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Music composition and scientific computing are usually considered separate and un-
related fields of intellectual activity. The thought of a musical piece being the result
of involved calculations is not a familiar one; nor is that of using sound objects to
present the results of large-scale scientific computations. However, an unusual collab-
oration centered on the high-performance computing capabilities at Argonne National
Laboratory pursues precisely these two ideas.

For the past few years, the authors have been engaged in a project to develop
high-performance computing tools for the world of sound. Initially, the goal of the
project was to see how a composer of serious music might benefit from access to the
latest supercomputing technology. The idea of using computers for music composition
was certainly not new; already in the 1950s, Lejaren Hiller performed many experi-
ments at the University of Illinois [1], and the premiere of his Quartet No. 4 for strings
“Iliac Suite” [2] in May 1957 is generally regarded as the birth of serious computer
music. Computers have helped many composers since to algorithmically synthesize
new sounds and produce new pieces for acoustical as well as digital instruments (see
Box 1). Given the power of today’s high-performance computing architectures, one
could reasonably expect a significant increase in the quality of synthesized sounds
and possibly realize a music composition “in real time.” This expectation provided
the original impetus for the project.

Currently, the centerpiece of the project is DIASS, a Digital Instrument for Addi-
tive Sound Synthesis. DIASS is part of a comprehensive Environment for Music Com-
position (Fig. 1). The Environment includes, besides DIASS, software for computer-
assisted composition, automatic music notation, and visualization of sound objects in
a multimedia environment. Not all components are as fully developed as DIASS, but
even now the user can write a work with the help of the computer, have a score of
the instrumental or vocal parts printed in traditional music notation, produce a tape
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Figure 1: The Environment for Music Composition, with data entry points for com-
position (C) and sonification (S).

of digitally synthesized sounds, and have those sounds represented as graphic objects
in a virtual-reality environment.

Early results obtained with the Environment for Music Composition include the
Argonne Chime (see Box 2), a set of demonstration pieces, a work for voices and
tape, and a manifold composition entitled ANL-folds. These compositions yielded
intriguing evidence that DIASS, the sound synthesis software that was designed and
implemented primarily with music in mind, was sufficiently general and flexible that
it might be useful for other applications as well. In particular, attention focused on
its potential for sonification—the rendition of complex scientific data in aural images.
In this article we describe some of the capabilities of DIASS and the environment

in which it operates and indicate how we intend to develop it further for scientific
sonification.

DIASS

Conceived as a composer’s tool giving the user minute control over every conceivable
detail of a sound, DIASS is intended to run on machines that offer both high speed
and large amounts of memory [3]. It consists essentially of two parts: the instrument



proper, which computes the samples, and an editor, through which the user enters
and modifies the instructions for the instrument. The DIASS instrument functions
as part of the M4C synthesis language developed by Beauchamp and his associates
at the University of Illinois [4]. As part of the project, the instrument and relevant
parts of the M4C code were redesigned for a distributed-memory environment. The
parallel implementation uses the standard MPI message-passing library [5].

The Instrument

Like all additive-synthesis instruments, DTASS creates complex sounds through a sum-
mation of simple sine waves (partials) (see Box 3). Unlike other similar instruments,
however, DIASS can handle an arbitrary number of complex sounds, each sound can
be made up of an arbitrary number of partials, and each partial can be controlled in
many different ways (see Box 4). Because of these features, DIASS is currently the
most flexible instrument for sound synthesis.

A unique feature of DIASS is its capability to control the loudness of a sound
and synthesize sounds that are perceived by the listener as being “equally loud.”
The perception of loudness is a subjective experience; the loudness routines in DIASS
implement relevant results of psychoacoustics research in software (see Box 5).

