
Remote I/O: Fast Access to Distant StorageIan Foster, David Kohr, Jr., Rakesh Krishnaiyer, and Jace MogillMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439AbstractAs high-speed networks make it easier to use distributed resources, it becomes increasinglycommon that applications and their data are not colocated. Users have traditionally addressedthis problem by manually staging data to and from remote computers. We argue instead for anew remote I/O paradigm in which programs use familiar parallel I/O interfaces to access remote�lesystems. In addition to simplifying remote execution, remote I/O can improve performancerelative to staging by overlapping computation and data transfer or by reducing communicationrequirements. However, remote I/O also introduces new technical challenges in the areas of porta-bility, performance, and integration with distributed computing systems. We propose techniquesdesigned to address these challenges and describe a remote I/O library called RIO that we havedeveloped to evaluate the e�ectiveness of these techniques. RIO addresses issues of portability byadopting the quasi-standard MPI-IO interface and by de�ning a RIO device and RIO server withinthe ADIO abstract I/O device architecture. It addresses performance issues by providing tradi-tional I/O optimizations such as asynchronous operations and through implementation techniquessuch as bu�ering and message forwarding to o�oad communication overheads. RIO uses the Nexuscommunication library to obtain access to con�guration and security mechanisms provided by theGlobus wide area computing toolkit. Microbenchmarks and application experiments demonstratethat our techniques achieve acceptable performance in most situations and can improve turnaroundtime relative to staging.1 IntroductionImprovements in networking and software infrastructure are making it easier for programmers toexecute programs at remote sites and to write programs that use resources at multiple locations.One consequence of remote execution is that a program may be geographically separated from the�les that it accesses. This separation can signi�cantly increase conceptual and temporal overheadsin program development and execution. Ideally, we would like to enable programs to access datain a manner independent of data and program location. In our experience, the key challenges thatmust be addressed before we can provide this capability are portability (across di�erent networks and�lesystems), performance (in potentially high-latency, low-bandwidth, heterogeneous networks), andintegration into distributed computing environments.Historically, the high-performance computing community has achieved remote data access by man-ually staging input data from its home �lesystem to the computer where a program is to execute; thisprocess is then reversed for output data. However, this approach is clumsy, prevents overlappingof communication and computation, and can result in excessive data transfer in situations where aprogram accesses only part of a �le. Distributed �lesystems [15] also support remote data access,but performance and administrative problems often render them inappropriate for high-performancecomputing. 1



We propose a new approach to remote data access in which programs use remote I/O librariesto access �les located on remote �lesystems in a manner that is independent of physical location.In contrast to distributed �lesystems, remote I/O libraries use parallel I/O interfaces and focus onhigh-performance transfer. We believe that this narrow focus can allow remote I/O libraries to meetrequirements for performance, 
exibility, and convenience without introducing undue complexity intheir implementation.As part of an investigation of the remote I/O concept, we have designed and implemented a remoteI/O library called RIO. RIO achieves portability by adopting the I/O interface de�ned by MPI-IO [6]and by exploiting features of the ADIO abstract I/O device [21], providing a RIO device that translatesADIO calls into communications to remote RIO servers. Performance issues are addressed by the useof dedicated forwarder nodes, bu�ering, and support for asynchronous and collective operations. RIOuses the Nexus communication library [10] for client/server communication, hence providing access tocon�guration and security mechanisms provided by the Globus wide area computing toolkit.We have performed experiments in a controlled multicomputer environment to evaluate the ef-fectiveness of our techniques. Microbenchmarks demonstrate that RIO can drive networks at closeto their peak performance; these experiments also allow us to quantify the bene�ts of optimizationssuch as bu�ering. Application experiments illustrate the feasibility of remote I/O in a representativeapplication. In particular, we demonstrate enhanced performance relative to staging.The principal contributions of this article are fourfold. Speci�cally, we� introduce the concept of remote I/O, explain why it is important, and motivate its requirements;� discuss networking issues that make remote I/O challenging, and propose library facilities thataddress these challenges;� present experimental results that demonstrate the e�cacy of our design techniques, and indicatewhere more work is needed; and� show how to integrate a remote I/O library with mechanisms that support operation in a dis-tributed environment.2 The Remote I/O ProblemWe �rst expand upon why remote I/O is important, discuss various networking issues that remoteI/O libraries must address, and review other approaches to the remote I/O problem.2.1 MotivationRemote computational or data resources may be used because they provide a unique capability (e.g.,a supercomputer or database) or simply because they are available (e.g., in a computational grid thatuses a load-sharing system such as Condor [14] or LSF to map tasks to idle resources). In either case,�lesystems may be geographically separated from computers. This need to access \remote" �lesystemsarises frequently even within a single site, as it is rare that all disks are crossmounted.Programmers have traditionally resorted to staging techniques when a program and its data arenot colocated. However, there can be signi�cant performance, 
exibility, and convenience advantagesto having a uniform interface to local and nonlocal �lesystems.2



