Automatic Proofs and Counterexamples
for Some Ortholattice Identities

William MecCune®
Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois, 60439, U.S.A.

October 9, 1997

Abstract

This note answers questions on whether three identities known to hold for
orthomodular lattices are true also for ortholattices. One identity is shown to
fail by MACE, a program that searches for counterexamples; an the other two
are proved to hold by EQP, an equational theorem prover. The problems, from
work in quantum logic, were given to us by Norman Megill.

Keywords: Automatic theorem proving, ortholattice, quantum logic, theory of

computation.

1 Introduction

An ortholattice is an algebra (L,V,") satisfying the following identities.

Ay =(a'Vy') (definition of meet)
rVy=yVa

(xVy)Vz=aV(yVz)

T ANy=yANzx

(zAy)ANz=2A(YAz)
rV(zAy) ==
@ =

eV (yvy)=yVvy

*Supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

From these identities one can easily prove the existence of a 1 and 0 with the usual
properties and that the meet and join operations are idempotent. Therefore 1 use

the following identities as well for ortholattices.

zVa' =1 Az =0
xVvV1i=1 xAN0=20
xV0==2 xANl=2x
sVr=ux TN =x

An orthomodular lattice is an ortholattice satisfying
zV(z'AN(zVy))=2zVy.
Consider the following three equations.

((anbYyvd) Vv ({(and)Vv (¢ AN((aV)A(aVbd)))V
(@ A((aVE)A(avb))))) =1 (E1)

(aV (A ((aVV)A(aVD))V(dA((dAD)V (dAD))))) =1 (E2)
(@ ADYV (' AV V (aA (@ V) V(dVh) =1 (E3)

These three equations arose in work on quantum logic by Norman Megill and Mladen
Pavacic [6]. Each equation was known to hold for orthomodular lattices, but it was
unknown whether any of them holds for ortholattices. Megill asked whether any of
Argonne’s automated deduction programs could be used to solve the problems.

Equation E1 was shown to fail by the program MACE, which found an ortho-
lattice of order 10 violating E1. Equations E2 and E3 were each shown to hold for
ortholattices by the program EQP, which produced equational proofs.

According to Megill, E1 is the most important to the quantum logic work. Equa-
tion E3 was proved for ortholattices by Megill (by hand), independently and in
parallel to our work, shortly after he asked if our programs could prove it.

1.1 The Programs EQP and MACE

EQP [3] is an automated theorem-proving program for statements in first-order
equational logic. It has several strategies for applying equational reasoning and
searching for proofs. One of its strengths is that associativity and commutativity
of binary operations are built into the inference rules. This feature makes EQP
perform well on many problems involving lattice-like structures.

MACE [1] is a program that searches for finite models of first-order statements.
In practice, it is limited to fairly simple statements without many variables, and

it usually cannot find large models. Even with these limitations, it is a valuable

complement to our theorem provers.

(Our more well-known theorem prover Otter [2, 5] does not seem as effective as
EQP for lattice-like problems because Otter lacks associative-commutative unifica-
tion and several valuable paramodulation strategies. See [4] for several examples of
using Otter for this type of problem.)

2 Equation E1

I had no intuition about whether E1 could be proved for ortholattices. Hence, I
put the programs to work in parallel, with EQP searching for a proof and MACE

searching for a counterexample.

To have MACE search for a counterexample, I gave it the orthomodular axioms
and asserted that there exist two elements, ¢ and b, for which E1 fails. Equation E1
is too complex for MACE, but (because it is negated, with existentially quantified
variables) we can introduce names for subterms of E1, replacing it with the following

set of simpler equations.!

aANb =d;
aVb =d
aVb=ds
o =dy

dy N\ ds = ds
dy NdL = dg
dy N ds = dr
dr vV dg = dg

(dy vV dy)' VvV (dyVdg) #1

The ortholattice identities listed in the introduction involving 0, 1, and idempotence

were included as well, because such simple equations reduce the search space that
MACE must explore.

MACE was iterated, looking for models (i.e., ortholattices violating E1) of orders
1, 2, The search spaces were quickly exhausted up through order 6 without
finding any models.? Order 8 was exhausted, without models, in about 10 minutes
using 15 megabytes of memory.®> A counterexample of order 10 was found in about

'The procedure of breaking up equations is straightforward; it could easily be made automatic.

2MACE is designed to be complete; that is, if no models are found for order n, then there
shouldn’t be any. Of course, proof by exhaustive search is especially questionable.

®All MACE and EQP searches were run on a 180 MHz i686 processor with 128 megabytes of
RAM, running the Linux operating system. MACE and EQP are written in the C programming

language.

15 minutes using 84 megabytes. Table 1 shows the model as produced by MACE,
and Figure 1 shows the corresponding ortholattice diagram.

