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1 IntroductionIn recent years great advances have been made in the CPU and the communication performanceof parallel computers. Similar advances have not been made, however, in the input/output (I/O)performance of parallel machines, as I/O has long been a neglected area. Although parallel com-puters with peak performance of 1 Tops/sec or more are available, real applications running onparallel machines usually achieve I/O bandwidths of at most a few hundred Mbytes/sec. In fact,many applications achieve less than 10 Mbytes/sec [4].As parallel computers get faster, scientists are increasingly using parallel computers to solveproblems that require a large amount of computing power. Most of these applications also need toperform I/O for a number of reasons, such as reading initial data, writing the results, checkpointing,out-of-core data sets, scratch �les for temporary storage, and visualization. (See [14, 1, 6] for a listof many such applications.) Since I/O is slow, the I/O speed, and not the CPU or communicationspeed, is often the bottleneck for such applications. For parallel computers to be truly usable forsolving real, large-scale problems, the I/O performance must be scalable and balanced with respectto the CPU and communication performance of the system.In this article, we �rst briey discuss the hardware and software support for parallel I/O onmodern machines. We explain how an inappropriate application program interface (API) is oftenthe cause of poor I/O performance in applications and how an explicitly parallel API with supportfor collective I/O can help the underlying I/O hardware and software perform I/O e�ciently. Wethen describe MPI-IO, a recently de�ned, standard, portable API speci�cally designed for high-performance parallel I/O. Finally, we give an overview of each paper in this special issue. For themost part, this article as well as the other papers in this issue deal with the type of parallel I/Ocommonly seen in high-end scienti�c computing. In the commercial area, where parallelism oftencomes about through processing of independent transactions, the issues may be di�erent from theones addressed here.2 Parallel I/O InfrastructureParallel I/O can be de�ned as multiple processes of a parallel program making concurrent I/Orequests to the �le system. Most parallel machines are provided with some hardware and softwaresupport for parallel I/O.Distributed-memory parallel machines, such as the IBM SP and Intel Paragon, have a set ofI/O nodes, each connected to one or more disks or RAIDs. Usually, although not always, the I/Onodes are dedicated for I/O, and no compute jobs are run on them. The I/O nodes function as1



servers for the parallel �le system. The parallel �le system typically stripes �les across multiple I/Onodes or disks: A �le is divided into a number of smaller units called striping units, and the stripingunits are assigned to disks in a round-robin manner. File striping provides higher bandwidth andenables multiple processes to access distinct portions of a �le concurrently. In some machines, thecompute nodes also have local disks of their own that are not directly accessible from other nodes.These disks are used to store �les local to each processor.Shared-memory parallel machines, such as the SGI Origin 2000 and HP/Convex Exemplar, donot have separate I/O nodes. The operating system schedules the �le-system server on the computenodes. However, these machines do have multiple disks and a �le system that stripes �les acrossthe disks.For a good discussion of issues related to parallel I/O systems, see [7, 15].3 Application Program InterfaceThe application program interface (API) plays a critical role in enabling the user to express I/Ooperations conveniently and also in conveying su�cient information about user-level access patternsto the I/O system so that the system can perform I/O e�ciently.The Unix I/O interface is the most commonly used interface for parallel I/O at present. How-ever, it was designed mainly for uniprocessor �le systems and for access patterns commonly foundin uniprocess programs. Accordingly, it allows the user to access only a single chunk of data at atime. It has no notion of collective I/O requests from multiple processes. (POSIX [12] does de�nea function called lio listio that accepts a list of requests, but it is not supported on all machines,and it is not collective.) One can use the Unix I/O interface in parallel programs; each process canmake Unix I/O calls on its own, independent of other processes. However, as we explain below, us-ing this interface often turns out to be very ine�cient. The main reason is that the access patternsin parallel programs are quite di�erent from those in uniprocess programs [21, 4, 2, 26]. In parallelprograms, each process may need to access a noncontiguous data set. In many cases, the accessesof di�erent processes may be interleaved in the �le, and together they may span large, contiguousportions of the �le. With the Unix I/O interface, the programmer has no means of conveying the\big picture" of the access pattern to the I/O system. Each process must seek to a particularlocation in the �le, read or write a small portion of data, then seek to the next noncontiguouslocation, read or write a small portion of data, and so on. The result is that each process makeshundreds or thousands of requests for small pieces of data to the �le system.The example in Figure 1 illustrates this point. The �gure shows an access pattern commonly2