Performance. Remote I/O can reduce total wall-clock time by allowing overlapping of data transferand computation. In a best-case situation, overlapping can reduce execution time by a factor of two.For example, a climate model may require 8 hours to perform a 10-year simulation and produce 29 GBof output data, which at 10 Mb/sec takes 6.4 hours to transfer. If, on the other hand, computationand communication can be overlapped, total turnaround time is reduced from 14.4 to 8 hours.Flexibility. Remote I/O provides a higher-level speci�cation of I/O operations than does stagingand hence permits greater 
exibility in terms of how I/O is performed. For example, a program mayneed to access just selected components of remote data sets. If the identity of those data elements iscomputed during program execution, a staging approach often transfers more data than is necessary,wasting both disk and network resources. In contrast, a remote I/O library can choose to stage(i.e., prefetch) the entire dataset or transfer only required elements directly to memory, dependingon available resources. Hibbard et al. [11] prototyped the latter strategy in the I-WAY networkingexperiment, fetching data from a remote IBM SP data server only when a user zoomed in on aparticular area within a virtual reality browser.Convenience. Remote I/O allows programs to execute at remote sites without programmermanage-ment of data transfer. In contrast, staging can require that the user learn details of remote �lesystems,transfer data among potentially complex directory hierarchies, translate data formats, and managemultiple copies of their datasets. Norman et al. [17] report that such issues were a major source ofcomplexity in their distributed simulations of galactic collisions. In a di�erent area, conversations withusers reveal that some are uncomfortable leaving sensitive data in local �le systems, but are happyto transfer such data over networks to an application, perhaps over a secure network. Remote I/Omakes this transfer possible without requiring that data be encrypted prior to writing it to �les at aremote site.2.2 Wide-Area Computing IssuesRemote I/O libraries, like parallel I/O libraries, must orchestrate e�ciently the transfer of data from auser application running on multiple processors to a �lesystem. Remote I/O is complicated, however,by several issues not encountered in typical parallel computing environments.Performance Characteristics. A remote I/O library running over a continental network can seea combined roundtrip communication and I/O latency of 100 msec. This is three to four orders ofmagnitude more than the roundtrip communication time found in a typical parallel computer (tens orhundreds of microseconds) and one order of magnitude more than the typical time for an I/O node toperform a disk access on behalf of a compute node (�10 msec). In addition, the bandwidth o�ered bythe network over which a remote I/O library operates may be (but is not always) signi�cantly lowerthan the internal communication network of a parallel computer and/or the remote �lesystem. Theconnectivity of the remote I/O network is also often low (e.g., a single �ber). In contrast, parallelcomputers typically o�er many paths from processors to disks.Heterogeneity and Con�guration. The computer, network, and storage systems used by a remoteI/O system often include a heterogeneous mixture of hardware, software, and protocols. In suchenvironments, selecting optimal I/O strategies is more di�cult than in the relatively homogeneousenvironments in which parallel I/O libraries typically operate. A related issue is that the qualityof service (QoS: e.g., average bit rate, or reliability) o�ered by the remote I/O network may beextremely variable, in which case we may require specialized techniques to shield an application from3