The results of the synthesis process are stored as 16-bit integers sampling the
sound at a rate of at least 22,050 Hz. (The recording industry standard is 48,000 Hz.)
The loudness routines in DIASS enable the user to produce an entire musical work in
a single run, even when the sounds in the work cover a wide dynamic range. When
the computation of a sample results in a number outside the interval (—2'%, +2'5),
DIASS automatically scales the entire sound. This scaling eliminates “clipping” —
the popping noise that occurs as the result of overflow. To appreciate the difficulty
inherent in the scaling process, consider the case of a sound cluster consisting of
numerous complex sounds, all very loud and resulting in clipping, followed by a barely
audible sound with only two or three partials. If the cluster’s amplitude is brought
down to 2'* and that of the soft tiny sound following it is scaled proportionally, the
latter disappears under system noise. On the other hand, if only the loud cluster is
scaled, the relationship between the two sound events is completely distorted. Many
times in the past, individual sounds or groups of sounds were generated separately
and then merged with the help of analog equipment or an additional digital mixer.
The loudness routines in DIASS deal with this problem by adjusting both loud and
soft sounds, so their perceived loudness is equal to the one specified by the user, while
preventing overflow.



The Editor

Features like the equal-loudness routines make DIASS a fine-tuned, flexible, and precise
instrument. They are costly, though, and require not only intensive computations,
but also significant amounts of input data. Specifying the details of a complex sound
is laborious, error prone, and time consuming. The editor in DIASS is designed to
facilitate this process. It comes in a “slow” and a “fast” version.

In the slow version, data are entered one at a time, either in response to ques-
tions from a menu or through a graphic user interface (GUI). The process gives the
composer the opportunity to experiment and build sounds step by step. However,
considering that one minute of music represents 1-200 sounds and that entering the
data for each sound takes at least a few minutes, the slow editor does not offer a
practical way to generate a piece. The alternative fast version uses the same code,
but reads the responses to the menu questions from a script that is created by the
computer-assisted composition program. Once the composer has decided what kind
of sounds will be included in a work, the necessary information is passed along with
the help of a composition program through the script.

In both the slow and the fast version, certain operations affecting not just one
partial but the entire sound are handled through “macros.” The macros relieve the
user from the burden of specifying individual control parameters for each partial. For
example, the loudness is specified for an entire sound, and all the component waves
are automatically scaled according to a spectrum specified ahead of time. When a
glissando is desired, macros ensure that all partials slide at the same pace. Similarly,
“tuning” and “detuning” are accomplished by smooth changes of the frequency ratios
of a sound’s overtones. When applying amplitude or frequency modulation, all waves
belonging to the same sound are affected at the same rate; and if a random element
is present, all waves access the same random number sequence. The last feature is
especially significant, because psychoacoustic tests have shown that it is an important
factor in the perception of a complex wave as one sound, rather than a collection of
independent sine waves.

Global operations as encapsulated in the macros are indeed time saving and, in
certain situations, necessary. However, by digitally recreating functions of various
pieces of equipment one used to find in the old analog studios—wave generators, fil-
ters, mixers, reverberating units, etc.—the macros tend to reinforce the old paradigm
on which most traditional sound-synthesis software is based. Behind them is the even
more entrenched habit of looking at music as being made up of sounds produced by
an orchestra of instruments and read from a score. DIASS indeed accommodates this



type of traditional thinking. But at the same time for the composer of serious mu-
sic, it can stimulate new ways of thinking about sound. The composition ANL-folds
exemplifies such a nontraditional approach to music composition (see Box 6).

Computing Requirements

The sound synthesis software embodied in DIASS is computationally intensive and
requires significant amounts of memory. For example, a ten-minute sound file for
which the 48 kHz sampling rate is used has a size of approximately 115 MB. Even
if sampled at 22,050 Hz, the file will still have over 50 MB. Moreover, DIASS was
conceived as a “Rolls Royce bulldozer,” a combination of finesse and power where
the complexity of the task is never sacrificed for the sake of expediency. The idea
behind its design was to always use the maximum computing power available, under
the assumption that in a not too distant future the same power would be accessible
from the user’s desktop.

