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AbstractTwo nonsymmetric search directions for semide�nite programming, the XZ and ZXsearch directions, are proposed. They are derived from a nonsymmetric formulationof the semide�nite programming problem. The XZ direction corresponds to the directlinearization of the central path equation XZ = �I; while the ZX direction corre-sponds to ZX = �I . The XZ and ZX directions are well de�ned if both X and Z arepositive de�nite matrices, where X may be nonsymmetric. We present an algorithmusing the XZ and ZX directions alternately following the Mehrotra predictor-correctorframework. Numerical results show that the XZ/ZX algorithm is, in most cases, fasterthan the XZ+ZX method of Alizadeh, Overton, and Haeberly (AHO) while achievingsimilar accuracy.Key Words: semide�nite programming, nonsymmetric, search direction, interior-pointalgorithm, high accuracy.Abbreviated Title: Nonsymmetric directions for SDP.�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.This research was supported by the Mathematical, Information and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.yDepartment of Mathematics, The University of Iowa, Iowa City, IA 52242, USA.



1 IntroductionThe semide�nite programming (SDP) problem has the standard form(P ) minfC �X : Ai �X = bi; i = 1; : : : ;m; X 2 Sn+g; (1.1)and its associated dual problem is(D) maxfbTy : mXi=1 yiAi + Z = C; (y; Z) 2 IRm � Sn+g; (1.2)where C 2 Sn; Ai 2 Sn; i = 1; : : : ;m; b = (b1; : : : ; bm)T 2 IRm are given data. HereSn denotes the set of all n � n symmetric matrices and Sn+ the set of all n � n symmetricpositive semide�nite matrices. G � H is the trace of GTH. For simplicity we assume thatAi; i = 1; : : : ;m, are linearly independent.Under the assumption that both (1.1) and (1.2) have �nite solutions and their optimalvalues are equal, X� and (y�; Z�) are solutions of (1.1) and (1.2) if and only if they aresolutions of the following nonlinear system:Ai �X = bi; i = 1; : : : ;m; (1.3a)mXi=1 yiAi + Z = C; (1.3b)XZ = 0; X; Z 2 Sn+: (1.3c)Most primal-dual interior-point methods for semide�nite programming can be interpretedas iterative algorithms for solving the nonlinear system (1.3). The search directions used bythose interior-point algorithms are associated with di�erent ways of linearizing the centralpath equation XZ = �I; (1.4)where � � 0 is the central path parameter.In order to ensure the symmetry of the iterates Xk and Zk generated by interior-pointmethods, symmetric reformulations of central path equation (1.4) have been developed.Alizadeh, Haeberly, and Overton [1] considered instead of (1.4) the symmetric equationXZ + ZX = 2�I: (1.5)Zhang [11] proposed a generalized symmetrization of the form12[P�1XZP + (P�1XZP )T ] = �I; (1.6)2



where P can be any nonsingular matrix. Recently, Monteiro and Tsuchiya [5] considered thesymmetric central path equationsZ1=2XZ1=2 = �I; X1=2ZX1=2 = �I: (1.7)Linearization of the above symmetric central path equations leads to di�erent search direc-tions. The most commonly used directions are the XZ+ZX or AHO direction [1], the HKMdirection [2, 3, 4], and the NT direction [7], obtained from (1.6) by taking P equal to I, Z1=2,and [Z1=2(Z1=2XZ1=2)�1=2Z1=2]1=2 respectively. Among these directions, the AHO directionhas been observed to achieve the highest accuracy. We also mention that Monteiro andZanj�acomo [6], and Toh [9] recently reported other search directions that can attain highaccuracy.All the above-mentioned search directions involve the linearization of a speci�c symmetriccentral path equation. In this paper, we show that the nonsymmetric central path equation(1.4) can be directly used without any symmetrization and that the resulting nonsymmetricsearch direction can be applied for interior-point algorithms. Our approach is based on thefollowing nonsymmetric formulation of SDP whose solution set contains that of (1.3):Ai �X = bi; i = 1; : : : ;m; (1.8a)mXi=1 yiAi + Z = C; (1.8b)XZ = 0; 0 � X 2 IRn�n; Z 2 Sn+: (1.8c)In (1.8) the notation 0 � X 2 IRn�n means that X is positive semide�nite, but not neces-sarily symmetric. In Section 2, we will prove that if (X�; y�; Z�) is a solution of (1.8), then(sym(X�); y�; Z�) is a solution of (1.3), where we de�ne the operator sym bysym(G) = 12(G +GT ); for any real square matrix G:The same result holds if (1.8c) is replaced byZX = 0; 0 � X 2 IRn�n; Z 2 Sn+: (1.9)The XZ search direction (�X;�y;�Z) is de�ned as the solution of the following linearsystem: X�Z +�XZ = ��I �XZ; (1.10a)Ai ��Z = bi �Ai �X; i = 1; : : : ;m; (1.10b)mXi=1�yiAi +�Z = C � mXi=1 yiAi � Z; (1.10c)3