this variability, for example, bu�ering, or creating local copies to avoid loss of data over unreliablelinks. Alternatively, QoS may be controllable by a remote I/O library or user application, in whichcase accurate estimates of QoS requirements can improve both overall application performance andresource utilization.Naming and Security. Remote I/O systems often connect computers and �lesystems located indi�erent administrative domains. This causes di�culties for both naming and security. We require aglobal name space for �les, but di�erent sites will use di�erent �lesystem structures. While distributed�lesystems such as AFS create a global structure, we may not have that luxury. Resource Locators(URLs) represent an alternative approach. In addition, authentication, authorization, and privacy allbecome problematic issues in a distributed environment.2.3 Approaches to Remote Data AccessPast approaches to the remote data access problem fall into three general categories: distributed�lesystems, parallel �lesystems, and remote execution systems.Traditional distributed �lesystems (NFS [18] to some extent, and AFS [15] and DFS to a greaterextent) provide a convenient interface for remote I/O: a uniform �le name space is provided, and �lesare accessed with conventional read and write statements. However, these systems typically do notachieve good performance for high-performance computing workloads: they were designed primarilyfor a di�erent class of users (e.g., software developers). For example, NFS bandwidth over an EthernetLAN may be 1-3 Mb/sec, but an optimized communication library can achieve close to 10 Mb/sec. Thelack of explicit interfaces for collective I/O also hinders performance optimization. In addition, theyintroduce signi�cant implementation complexity and administrative overhead, which tend to hindertheir widespread deployment. Web-based distributed �le systems [1, 24] reduce implementation andadministration costs but do not improve performance. Data servers such as DPSS [22] and MARS [4]use networked disk servers to provide high-speed streaming access to distributed data, but do notsupport access from parallel programs.Parallel �lesystems (e.g., [16, 7]) and I/O libraries (e.g., [3, 6, 19]) address performance issuesby de�ning I/O interfaces that allow identi�cation and optimization of collective I/O operations,by incorporating specialized bu�ering techniques, by supporting asynchronous operations, and byincorporating techniques (e.g., disk-directed [13], server-directed [19], and two-phase [20] I/O) fortransferring data e�ciently from compute nodes to disks. However, these systems are not designed toaddress the complex con�gurations, unique performance tradeo�s, and security problems that arise inwide area environments.Remote execution systems (Condor [14] is one example) redirect Unix �lesystem calls to a home�lesystem, hence enabling location-independent execution of tasks scheduled to remote computers.However, these systems do not support parallel I/O interfaces or access to parallel �lesystems.In summary, what is lacking is an approach that provides the high-performance characteristics ofparallel I/O libraries while addressing the unique requirements of networked environments. This isthe goal of our remote I/O work.3 The RIO Remote I/O LibraryTo support our investigations of remote I/O, we have developed a remote I/O library called RIO. Inthis section, we describe how RIO addresses issues of portability, performance, and integration withwide area computing environments. 4



R I O
device

Application Programs RIO server

A D I O

P I O F S

PIOFS
Device

NFS
device

R I O
device

A D I O

MPI-IO

Figure 1: RIO architecture, showing how RIO layers below ADIO in the client and above ADIO inthe server3.1 PortabilityAn I/O library is most useful if it supports both a wide range of application I/O patterns and multiple�lesystems. It is not our goal to innovate in the area of I/O interfaces, and so we adopt the quasi-standard MPI-IO [6]. This interface incorporates support for collective operations, asynchronousoperations, and other I/O abstractions that have been found useful for high-performance parallel I/O.Whether the requirements of remote I/O can motivate modi�cations or extensions to the MPI-IOinterface remains to be seen, but our initial approach is to use MPI-IO unchanged.Portability is a challenging problem in a remote I/O library because there may be no commonalityin architecture between the computer on which an application runs and the potentially many remote�lesystems that the program accesses. We address the portability problem by exploiting features ofthe ADIO implementation of MPI-IO [21]. ADIO adopts a modular design in an attempt to maximizecode reuse across �lesystems. High-level I/O libraries (in our case, MPI-IO) invoke services providedby a set of ADIO \devices," each providing low-level support for a particular I/O system (e.g., Unix,Intel PFS, IBM PIOFS).As illustrated in Figure 1, RIO exploits the ADIO framework in two ways. On the client side, weprovide a RIO device that implements ADIO calls as interactions with remote RIO servers. The serversthemselves also use ADIO calls, in this case to access the remote �lesystem in a system-independentfashion. This approach of simultaneously layering below ADIO (on the client side) and above ADIO(on the server side) greatly reduces implementation costs. On the client side, we need not implementall of MPI-IO nor be concerned with remote �lesystem details. Instead, we can focus our attentionon a small number of portable low-level functions. On the server side, we can operate on any systemsupported by ADIO.3.2 PerformanceA remote I/O library can use various strategies to transfer data between client and server. Researchin parallel I/O has identi�ed collective operations, non-blocking operations, and bu�ering as impor-tant techniques for maximizing performance on parallel �lesystems. However, the characteristics ofnetworked systems listed in Section 2.2 lead to di�erent tradeo�s.Our RIO prototype uses the Nexus communication library [10] for client-server communications;Nexus, MPI, or potentially other communication mechanisms may be used within an application.5