The instrument proper, the engine that computes the samples, comes in a se-
quential and a parallel version [6]. The parallel version has been implemented on
the IBM Scalable POWERparallel (SP) system. At least four nodes are required for
each job—one node to distribute the tasks and supervise the entire run (the “master”
node), a second to mix the results (the “mixer”), and at least two “slave” nodes to
compute the samples one sound at a time. Parallelism is implemented at the sound
level, and not at the wave (partial) or at the sample level, to minimize communica-
tion among the nodes and enable all partials of a complex wave to access the same
sequence of random numbers, as required by some macros.

The performance depends greatly on the sophistication of the sounds—that is,
on the number of partials per sound and the number of active controls for each
partial. An ANL-folds variant of 2’30” comprising 4-500 sounds of medium to great
complexity can be computed on 30 nodes in 20 minutes or less. The speed increases
with the number of nodes, but load imbalances result in a sublinear speedup. Sounds
are at present computed in their starting-time order, irrespective of their duration or
complexity. A smart load-balancing algorithm is necessary, especially when there is a
significant imbalance between the duration of various sounds or the number of their
partials. We estimate that, in certain cases, it could reduce the run time to one-half
the present value.

For files of only a few sounds, the editor runs almost in real time; for longer files,
such as the ANL-folds, the computation time is at present two orders of magnitude



greater. We expect that a restructuring of the [/O features now under way and
eventually parallelizing this part of the code will alleviate this problem.

With the exception of the composition programs, which are written in FOR-
TRAN, all the software is in the C language. MACAVE, employed for the visualization
of sound objects in Argonne’s virtual-reality environment (CAVE), uses OpenGL.

Scientific Sonification

Computational scientists currently rely on powerful visualization systems, including
real-time interactive display techniques and virtual-reality environments, to analyze
and view the results of large-scale numerical simulations. Although sound offers
another medium for the representation of complex data, its use in scientific computing
has received little attention, mostly because of the lack of a suitable instrument. We
claim that DIASS, which can probe multidimensional datasets with surgical precision,
offers the first realistic possibility for scientitifc sonification—the faithful rendition of
complex scientific data in aural images.

A number of efforts have been made in the past to combine visual images and
sounds for data analysis; see [7, 8] and the references cited there. However, most
attempts have been limited in scope. Some were based on the use of “earcons”—
aurally recognizable identities like whistles, beeps, and sirens—to signal changes in
the broad characteristics of the data; others used MIDI-controlled synthesizer sounds,
which have drastic limitations in the number and range of their control parameters.
The software developed by Bargar et al. [9] at the National Computational Science
Alliance (NCSA) at the University of Illinois at Urbana-Champaign (UTUC), which
is certainly the most complex in this category, includes the VSS sound server for
the CAVE and has interactive capabilities. While these efforts recognized the need
for sonification, they did not lead to an adequate tool. DIASS, on the other hand,
can provide equivalences for the most intimate details of computed objects in a mul-
tidimensional space and appears eminently suitable as an instrument for scientific
sonification.

What We Have Done So Far

Much of our work so far has been focused on the representation of complex sounds as
graphical objects in the CAVE—the room-size virtual-reality environment at Argonne



National Laboratory [10]. Images are computed on the fly from precomputed sound
files and are made to correspond exactly to the sounds through a one-to-one mapping
between visual attributes and sound qualities. Partials are represented as spheres,
whose size is proportional to loudness and whose height corresponds to frequency
(Fig. 2). An optional grid in the background shows the octaves divided into twelve

Insert Figure 2 here

Figure 2: Visualization of nine sounds in the CAVE.

equal increments. A sound’s position in the stereo field determines the placement
of the sphere between far left and far right in the room. Visual objects rotate or
pulse when tremolo or vibrato is applied, and their color varies when reverberation
is present. In other renditions, we may choose a cloud of confetti-like objects or a
collection of colored planes floating in space, which change size, color, and degree
of internal activity according to the same musical parameters. These experiments,
though limited in scope, have enabled us to explore different mappings from the space
of data to the space of sounds.

What We Have Found So Far

The combination of visual images and sounds provides an extremly powerfool tool for
uncovering complicated structures. Sometimes, the sounds reveal features that are
hidden in the visual images; at other times, the visual images illuminate features that
are not easily detectable in the sound. The two modes of perception reinforce each
other, and both improve with practice.

