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Abstract

Two nonsymmetric search directions for semidefinite programming, the X7 and ZX
search directions, are proposed. They are derived from a nonsymmetric formulation
of the semidefinite programming problem. The X7 direction corresponds to the direct
linearization of the central path equation XZ = vI, while the ZX direction corre-
sponds to ZX = vI. The X7 and ZX directions are well defined if both X and Z are
positive definite matrices, where X may be nonsymmetric. We present an algorithm
using the X7 and ZX directions alternately following the Mehrotra predictor-corrector
framework. Numerical results show that the X7Z/ZX algorithm is, in most cases, faster
than the XZ+7X method of Alizadeh, Overton, and Haeberly (AHO) while achieving

similar accuracy.
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1 Introduction

The semidefinite programming (SDP) problem has the standard form

(P) min{CeX:A;eX =0b,1=1,...,m, X €S}, (1.1)
and its associated dual problem is
(D) max{bTy : S yidi+Z=0C, (y,Z) e R™ x 8}, (1.2)
=1

where C € 8", A; € 8", i=1,....m, b= (b,....b,)T € R™ are given data. Here
S" denotes the set of all n x n symmetric matrices and S} the set of all n X n symmetric
positive semidefinite matrices. G @ H is the trace of GT H. For simplicity we assume that
A;y 1 =1,...,m, are linearly independent.

Under the assumption that both (1.1) and (1.2) have finite solutions and their optimal
values are equal, X* and (y*,Z*) are solutions of (1.1) and (1.2) if and only if they are
solutions of the following nonlinear system:

Ao X =b,1=1,...,m, (1.3a)
Y yidi+Z=0C, (1.3b)
=1

XZ=0, X, ZeS (1.3¢)

Most primal-dual interior-point methods for semidefinite programming can be interpreted
as iterative algorithms for solving the nonlinear system (1.3). The search directions used by
those interior-point algorithms are associated with different ways of linearizing the central
path equation

X7Z =vl, (1.4)

where v > 0 is the central path parameter.

In order to ensure the symmetry of the iterates X* and Z* generated by interior-point
methods, symmetric reformulations of central path equation (1.4) have been developed.
Alizadeh, Haeberly, and Overton [1] considered instead of (1.4) the symmetric equation

XZ+ 72X =2wl. (1.5)

Zhang [11] proposed a generalized symmetrization of the form

1
§P4X2P+4P*XZPVWZVL (1.6)



where P can be any nonsingular matrix. Recently, Monteiro and Tsuchiya [5] considered the
symmetric central path equations

VX7V =1, XVPZX'VP =yl (1.7)

Linearization of the above symmetric central path equations leads to different search direc-
tions. The most commonly used directions are the XZ+7X or AHO direction [1], the HKM
direction [2, 3, 4], and the NT direction [7], obtained from (1.6) by taking P equal to I, Z'/2,
and [ZVH( 722X 72712 72|02 respectively. Among these directions, the AHO direction
has been observed to achieve the highest accuracy. We also mention that Monteiro and
Zanjacomo [6], and Toh [9] recently reported other search directions that can attain high
accuracy.

All the above-mentioned search directions involve the linearization of a specific symmetric
central path equation. In this paper, we show that the nonsymmetric central path equation
(1.4) can be directly used without any symmetrization and that the resulting nonsymmetric
search direction can be applied for interior-point algorithms. Our approach is based on the
following nonsymmetric formulation of SDP whose solution set contains that of (1.3):

Ao X =b,1=1,...,m, (1.8a)
Yowidi+Z=C, (1.8b)
=1

XZ=0, 0XXeR"™, ZeS]. (1.8¢)

In (1.8) the notation 0 < X € IR™" means that X is positive semidefinite, but not neces-
sarily symmetric. In Section 2, we will prove that if (X*,y*, Z*) is a solution of (1.8), then
(sym(X™),y*, Z*) is a solution of (1.3), where we define the operator sym by

sym(G) = %(G + GT),  for any real square matrix G.
The same result holds if (1.8¢) is replaced by
ZX =0, 02X eR™", ZeS}. (1.9)
The X7 search direction (AX, Ay, AZ) is defined as the solution of the following linear

system:

XAZ+AXZ =opl — X7, (1.10a)
AZ'.AZ:Z)Z'—AZ'.X, izl,...,m, (110b)
ZAyZAZ—I_AZ: C—ZyZAZ—Z, (110C)



where p = X o Z/n, and o € [0,1] is a centering parameter. Thus, the X7 direction can be
viewed as the result of the direct linearization of the central path equation X7 = v1.
Correspondingly the ZX search direction is the solution of the linear system (1.10) with
(1.10a) replaced by
IANX+AZX =opl — ZX.