When opening a �le, a designated client process �rst attempts to connect to a server gateway process.The client and server then exchange information about �le type and �le access patterns, and theserver issues an ADIO open call to open the relevant �le(s). The client and server then establish thecommunication structure to be used for subsequent read and write operations. Finally, both client andserver establish local data structures representing the open �le; on the client side, a \�le descriptor"is returned, encoding a reference to the client-side data structure.Let PC denote the number of processes executing at the client and PS the number at the server.Following an open call, each client process can read and write at a distinct location in the �le, eitherindependently or as part of a collective operation involving multiple client processes. In a simple RIOimplementation, each client process keeps track of its own location within the �le, and implementsa read or write operation as a remote procedure call (i.e., a round-trip communication) to a serverprocess. A round trip is required even for write calls, in order to provide a return code.An analysis of the various ine�ciencies inherent in this simple approach allows us to introducesome of the optimizations used in RIO.Forwarder Nodes. Client and server processes communicate directly. A disadvantage of this strat-egy is that a single process may have to use two communication methods: e.g., on the IBM SP, avendor-supplied MPI library and TCP/IP. This simultaneous use can introduce signi�cant overheadsdue to the need to manage two communication interfaces [8] or may be disallowed entirely if networkinterfaces can be accessed only from dedicated service nodes. Hence, we introduce forwarder nodes(analogous to the dedicated I/O nodes used in some I/O systems), to which each client process for-wards communications destined for the server, and which handles communications from the server toclient processes. These forwarder nodes must use both MPI and TCP, but are dedicated and hence canbe optimized for this purpose. The forwarder nodes can also be used to throttle tra�c to avoid net-work saturation [23]. In our current work, the client and server each use a single forwarder. However,multiple forwarders can be advantageous if there are multiple network interfaces or if compression,message digest, or encryption techniques are to be applied to data.Exploitation of Collective Operations. Each client process communicates independently withthe server, even when engaged in a collective operation. Hence, a single client-side collective callrequires PC messages and results in PC independent I/O operations at the server. Both the multiplecommunications and multiple I/O operations can be ine�cient in some situations. Multiple commu-nications can be avoided by collecting the communications performed by the PC clients (e.g., at theforwarder) and transferring them to the client in a single message. Multiple server I/O operations canbe avoided by tagging client messages to indicate when they refer to collective calls, and then invokinga collective I/O operation at the server. The latter strategy is straightforward if PS = PC , since theserver can issue open, read, and write operations identical to those performed by the client. Thesituation remains straightforward if PC is an integer multiple of PS , or vice versa, as the calls issuedby the client are easily mapped to server processes. In other situations, it can be hard to translate aclient-side collective operation into an e�cient collective operation at the server. Our RIO prototypeassumes that PS = PC .Reduction of Round-Trip Messages. The round trip performed for each read and write operationcan take 100 msec or more in a wide area environment, signi�cantly more than an I/O operation. RIOseeks to reduce these costs by incorporating support for asynchronous I/O operations. Asynchronousoperations allow several I/O operations to be outstanding at once, hence enabling pipelining of I/Ooperations in the network and I/O system, and overlapping of computation and I/O in the application.Another approach that we have yet to evaluate is to reduce the number of communication operations6



