
1An Interface for E�cient Vector Scatters andGathers on Parallel MachinesBarry F. SmithAbstract| Scatter and gather type operations form theheart of most communication kernels in parallel partial dif-ferential equation solvers. This paper introduces a simpleinterface for de�ning and applying scatter and gather oper-ations on both distributed and shared memory computers.A key feature of the interface is that it allows e�cient imple-mentations that can take advantage of underlying structurein the indexing of the scatters and gathers, such as stridedindexing or indexing of blocks of data. A discussion of animplementation using MPI in the software package PETSc(the Portable, Extensible Toolkit for Scienti�c computation)is included. The interface is fully usable from Fortran 77,C, and C++.Keywords| scatters, gathers, parallel communication,MPI, ghost points, PETScI. IntroductionThe parallel solution of partial di�erential equations(PDEs) is most often achieved by using data decompo-sition (sometimes called domain decomposition, perhapsmore appropriately called grid decomposition). The un-derlying �nite element, �nite di�erence, or �nite volumegrid is decomposed among the various processors; each pro-cessor is then responsible for the numerical computationinvolving its portion of the grid. Information from neigh-boring portions of the grid \owned" by other processorsmust be communicated to the given processor; this com-munication is usually done through the concept of ghostnodes (or ghost cells); see Fig. 1. The communicationrequired can be formulated as a generalization of scattersand gathers. This is true regardless of whether explicit orimplicit methods are used to discretize the PDE, for bothlinear and nonlinear problems as well as time-dependentand steady-state problems. In addition, these data decom-position approaches are appropriate for problems solvedon both structured and unstructured grids. Thus, e�cientscatters, gathers, and related operations are crucial for thee�cient solution of PDEs on parallel computers.Consider vectors x and y of lengths Nx and Ny and twosets of non-negative integers ix and iy of length Nix. Wede�ne a generalized scatter of x to y byy[iy[i]] = x[ix[i]] i = 1; :::; Nix:We allow Nix to be of di�erent length than Nx and the ar-rays iy[] and ix[] may contain duplicate indices, and/or skipindices completely. In this paper we introduce a softwareMathematics and Computer Science Division, Argonne NationalLaboratory, 9700 South Cass Ave., Argonne, IL 60439-4844. Elec-tronic mail address: bsmith@mcs.anl.gov. This work was supportedby the Mathematical, Information, and Computational Sciences Di-vision subprogram of the O�ce of Computational and TechnologyResearch, U.S. Departmentof Energy, under ContractW-31-109-Eng-38.

Local Node Ghost Node for Processor

1 2

3
4

5

6
7

8 9
10

11

12
13

14
15

16

1718
19

20
21 22

23

Fig. 1. Ghost Points for Processorinterface for de�ning and applying such scatters e�cientlyon distributed and shared memory parallel computers.In Section II we provide the motivation, demonstratinghow the communicational kernels in many PDE computa-tions may be viewed as a scatter operation. Section IIIintroduces the interface as used by the PETSc (Portable,Extensible Toolkit for Scienti�c computation) package [4],[3], [5], and Section IV explains the various optimizationsthat the interface allows (by taking advantage of structurein the indexing) to achieve the fastest possible communi-cation kernels.The interface introduced in this paper uses the inspec-tor/executor ideas as proposed in the PARTI work of Saltz[6], [10]. For communication of data on regular rect-angular arrays and groups of regular rectangular arrays,there is related work by Quinlan (A++/P++) [9], [12],Baden (KeLP, formerly LPARX) [2], [7], Saltz (multiblockPARTI) [1], and Parashar (DAGH) [11].II. Scatters in Parallel PDE ComputationsCommunication in most parallel �nite element, �nite dif-ference, and �nite volume PDE computations comes in twoforms: nearest neighbor and global reductions. This pa-per discusses the communication kernels involving neigh-bor communication. Consider a grid as depicted in Fig. 1or Fig. 2. For explicit (in time) methods, one computesun+1 = F (tn+1; un; :::);where un contains the discrete solution at, say, the gridpoints. The function F () is local in the sense thatun+1i = Fi(tn+1; un; :::)

