof

than differentiating through the PETSc nonlinear equation solver, we can
first compute the steady state solution 4 («), then use the incremental
iterative method described by Sherman et al [13] (See also [3]) to compute
the derivative du/d «.

7. Conclusions

AD tools can enhance Navier-Stokes calculations in a variety of ways. They
can be used to generate code for computing the Jacobian matrix used in an
implicit solver. They can also be used to generate sensitivities of the flow
(or a cost function based on this flow) with respect to the input parameters,
including shape and physical parameters. These sensitivities can be used
in optimal design or control problems, or they can be used to construct a
tangent linear model of the behavior of the system when a parameter such
as angle of attack is altered. No matter what purpose AD tools are used for,
there is a benefit to be gained from a high-level understanding of how the
tools work and the structure and function of the code being differentiated.

Acknowledgments

A portion of this research was performed at the Summer Mathematical
Center for Advanced Research in Scientific Computing (CEMRACS) spon-
sored by the French National Center for Scientific Research, the French
Ministry in charge of Universities and Research, and the European Math-
ematics Society. We thank the organizers, particularly Yvon Maday, for
providing a forum for collaborative, interdisciplinary research; the Centre
International de Rencontre en Mathématiques for hosting the center; and
Radu Lupsa for conducting numerical experiments to identify appropri-
ate parameters for the implicit methods. Thomas Slawig developed the
algorithm for wing rotation and conducted the preliminary experiments
discussed in Section 6. This work was also supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office
of Computational and Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38.

References

[1] G. Albada and B. V. Leer. Flux vector splitting and runge-kutta
methods for the euler equations. Technical Report 84-27, ICASE, 1984.

[2] B. Averick, J. Moré, C. Bischof, A. Carle, and A. Griewank. Com-
puting large sparse Jacobian matrices using automatic differentiation.

SIAM Journal on Scientific Computing, 15(2):285-294, 1994.

Automatic Differentiation and Navier-Stokes Computations 21

[3]

[4]

[12]

Y. Y. Azmy. Post-convergence automatic differentiation of iterative
schemes. Nuclear Science and Engineering, 125:12-18, 1997.

S. Balay, W. Gropp, L. C. McInnes, and B. Smith. PETSc 2.0 users
manual. Technical Report ANL-95/11 - Revision 2.0.17, Argonne Na-
tional Laboratory, Oct. 1996.

C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Au-
tomatic differentiation of Fortran 77 programs. IFEE Computational
Science & Engineering, 3(3):18-32, 1996.

C. Bischof| A. Carle, P. Khademi, A. Mauer, and P. Hovland. ADIFOR
2.0 user’s guide (Revision C). Technical Memorandum ANL/MCS-
TM-192, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 1995.

C. Faure. Splitting of algebraic expressions for automatic differenti-
ation. In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors,
Computational Differentiation: Techniques, Applications, and Tools,
pages 117-128, Philadelphia, PAS 1996. STAM.

A. Griewank. On automatic differentiation. In Mathematical Program-
ming: Recent Developments and Applications, pages 83-108, Amster-
dam, 1989. Kluwer Academic Publishers.

A. Griewank. Achieving logarithmic growth of temporal and spatial
complexity in reverse automatic differentiation. Optimization Methods

and Software, 1(1):35-54, 1992.
A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson.

Derivative convergence of iterative equation solvers. Optimization

Methods and Software, 2:321-355, 1993.

P. Hovland, C. Bischof, D. Spiegelman, and M. Casella. Efficient
derivative codes through automatic differentiation and interface con-
traction: An application in biostatistics. SIAM Journal on Scientific
Computing, 18(4):1056-1066, July 1997.

D. Juedes. A taxonomy of automatic differentiation tools. In
A. Griewank and G. Corliss, editors, Proceedings of the Workshop
on Automatic Differentiation of Algorithms: Theory, Implementation,

and Application, pages 315-330, Philadelphia, PA, 1991. STAM.

V. Korivi, L. Sherman, A. Taylor, G. Hou, L. Green, and P. New-
man. First- and second-order aerodynamic sensitivity derivatives via

22

[17]

[18]

[19]

[20]

P. Hovland, B. Mohammadi, and C. Bischof

automatic differentiation with incremental iterative methods. In Pro-
ceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, ATAA 94-4262, pages 87-120.
American Institute of Aeronautics and Astronautics, 1994.

B. Mohammadi. CFD with NSC2KE: an user guide. Technical Report
164, INRIA, 1994.

B. Mohammadi. A new optimal shape design procedure for inviscid and
viscous turbulent flows. International Journal for Numerical Methods

e Fluids, 25:183-203, 1997.

S. Osher and F. Solomon. Upwind difference schemes for the hy-
perbolic systems of conservation laws. Mathematics of Computation,

38(158):339-374, 1982.

P.LL.Roe. Approximate Riemann solvers, parameters vectors and dif-
ference schemes,. Journal of Computational Physics, 43, 1981.

N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in
Odyssee. Tellus, 45a(5):558-568, October 1993.

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on

Scientific and Statistical Computing, 7:856-869, 1986.

R. Struyys, H. Deconinck, P. de Palma, P. Roe, and G.G.Powel.
Progress on multidimensional upwind euler solvers for unstructured

grids. ATAA paper 91-1550, 1991.