Figure 2: RIO's optimized I/O strategy, showing the client (C), forwarder (F), and server (S) processes,and the communications performed following a collective read operation.by client-side bu�ering, either independently by each client process, collectively by multiple clientprocesses, or by the forwarder.Figure 2 outlines the structure that results when these various optimizations are introduced. The�gure shows the client-side bu�ers (here associated with client processes), the forwarder processes,and the translation of a client-side collective I/O call MPI READ ALL) into a collective I/O call at theserver.3.3 IntegrationBecause RIO is designed to execute in a wide area environment, its implementation must addressissues of naming, con�guration, and security. In the following, we explain how these issues can beaddressed by using mechanisms provided by the Globus distributed computing toolkit [9].Naming. RIO uses a URL-like notation to provide a uniform name space for �les. A �le is openedwith a call of the formMPI Open(..., "x-rio://host-name:port-num/pathname", ...)where the host-name and port-num identify a RIO server and pathname identi�es a �le managed bythat server. In the future, we may substitute Uniform Resource Names (URNs) for URLs, to permitlocation-independent naming of cachable or replicated resources such as databases.Con�guration. RIO permits the use of Globus con�guration mechanisms. For example, whenestablishing a Nexus connection between client and server, RIO can use the Globus MetacomputingDirectory Service (MDS) to determine which networks are available, their current load, and accessmechanisms. RIO also can interact with Globus schedulers to reserve capacity on networks thatsupport quality of service negotiation.Security. A remote I/O system may be required to verify a user's identity (authentication), todetermine whether and how a user is able to access a �le (authorization), and to ensure the integrity7



and privacy of data transferred over public networks. We design RIO to incorporate the solutions tothese problems provided by Globus.The current Globus system supports a global \Globus id" but requires that a user have an accountat a site before it can use that site's resources. Globus provides a cryptographically secure mappingfrom Globus id to local ids, hence allowing a user to authenticate once (to Globus) and subsequentlyaccess resources at any Globus site where the user has an account. These mechanisms can easilybe adapted for use by RIO. Authentication is performed by Nexus when a RIO client connects to aRIO server. If authentication succeeds, the local user id of the Globus user is also established, andhence the �le access rights of the Globus user at that site are determined. Once authentication is inplace, Globus/Nexus mechanisms can be used to apply digital signatures for message integrity and/orencryption for privacy. If desired, these mechanisms can be applied only when communicating overnetworks de�ned to be insecure.In the longer term, we expect Globus (and hence RIO) to eliminate the requirement that a userhave a local account at every site. Access control lists are one approach to authorization in this regime.Cryptographically signed \use condition certi�cates" [12] represent another promising approach.4 Experimental StudiesWe report on experiments designed to determine the basic performance characteristics of RIO and toprovide a preliminary evaluation of RIO's utility for applications. These experiments comprise a seriesof microbenchmarks similar to those used traditionally for evaluation of I/O library performance, plusa single application.4.1 Experimental PlatformIn selecting an experimental platform, we must trade o� our interest in exploring true remote I/Oagainst the need for a controlled environment in which the impacts of di�erent performance issues canbe easily measured. These considerations motivate us to de�ne a testbed comprising two partitionsof the same IBM SP multicomputer. Within each partition, communication can occur via vendor-supplied MPI, while TCP/IP is used between partitions. The client runs in one partition and theserver in the other. Because of our use of forwarder nodes, this simple con�guration has performancecharacteristics quite similar to two IBM SPs connected by a high-bandwidth local or metropolitanarea network. While intrapartition communication peaks at over 30 MB/sec with latencies of around50 �sec, interpartition communication peaks at 8 MB/sec with latencies of around 2000 �sec.All experiments were performed on the IBM SP2 at the Cornell Theory Center and used IBMPIOFS version 1.2 as the \remote" �lesystem. All nodes used in our experiments were SP thin nodes(roughly equivalent to RS/6000 Model 390, with at least 128 MB memory) running AIX 4.1. PIOFSdistributes �les across multiple PIOFS servers [2]. At Cornell, there are eight such servers. Each �leconsists of a set of cells, and each cell is stored on a particular server node. The default number ofcells is the number of PIOFS servers; if the number is greater, cells are striped across servers in around-robin fashion. A �le is divided into basic striping units (BSUs), which are assigned to cells ina round-robin fashion. The default BSU size is 32 KB. In some situations, tuning of these variousparameters can signi�cantly a�ect performance. We used default values in all experiments.PIOFS performance is sensitive to the size of the data being read and written. For small (< 8 KB)accesses, access time is about 4 to 5 msec, presumably because of the round-trip communicationsbetween the node performing I/O and the PIOFS server nodes. High performance can be achievedfor large read and write sizes. 8