where � = X � Z=n, and � 2 [0; 1] is a centering parameter. Thus, the XZ direction can beviewed as the result of the direct linearization of the central path equation XZ = �I.Correspondingly the ZX search direction is the solution of the linear system (1.10) with(1.10a) replaced by Z�X +�ZX = ��I � ZX:We will show that the XZ and ZX direction exist provided X and S are positive de�-nite. Extensive numerical experiments show that interior-point methods based on the XZor on the ZX direction alone are not very e�cient. On the other hand, if these directionsare used alternately, the e�ciency is highly improved. Such a method is called an XZ/ZXmethod. Our numerical experiments show that the XZ/ZX method integrated in the Mehro-tra predictor-corrector framework is competitive with the corresponding AHO method. Thetwo methods have similar accuracy. Although our method usually takes about three moreiterations, the CPU time as well as the number of 
oating-point operations is less in mostcases. This is because our algorithm avoids the Lyapunov equations that the AHO methodhas to solve at each iteration.The following notation and terminology are used throughout the paper:IRp: the p-dimensional Euclidean space;IRp+: the nonnegative orthant of IRp;IRp++: the positive orthant of IRp;IRp�q: the set of all p � q matrices with real entries;Sp: the set of all p � p symmetric matrices;Sp+: the set of all p � p symmetric positive semide�nite matrices;Sp++: the set of all p� p symmetric positive matrices;M � 0: M is positive semide�nite;M � 0: M is positive de�nite;�i(M); i = 1; : : : ; n: the eigenvalues of M 2 Sn;�max(M); �min(M): the largest, smallest, eigenvalue of M 2 Sn;G �H � Tr(GTH);k � k: Euclidean norm of a vector and the corresponding norm of a matrix, i.e.,kyk � qPpi=1 y2i ; kMk � maxfkMyk : kyk = 1g ;kMkF � qPpi=1Pqj=1[M ]2ij; M 2 IRp�q: Frobenius norm of a matrix;sym(M) � (M +MT )=2; M 2 IRp�p. 4



2 On the Nonsymmetric Formulation of SDPThe following result is well known.Lemma 2.1 Let X; Z 2 Sn+. Then X � Z = 0 if and only if XZ = ZX = 0.The next lemma shows that (1.8c) can be replaced by (1.9).Lemma 2.2 Let 0 � X 2 IRn�n; Z 2 Sn+. Then XZ = 0 if and only if ZX = 0.Proof. ()). XZ = 0 implies (X +XT ) � Z = 2X � Z = 0. Then from Lemma 2.1, weobtain (X +XT )Z = 0, which yields XTZ = �XZ = 0 and hence ZX = (XTZ)T = 0.((). Similar.Theorem 2.3(a) Every solution of (1.3) is also a solution of (1.8).(b) If (X�; y�; Z�) is a solution of (1.8), then (sym(X�); y�; Z�) is a solution of (1.3).Proof. Part (a) follows directly from the de�nition of (1.8). To prove (b), we need to showonly that (sym(X�); y�; Z�) satis�es (1.3a) and (1.3c). Since Ai; i = 1; : : : ;m are symmetric,we have Ai � sym(X�) = Ai �X� = bi; i = 1; : : : ;m:From X�Z� = 0 and Lemma 2.3 we obtain Z�X� = 0. Therefore,sym(X�)Z� = 12[X�Z� + (Z�X�)T ] = 0:3 On the XZ and ZX Search DirectionsThe linear system (1.10) for the XZ search direction can be written in the following matrixform. 0B@ 0 AT IA 0 0Z 
 I 0 I 
X 1CA0B@vec(�X)�yvec(�Z) 1CA = 0B@vec(Rd)rpvec(Rc)1CA ; (3.1)5



where AT = [vec(A1);vec(A2); :::;vec(Am)];ri = bi �Ai �X; i = 1; : : : ;m; (3.2a)Rd = C � mXi=1 yiAi � Z; (3.2b)rTp = [r1; r2; :::; rm];Rc = ��I �XZ:Here 
 denotes the Kronecker product. For any n�n matrix M, vec(M) denotes the vectorobtained by stacking the columns of M, that is,vec(M) = (m11;m21; : : : ;m1n; : : : ;mnn)T :The linear system (1.10) can be solved by the following procedure:� Compute �y by solving the linear systemM�y = h; (3.3)where M = A(Z�1 
X)ATand h = rp +A[vec(XRdZ�1) � vec(RcZ�1)]:� Compute �Z; �X as follows:�Z = Rd � mXi=1�yiAi;�X = RcZ�1 �X�ZZ�1:Lemma 3.1 If X 2 IRn�n and Z 2 Sn are positive de�nite, then the linear system (1.10)has a unique solution (�X;�y;�Z) 2 IRn�n � IRm � Sn:6