2depends only on unj for nodes j that are near (in the grid)to node i.
Local Node Ghost Node for Processor

12 13 14 15 16 17 18 20 21 22

24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44

23

1 2 3 4 5 6 8

19

7 9 10 11Fig. 2. Ghost Points for Processor on Regular GridFor implicit methods, one needs to solveG(un+1; tn+1; un; :::) = 0for un+1, where, again, G() is local in that Gi() dependsonly on un+1j and unj , for nodes j near node i. In addition,for implicit methods, one often wants (when using, for ex-ample, Newton's method) to solve linear systems involv-ing some approximation to J , the Jacobian of G(). Fortu-nately, the Jacobian is sparse and entails the same couplingof nodes as the function G(). Thus, neighbor communica-tion in implicit methods usually involves� evaluation of a \sparse" function, G();� evaluation of a sparse Jacobian, J , and� application of sparse matrix-vector products.Let's consider in more detail an implementation to com-pute un+1 = F (un);where the dependence on t and other parameters is hiddenfor simplicity. We present the interface three times, goingfrom the abstract to the concrete.Abstract LevelFunction input: a \parallel" vector.output: a \parallel" vector.Abstract Distributed-Memory LevelFunction input: an array containing the local valuesof a \parallel" vector.output: an array containing the local valuesof a \parallel" vector.More Concrete Distributed-Memory LevelFunction input: double inarray[]and a data structure containingneeded communication information.output: double outarray[].double work[], local work array.Communicate ghost values from other processors intowork array.

Copy local values from inarray to work array.Compute purely local functionunp = Flocal(work).As an alternative to allocating the large work array tohold the local portion of the input vector as well as itsghost values, one could instead allocate a \padded" parallelvector, that, on each processor, contains extra slots to holdthe required ghost values. This o�ers the slight advantageof not having to copy the local values to the work space(since they are already stored there).For ease of application programming one would like touse any arbitrary global numbering of the nodes (or de-grees of freedom), for example, the \natural" numberingin Fig. 2, and de�ne the needed ghost locations in thatglobal numbering. The proposed approach advocates ex-actly this.III. An Efficient Interface for DefiningParallel ScattersBefore discussing the interface for de�ning the scattersand gathers, we need to de�ne one abstract concept. Wede�ne an index set as an abstract way of denoting a set ofindices. The reason to use an abstract object to representindexing is that it allows memory and speed optimizationsfor important special cases. For example, in performing agather of n items, the indices indicating the resulting lo-cations consist of f0, 1, 2, ..., ng. Clearly, allocating aninteger array to contain these indices and then manipulat-ing each index directly is not desirable.In PETSc a distributed index set is denote by IS. Thereare currently three representations of index sets:� a basic set of integers (where each processor containsa subset of the list),� a set of integers where each integer represents a blockof indices of �xed size (this is particularly useful fore�cient computation on multicomponent PDEs), and� a strided set of integers, represented by the �rst value,a stride and a number of entries.Another natural candidate would be a strided set repre-senting blocks of indices.To make this more concrete, we give the PETSc callingsequences to generate these three index sets.ISCreateGeneral(MPI_Comm comm, int n,int *indices, IS *result);ISCreateBlock(MPI_Comm comm, int blocksize,int n, int indices, IS *result);ISCreateStride(MPI_Comm comm, int n,int first, int step, IS *result);All of the processors that are to be involved in the scat-ter/gather would generate their portion of the IS by callingthe appropriate ISCreateXXX() routine.The index sets only de�ne the \from" and \to" indices ofthe scatter/gather operations in some numbering scheme;they themselves do not contain the detailed information re-quired to actually perform the data movement via messagepassing or shared memory. In PETSc we create a scatter