4.2 Microbenchmark ResultsOur microbenchmarks are designed to reveal how RIO read and write bandwidths vary as functionsof PC (note that PS = PC in all experiments) and read or write size. Each microbenchmark usesblocking operations to transfer contiguous data from/to a single shared �le.Figure 3 shows the transfer rates (totals summed over PC processes) that we measured for PC =PS=1, 2, and 4, and for di�erent access sizes. We give results for RIO and for PIOFS only; our PIOFSresults match those of other researchers. We also include in the graph horizontal lines representing thebandwidth measured with two simple ping-pong programs. The line labeled \Client/server forwarding"was obtained with a program that bounces large messages between a client process and a server process,via the intervening forwarders. Hence, it approximates the best data transfer rate that can be obtainedfor synchronous operations between a single client and a single server in our architecture. The linelabeled \TCP peak" was obtained with a simpler program that uses TCP to bounce large messagesback and forth between two processes. This line approximates the best data transfer rate that can beachieved with Nexus and TCP on the IBM SP. The �rst number (4.25 MB/sec) is less than the second(8.6 MB/sec) because a round-trip client/server communication involves six messages, as comparedto just two in the latter case.Examining Figure 3, we see that sustained bandwidth generally increases with PC , but peaks ataround 4.2 MB/sec for the larger transfer sizes, when we saturate the forwarder-to-forwarder con-nection. We are able to exceed 4.25 MB/sec slightly in some situations because of pipelining ofcommunications. Other preliminary experiments show modest (10-20 percent) improvements in RIOperformance when nonblocking operations are used, because pipelining is enhanced.These results show that RIO is able to drive the network connecting client and server at close toits peak bandwidth, at least for large messages. We see also that in our experimental con�guration,the principal obstacle to improved performance is the capacity of this network. Faster networks andimproved forwarder structures are two possible approaches to improving performance.4.3 Application ResultsWe use the BTIO benchmark from the NAS I/O benchmark suite [5], speci�cally, the programBTIO-simple-mpiio. This benchmark simulates the I/O required by a pseudo-timestepping 
owsolver. It implements an approximate factorization algorithm with the requirement that after everyk iterations, the three-dimensional solution vector (of size N3) is written to a disk �le (no reads areperformed). A total of I iterations of the algorithm are performed. The application code is in Fortranand uses the MPI-IO interface to write output data to a single �le.In our experiments, we �x k = 5 and I = 200 and consider problem sizes N = 32 and N = 64; totaldata written in these two cases is 52 MB and 420 MB, respectively. We de�ne the elapsed time as thewall clock execution time for the application, and the application sustained I/O transfer rate as (totalamount of I/O performed)/(elapsed time). The elapsed time includes both the time for computationand I/O inside the application. Note that this I/O transfer rate is di�erent from that measured in themicrobenchmarks, where no signi�cant computation is performed. We use four application processorsin all experiments, for a total of 10 processors, with 2 forwarding nodes and 4 server nodes. We haveobserved similar behavior with di�erent numbers of application processors, and hence for brevity wedo not report those results.BTIO-simple-mpiio performs many small writes in an irregular pattern and hence performs poorlyon PIOFS, due to the high PIOFS overhead associated with small writes. Hence, we produced amodi�ed version of the benchmark that redistributes the output data before the solution vector iswritten to disk. In the redistribution code, each node essentially collects data from other nodes into9



10
3

10
4

10
5

10
6

Transfer size in bytes

0.0

5.0

10.0

15.0

20.0

25.0

T
ra

ns
fe

r 
ra

te
 in

 M
B

/s
ec

.