Besides obvious variables such as time, frequency, and amplitude, it is possible
to identify specific combinations of partials in a sound (a main ingredient in tim-
bre recognition), along with modifiers such as amplitude and frequency modulation
(tremolo and vibrato) and reverberation. Most of these modifiers lump two, three,
or more degrees of freedom together: magnitude, rate, and phase of the modulation
in the case of tremolo and vibrato; hall size, duration of the reverberated part of the
sound, and ratio between direct and reverberated sound in the case of reverberation;
and so on. It is easy to see how these modifiers can add up to a large number of
recognizable and controllable parameters.

Like the eye, the ear has a very high power of discrimination. Even a coarse grid,
such as the temperate tuning used in Western music, includes about 100 identifiable



discrete steps over the frequency range encompassed by a piano keyboard. Contem-
porary music, as well as some non-Western traditional music, successfully uses smaller
increments of a quarter tone or less for a total of some 200 or more identifiable steps
in the audible range. Equally discriminating power is available in the realm of timbre.

Most auditory processes are based on the recognition of time patterns (periodic
repetitions giving birth to pitch, amplitude or frequency modulation; spectral con-
sistency creating stable timbres in a complex wave; formants or filtering patterns
produced by the body of an instrument; etc.), and the ear is highly attuned to de-
tect such regularities. On a higher level, music deals with rhythmic, metric, and
pitch patterns, and with harmonic aggregates or textures that are restated or varied.
Sound is an obvious means to identify regularities in the time domain, both at the
microlevel and on a larger scale, and to bring out transitions between random states
and periodic happenings.

Most conceptual problems in scientific sonification are related to finding suitable
mappings between the space of data and the space of sounds. Common sense points
toward letting the two domains share the coordinates of physical space-time if these
are relevant and translating other degrees of freedom in the data into separate sound
parameters. On the other hand, it may be advantageous to experiment with alter-
native mappings. Sonification software must therefore be sufficiently flexible that a
user can pair different sets of parameters in the two domains.

Any mapping between data and sound parameters must also allow for redun-
dancies to enable the exploration of data at different levels of complexity. Similar to
visualization software, sonification software must have utilities for zooming, modifying
the audio palette, switching between visual and aural representation of parameters,
defining time loops, slowing down or speeding up, etc.

Through the proper manipulation of reverberation, loudness, and spectrum, one
can create the illusion of sounds being produced at arbitrary locations in a room,
even with only two speakers. Surround-sound systems featuring an array of speakers,
already presented at the Philips Pavilion at the 1958 Brussels World Fair (see [11])
and currently promoted as essential for the contemporary home entertainment system,
will be the dinosaurs of the digital sound world.



Where We Would Like to Go

The experiments done so far are a first step in the process of finding effective ways
to represent scientific data in sound objects. They show convincingly that the sound
domain greatly increases the bandwidth for the perception of complex structures and
point to useful approaches to scientific sonification.

Our next goal is to use DIASS and the CAVE to explore complex data sets
obtained in large-scale numerical simulations of physical phenomena. Several sources
of data from materials science, structural biology, and astrophysics are available.
Progress will require the enhancement of existing software and the development of
new capabilities.

Larger Issues

This project is unusual in its interdisciplinary aspect. It also shows that the way in
which both composers and scientists perform their tasks might be about to change in
several respects.

For the composer, the use of high-performance computers means the possibility
to experiment more and obtain results faster. But it also means that a lot of extra help
is needed. No single person can possibly have the required expertise in so many and
diverse realms: music, psychoacoustics, mathematics, and computer science. The
romantic artist laboring in isolation to express his intimate feelings gives way to
teamwork concerned with specific objectives. The concept of manifold composition
challenges the very idea of an “art object” fixed in its form, available for repeated
inspection or used as an investment. Interactive possibilities offered by virtual-reality
systems and by the Internet may soon change even more the way in which music is
composed, performed, and distributed.