3context, denoted by VecScatter, that contains the detailedinformation that is used to actually communicate the ap-propriate vector values (for example, message bu�ers, pro-cessor lists).A \parallel" vector in PETSc (denoted by Vec) is essen-tially represented by an array in each processor's memory,plus additional information about the layout of the valuesacross the processors (e.g., the number of values each pro-cessor stores in its array.) For coding simplicity, indexingof vectors in PETSc is always by processor: the �rst n0elements are stored on processor zero, the next n1 are onprocessor one, etc. Since this is often not the case for theapplication code, PETSc provides simple tools to map be-tween other vector element numbering schemes. Thus, oneneed only de�ne the scatters in terms of the PETSc vectorelement numbering schemes; see Fig. 3.Processor 13 4 8 9 <- Application numbering0 1 2 3 <- PETSc vector numberingProcessor 2Application numbering -> 0 2 1 5 6 7PETSc vector numbering -> 4 5 6 7 8 9Fig. 3. Mapping between Numbering SchemesOnce the vector layout and \to" and \from" index setsare de�ned, we are ready to create the vector scatter con-text, VecScatter. The scatter context is a data objectthat contains all information required to actually move thedata, when a ghost up date (for example) is needed.In PETSc the scatter context is created viaVecScatterCreate(Vec vfrom,IS from,Vec vto,IS to,VecScatter *scatterctx);The vector values are actually moved via the pair of com-mandsVecScatterBegin(Vec vfrom,Vec vto,INSERT_VALUES,SCATTER_FORWARD,scatterctx);/* possibly other commands */VecScatterEnd(Vec vfrom,Vec vto,INSERT_VALUES,SCATTER_FORWARD,scatterctx);This is an example of the inspector/executor modelfor data communication. The inspector routine,VecScatterCreate(), determines the communication pat-terns (what messages have to be packed, sent, received, andunpacked), while the executor actually does the packing,sending, receiving, and unpacking of the messages contain-ing the actual vector values. In general, for PDE compu-tations, the inspector is called once, while the executor iscalled many times.The third and fourth arguments to VecScatter-Begin/End() may be INSERT VALUES or ADD VALUES andSCATTER FORWARD, or SCATTER REVERSE respectively. TheSCATTER REVERSE indicates that the roles of the \to" and

\from" vectors are reversed. In a message passing system,the sends become receives and conversely the receives be-come sends.We now give a more detailed example of the use of theinterface than was given in the preceding section.PETSc Distributed Memory LevelSetup Phase:Create vectors with given parallel layout.Create local work vectors.Determine numbering of ghost nodes from gridinformation and create the \to" and\from" index sets.Create the vector scatter context.Function input: Vec inputVecScatter scatterctx.output: Vec output.Communicate ghost values from other processorsinto workinput vector using thescatter context.Compute purely local functionworkoutput = Flocal(workinput).Communicate ghost values back to other processorsfrom workoutput vector using thescatter context, if required.Fortran 77 does not support structures or pointers.Therefore, to provide this interface in Fortran, we repre-sent the fundamental objects Vec, IS, and VecScatterin Fortran as integers that \point to" the underlying data-structures in C.IV. Optimization of the Scatter OperationsThe index set concept has two functions:� increase readability and clarity of the application codeand� allow for optimization of important special cases.For strided and blocked indices, one clearly gets an imme-diate potential savings, since the individual indices (thatwould be required if they were simply enumerated) neednot be stored. This reduces both memory usage and theloading and storing times of the indices. The strided indexset is also valuable for the automatic detection of simplecopies, etc.This interface allows a variety of special scatter/gathersautomatically to be detected and optimized. PETSc cur-rently takes advantage of many of these.� No parallel communication required{ gather, where the \from" indices are local{ scatter, where the \to" indices are local{ strided copy{ general local copy, (see Fig. 4).� When the mapping is one to one.� When there are no duplicates (i.e. aliasing problems)in the indices.

