
Automatic Proofs and Counterexamplesfor Some Ortholattice IdentitiesWilliam McCune�Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois, 60439, U.S.A.October 9, 1997AbstractThis note answers questions on whether three identities known to hold fororthomodular lattices are true also for ortholattices. One identity is shown tofail by MACE, a program that searches for counterexamples, an the other twoare proved to hold by EQP, an equational theorem prover. The problems, fromwork in quantum logic, were given to us by Norman Megill.Keywords: Automatic theorem proving, ortholattice, quantum logic, theory ofcomputation.1 IntroductionAn ortholattice is an algebra hL;_;0 i satisfying the following identities.x ^ y = (x0 _ y0)0 (de�nition of meet)x _ y = y _ x(x _ y) _ z = x _ (y _ z)x ^ y = y ^ x(x ^ y) ^ z = x ^ (y ^ z)x _ (x^ y) = xx00 = xx _ (y _ y0) = y _ y0�Supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.

From these identities one can easily prove the existence of a 1 and 0 with the usualproperties and that the meet and join operations are idempotent. Therefore I usethe following identities as well for ortholattices.x _ x0 = 1 x ^ x0 = 0x _ 1 = 1 x ^ 0 = 0x _ 0 = x x ^ 1 = xx _ x = x x ^ x = xAn orthomodular lattice is an ortholattice satisfyingx _ (x0 ^ (x _ y)) = x _ y.Consider the following three equations.((a ^ b0) _ a0)0 _ ((a^ b0) _ ((a0 ^ ((a_ b0) ^ (a _ b))) _(a0 ^ ((a _ b0) ^ (a _ b))0))) = 1 (E1)(a _ ((a0 ^ ((a_ b0) ^ (a _ b)))_ (a0 ^ ((a0 ^ b) _ (a0 ^ b0))))) = 1 (E2)(((a0 ^ b) _ (a0 ^ b0))_ (a ^ (a0 _ b)))0 _ (a0 _ b) = 1 (E3)These three equations arose in work on quantum logic by NormanMegill and MladenPavacic [6]. Each equation was known to hold for orthomodular lattices, but it wasunknown whether any of them holds for ortholattices. Megill asked whether any ofArgonne's automated deduction programs could be used to solve the problems.Equation E1 was shown to fail by the program MACE, which found an ortho-lattice of order 10 violating E1. Equations E2 and E3 were each shown to hold forortholattices by the program EQP, which produced equational proofs.According to Megill, E1 is the most important to the quantum logic work. Equa-tion E3 was proved for ortholattices by Megill (by hand), independently and inparallel to our work, shortly after he asked if our programs could prove it.1.1 The Programs EQP and MACEEQP [3] is an automated theorem-proving program for statements in �rst-orderequational logic. It has several strategies for applying equational reasoning andsearching for proofs. One of its strengths is that associativity and commutativityof binary operations are built into the inference rules. This feature makes EQPperform well on many problems involving lattice-like structures.MACE [1] is a program that searches for �nite models of �rst-order statements.In practice, it is limited to fairly simple statements without many variables, and2

it usually cannot �nd large models. Even with these limitations, it is a valuablecomplement to our theorem provers.(Our more well-known theorem prover Otter [2, 5] does not seem as e�ective asEQP for lattice-like problems because Otter lacks associative-commutative uni�ca-tion and several valuable paramodulation strategies. See [4] for several examples ofusing Otter for this type of problem.)2 Equation E1I had no intuition about whether E1 could be proved for ortholattices. Hence, Iput the programs to work in parallel, with EQP searching for a proof and MACEsearching for a counterexample.To have MACE search for a counterexample, I gave it the orthomodular axiomsand asserted that there exist two elements, a and b, for which E1 fails. Equation E1is too complex for MACE, but (because it is negated, with existentially quanti�edvariables) we can introduce names for subterms of E1, replacing it with the followingset of simpler equations.1a ^ b0 = d1a _ b0 = d2a _ b = d3a0 = d4d2 ^ d3 = d5d4 ^ d05 = d6d4 ^ d5 = d7d7 _ d6 = d8(d1 _ d4)0 _ (d1 _ d8) 6= 1The ortholattice identities listed in the introduction involving 0, 1, and idempotencewere included as well, because such simple equations reduce the search space thatMACE must explore.MACE was iterated, looking for models (i.e., ortholattices violating E1) of orders1, 2, : : :. The search spaces were quickly exhausted up through order 6 without�nding any models.2 Order 8 was exhausted, without models, in about 10 minutesusing 15 megabytes of memory.3 A counterexample of order 10 was found in about1The procedure of breaking up equations is straightforward; it could easily be made automatic.2MACE is designed to be complete; that is, if no models are found for order n, then thereshouldn't be any. Of course, proof by exhaustive search is especially questionable.3All MACE and EQP searches were run on a 180 MHz i686 processor with 128 megabytes ofRAM, running the Linux operating system. MACE and EQP are written in the C programminglanguage. 3