4 Processors

TCP peak
Client/server forwarding
PIOFS write
PIOFS read
RIO blocking write
RIO blocking read

10
3

10
4

10
5

10
60.0

5.0

10.0

15.0
2 Processors

10
3

10
4

10
5

10
60.0

5.0

10.0

1 Processor

Figure 3: Microbenchmark performance results10



Table 1: Execution times for the original and optimized BTIO application (secs)Version N Local PIOFS PIOFS+ftp RIO (blocking) RIO (nonblock)Original 32 285.28 310.46 457.39 314.54Original 64 1711.48 1912.94 2278.97 1886.00Optimized 32 178.68 203.86 186.07 180.99Optimized 64 1446.05 1647.51 1524.20 1389.35Table 2: Application sustained I/O transfer rates for the original and optimized BTIO (MB/sec).Note that these rates are computed based on the total elapsed times, not just the I/O timesVersion N Local PIOFS PIOFS+ftp RIO (blocking) RIO (nonblock)Original 32 0.1838 0.1689 0.1146 0.1667Original 64 0.2451 0.2193 0.1840 0.2224Optimized 32 0.2934 0.2572 0.2818 0.2897Optimized 64 0.2900 0.2546 0.2752 0.3019a temporary contiguous write bu�er; each processor then performs a single write operation at eachdump.We measure elapsed time for four con�gurations: when using PIOFS directly (i.e., without usingRIO); when using RIO (blocking calls) to transfer data from the application to the RIO server, whichthen makes the PIOFS calls; when using RIO (nonblocking calls); and when data is �rst writtento PIOFS directly, without RIO, and then transferred to a user �lesystem with ftp. The lattercon�guration corresponds to the use of staging. In the nonblocking version of the original code,multiple (up to 64) I/O operations may be outstanding. In the nonblocking RIO version of theoptimized code, we issue an asynchronous write for each dump and then proceed with computation,waiting for completion only at the start of the next dump. This is possible because writes are performedfrom the write bu�er.Tables 1 and 2 show the elapsed times and application sustained transfer rates measured for boththe original and optimized versions of the program. The optimized version of BTIO performs betterthan the original, due to the reduced number of write operations. We see that nonblocking callssigni�cantly a�ect performance in all cases. This is because in the absence of nonblocking calls,the round-trip message exchange between application and server is a signi�cant source of overhead.When nonblocking operations are used, performance improves either because multiple I/O operationsare pipelined (in the original code) or because I/O and round-trip overheads are overlapped withcomputation (in the optimized code). As a result, throughput is close to what we get when accessingPIOFS directly: in fact, because PIOFS does not support nonblocking operations, RIO performs betterthan local PIOFS in some cases. The maximum application sustained transfer rate is 0.29 MB/sec forlocal PIOFS and 0.30 MB/sec with RIO. If we consider only I/O time (and hence compute burst I/Orates), we obtain I/O rates of 2-4 MB/sec.Finally, we see that the total execution time when using RIO is, in most cases, less than the totalturnaround time when staging is used (PIOFS+ftp). For the optimized code with N = 64, RIO is19 percent faster. This result is due to the overlapping of computation and data transfer achieved byRIO and illustrates how remote I/O can improve application performance as well as providing a moreconvenient interface. 11



5 ConclusionsWe have argued for the importance of remote I/O as a tool for high-performance, low-overhead dis-tributed computing. Remote I/O libraries allow programs to use familiar parallel I/O interfaces toaccess data contained in remote �lesystems. In principle, they can improve performance, enhance
exibility, and reduce complexity in applications that must access nonlocal data. We have identi�edsome of the challenges that must be overcome before these bene�ts can be realized; these include highlatencies, low bandwidths, complex con�gurations, and security. We have also described a prototyperemote I/O library called RIO that incorporates solutions to some of these problems. Performanceexperiments in a controlled multicomputer environment show that RIO introduces little overhead andcan achieve improved turnaround time compared to remote execution combined with staging.The work presented here is just a �rst step toward a truly usable remote I/O facility for high-performance computing applications. Our next step will be to deploy the RIO prototype in a widearea computing testbed. Our �rst target is the sites connected by the ESnet and CAIRN networks, inparticular Argonne, Berkeley, and USC/ISI. This environment will enable us to evaluate our techniquesmore realistically and will also support experiments with network quality of service reservation. Wealso plan detailed comparisons with distributed �lesystems for a range of scienti�c applications.AcknowledgmentsWe thank David Lifka, Rajeev Thakur, and Steven Tuecke for their invaluable assistance with thiswork, and the Cornell Theory Center and Argonne National Laboratory's Center for ComputationalScience and Technology for access to their IBM SP systems.References[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman. Extending the operating systemat the user level: The UFO global �le system. In 1997 Annual Technical Conference on UNIXand Advanced Computing Systems (USENIX'97), January 1997.[2] F. Bassow. IBM AIX Parallel I/O File System: Installation, Administration, and Use. IBM,Kingston, N.Y., May 1995. Document Number SH34-6065-00.[3] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz. Jovian: A framework for optimizingparallel I/O. In Proceedings of the 1994 Scalable Parallel Libraries Conference, pages 10{20. IEEEComputer Society Press, October 1994.[4] M. Buddhikot, G. Parulkar, and J. Cox. Design of a large scale multimedia storage server. InProc. INET '94, 1994.[5] R. Carter, B. Ciotti, S. Fineberg, and B. Nitzberg. NHT-1 I/O benchmarks. Report RND-92-016,NAS, NASA Ames Research Center, Mo�ett Field, CA, Nov 1992.[6] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg, B. Traversat,and P. Wong. MPI-IO: A parallel �le I/O interface for MPI. Technical Report NAS-95-002, NAS,NASA Ames Research Center, Mo�ett Field, CA, January 1995. Version 0.3.[7] P. Corbett, D. Feitelson, J.-P. Prost, and S. Baylor. Overview of the Vesta parallel �le system.In IPPS '93 Workshop on Input/Output in Parallel Computer Systems, pages 1{16, 1993.12