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Figure 1: Example access pattern in parallel applicationsfound in parallel applications. A two-dimensional array is distributed among 16 processes in a(block, block) fashion. The array is stored in a �le corresponding to the global array in row-majororder, and each process needs to read its local array from the �le. The data distribution amongprocesses and the array storage order in the �le are such that the �le contains the �rst row of thelocal array of process 0, followed by the �rst row of the local array of process 1, the �rst row ofthe local array of process 2, the �rst row of the local array of process 3, then the second row of thelocal array of process 0, the second row of the local array of process 1, and so on. In other words,the local array of each process is not located contiguously in the �le. To read its local array byusing a Unix-like API, each process must seek to the appropriate location in the �le, read one row,seek to the next row, read that row, and so on. Each process must make as many read requests asthe number of rows in its local array. If the array is large, the �le system may receive thousands ofread requests.Parallel �le systems are designed to handle large I/O requests, and they perform poorly whenbombarded with numerous small requests. If the API is able to specify the noncontiguous accesses ofeach process as well as the group of processes making such requests, the I/O system can access datae�ciently by using a technique called collective I/O [5, 27, 16, 24]. A collective I/O implementation3



tries to combine the noncontiguous requests of multiple processes into larger contiguous requestsand access data in large chunks. Numerous studies have shown that collective I/O can improveperformance signi�cantly [5, 27, 16, 24]. However, collective I/O cannot be done with the UnixAPI.Over the past few years, many research parallel �le systems and I/O libraries have been devel-oped that perform various optimizations, including collective I/O [28, 11, 20, 17, 3, 10, 25, 9, 19].Each of these, however, has a di�erent API with varying degrees of portability and generality. Theonly standard, portable API that has been available on all machines is the Unix API. Therefore,most users write applications for the Unix API and get bad performance for reasons explainedabove. Clearly, a single, standard, portable API designed speci�cally for parallel I/O is needed,together with high-performance implementations of it on all machines.Fortunately, there is now such an API, namely MPI-IO, the I/O chapter in MPI-2 [18]. MPI-IOhas been designed based on experience with various existing APIs as well as knowledge of the I/Oaccess patterns in parallel applications. MPI-IO can be considered as Unix I/O plus many featuresspeci�cally intended for portable, high-performance parallel I/O. These additional features includesupport for noncontiguous accesses in memory and �le, collective I/O, nonblocking I/O, standard�le data representation, and user-de�ned �le data representation. MPI-IO provides a mechanism forusers to provide hints applicable to a particular implementation or I/O environment (e.g., numberof disks, striping unit, access pattern). MPI-IO also allows the user to select either an atomicor a nonatomic �le consistency mode. The default consistency mode is nonatomic, which enablesan implementation to perform certain optimizations that are not possible with the more stringentatomic mode. The nonatomic mode is intended for the most common case where the accesses ofdi�erent processes do not overlap. If accesses overlap, the atomic mode should be used.Porting applications from Unix I/O to MPI-IO is easy, because MPI-IO provides functions thatare equivalent to those in Unix I/O. For better performance, however, the special features of MPI-IO must be used. Many implementations of MPI-IO are in progress [30, 8, 13, 23, 22], and mostvendors of parallel machines plan to provide MPI-IO as part of their MPI-2 product.We ourselves are developing a portable MPI-IO implementation called ROMIO. ROMIO 1.0.0is freely available from http://www.mcs.anl.gov/home/thakur/romio and works on most parallelcomputers and networks of workstations. ROMIO is optimized for noncontiguous accesses and col-lective I/O. We have seen impressive performance results with ROMIO's collective I/O implemen-tation. For example, Figure 2 shows the I/O bandwidths obtained on the Intel Paragon at Caltechfor an astrophysics application template, which has an access pattern similar to that in Figure 1.(This application is described in detail in [29].) A three-dimensional array is block-distributed in4
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Figure 2: Independent versus collective I/O with MPI-IO on the Intel Paragon at Caltech for a 3Dastrophysics application templateall three dimensions and must be accessed (read/written) from a �le containing the global array incolumn-major order. The results shown are for an array of size 512� 512� 1024. With Unix-likeindependent I/O, the bandwidths obtained were less than 5 Mbytes/sec in all cases, whereas withcollective I/O, the bandwidths were in the range of 120{280 Mbytes/sec. The scalability of thecollective I/O performance is limited by the amount of I/O hardware on the machine.4 This Special IssueThe e�cacy of any parallel I/O system can be meaningfully judged only by its performance withreal applications. Although many papers exist in the literature about parallel I/O systems, com-paratively little information exists about applications that use parallel I/O. This special issue aimsto increase the understanding of the nature of I/O in real parallel applications.The authors of the papers in this issue have used various methods to meet their I/O needs.Some have used Unix I/O, others have used existing I/O libraries, and some have developed theirown libraries and techniques. Note that the MPI-IO interface was still being de�ned at the time5