15 minutes using 84 megabytes. Table 1 shows the model as produced by MACE,and Figure 1 shows the corresponding ortholattice diagram.Table 1: Ortholattice violating E1a 2b 8d1 7d2 1d3 5d4 3d5 5d6 4d7 0d8 4
^ 0 1 2 3 4 5 6 7 8 90 0 0 0 0 0 0 0 0 0 01 0 1 2 3 4 5 6 7 8 92 0 2 2 0 0 2 0 7 0 73 0 3 0 3 4 0 3 0 0 44 0 4 0 4 4 0 4 0 0 45 0 5 2 0 0 5 8 7 8 76 0 6 0 3 4 8 6 0 8 47 0 7 7 0 0 7 0 7 0 78 0 8 0 0 0 8 8 0 8 09 0 9 7 4 4 7 4 7 0 9

_ 0 1 2 3 4 5 6 7 8 90 0 1 2 3 4 5 6 7 8 91 1 1 1 1 1 1 1 1 1 12 2 1 2 1 1 5 1 2 5 13 3 1 1 3 3 1 6 1 6 14 4 1 1 3 4 1 6 9 6 95 5 1 5 1 1 5 1 5 5 16 6 1 1 6 6 1 6 1 6 17 7 1 2 1 9 5 1 7 5 98 8 1 5 6 6 5 6 5 8 19 9 1 1 1 9 1 1 9 1 9
00 11 02 33 24 55 46 77 68 99 8

7

2

5

1

9

8

0

4

3

6

=a

=bFigure 1: Ortholattice violating E13 Equation E2As with E1, I had no intuition about whether E2 holds for ortholattices. I starteda proof search with EQP. Before the counterexample search with MACE was evenstarted, EQP had found a proof.As usual, I directed EQP to search for a proof by contradiction, asserting theexistence of elements a and b for which E2 fails. EQP found the proof below inabout 4 seconds.The justi�cation \m ! n" indicates associative-commutative paramodulationfromm into n, that is, equality substitution, using (an instance of)m, into a subterm4

of (an instance of) n; \simp:i,j,: : :" indicates associative-commutative simpli�cationwith i; j; : : :; and \
ip" indicates that the equation is reversed so that the morecomplex side is on the left.1 x00 = x3 (x^ y) _ x = x4 (x0 _ y0)0 = x ^ y7 x0 _ x = 113 a _ ((a0 ^ ((b ^ a0) _ (b0 ^ a0)))_ (a0 ^ ((b _ a) ^ (a _ b0)))) 6= 115 (x0 _ y)0 = y0 ^ x [1 ! 4]19 (x0 ^ y)0 = y0 _ x [15 ! 1]20 x0 ^ y0 = (x _ y)0 [1 ! 15,
ip]21 a _ ((a0 ^ ((b _ a)0 _ (b ^ a0)))_ (a0 ^ ((b _ a) ^ (a _ b0)))) 6= 1 [13,simp:20]24 (x0 _ y) ^ y = y [3 ! 15,simp:1,19,
ip]26 (x_ y) ^ y = y [1 ! 24]27 x0 _ ((y0 ^ x) _ y) = 1 [15 ! 7]30 ((x0 ^ y) _ z)0 = z0 ^ (y0 _ x) [15 ! 15]32 ((x_ y) ^ z) _ (y ^ z) = (x _ y) ^ z [26' ! 3]120 x0 ^ (y0 _ (z0 ^ u)) = (((u0 _ z) ^ y) _ x)0 [19 ! 30,
ip]121 a _ ((a _ ((b _ a) ^ (a_ b0)))0 _ (a0 ^ ((b _ a) ^ (a _ b0)))) 6= 1 [21,simp:120]161 ((x_ y) ^ (y _ z))_ y = (x _ y) ^ (y _ z) [26 ! 32]162 1 6= 1 [121,simp:161,27]The search strategy is summarized in the following points. See [3] further for detailson these EQP features.� The pair algorithm. At each iteration of the search loop, a pair of equationswas selected for application of the inference rule.� A selection ratio of four. Through four iterations of the search loop, theshortest pair of equations was selected, then the oldest pair of equations wasselected, and so on. In other words, the strategy was four parts shortest-�rstto one part breadth-�rst.� Basic paramodulation. This restriction on application of the inference ruleprevented substitution of terms that arise from instantiation alone.� Prime paramodulation. This restriction prevented application of the infer-ence rule if any term in the substitution was reducible by the current set ofequations.� The super-0 limit on AC uni�ers. This heuristic (which makes the proofprocedure incomplete) prevented inferences involving complicated associative-commutative substitutions. 5