Ours is a visually oriented culture par ezcellence, and as a society we watch
rather than listen. Contemporary musical culture is often reduced to entertainment
genres that use an outdated grammar and a simple-minded vocabulary. With an open
mind and an awareness for unusual and unexpected sonorities, the scientists may yet
discover the benefits of the world of sound.

Generally speaking, both scientists and musicians could gain by becoming more
familiar with each other’s work and ways of thinking. Such a rapprochement could
be facilitated by offerings in the academic curriculum. A “Discovery” course entitled



Musie, Science, and Technology, where some of the issues presented here will be

discussed, is currently under development and will be offered for the first time at the

UIUC in the fall of 1997.
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Box 1. Computer-Assisted Music Composition

Why would a composer need computer assistance when composing? A quick answer
is that, like in many other areas, routine operations can be relegated to the machine.
A more sophisticated reason may be that the composer may rely on expert systems to
write Bach-like chorales or imitate the mannerisms of Chopin or Rachmaninov. There
are, however, more compelling reasons when composing is viewed as a speculative
and experimental endeavor, rather than as an ability to manufacture pleasing sound
objects, as demonstrated a long time ago by Hiller [1], Xenakis [12], and several other
COMposers.

MP1, the computer-assisted composition part in the FEnvironment for Music
Composition (Fig. 1), illustrates the point. MP1 is based on the idea that the com-
puter is a composer’s collaborator [13]. While the composer controls the overall
outlook of the music and its abstract structure, the computer provides the details
of the piece and ensures a certain degree of randomness unencumbered by cultural
conditionings. The composer sets in motion a well-defined process by supplying a
set of rules together with the initial conditions and then does not interfere with the
process or its end result. The output is accepted as long as it is consistent with the
logic of the program and the input data.

In MP1, the particular details of a piece may depend on random occurrences.
The same code and data may produce an unlimited number of compositions, which
belong to the same “equivalence class” or manifold composition [14]. The members
of a manifold composition are variants of the same piece; they share the same struc-
ture and are the result of the same process, but differ in the way specific events are
arranged in time. The global effect depends on the coherence with which the con-
trol parameters are chosen. For example, the members of a manifold composition
may share certain fixed sections, while other sections diverge in different degrees. A
manifold composition is somewhat similar to a serigraph produced by a visual artist,
except that its individual members may be more distinct.

A nontraditional way of composing, the manifolds show how high-performace
computing provides a composer with the means to try out compositional strategies or
materials and hear the results or see them notated on paper in a reasonable amount
of time. While some existing commercial software products offers this type of feed-
back to certain degrees, they do not even approach the sophistication and flexibility
required for experimental concert music. The combination of the Environment for
Music Composition and an advanced computing architecture offers a novel medium
for experimentation with and exploration of new paradigms in music composition.
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Box 2. The “Argonne Chime”

‘Insert Figure 3 here‘

Figure 3: The “Argonne Chime” — the first serious composition produced on the

IBM Scalable POWER (SP) System at Argonne National Laboratory.

The “Argonne Chime,” a 21-second sequence of seven sounds representing the letters
in “Argonne,” was composed and produced by the authors and premiered at Argonne

on October 15, 1995.
A (a), R (re=4d), G (g9), O (sol = ¢g), NN (percussive), E (low e, gong).

Six sounds have six partials; one sound has sixteen partials. The sounds have
different degrees of vibrato and tremolo and distinct frequency and amplitude tran-
sients. Individual envelopes vary from percussive (NN) to sustained (E). Various
degrees of reverberation and channel placement suggest a realistic environment.
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Box 3. Sound Synthesis

The goal in computer music is to produce a sampled-data signal that, when converted
to an analog voltage and played through a high-quality sound system, produces the
desired musical sound. A synthesis technique is a way to produce such a signal
from a mathematical expression. The expression usually has many variables, such as
frequency, duration, and loudness, which may change with time over the duration of
the sound.