Proof. If the solution (�X;�y;�Z) of (1.10) exists, then the symmetry of �Z is auto-matic from (1.10c). Therefore, it is su�cient to prove that the Schur matrix A(Z�1
X)ATis nonsingular. From the symmetry of Z�1, we haveA(Z�1 
X)AT + [A(Z�1 
X)AT ]T= A[Z�1 
 (X +XT )]AT :The right-hand side of the above equation is positive de�nite because A has full rank andboth Z and X +XT are positive de�nite. Therefore, A(Z�1
X)AT is positive de�nite andhence nonsingular.Remark 3.2 In the Schur complement equation (3.3) the Schur matrix M and the rightside h can be computed by mi;j = Ai � (XAjZ�1) (3.4)and hi = ri +Ai � [(XRdZ�1) +RcZ�1]:Let us consider the complexity of the computation of the XZ direction. Assume that thematrices Ai are not sparse. Then the major computational e�ort consists in forming theSchur matrix M . If formula (3.4) is used, the XZ direction can be computed in 4mn3 +2m2n2 + O(maxfm;ng3) 
ops, since 2m matrix multiplications and m2 inner products areinvolved. Therefore, the complexity of computing the XZ direction by using formula (3.4) is4mn3 + 2m2n2 +O(maxfm;ng3):Remark 3.3 The complexity of computing most commonly used search directions for SDPis of the form �mn3 + �m2n2 +O(maxfm;ng3); (3.5)where � and � are two positive constants (see [6, 9]). We note that the third term in (3.5)cannot be neglected because sometimes it may contribute signi�cantly to the complexity,especially when extra matrix factorizations are used. We also note that the computation ofthe XZ direction needs the least number of matrix factorizations. This feature is also sharedby the HKM direction.Remark 3.4 Theoretically, the complexity of computing the XZ direction can be reducedto 3mn3 + 2m2n2 +O(maxfm;ng3);7



by using the Cholesky factorization Z = LLT and the following formula, which is equivalentto (3.4): mi;j = (L�1Ai) � (L�1AiXT ): (3.6)Since L�1 is triangular, the computation of L�1Ai; i = 1; : : : ;m takes mn3+O(maxfm;ng3)
ops. After L�1Ai; i = 1; : : : ;m; is obtained, the computation of L�1AiXT involves mmatrix multiplications, and thus needs 2mn3 + O(maxfm;ng3) 
ops. Finally, m2 innerproducts are needed, thus accounting for 2m2n2 + O(maxfm;ng3) 
ops. Therefore, thecomputation of the XZ direction with formula (3.6) takes 3mn3 + 2m2n2 + O(maxfm;ng3
ops. However, in our Matlab implementation, we use (3.4) instead of (3.6) because theCPU time often increases when (3.6) is applied. A similar observation was made by Toh [9].Nevertheless, (3.6) may be useful in other computational environments.Remark 3.5 The computation of the ZX direction is similar to that of the XZ direction.Actually, (�X;�y;�Z) is an XZ direction at (X; y; Z) if and only if (�XT ;�y;�Z) is aZX direction at (XT ; y; Z).4 The XZ/ZX MethodThe algorithm described below is an XZ/ZX method because it uses the XZ and ZX searchdirections alternately. It follows the Mehrotra predictor-corrector algorithmic framework ofTodd, Toh, and T�ut�unc�u [8].Algorithm 4.1 Select a starting point (X0; y0; Z0) 2 IRn�n� IRn�Sn such thatX and Z are positive de�nite. Choose an exponent ! and a constant 
 2 (0; 1).Repeat for k = 0; 1; 2; : : : :[ For simplicity, let (X; y; Z) = (Xk; yk; Zk) and (X+; y+; Z+) = (Xk+1; yk+1; Zk+1).](Predictor step)� Compute the predicted direction (�X; �y; �Z) by solving the linear system(1.10) with � = 0.� Determine the parameter �:� :=  (X +  �X) � (Z + ��Z)X � Z !! ; (4.1)8