4� Everything to everybody. Can take advantage ofMPI Alltoall() communication on message passingsystems.� Everything to one processor.� From one processor to all processors. Can take ad-vantage of MPI Bcast() communication on messagepassing systems.� E�cient packing and unpacking of bu�ers for blockedor strided indexing, see Fig. 4.� On message passing systems, use of MPI persistentsends and receives that allow MPI to optimize for setsof communications it knows will be repeated, see Fig.5.� Use of MPI ready-receiver mode.In Fig. 4, we demonstrate how the use of strided orblocked information can be used to reduce the number ofloads required during a scatter/gather operation. Thoughthis may seem like a trivial savings, it does have a directimpact on performance.� General indexing (no optimization)for (i=0; i<n; i++)y[iy[i]] = x[ix[i]];� Stride one in xfor (i=0; i<n; i++)y[iy[i]] = x[xstart+i];� Stride one in x and yfor (i=0; i<n; i++)y[ystart+i] = x[xstart+i];/* or */memcpy(y+ystart,x+xstart,n*sizeof(double));� Block indexing (size 4)for (i=0; i<n; i++) {iyt = iy[i]; ixt = ix[i];y[iyt] = x[ixt];y[1 + iyt] = x[1 + ixt];y[2 + iyt] = x[2 + ixt];y[3 + iyt] = x[3 + ixt];}Fig. 4. Examples of Optimizations in Packing/CopyingIn the use of persistent sends and receives, (Fig. 5),note that all the sends can be initiated in a single MPIcall. The underlying MPI implementation already knowsthe destinations and sizes of all messages so it can quicklyroute them to the correct destination.Code demonstrating the scatter creation with persistent sends andreceives./* create the structures for the receives */for (i=0; i<nrecvs; i++) {... /* define buffer, cnt, etc */MPI_Recv_init(buffer,cnt,MPI_DOUBLE,src,tag,comm,&rwaits[i]);}/* create the structures for the sends */for (i=0; i<nends; i++) {... /* define buffer, cnt, etc */MPI_Send_init(buffer,cnt,MPI_DOUBLE,dest,tag,comm,&swaits[i]);}Code demonstrating the scatter application/* post all the receives */MPI_Startall(nrecvs,rwaits);

/* pack and post all sends *//* Block indexing, block size 5 */for (i=0; i<slen; i += 5) {idx = *indices++;val[0] = xv[idx];val[1] = xv[1 + idx];val[2] = xv[2 + idx];val[3] = xv[3 + idx];val[4] = xv[4 + idx];val += 5;}MPI_Startall(nsends,swaits);Fig. 5. Example Persistent Operations UsageV. ConclusionWe have described an abstract interface for de�ning vec-tors and performing scatters and gathers and their gener-alizations on parallel machines. The interface is simple,requiring only three abstract objects: a vector (denoted byVec in PETSc), an index set (denoted by IS in PETSc),and a vector scatter context (denoted by VecScatter inPETSc). However, the de�nition of the interface allows op-timization for many important special cases. A key advan-tage of this approach is that it enables users always to workwith the same basic objects, independent of their particularcommunication patterns. For example, on message-passingmachines, when moving vector values between processors,the user can always employ the vector scatter routines andexpect high performance, rather than worrying about hav-ing to use non-blocking sends and receives, blocking sendsand receives, or MPI AllScatter(), or MPI Scatter(), orMPI Gather, etc. to obtain high performance.We conclude by mentioning one particular unstructuredgrid application code that utilizes the vector scatter inter-face discussed above. This code, written originally by W.K. Anderson, (NASA Langley), in Fortran 77 for sequentialcomputers was ported to parallel computers using PETScby Dinesh Kaushik, [8] . The code solves the steady-stateincompressible Euler equations using a second-order Roescheme. In Table I, we present performance numbers of thetotal solution process for a 2,761,774 vertex grid, amount-ing to 11,047,096 degrees of freedom on the Cray T3E-900at NERSC. TABLE IPerformance on T3EProcs Time E�ciency Gigaops Scatter Time128 6,048 { 8.5 3%256 3,242 93% 16.6 3%512 1,811 83% 32.1 4%Note the relatively small percentage of the time spent inthe neighbor communication. The loss in e�ciency on 512processors can be traced to a work load imbalance amongthe processors, since the grid was partitioned to equalizedvertices, not the work related to the vertices.We emphasis some of the key reasons for the suggestedapproach for nearest neighbor communication.