We will show that the X7 and ZX direction exist provided X and S are positive defi-
nite. Extensive numerical experiments show that interior-point methods based on the X7
or on the ZX direction alone are not very efficient. On the other hand, if these directions
are used alternately, the efficiency is highly improved. Such a method is called an XZ/7ZX
method. Our numerical experiments show that the X7/ZX method integrated in the Mehro-
tra predictor-corrector framework is competitive with the corresponding AHO method. The
two methods have similar accuracy. Although our method usually takes about three more
iterations, the CPU time as well as the number of floating-point operations is less in most
cases. This is because our algorithm avoids the Lyapunov equations that the AHO method
has to solve at each iteration.

The following notation and terminology are used throughout the paper:

IR?: the p-dimensional Euclidean space;

IR® : the nonnegative orthant of IR”;

IRE . : the positive orthant of R”;

IR?*9: the set of all p x ¢ matrices with real entries;

S?: the set of all p X p symmetric matrices;

S%: the set of all p x p symmetric positive semidefinite matrices;
SY.: the set of all p x p symmetric positive matrices;

M > 0: M is positive semidefinite;

M > 0: M is positive definite;

Ai(M), 1 =1,...,n: the eigenvalues of M € §™;

Amax(M), Amin(M): the largest, smallest, eigenvalue of M € S™;
Ge H=Tr(GTH);

|| - ||: Euclidean norm of a vector and the corresponding norm of a matrix, i.e.,

loll = Syt 1M = max{|[My] : lyll = 1} ;

M| = \/Zle I [M]5, M € RP*?: Frobenius norm of a matrix;

¥Rl

sym(M) = (M + M?)/2. M € RP.




2 On the Nonsymmetric Formulation of SDP

The following result is well known.
Lemma 2.1 Let X, Z € S. Then X o Z =0 if and only of XZ = ZX = 0.

The next lemma shows that (1.8¢) can be replaced by (1.9).

Lemma 2.2 Let 0 X X € R"™", Z € S}. Then XZ =0 if and only if ZX = 0.

Proof. (=). X7 = 0 implies (X + XT) e Z = 2X ¢ Z = 0. Then from Lemma 2.1, we
obtain (X + X7T)Z = 0, which yields XT7 = —X7 = 0 and hence ZX = (XTZ)T = 0.
(«<). Similar. |
Theorem 2.3

(a) Every solution of (1.3) is also a solution of (1.8).

(b) If (X*,y*, Z%) is a solution of (1.8), then (sym(X™),y", Z7) is a solution of (1.3).
Proof. Part (a) follows directly from the definition of (1.8). To prove (b), we need to show
only that (sym(X™*),y*, Z*) satisfies (1.3a) and (1.3c). Since A;,7 = 1,...,m are symmetric,

we have

Ajesym(X* )= A, e X" = i=1,...,m.
From X*7Z* =0 and Lemma 2.3 we obtain Z*X* = 0. Therefore,

1
sym(X*)Z* = §[X*Z* +(Z* X = 0.

3 On the XZ and ZX Search Directions

The linear system (1.10) for the X7 search direction can be written in the following matrix

forn ( 0 AT I ) (Vec(AX)> (Vec(Rd)>
A0 0 Ay = . (3.1)
Zel 0 10X vec(AZ) vec(R,)
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where

AT = [vec(Ay), vec(Ay), ..., vec(A,,)],

Ti:bi—Ai.X,izl,...,m, (32&)
Rd = C — ZyZAZ — Z, (32b)
=1
rg = [r1,72, 0y "l

R.=opl — X7Z.

Here @ denotes the Kronecker product. For any n x n matrix M, vec(M) denotes the vector
obtained by stacking the columns of M, that is,

VeC(M) = (mn, Moty .oy Mip, ..., mm)T.

The linear system (1.10) can be solved by the following procedure:

o Compute Ay by solving the linear system

MAy = h, (3.3)
where
M= A(Z7' @ X)AT
and

h=r,+ Alvec(XR;Z™") — vec(R.Z™")].
o Compute AZ, AX as follows:
AZ = Rq—)Y_ AyA,

=1

AX = RZ ' XAZzZ 7%

Lemma 3.1 If X € R™" and Z € S™ are positive definite, then the linear system (1.10)
has a unique solution (AX, Ay, AZ) € R™" x R™ x §".