most of this work was done, and MPI-IO implementations were not readily available.Below is a brief overview of each paper in this issue.� \E�cient Parallel I/O in Seismic Imaging" by Ron Old�eld, David Womble, and Curtis Ober.This paper describes a seismic-imaging application called Salvo. Salvo is written with MPIand runs on many di�erent machines. It uses a separate I/O partition, consisting of a setof extra compute nodes allocated at run-time, to perform all I/O. I/O requests from thecompute partition are communicated to the I/O partition, and the I/O partition accessesdata from the �le system. The authors have developed an analytical model for estimatingthe I/O and compute times, and they present performance results on an Intel Paragon.� \Characterization of I/O Requirements in a Massively Parallel Shelf Sea Model" by P. Lockey,R. Proctor, and I. James. This paper describes the I/O requirements of an applicationthat models continental shelf sea regions. The application is written in Fortran and usesMPI. All parallel I/O detail is hidden inside high-level routines developed by the authors.These routines provide a single, portable I/O interface across machines with di�erent I/Oarchitectures and �le systems. The I/O in the application consists of reads and writes of three-dimensional distributed arrays. The authors present an analytical cost model and performanceresults on a Cray T3D.� \An Experimental Study to Analyze and Optimize Hartree-Fock Application's I/O with PAS-SION" by Meenakshi Kandaswamy, Mahmut Kandemir, Alok Choudhary, and David Bern-holdt. This paper describes in detail the I/O behavior of a computational chemistry appli-cation that uses the Hartree-Fock method. The authors �rst used the original code with itsFortran I/O calls. They then studied the I/O behavior by replacing the Fortran I/O callswith calls to the PASSION I/O library. They discuss the impact of PASSION's I/O opti-mizations and various application-related and system-related parameters on the performanceof this application. All experiments were performed on an Intel Paragon.� \A Comparison of Logical and Physical Parallel I/O Patterns" by Huseyin Simitci and DanielReed. This paper compares the logical I/O requests of an application with the correspondingphysical I/O that actually takes place at the disk level. The authors use some syntheticbenchmarks and one computational chemistry application called MESSKIT. They performedall experiments on an Intel Paragon. They found that the physical I/O patterns induced byapplication requests are a�ected greatly by the �le striping mechanisms, �le system policies,and disk hardware attributes. 6



� \A Study of I/O in a Parallel Finite Element Groundwater Transport Code" by David Mackay,G. Mahinthakumar, and Ed D'Azevedo. This paper describes the I/O in a parallel �nite-element groundwater transport code. The authors compare three di�erent strategies for per-forming I/O in this code: having a single processor do all the I/O, using variations of vendor-speci�c I/O extensions, and using a library they developed called EDONIO. They presentperformance results on multiple machines: Intel Paragon, IBM SP, HP/Convex Exemplar,SGI/Cray Origin 2000, and SGI Power Challenge. They also performed some preliminaryexperiments using MPI-IO and report that the performance with MPI-IO was comparable tothat with the EDONIO library.� \ChemIO: High-Performance Parallel I/O for Computational Chemistry Applications" byJarek Nieplocha, Ian Foster, and Rick Kendall. This paper describes the I/O requirements ofsome computational chemistry applications, such as Hartree-Fock, MRCI, RI-SCF, and RI-MP2. The authors have developed an I/O library, called ChemIO, that is intended speci�callyto meet the I/O requirements of computational chemistry applications. ChemIO supportsthree di�erent I/O models: disk resident arrays, exclusive access �les, and shared �les. Theauthors present performance results with ChemIO on an Intel Paragon and an IBM SP.� \Parallel Run-Length Encoding (RLE) Compression|Reducing I/O in Dynamic Environ-mental Simulations" by G. Davis, L. Lau, R. Young, F. Duncalfe, and L. Brebber. Thispaper describes a climate-modeling application that generates so much data (�60Tbytes)that data reduction via compression is essential. The authors have developed a compressionalgorithm, based on run-length encoding, that exploits the special gather-scatter hardwareand multiple processors on Cray parallel vector machines.5 ConclusionsThe papers in this special issue represent a small sample, even within scienti�c computing, of theapplications that need large-scale I/O capabilities. They exhibit a variety of approaches to meetingtheir I/O needs. MPI-IO and the implementations of it that we expect to see in the next few yearsshow promise in contributing to solve I/O performance and portability problems. However, thee�ectiveness of MPI-IO, or any parallel I/O system, must be based on its performance with realapplications. We hope that the application studies in this special issue provide a useful step in thelong-term evaluation of scalable I/O solutions. 7
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