5� The abstraction in the interface allows optimizations\under the covers".� The form of the arguments (IS, Vec) allow the libraryto detect potential optimizations.� Some of the optimizations that can be detected wouldbe extremely di�cult for a compiler to detect.� The collective de�nitions of the IS and VecScatter al-low for use of \collective" system routines such asMPI Bcast() and MPI Scatter().� The model does not require a message-passing systemand can be implemented directly in shared memory,etc. AcknowledgementsI thank the rest of the PETSc team (Satish Balay,William Gropp, and Lois Curfman McInnes) for mak-ing PETSc possible. PETSc is freely available fromhttp://www.mcs.anl.gov/petsc/petsc.html and maybe used from Fortran, C, or C++. I also thank DineshKaushik and David Keyes for developing the parallel Eu-ler code and Kyle Anderson for generously providing theoriginal source code. References[1] G. Agrawal, A. Sussman, and J. Saltz, An integrated run-time and compile-time approach for parallelizing structured andblock structured applications, IEEE Transactions on Parallel andDisttibuted Systems, (to appear).[2] S. Baden, KeLP home page. http://www-cse.ucsd.edu/groups-/hpcl/scg/kelp.html, July 1997.[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Ef-�cient management of parallelism in object oriented numericalsoftware libraries, in Modern Software Tools in Scienti�c Com-puting, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,Birkhauser Press, 1997, pp. 163{202.[4] , PETSc 2.0 users manual, Tech. Rep. ANL-95/11 - Re-vision 2.0.21, Argonne National Laboratory, Nov. 1997.[5] , PETSc home page. http://www.mcs.anl.gov/petsc, July1997.[6] R. Das, M. Uysal, J. Saltz, and Y. S. Hwang, Communi-cations optimizations for irregular scienti�c computations ondistributed memory architectures, Journal of Parallel and Dis-tributed Computing, 22 (1994), pp. 462{479.[7] S. J. Fink, S. B. Baden, and S. R. Kohn, Flexible communica-tion mechanisms for dynamic structured applications, in Irreg-ular '96, 1996.[8] D. Kausik, D. Keyes, and B. Smith, On the interaction ofarchitecture and algorithm in the domain based parallelism ofan unstructured grid incompressible ow code, in Proceedings of10th InternationalSymposiumon Domain DecompositionMeth-ods in Science and Industry, AMS, 1998. submitted.[9] M. Lemke and D. Quinlan, P++, a C++ virtual shared gridsbased programming environment for architecture-independentdevelopment of structured grid applications, in CONPAR/VAPPV, in Lecture Notes in Computer Science, Springer Verlag, 1992.[10] S. S. Mukherjee, S. D. Sharmann, M. D. Hill, J. R. Larus,A. Rogers, and J. Saltz, E�cient support for irregular appli-cations on distributed memory machines, in PPoPP 95, 1995.[11] M. Parashar and J. C. Browne, DAGH: A data-managementinfrastructure for parallel adaptive mesh re�nment techniques,tech. rep., Department of Computer Science, University of Texasat Austin, 1995.[12] R. Parsons and D. Quinlan, A++/P++ array classes for ar-chitecture independent �nite di�erence computations, in Pro-ceedings of the Second Annual Object-Oriented Numerics Con-ference, 1994.

