An Interface for Efficient Vector Scatters and

Gathers on Parallel Machines
Barry F. Smith

Abstract— Scatter and gather type operations form the
heart of most communication kernels in parallel partial dif-
ferential equation solvers. This paper introduces a simple
interface for defining and applying scatter and gather oper-
ations on both distributed and shared memory computers.
A key feature of the interface is that it allows efficient imple-
mentations that can take advantage of underlying structure
in the indexing of the scatters and gathers, such as strided
indexing or indexing of blocks of data. A discussion of an
implementation using MPI in the software package PETSc
(the Portable, Extensible Toolkit for Scientific computation)
is included. The interface is fully usable from Fortran 77,
C, and C++.

Keywords— scatters, gathers,
MPI, ghost points, PETSc

parallel communication,

I. INTRODUCTION

The parallel solution of partial differential equations
(PDEs) is most often achieved by using data decompo-
sition (sometimes called domain decomposition, perhaps
more appropriately called grid decomposition). The un-
derlying finite element, finite difference, or finite volume
grid is decomposed among the various processors; each pro-
cessor is then responsible for the numerical computation
involving its portion of the grid. Information from neigh-
boring portions of the grid “owned” by other processors
must be communicated to the given processor; this com-
munication is usually done through the concept of ghost
nodes (or ghost cells); see Fig. 1. The communication
required can be formulated as a generalization of scatters
and gathers. This is true regardless of whether explicit or
implicit methods are used to discretize the PDE, for both
linear and nonlinear problems as well as time-dependent
and steady-state problems. In addition, these data decom-
position approaches are appropriate for problems solved
on both structured and unstructured grids. Thus, efficient
scatters, gathers, and related operations are crucial for the
efficient solution of PDEs on parallel computers.

Consider vectors x and y of lengths N, and N, and two
sets of non-negative integers iz and ¢y of length N;;. We
define a generalized scatter of = to y by

yliy[d]] = «[iz[d]] i=1,..., Ni.
We allow N;, to be of different length than N, and the ar-
rays 1y[] and iz[] may contain duplicate indices, and /or skip
indices completely. In this paper we introduce a software

Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844. Elec-
tronic mail address: bsmith@mecs.anl.gov. This work was supported
by the Mathematical, Information, and Computational Sciences Di-
vision subprogram of the Office of Computational and Technology
Research, U.S. Department of Energy, under Contract W-31-109-Eng-
38.

® | ocal Node (O Ghost Node for Processor

Fig. 1. Ghost Points for Processor

interface for defining and applying such scatters efficiently
on distributed and shared memory parallel computers.

In Section IT we provide the motivation, demonstrating
how the communicational kernels in many PDE computa-
tions may be viewed as a scatter operation. Section III
introduces the interface as used by the PETSc (Portable,
Extensible Toolkit for Scientific computation) package [4],
[3], [5], and Section IV explains the various optimizations
that the interface allows (by taking advantage of structure
in the indexing) to achieve the fastest possible communi-
cation kernels.

The interface introduced in this paper uses the inspec-
tor/executor ideas as proposed in the PARTI work of Saltz
[6], [10]. For communication of data on regular rect-
angular arrays and groups of regular rectangular arrays,
there is related work by Quinlan (A++4/P++4) [9], [12],
Baden (KeLP, formerly LPARX) [2], [7], Saltz (multiblock
PARTI) [1], and Parashar (DAGH) [11].

II. ScATTERS IN PARALLEL PDE COMPUTATIONS

Communication in most parallel finite element, finite dif-
ference, and finite volume PDE computations comes in two
forms: nearest neighbor and global reductions. This pa-
per discusses the communication kernels involving neigh-
bor communication. Consider a grid as depicted in Fig. 1
or Fig. 2. For explicit (in time) methods, one computes

"t = Pt L),

where u” contains the discrete solution at, say, the grid
points. The function F() is local in the sense that

u?"’l = F(t" T)

depends only on uj for nodes j that are near (in the grid)
to node 1.

23 24| 25 31132 | 33
12 | 13| 14 201 21| 22
1 2 3 9 10| 11
® | oca Node (O Ghost Node for Processor
Fig. 2. Ghost Points for Processor on Regular Grid

For implicit methods, one needs to solve
Gu Tt w) =0

for u"*!, where, again, G() is local in that G;() depends
only on u?t! and u”, for nodes j near node i. In addition,
for implicit methods, one often wants (when using, for ex-
ample, Newton’s method) to solve linear systems involv-
ing some approximation to .J, the Jacobian of G(). Fortu-
nately, the Jacobian is sparse and entails the same coupling
of nodes as the function G(). Thus, neighbor communica-
tion in implicit methods usually involves

« evaluation of a “sparse” function, G(),

+ evaluation of a sparse Jacobian, J, and

o application of sparse matrix-vector products.