Table 1: Ortholattice violating 51

a2 A0 1 23 456 789 viol 23456789 !
bl 010 0000 00O0O0O0 0101 2 3 45 6 789 01
d |7 110123456789 11111111111 110
do | 1 210220020707 212121151251 213
ds |5 310 303 40300 4 313113316161 312
e 410 404404004 414113416969 415
ds | 5 510 52 005 8787 5151 511515851 5|4
ds | 4 610 6 0 3 4 8 6 0 8 4 616 1 1 6 6 1 6 1 6 1 6|7
d- |0 71077007 0707 7TIT1 21951759 7|6
ds | 4 810 8 0 0 0 8 8 080 818 1 56 6 5 6 5 81 819
910 9 74 4 7 4 7 09 919 1119 11919 918

1
6

©

~N— N —— U
I
>D<

o

<

IS

0

Figure 1: Ortholattice violating E1

3 Equation E2

As with E1, I had no intuition about whether E2 holds for ortholattices. I started
a proof search with EQP. Before the counterexample search with MACE was even
started, EQP had found a proof.

As usual, I directed EQP to search for a proof by contradiction, asserting the
existence of elements @ and b for which E2 fails. EQP found the proof below in
about 4 seconds.

The justification “m — n” indicates associative-commutative paramodulation
from m into n, that is, equality substitution, using (an instance of) m, into a subterm

of (an instance of) n; “simp:i,j,...” indicates associative-commutative simplification

with ¢,7,...; and “flip” indicates that the equation is reversed so that the more

complex side is on the left.

120
121
161
162

x /?y Ve==zx

(@Vvy)Y=azAy

dVa=1

aV (& A((bAdYV (O ANd)))V(dA((BVa)A(aVD)))) #1

(@'Vy) =y ANz 1 — 4]
(@' ANy) =y Va [15 — 1]
ANy =(zVy) [1 — 15flip]
aV((dAN({(bVa)V(bAd)V(dA((bDVa)A(aVD))))#1 [13,simp:20]
(@Vy)Ay=y [3 — 15,8imp:1,19,flip]
(xVy)hy=y [1 — 24]
dV((YAx)Vy =1 [15 — 7]
(@'Ay)vz) =AY Va) [15 — 15]
((aVy)ANz)V(yAnz)=(zVy) Az (26" — 3]
AW V(E AW =(((WVz2)Ay) V) [19 — 30.flip]
aV((av((bVva)A(avd)))Vv(dA({(bVa)A(aVD))))#1 [21,simp:120]
(2 VH) AV) Vy = (V) Ay 2) 26 32
1#41 [121,simp:161,27]

The search strategy is summarized in the following points. See [3] further for details
on these EQP features.

The pair algorithm. At each iteration of the search loop, a pair of equations
was selected for application of the inference rule.

A selection ratio of four. Through four iterations of the search loop, the
shortest pair of equations was selected, then the oldest pair of equations was
selected, and so on. In other words, the strategy was four parts shortest-first

to one part breadth-first.

Basic paramodulation. This restriction on application of the inference rule

prevented substitution of terms that arise from instantiation alone.

Prime paramodulation. This restriction prevented application of the infer-
ence rule if any term in the substitution was reducible by the current set of

equations.

The super-0 limit on AC unifiers. This heuristic (which makes the proof
procedure incomplete) prevented inferences involving complicated associative-
commutative substitutions.

e Simplification. An equation was used as a rewrite rule if the left-hand side
had more symbols than the right and if no variable had more occurrences on

the right-hand side.

o Weight limit. No limit was placed on the size of retained equations.

4 Equation E3

Again, since I had no intuition about whether E3 holds for ortholattices, I started
proof and counterexample searches in parallel. In about 15 minutes, MACE ex-
hausted the ortholattices up through order 8 without finding one that violates £3;
then it was set to work on order 10. A proof search with EQP was started using the
same strategy that succeeded for E2. Two days later EQP reported the following
proof. (The MACE and EQP jobs ran concurrently on the same processor; the EQP
process time was about 22.4 hours.)