where  := �
min(�
; �min(sym(X)�1sym(�X)) ; (4.2a)� := �
min(�
; �min(Z�1�Z)): (4.2b)(Corrector step)� Compute the corrected direction (�X;�y;�Z) by solving linear system (1.10)with � de�ned by (4.1) and the right side of (1.10a) modi�ed as��I �XZ + �X�Z:� Compute  and � from (4.2) with �X; �Z replaced by �X;�Z.� Update (X+; y+; Z+) = (XT ; y; Z) + ( �XT ; ��y; ��Z):In our numerical implementation, we choose 
 = 0:98 and set ! equal to 2 for the AHOmethod and 1 for others.Remark 4.2 In Algorithm 4.1, through the updatingXk+1 := [Xk +  k�Xk]T ;we actually use the XZ and ZX directions alternately. More speci�cally, Algorithm 4.1 isequivalent to an algorithm using the XZ and ZX directions alternately with the iterationsequence f( ~Xk; yk; Zk)g; where ~Xk = Xk for k = 2p�1, and ~Xk = (Xk)T for k = 2p; p � 1:This property can be veri�ed by a simple linear algebra manipulation.5 Numerical ResultsWe thank Toh, Todd, and T�ut�unc�u for making their Matlab code SDPT3 [10] available tous. We used their code for running the Mehrotra algorithm using the AHO, HKM, and NTsearch directions. We tested the following problems:1. random SDP problem with n = 100; m = 50,2. random SDP problem with n = 50; m = 100,9



3. random SDP problem with n = 100; m = 100,4. the matrix norm minimization problem with n = 100; m = 30,5. the problem of computing the Chebyshev polynomial of a matrix with n = 100 m = 31,6. the Max-Cut problem with n = 200; m = 200,7. the Educational Testing Problem (ETP) with n = 110; m = 55, and8. the logarithmic Chebyshev approximation problem with n = 300;m = 50.All the problems are taken from [8] and [10]. The reader is referred to [8] and [10] fordetails on the problems and the computation of the AHO, HKM and NT search directions.We performed our numerical experiment using Matlab 5.0. The computations were carriedout on the IBM RS/6000 SP system at Argonne National Laboratory.We tested ten random instances for each problem. We stopped the computation wheneither no progress was made (due to numerical instability) or the number of iterations reached50. The average results are given in Tables 5.1 and 5.2.From the results displayed in the two tables we observe the following:� The XZ/ZX method and the AHO method achieve higher accuracy than the othermethods.� In most cases the XZ/ZX method is faster than the AHO method.� The XZ/ZX method takes about three more iterations than the AHO method, withthe exception of the ETP problem where the XZ/ZX method takes signi�cantly moreiterations.� With the exception of the ETP problem the XZ/ZX method requires signi�cantly fewer
ops per iteration than the AHO method and only slightly more 
ops than the HKMmethod which requires the fewest 
ops per iteration of the methods tested.
10



Table 5.1: Computational results for varying classes of SDP. Ten random instances of eachclass are tested. Note that the infeasibility of all problems is reduced to a level of 10�13,except for the last problem, where 10�12 is attained.Average Accuracy Achieved Average CPU Time (min.)by jmean(log10(X � Z))j to Attain the AccuracyAHO XZ/ZX HKM NT AHO XZ/ZX HKM NTRandomn = 100 8.76 8.86 7.41 7.24 4.99 4.28 3.10 2.98m = 50Randomn = 50 9.37 9.41 7.61 7.60 4.06 4.36 2.52 2.38m = 100Randomn = 100 8.50 8.52 7.49 7.22 14.81 14.23 9.40 8.81m = 100Norm min.n = 100 12.52 12.56 9.64 9.19 2.72 2.26 1.66 1.79m = 30Cheby. Poly.n = 100 14.25 13.99 11.17 10.64 8.34 5.87 4.51 4.77m = 31Maxcutn = 200 11.05 10.50 7.74 7.43 65.20 28.73 21.82 22.84m = 200ETPn = 110 9.16 7.95 7.37 7.11 3.00 3.32 2.27 2.34m = 55Log. Cheby.n = 300 10.63 10.78 10.39 10.43 4.98 3.00 1.94 1.99n = 50 11



Table 5.2: Average results for the number of iterations and the 
ops per iteration used toachieve the accuracy listed in Table 5.1.Average No. of Iterations Average M
opsto Achieve the Accuracy per IterationAHO XZ/ZX HKM NT AHO XZ/ZX HKM NTRandomn = 100 13.4 16.1 15.4 14.2 618 299 275 300m = 50Randomn = 50 14.7 17.5 15.8 14.9 188 111 86 89m = 100Randomn = 100 14.2 17.0 16.4 15.2 1253 652 553 578m = 100Norm min.n = 100 14.3 17.8 15.9 15.7 387 188 178 205m = 30Cheby. Poly.n = 100 15.6 19.1 16.5 16.2 1848 947 902 988m = 31Maxcutn = 200 15.6 17.7 15.7 15.7 12680 3419 3405 3616m = 200ETPn = 110 20.9 31.5 24.9 23.9 103 167 167 189m = 55Log. Cheby.n = 300 16.0 18.1 17.7 17.6 2.71 2.16 1.45 1.48m = 50 12
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