[8] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple communication methods inhigh-performance networked computing systems. Journal of Parallel and Distributed Computing,40:35{48, 1997.[9] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. InternationalJournal of Supercomputer Applications, 1997. To appear.[10] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading andcommunication. Journal of Parallel and Distributed Computing, 37:70{82, 1996.[11] W. Hibbard, J. Anderson, I. Foster, B. Paul, C. Schafer, and M. Tyree. Exploring coupledatmosphere-ocean models using Vis5D. International Journal of Supercomputer Applications,10(2):211{222, 1996.[12] W. Johnston and C. Larsen. A use-condition centered approach to authenticated global capa-bilities: Security architectures for large-scale distributed collaboratory environments. TechnicalReport 3885, LBNL, 1996.[13] D. Kotz. Disk-directed I/O for an out-of-core computation. In Proc. 4th IEEE Symp. on HighPerformance Distributed Computing, pages 159{166, August 1995.[14] M. Litzkow, M. Livney, and M. Mutka. Condor - a hunter of idle workstations. In Proc. 8th IntlConf. on Distributed Computing Systems, pages 104{111, 1988.[15] J.H. Morris et al. Andrew: A distributed personal computing environment. Communications ofthe ACM, 29(3), 1986.[16] N. Nieuwejaar and D. Kotz. Performance of the Galley �le system. In Proceedings of the FourthAnnual workshop on I/O in Parallel and Distributed Systems, Philadelphia, PA, May 1996.[17] M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist, K. Keahey, J. Ostriker,J. Shalf, J. Welling, and S. Yang. Galaxies collide on the I-WAY: An example of heterogeneouswide-area collaborative supercomputing. International Journal of Supercomputer Applications,10(2):131{140, 1996.[18] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation ofthe Sun network �lesystem. In Proc. Summer USENIX, pages 119{130, June 1985.[19] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server directed collective I/Oin Panda. In Proceedings of Supercomputing '95, San Diego, California, December 1995.[20] R. Thakur and A. Choudhary. An extended two-phase method for accessing sections of out-of-corearrays. Scienti�c Programming, 5(4):301{317, Winter 1996.[21] R. Thakur, W. Gropp, and E. Lusk. An abstract-device interface for implementing portableparallel-I/O interfaces. In Proceedings of The 6th Symposium on the Frontiers of MassivelyParallel Computation, October 1996.[22] B. Tierney, W. Johnston, L. Chen, H. Herzog, G. Hoo, G. Jin, and J. Lee. Distributed paralleldata storage systems: A scalable approach to high speed image servers. In Proc. ACM Multimedia94. ACM Press, 1994.[23] B. Tierny, W. Johnston, J. Lee, and G. Hoo. Performance analysis in high-speed wide area IPover ATM networks: Top-to-bottom end-to-end monitoring. Technical report, LBNL, 1996.13



[24] A. Vahdat, P. Eastham, and T. Anderson. WebFS: A global cache coherent �lesystem. Technicalreport, Department of Computer Science, UC Berkeley, 1996.

14