Let’s consider in more detail an implementation to com-
pute

"t = F(u™)

bl

where the dependence on t and other parameters is hidden
for simplicity. We present the interface three times, going
from the abstract to the concrete.

Abstract Level
Function input: a “parallel” vector.
output: a “parallel” vector.

Abstract Distributed-Memory Level
Function input: an array containing the local values
of a “parallel” vector.
output: an array containing the local values
of a “parallel” vector.

More Concrete Distributed-Memory Level
Function input: double inarrayl[]
and a data structure containing
needed communication information.
output: double outarrayl[].

double work[], local work array.
Communicate ghost values from other processors into
work array.

Copy local values from inarray to work array.
Compute purely local function
unp = Frocqr(work).

As an alternative to allocating the large work array to
hold the local portion of the input vector as well as its
ghost values, one could instead allocate a “padded” parallel
vector, that, on each processor, contains extra slots to hold
the required ghost values. This offers the slight advantage
of not having to copy the local values to the work space
(since they are already stored there).

For ease of application programming one would like to
use any arbitrary global numbering of the nodes (or de-
grees of freedom), for example, the “natural” numbering
in Fig. 2, and define the needed ghost locations in that
global numbering. The proposed approach advocates ex-
actly this.

III. AN EFFICIENT INTERFACE FOR DEFINING
PARALLEL SCATTERS

Before discussing the interface for defining the scatters
and gathers, we need to define one abstract concept. We
define an index set as an abstract way of denoting a set of
indices. The reason to use an abstract object to represent
indexing is that it allows memory and speed optimizations
for important special cases. For example, in performing a
gather of n items, the indices indicating the resulting lo-
cations consist of {0, 1, 2, ..., n}. Clearly, allocating an
integer array to contain these indices and then manipulat-
ing each index directly is not desirable.

In PETSc a distributed index set is denote by IS. There
are currently three representations of index sets:

+ a basic set of integers (where each processor contains

a subset of the list),

o a set of integers where each integer represents a block
of indices of fixed size (this is particularly useful for
efficient computation on multicomponent PDEs), and

o a strided set of integers, represented by the first value,
a stride and a number of entries.

Another natural candidate would be a strided set repre-
senting blocks of indices.

To make this more concrete, we give the PETSc calling
sequences to generate these three index sets.

ISCreateGeneral (MPI_Comm comm, int n,

int *indices, IS *result);
ISCreateBlock(MPI_Comm comm, int blocksize,

int n, int indices, IS *result);
ISCreateStride(MPI_Comm comm, int n,

int first, int step, IS *result);

All of the processors that are to be involved in the scat-
ter/gather would generate their portion of the IS by calling
the appropriate ISCreateXXX() routine.

The index sets only define the “from” and “to” indices of
the scatter/gather operations in some numbering scheme;
they themselves do not contain the detailed information re-
quired to actually perform the data movement via message
passing or shared memory. In PETSc we create a scatter

context, denoted by VecScatter, that contains the detailed
information that is used to actually communicate the ap-
propriate vector values (for example, message buffers, pro-
cessor lists).

A “parallel” vector in PETSc (denoted by Vec) is essen-
tially represented by an array in each processor’s memory,
plus additional information about the layout of the values
across the processors (e.g., the number of values each pro-
cessor stores in its array.) For coding simplicity, indexing
of vectors in PETSc is always by processor: the first ng
elements are stored on processor zero, the next n; are on
processor one, etc. Since this is often not the case for the
application code, PETSc provides simple tools to map be-
tween other vector element numbering schemes. Thus, one
need only define the scatters in terms of the PETSc vector
element numbering schemes; see Fig. 3.

Processor 1

<- Application numbering

3 4 8 9
0 1 2 3 <- PETSc vector numbering

Processor 2

Application numbering

-=> 0 2 6 7
PETSc vector numbering -> 4 5 8 9

1 5
6 7
Fig. 3. Mapping between Numbering Schemes

Once the vector layout and “to” and “from” index sets
are defined, we are ready to create the vector scatter con-
text, VecScatter. The scatter context is a data object
that contains all information required to actually move the
data, when a ghost up date (for example) is needed.