� Simpli�cation. An equation was used as a rewrite rule if the left-hand sidehad more symbols than the right and if no variable had more occurrences onthe right-hand side.� Weight limit. No limit was placed on the size of retained equations.4 Equation E3Again, since I had no intuition about whether E3 holds for ortholattices, I startedproof and counterexample searches in parallel. In about 15 minutes, MACE ex-hausted the ortholattices up through order 8 without �nding one that violates E3;then it was set to work on order 10. A proof search with EQP was started using thesame strategy that succeeded for E2. Two days later EQP reported the followingproof. (The MACE and EQP jobs ran concurrently on the same processor; the EQPprocess time was about 22.4 hours.)1 x00 = x2 x0 _ (x_ y) = x0 _ x3 (x^ y) _ x = x4 (x0 _ y0)0 = x ^ y7 x0 _ x = 18 1 _ x = 1 [2,simp:7,7]13 b _ (a0 _ ((b ^ a0) _ ((a^ (b _ a0))_ (b0 ^ a0)))0) 6= 114 x0 _ y0 = (x ^ y)0 [4 ! 1,
ip]15 b _ (a^ ((b ^ a0) _ ((a^ (b _ a0)) _ (b0 ^ a0))))0 6= 1 [13,simp:14]16 (x0 _ y)0 = y0 ^ x [1 ! 4]22 (x0 ^ y)0 = y0 _ x [16 ! 1]23 x0 ^ y0 = (x _ y)0 [1 ! 16,
ip]24 b _ (a^ ((b _ a)0 _ ((b ^ a0) _ (a ^ (b _ a0)))))0 6= 1 [15,simp:23]25 (x0 _ y) ^ y = y [3 ! 16,simp:1,22,
ip]27 (x_ y) ^ y = y [1 ! 25]28 x0 _ ((y0 ^ x) _ y) = 1 [16 ! 7]31 ((x_ y) ^ z) _ (y ^ z) = (x _ y) ^ z [27' ! 3]32 ((x^ y) _ z) ^ (y _ z) = (x ^ y) _ z [3' ! 27]33 ((x0 ^ y) _ z)0 = z0 ^ (y0 _ x) [16 ! 16]38 ((x0 _ y) ^ z)0 _ x = z0 _ x [27' ! 22,simp:22,
ip]146 (x^ y)0 ^ (y0 _ (x0 ^ z)) = y0 _ (x0 ^ z) [14 ! 32]174 x0 ^ (y0 _ (z0 ^ u)) = (((u0 _ z) ^ y) _ x)0 [22 ! 33,
ip]175 ((x0 _ y) ^ z)0 = z0 _ (y0 ^ x) [146,simp:174,31]281 x0 _ ((y0 ^ ((z0 _ u) ^ x))_ (y _ z)) = 1 [38' ! 28',simp:8]2662 x0 _ (((y ^ z)0 ^ ((z0 _ u) ^ x))_ z) = 1 [3' ! 281]2663 (((x^ y) _ z)0 ^ (y0 _ u))_ (y _ z) = 1 [1 ! 2662,simp:23]2664 x0 _ ((((x0 ^ y) _ z)0 ^ (x_ u))_ z) = 1 [1 ! 2663]6