In general, the nth sample z,,, which represents the sound at the time ¢, is com-
puted from an expression of the form x, = F(t,,p1n,... s pNs). Here, pro, ..., pym
are the values of the control parameters py,...,py at the time #,,. The control pa-
rameters may have fixed values (static controls) or their values may change with
time (dynamic controls). In additive synthesis, one forms the composite sound by
summing several sine waves. Each sine wave (partial) is described by its amplitude,
frequency, phase, starting time, duration, etc. The actual values of these parameters
are controlled by the composer at the level of the partial, at the level of the sound
(for example, by prescribing a glissando or a certain level of reverberation), and at
the level of the entire piece (for example, through the specification of a global level
of loudness).

The fact that controls can act at all levels significantly increases computational
complexity and turnaround time.

15



Box 4. Sound Control in DIASS

In DIASS, each partial in a sound is controlled in 25 different ways. Some control pa-
rameters are static; they do not change for the duration of a sound. Obvious examples
are the starting time, duration, and phase of a partial; less obvious parameters define
reverberation features, including the size of the “hall” and the apparent strength of
the reverberation. Other control parameters are dynamic; their evolution is governed
by specified envelope functions, which may be piecewise linear or exponential. Pan-
ning (apparent shifting of sound location), tremolo (amplitude modulation), vibrato
(frequency modulation), and the relative importance of transients can all affect the
parameters of each partial in a sound.

Because each of the 25 control parameters can be applied independently to every
partial, a sound that results from the summation of 65 sine waves can be molded in
1,625 diferent ways, about half of them time variant.

One can gain some idea of the input requirements for the synthesis of a typical
sound by estimating the data required for a complete specification of the dynamic
control parameters. Each dynamic control parameter requires three input items per
time interval (starting time, starting value, and type: linear or exponential). Hence,
a sound with 65 partials extending over an average of 10 time intervals and subject
to 13 dynamic control parameters requires the specification of 65 x 13 x 10 x 3 data,
or about 50 kB. Twenty such sounds would fill a megabyte.
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Box 5. Loudness

Loudness is often described as the “strength” or “intensity” of a tone and associated
with the energy flow or average pressure variation of the sound wave reaching the ear.
However, this description is far too simplistic. The sensation of loudness of a tone
of constant intensity varies with the frequency, and the loudness of a superposition
of several tones of different frequencies is not related in a simple manner to the total
acoustical energy flow. For digital sound synthesis, a more precise definition is needed.
The definition requires several steps. (For a more complete discussion we recommend
the excellent monograph [15].)

We begin by introducing the (dimensionless) intensity I of a pure tone with
acoustical energy flux ® (units of watt/m?),

=10 x log;(® /).

Here, ®¢ is a reference value, usually taken as the value of ¢ at the threshold of
hearing, ®; = 107*W/m?. The unit of [ is the decibel (dB). Note that [ is a relative
measure. Because there is no energy flow in a standing wave, one may express [
alternatively in terms of the average pressure variation Ap (measured in newton/m?),

I =20 x log,o(Ap/Apo),

where Apy is the pressure variation for a traveling wave with acoustical energy flux
o, Apg =2 x 107° newton/m?.

Because of the way acoustical vibrations are processed in the cochlea (the internal
ear), the sensation of loudness is strongly frequency dependent. For instance, while an
intensity of 50 dB at 1,000 Hz is considered piano, the same intensity is barely audible
at 60 Hz. In other words, to produce a given loudness sensation at low frequencies,
a much higher intensity (energy flow) is needed than at 1,000 Hz. The intensity [ is
therefore not a good measure of loudness if different frequencies are involved.

In the 1930s, Fletcher and Munson [16] performed a series of loudness-matching
experiments, from which they derived a set of curves of equal loudness. These are
curves in the frequency (f) vs. intensity (/) plane; points on the same curve represent
single continuously sounding pure tones that are perceived as being “equally loud.”
The curves show that, in order to be perceived as equally loud, very low and very high
frequencies require much higher intensities (energy) than frequencies in the middle
range of the spectrum of audible sounds.

The (physical) loudness level L, of a Fletcher-Munson curve is identified with
the value of I at the reference frequency of 1,000 Hz. The unit of L, is the phon. The
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Fletcher-Munson curves range from a loudness level of (0 phons to 120 phons over a
frequency range from 25 to 16,000 Hz.