In PETSc the scatter context is created via

VecScatterCreate(Vec vfrom,IS from,Vec vto,
IS to,VecScatter *scatterctx);

The vector values are actually moved via the pair of com-
mands

VecScatterBegin(Vec virom,Vec vto,
INSERT_VALUES,SCATTER_FORWARD,
scatterctx);

/* possibly other commands */

VecScatterEnd(Vec vfrom,Vec vto,INSERT_VALUES,

SCATTER_FORWARD,scatterctx);

This is an example of the inspector/executor model
for data communication. The inspector routine,
VecScatterCreate(), determines the communication pat-
terns (what messages have to be packed, sent, received, and
unpacked), while the executor actually does the packing,
sending, receiving, and unpacking of the messages contain-
ing the actual vector values. In general, for PDE compu-
tations, the inspector is called once, while the executor is
called many times.

The third and fourth arguments to VecScatter-
Begin/End() may be INSERT_VALUES or ADD_VALUES and
SCATTER FORWARD, or SCATTER_REVERSE respectively. The
SCATTER REVERSE indicates that the roles of the “to” and

“from” vectors are reversed. In a message passing system,
the sends become receives and conversely the receives be-
come sends.

We now give a more detailed example of the use of the
interface than was given in the preceding section.

PETSc Distributed Memory Level
Setup Phase:

Create vectors with given parallel layout.

Create local work vectors.

Determine numbering of ghost nodes from grid
information and create the “to” and
“from” index sets.

Create the vector scatter context.

Function input: Vec input
VecScatter scatterctx.
output: Vec output.

Communicate ghost values from other processors
into workinput vector using the
scatter context.
Compute purely local function
workoutput = Floeq(workinput).
Communicate ghost values back to other processors
from workoutput vector using the
scatter context, if required.

Fortran 77 does not support structures or pointers.
Therefore, to provide this interface in Fortran, we repre-
sent the fundamental objects Vec, IS, and VecScatter
in Fortran as integers that “point to” the underlying data-
structures in C.

IV. OPTIMIZATION OF THE SCATTER OPERATIONS

The index set concept has two functions:

o increase readability and clarity of the application code

and

o allow for optimization of important special cases.

For strided and blocked indices, one clearly gets an imme-
diate potential savings, since the individual indices (that
would be required if they were simply enumerated) need
not be stored. This reduces both memory usage and the
loading and storing times of the indices. The strided index
set 1s also valuable for the automatic detection of simple
copies, etc.

This interface allows a variety of special scatter/gathers
automatically to be detected and optimized. PETSc cur-
rently takes advantage of many of these.

o No parallel communication required

— gather, where the “from” indices are local
— scatter, where the “to” indices are local
— strided copy

— general local copy, (see Fig. 4).

¢ When the mapping is one to one.

o When there are no duplicates (i.e. aliasing problems)

in the indices.

o Everything to everybody. Can take advantage of
MPI_Alltoall() communication on message passing
systems.

o Everything to one processor.

o From one processor to all processors. Can take ad-
vantage of MPI Bcast() communication on message
passing systems.

o Efficient packing and unpacking of buffers for blocked
or strided indexing, see Fig. 4.

o On message passing systems, use of MPI persistent
sends and receives that allow MPI to optimize for sets
of communications it knows will be repeated, see Fig.
5.

¢ Use of MPI ready-receiver mode.

In Fig. 4, we demonstrate how the use of strided or
blocked information can be used to reduce the number of
loads required during a scatter/gather operation. Though
this may seem like a trivial savings, it does have a direct
impact on performance.

¢ General indexing (no optimization)
for (i=0; i<n; i++)
yliy[il] = x[ix[i1]1;
o Stride one in x
for (i=0; i<n; i++)
y[iy[il] = x[xstart+i];
o Stride one in x and y
for (i=0; i<n; i++)
ylystart+i] = x[xstart+il;
/* or */
memcpy (y+ystart ,x+xstart ,n*sizeof(double));
¢ Block indexing (size 4)
for (i=0; i<n; i++) {

iyt = iy[i]; ixt = ix[i];
yLiyt] = x[ixt];

y[1 + iyt] = x[1 + ixt];
y[2 + iyt] = x[2 + ixt];
y[3 + iyt] = x[3 + ixt];

}

Fig. 4. Examples of Optimizations in Packing/Copying

In the use of persistent sends and receives, (Fig. 5),
note that all the sends can be initiated in a single MPI
call. The underlying MPI implementation already knows
the destinations and sizes of all messages so it can quickly
route them to the correct destination.