Proof. 1f the solution (AX, Ay, AZ) of (1.10) exists, then the symmetry of AZ is auto-
matic from (1.10c). Therefore, it is sufficient to prove that the Schur matrix A(Z~1 @ X)AT
is nonsingular. From the symmetry of Z=1, we have

AZ7' 0 X)AT +[A(Z7 @ X)AT]T
= AlZ7'e (X + XT)AT .

The right-hand side of the above equation is positive definite because A has full rank and
both Z and X + X7T are positive definite. Therefore, A(Z~! @ X)AT is positive definite and

hence nonsingular. |

Remark 3.2 In the Schur complement equation (3.3) the Schur matrix M and the right
side h can be computed by
m;; = AZ L] (XA]‘Z_I) (34)

and

hi =r;, + AZ L] [(XRdZ_l) + RCZ_I].

Let us consider the complexity of the computation of the X7 direction. Assume that the
matrices A; are not sparse. Then the major computational effort consists in forming the
Schur matrix M. If formula (3.4) is used, the XZ direction can be computed in 4mn® +
2m*n? + O(maz{m,n}?) flops, since 2m matrix multiplications and m? inner products are
involved. Therefore, the complexity of computing the X7 direction by using formula (3.4) is

4mn® + 2m*n? + O(max{m, n}3)

Remark 3.3 The complexity of computing most commonly used search directions for SDP
is of the form

amn® + Bm*n® + O(max{m,n}?), (3.5)

where o and 3 are two positive constants (see [6, 9]). We note that the third term in (3.5)
cannot be neglected because sometimes it may contribute significantly to the complexity,
especially when extra matrix factorizations are used. We also note that the computation of
the X7 direction needs the least number of matrix factorizations. This feature is also shared

by the HKM direction.
Remark 3.4 Theoretically, the complexity of computing the X7 direction can be reduced
to

3mn® + 2m*n? + O(max{m, n}?’),
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by using the Cholesky factorization Z = LLT and the following formula, which is equivalent
to (3.4):

mi; = (L7'A;) o (LT A XT). (3.6)
Since L~! is triangular, the computation of L™'A;, i = 1,...,m takes mn®+O(max{m,n}?)
flops. After L7'A;, ¢ = 1,...,m, is obtained, the computation of LA, X7 involves m
matrix multiplications, and thus needs 2mn® + O(max{m,n}?) flops. Finally, m? inner
products are needed, thus accounting for 2m?n? + O(max{m,n}?) flops. Therefore, the
computation of the X7 direction with formula (3.6) takes 3mn® + 2m*n? + O(maz{m,n}?
flops. However, in our Matlab implementation, we use (3.4) instead of (3.6) because the
CPU time often increases when (3.6) is applied. A similar observation was made by Toh [9].
Nevertheless, (3.6) may be useful in other computational environments.

Remark 3.5 The computation of the ZX direction is similar to that of the X7 direction.
Actually, (AX, Ay, AZ) is an XZ direction at (X,y, Z) if and only if (AXT, Ay,AZ) is a
7X direction at (XT,y, 7).

4 The XZ/ZX Method

The algorithm described below is an XZ7/ZX method because it uses the X7 and ZX search
directions alternately. It follows the Mehrotra predictor-corrector algorithmic framework of

Todd, Toh, and Titiinci [8].
Algorithm 4.1 Select a starting point (X°,y°, Z7°) € R™™ x R™ x 8" such that
X and 7 are positive definite. Choose an exponent w and a constant v € (0, 1).

Repeat for k=10,1,2,...:
[ For simplicity, let (X,y, Z) = (X*,y*, Z%) and (X7, y*, Z%) = (XHH yiH, 7040 ]
(Predictor step)
o Compute the predicted direction (6X,0y,07) by solving the linear system
(1.10) with o = 0.

o Determine the parameter o:

- ((X+¢5X) . (Z+¢5Z))W7

Xeoe/



where

. - a
Vo= min (—7, Apn(sym(X)-'sym(6X))’ (4.2)

L -
T min (=7, Amin(Z7167)) (4.2b)

(Corrector step)

o Compute the corrected direction (AX, Ay, AZ) by solving linear system (1.10)
with o defined by (4.1) and the right side of (1.10a) modified as

opl — X7 +6X67Z.

o Compute v and ¢ from (4.2) with 6X,67 replaced by AX,AZ.
o Update (Xt yt, Z%) = (XT,y, Z) + (YAXT, Ay, 9AZ).

In our numerical implementation, we choose v = 0.98 and set w equal to 2 for the AHO
method and 1 for others.

Remark 4.2 In Algorithm 4.1, through the updating
XM= [XF 4 AXHT,

we actually use the X7 and ZX directions alternately. More specifically, Algorithm 4.1 is
equivalent to an algorithm using the X7 and 7ZX directions alternately with the iteration
sequence {()N(k, y*, Z*)}, where Xk = X*for k =2p—1, and X* = (XM for k= 2p, p> 1.
This property can be verified by a simple linear algebra manipulation.