The loudness level L, still does not measure loudness in an absolute manner: a
tone whose L, is twice as large does not sound twice as loud. Following Rossing [17],
we define the (subjective) loudness level L in terms of L, by the formula

I. = 9(Ly—10)/10

The unit of Ly is a sone. To be effective, loudness scaling must be done on the basis
of sones.

Reasonable approximations in terms of the wave intensity [ or pressure variation
Ap have been given by Stevens [18]

Ly~ C,IV, L, ~ C,(Ap)*>.
The constants Cy and C, depend on the frequency.

So far, we have limited the discussion to pure tones. When two or more tones are
superimposed, many things can happen. If their frequencies are the same, the total
intensity [ is the sum of the individual intensities, and the total perceived loudness
is approximately given by

Lom Of( + I+ - )Y3,

If their frequencies differ, however, the result depends on how well the frequencies are
separated. If the frequencies fall within the eritical band of the center frequency, the
resulting loudness is still directly related to the total intensity, which is the sum of
the individual intensities. The width Af of a critical band centered at a frequency f
is approximely given by the expression [19]

Af 225+ 75 (14 1.4(f/10,000)

In the upper range, the critical band corresponds roughly to a pitch interval smaller
than a minor third. If the frequency spread exceeds the critical band, the subjective
loudness is greater than that obtained by simple intensity summation, increasing with
increasing frequency difference and tending toward a value that is given by the sum
of the individual loudness contributions from adjacent critical bands [20],

Li=Li+Ly+---.

If the frequency difference is very large, we tend to focus on only one of the component
tones and assign the sensation of total loudness to just that single component, so

Ly =max{Lq, Ly,...}.
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Finally, a complex sound whose energy is spread across critical bands sounds much
louder than one with the same amount of energy all in one critical band. A useful
formula for its loudness is [17]

Ly=1Ln,+03> L,

where L, is the loudness of the loudest band and the sum extends over the remaining

bands.

When scaling either a single sound or a number of simultaneous sounds, one must
first determine the loudness level (in sones) and then use the desired loudness level (in
sones) to compute the required scaling factor. The “loudness routines” in DIASS [21]
use the Fletcher-Munson curves to determine the loudness level of the constituent
waves and then use the critical band information to determine the loudness of complex
waves. The scaling involves adjusting the amplitude of every partial in the sound and
checking how partials that belong to different sounds interfere with each other within
critical bands. The complexity of the scaling operation is further increased by the
fact that a new scaling is performed for every segment of the amplitude envelope of
each active sound.
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Box 6. ANL-folds

Composed with a reduced version of MP1 (Manifold.f), ANL-folds exemplifies the

nontraditional way of composing made possible by high-performance computing.

ANL-folds, a 2’30” composition, starts with a rich, low (60 Hz) sound, which
is followed by an irregular ascending arpeggio made out of the partials of the low
sound. The low sound is always the same, but the exact order and duration of the
notes in the arpeggio varies from version to version. The ending mirrors the begin-
ning, with a descending arpeggio and a low 60 Hz tone. This time, too, the order and
duration of the sounds are slightly different in each realization of the composition.
In the middle of the piece, a seven-sound pattern—the Argonne Chime (Fig. 3)—is
heard, always exactly the same and always at exactly the same moment. In all other
sections, however, pitches, durations, attacks, and spectral changes follow stochastic
distributions, and every variant of the composition has its own distinct profile. Even
broad characteristics, such as density of texture, overall dynamics, and use of partic-
ular effects, may vary. These variations derive exclusively from the use of a new seed
for the random number generator each time. The “score” of ANL-folds [22] consists,
therefore, of no more than a collection of sound graphs identified by the seed that
was used for the random number generator.

Manifold compositions, such as the ANL-folds, represent idiomatic ways of using
computers in music composition by mass-producing slightly different and, at the same
time, unique versions of the same archetype. The fact that a version is not performed
in public more than once should stress the ephemeral quality of any musical activity.
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