1 =z

2 PVievy =2V

3 (zAy)Vae=u

4 (@'Vy')y=zAy

7 PVae=1

8 Ive=1 [2,8imp:7,7]
13 bV (' V((bAd)V ((an(dVva))Vv (b And))))#1

14 ' Vy =(@ny) [4 — 1 flip]
15 bV (aN((bAdYV ((an(bVd)) V(D ANd)))) #1 [13,simp:14]
16 (@'Vy) =y Az 1 — 4]
22 (@'Ny) =y Ve [16 — 1]
23 ANy =(zVy) [1 — 16,flip]
24 bV (an((bVva)V((brnd)V(ian(bVvad))))) #1 [15,simp:23]
25 @Vy)yAny=y [3 — 16,simp:1,22 flip]
27 (xVy)ANy=y [1 — 25]
280 2'V(yAz)vy) =1 [16 — 7]
31 ((aVy)ANz)V(yAnz)=(zVy) Az 27" — 3]
32 ((eAy) V)N (yVz)=(zAy)Vz (3" — 27]
33 (@'Ay)vz) =AY Va) [16 — 16]
38 (@'Vy) Az Ve=ZVva 27" — 22,simp:22 flip]
146 (w AYANY V(@ A2)=y V(2 Az) [14 — 32]
174 2Ny V(EAY)=({((WV2)Ay) V) [22 — 33 flip]
175 ((@'Vy)Az) =2V (Y ANz) [146,simp:174,31]
281 2’V A((ZVu)Az))V(yVz) = [38" — 28’ ,simp:8§]
2662 2’V ((ynz) A((Z'Vu)Az))Vvez)=1 [3" — 281]
2663 (((zAy) V2 AW Vu)V(yVvz) =1 [1 — 2662,8imp:23]
2664 2’V (((e"Ay) V) A(@Vu)Vvz) =1 [1 — 2663]

3141 2’V (" Ay) vV (2" V) Aw) A(zVe)Vz)=1 [2664 — 37 simp:8 flip]
99528 1 # 1 [175 — 24,simp:3141]

5 Conclusion

These results are not deep, but they illustrate one kind of automatic deduction

assistance that is becoming available to mathematicians and logicians.

The programs EQP and MACE, and the input files that produce these results

are available on the Web at the following location.

http://www.mcs.anl.gov/home/mccune/ar/ortholattice/

Appendix
I sent the results of the programs to Megill, who replied:

For your interest, [your lattice] is actually used to show that the follow-
ing equation does not have an ortholattice proof. The equation I sent
you [E1] was the “missing piece” of a proof that I was attempting to con-

struct. ... Specifically, this is the lattice algebra mapping of axiom
A14 of a system of quantum logic of Kalmbach, Orthomodular Lattices,
p. 240.
(((@" AV (((¢ V(((¢/ V) A" V) AfaV (a" AD)))) A (o
V(@ VB A (@ V) A (aV (d AB))))) A(aV (@ A(((a’ VD) A (a'V
b)) A(a v (@ AD)NN) A (@A) V(@ v (((a" V) Afa" V)N
(@V(a"Ab)))) A (@ V (((a" V) Ala" V) AlaV (a’ Ab))))) Alav [E4]
(@ A (((a" Vo) A(@ V) A(av (@' AD)))))D) A (@ Ab)V ((a" AD)
A((a" v (((a" Vo) A(a" vV E')) A(a v (a” AB)))) A (a” v (((a" Vb) A (af
\/I;’)))/\ (aV(d AN A(aV (@ A((d VYA (VYN A(aV (¢ AD

M) =

Of course, I wondered (1) whether the same ortholattice violating E1 also violates
this equation, (2) if so, whether MACE could find it directly, and (3) if not, whether
MACE could find another one.

As with E1, the denial of E4 was broken up by naming subterms so that MACE
could cope with it. No counterexamples were found among the ortholattices up
through order 8. The order 10 search produced an ortholattice violating 24, iso-
morphic to the one violating E1 (Table 1 and Figure 1).4

*The first MACE search with E4 required more memory (> 100 megabytes) than the successful
E1 MACE search had used (84 megabytes), and I had to find a way reduce the space requirement.

As a double check, a MACE run was set up to verify that the ortholattice (as
written in Table 1) violates E4 by including constraints corresponding to the table.
This type of MACE run simply verifies that an interpretation is satisfies a statement.
The verification succeeded.

References

[1] W. McCune. A Davis-Putnam program and its application to finite first-
order model search: Quasigroup existence problems. Tech. Report ANL/MCS-
TM-194, Argonne National Laboratory, Argonne, IL, May 1994 (also see
http://www.mcs.anl.gov/home/mccune/ar/mace/).

[2] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report
ANL-94/6, Argonne National Laboratory, Argonne, IL, 1994 (also see
http://www.mcs.anl.gov/home/mccune/ar/otter/).

[3] W. McCune. 33 basic test problems: A practical evaluation of some paramodu-
lation strategies. In Robert Veroff, editor, Automated Reasoning and its Applica-
tions: Essays in Honor of Larry Wos, chapter 5, pages 71-114. MIT Press, 1997
(also see http://www.mes.anl.gov/home/mccune/ar/33-basic-test-problems/).

[4] W. McCune and R. Padmanabhan. Automated Deduction in Equa-
tional Logic and Cubic Curves, volume 1095 of Lecture Notes in Com-
puter Science (Al subseries). Springer-Verlag, Berlin, 1996 (also see
http://www.mcs.anl.gov/home/mccune/ar/monograph/).

[65] W. McCune and L. Wos. Otter: The CADE-13 Competition incarnations. .J.
Automated Reasoning, 18(2):211-220, 1997.

[6] N. Megill, Sept. 1997. Correspondence by electronic mail.

Fortunately, two of the larger equations (associativity of meet and = Vv (y V y') = y V ¢') could be
omitted, because they depend on the other axioms and lemmas; this allowed the search to run in

less than 70 megabytes.