5 Numerical Results

We thank Toh, Todd, and Titiincii for making their Matlab code SDPT3 [10] available to
us. We used their code for running the Mehrotra algorithm using the AHO, HKM, and NT
search directions. We tested the following problems:

1. random SDP problem with n = 100, m = 50,

2. random SDP problem with n = 50, m = 100,
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3. random SDP problem with n = 100, m = 100,

4. the matrix norm minimization problem with n = 100, m = 30,

5. the problem of computing the Chebyshev polynomial of a matrix with n = 100 m = 31,
6. the Max-Cut problem with n = 200, m = 200,

7. the Educational Testing Problem (ETP) with n = 110, m = 55, and

8. the logarithmic Chebyshev approximation problem with n = 300, m = 50.

All the problems are taken from [8] and [10]. The reader is referred to [8] and [10] for
details on the problems and the computation of the AHO, HKM and NT search directions.
We performed our numerical experiment using Matlab 5.0. The computations were carried
out on the IBM RS/6000 SP system at Argonne National Laboratory.

We tested ten random instances for each problem. We stopped the computation when
either no progress was made (due to numerical instability) or the number of iterations reached
50. The average results are given in Tables 5.1 and 5.2.

From the results displayed in the two tables we observe the following:

e The X7Z/7X method and the AHO method achieve higher accuracy than the other
methods.

e In most cases the X7/7ZX method is faster than the AHO method.

e The X7/7X method takes about three more iterations than the AHO method, with
the exception of the ETP problem where the X7 /7ZX method takes significantly more
iterations.

e With the exception of the ETP problem the X7/7ZX method requires significantly fewer
flops per iteration than the AHO method and only slightly more flops than the HKM
method which requires the fewest flops per iteration of the methods tested.
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Table 5.1: Computational results for varying classes of SDP. Ten random instances of each
class are tested. Note that the infeasibility of all problems is reduced to a level of 10713,
except for the last problem, where 10712 is attained.

Average Accuracy Achieved Average CPU Time (min.)
by |mean(log;,(X e 7)) to Attain the Accuracy

AHO | XZ/7ZX | HKM | NT || AHO | XZ/ZX | HKM | NT

Random
n = 100 8.76 8.86 7.41 7.24 4.99 4.28 3.10 2.98
m = 50
Random
n = 5H0 9.37 9.41 7.61 7.60 4.06 4.36 2.52 2.38
m = 100
Random
n = 100 8.50 8.52 7.49 7.22 | 14.81 14.23 9.40 8.81
m = 100
Norm min.
n = 100 12.52 | 12.56 9.64 9.19 2.72 2.26 1.66 1.79
m = 30
Cheby. Poly.
n = 100 14.25 | 13.99 11.17 | 10.64 || 8.34 5.87 4.51 4.77
m = 31
Maxcut
n = 200 11.05 | 10.50 7.74 7.43 | 65.20 | 28.73 21.82 | 22.84
m = 200
ETP
n =110 9.16 7.95 7.37 7.11 3.00 3.32 2.27 2.34
m = Hb
Log. Cheby.
n = 300 10.63 | 10.78 10.39 | 10.43 || 4.98 3.00 1.94 1.99
n = 50
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Table 5.2: Average results for the number of iterations and the flops per iteration used to
achieve the accuracy listed in Table 5.1.

Average No. of Iterations Average Mflops
to Achieve the Accuracy per Iteration
AHO | XZ/ZX | HKM | NT || AHO | XZ/ZX | HKM | NT
Random
n = 100 13.4 16.1 154 | 14.2 || 618 299 275 | 300
m = 50
Random
n =50 14.7 17.5 15.8 | 14.9 | 188 111 86 89
m = 100
Random
n =100 14.2 17.0 16.4 | 15.2 | 1253 652 553 | 578
m = 100
Norm min.
n = 100 14.3 17.8 15.9 | 15.7 | 387 188 178 | 205
m = 30
Cheby. Poly.
n =100 15.6 19.1 16.5 | 16.2 || 1848 947 902 | 988
m = 31
Maxcut
n = 200 15.6 17.7 157 | 15.7 | 12680 | 3419 3405 | 3616
m = 200
ETP
n =110 20.9 31.5 24.9 239 103 167 167 | 189
m = 55
Log. Cheby.
n = 300 16.0 18.1 7.7 | 176 | 2.71 2.16 1.45 | 1.48
m = 50
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