3141 x0 _ ((((x0 ^ y) _ ((x0 _ z) ^ u))0 ^ (x _ v))_ z) = 1 [2664' ! 3',simp:8,
ip]22528 1 6= 1 [175 ! 24,simp:3141]5 ConclusionThese results are not deep, but they illustrate one kind of automatic deductionassistance that is becoming available to mathematicians and logicians.The programs EQP and MACE, and the input �les that produce these resultsare available on the Web at the following location.http://www.mcs.anl.gov/home/mccune/ar/ortholattice/AppendixI sent the results of the programs to Megill, who replied:For your interest, [your lattice] is actually used to show that the follow-ing equation does not have an ortholattice proof. The equation I sentyou [E1] was the \missing piece" of a proof that I was attempting to con-struct. . . . Speci�cally, this is the lattice algebra mapping of axiomA14 of a system of quantum logic of Kalmbach, Orthomodular Lattices,p. 240.(((a0 ^ b)0 _ (((a0 _ (((a0 _ b) ^ (a0 _ b0)) ^ (a _ (a0 ^ b)))) ^ (a0_(((a0 _ b) ^ (a0 _ b0)) ^ (a _ (a0 ^ b)))0)) ^ (a _ (a0 ^ (((a0 _ b) ^ (a0_b0)) ^ (a _ (a0 ^ b))))))) ^ ((a0 ^ b)0 _ (((a0 _ (((a0 _ b) ^ (a0 _ b0))^(a _ (a0 ^ b)))) ^ (a0 _ (((a0 _ b) ^ (a0 _ b0)) ^ (a _ (a0 ^ b)))0)) ^ (a_ [E4](a0 ^ (((a0 _ b) ^ (a0 _ b0)) ^ (a _ (a0 ^ b))))))0)) ^ ((a0 ^ b) _ ((a0 ^ b)0^(((a0 _ (((a0 _ b) ^ (a0 _ b0)) ^ (a _ (a0 ^ b)))) ^ (a0 _ (((a0 _ b) ^ (a0_b0)) ^ (a _ (a0 ^ b)))0)) ^ (a _ (a0 ^ (((a0 _ b) ^ (a0 _ b0)) ^ (a _ (a0 ^ b)))))))) = 1:Of course, I wondered (1) whether the same ortholattice violating E1 also violatesthis equation, (2) if so, whether MACE could �nd it directly, and (3) if not, whetherMACE could �nd another one.As with E1, the denial of E4 was broken up by naming subterms so that MACEcould cope with it. No counterexamples were found among the ortholattices upthrough order 8. The order 10 search produced an ortholattice violating E4, iso-morphic to the one violating E1 (Table 1 and Figure 1).44The �rst MACE search with E4 required more memory (> 100 megabytes) than the successfulE1 MACE search had used (84 megabytes), and I had to �nd a way reduce the space requirement.7

As a double check, a MACE run was set up to verify that the ortholattice (aswritten in Table 1) violates E4 by including constraints corresponding to the table.This type of MACE run simply veri�es that an interpretation is satis�es a statement.The veri�cation succeeded.References[1] W. McCune. A Davis-Putnam program and its application to �nite �rst-order model search: Quasigroup existence problems. Tech. Report ANL/MCS-TM-194, Argonne National Laboratory, Argonne, IL, May 1994 (also seehttp://www.mcs.anl.gov/home/mccune/ar/mace/).[2] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. ReportANL-94/6, Argonne National Laboratory, Argonne, IL, 1994 (also seehttp://www.mcs.anl.gov/home/mccune/ar/otter/).[3] W. McCune. 33 basic test problems: A practical evaluation of some paramodu-lation strategies. In Robert Vero�, editor, Automated Reasoning and its Applica-tions: Essays in Honor of Larry Wos, chapter 5, pages 71{114. MIT Press, 1997(also see http://www.mcs.anl.gov/home/mccune/ar/33-basic-test-problems/).[4] W. McCune and R. Padmanabhan. Automated Deduction in Equa-tional Logic and Cubic Curves, volume 1095 of Lecture Notes in Com-puter Science (AI subseries). Springer-Verlag, Berlin, 1996 (also seehttp://www.mcs.anl.gov/home/mccune/ar/monograph/).[5] W. McCune and L. Wos. Otter: The CADE-13 Competition incarnations. J.Automated Reasoning, 18(2):211{220, 1997.[6] N. Megill, Sept. 1997. Correspondence by electronic mail.
Fortunately, two of the larger equations (associativity of meet and x _ (y _ y0) = y _ y0) could beomitted, because they depend on the other axioms and lemmas; this allowed the search to run inless than 70 megabytes. 8