Code demonstrating the scatter creation with persistent sends and
receives.

/* create the structures for the receives */
for (i=0; i<nrecvs; i++) {
... /* define buffer, cnt, etc */
MPI_Recv_init(buffer,cnt ,MPI_DOUBLE,src,tag,
comm,&rwaits[i]);
¥
/* create the structures for the sends */
for (i=0; i<nends; i++) {
... /* define buffer, cnt, etc */
MPI_Send_init(buffer,cnt ,MPI_DOUBLE,dest,tag,
comm,&swaits[i]);

¥
Code demonstrating the scatter application

/* post all the receives */
MPI_Startall(nrecvs,rwaits);

/* pack and post all sends */
/* Block indexing, block size 5 */
for (i=0; i<slen; i +=5) {

idx = *indices++;
val[0] = xv[idx];
val[1] = xv[1 + idx];
val[2] = xv[2 + idx];
val[3] = xv[3 + idx];
val[4] = xv[4 + idx];
val += 5;

¥
MPI_Startall(nsends,swaits);

Fig. 5. Example Persistent Operations Usage

V. CONCLUSION

We have described an abstract interface for defining vec-
tors and performing scatters and gathers and their gener-
alizations on parallel machines. The interface i1s simple,
requiring only three abstract objects: a vector (denoted by
Vec in PETSc), an index set (denoted by IS in PETSc),
and a vector scatter context (denoted by VecScatter in
PETSc). However, the definition of the interface allows op-
timization for many important special cases. A key advan-
tage of this approach is that it enables users always to work
with the same basic objects, independent of their particular
communication patterns. For example, on message-passing
machines, when moving vector values between processors,
the user can always employ the vector scatter routines and
expect high performance, rather than worrying about hav-
ing to use non-blocking sends and receives, blocking sends
and receives, or MPI_AllScatter(), or MPI _Scatter(), or
MPI Gather, etc. to obtain high performance.

We conclude by mentioning one particular unstructured
grid application code that utilizes the vector scatter inter-
face discussed above. This code, written originally by W.
K. Anderson, (NASA Langley), in Fortran 77 for sequential
computers was ported to parallel computers using PETSc
by Dinesh Kaushik, [8] . The code solves the steady-state
incompressible Euler equations using a second-order Roe
scheme. In Table I, we present performance numbers of the
total solution process for a 2,761,774 vertex grid, amount-
ing to 11,047,096 degrees of freedom on the Cray T3E-900
at NERSC.

TABLE I
PERFORMANCE ON T3E

Procs Time Efficiency Gigaflops Scatter Time
128 6,048 - 8.5 3%
266 3,242 93% 16.6 3%
512 1,811 83% 32.1 4%

Note the relatively small percentage of the time spent in
the neighbor communication. The loss in efficiency on 512
processors can be traced to a work load imbalance among
the processors, since the grid was partitioned to equalized
vertices, not the work related to the vertices.

We emphasis some of the key reasons for the suggested
approach for nearest neighbor communication.

o The abstraction in the interface allows optimizations
“under the covers”.

o The form of the arguments (IS, Vec) allow the library
to detect potential optimizations.

¢ Some of the optimizations that can be detected would
be extremely difficult for a compiler to detect.

o The collective definitions of the IS and VecScatter al-
low for use of “collective” system routines such as
MPI Bcast() and MPI Scatter().

¢ The model does not require a message-passing system
and can be implemented directly in shared memory,
ete.

ACKNOWLEDGEMENTS

I thank the rest of the PETSc team (Satish Balay,
William Gropp, and Lois Curfman McInnes) for mak-
ing PETSc possible. PETSc is freely available from
http://www.mcs.anl.gov/petsc/petsc.html and may
be used from Fortran, C, or C4++4. I also thank Dinesh
Kaushik and David Keyes for developing the parallel Eu-
ler code and Kyle Anderson for generously providing the
original source code.

REFERENCES

[1] G. AagrawaL, A. SUSSMAN, AND J. SALTZ, An integrated run-
time and compile-time approach for parallelizing structured and
block structured applications, IEEE Transactions on Parallel and
Disttibuted Systems, (to appear).

[2] S. BADEN, KeLP home page. http://www-cse.ucsd.edu/groups-
/hpcl/scg/kelp.html, July 1997.

[3] S.BavLay, W. D. Gropp, L. C. McINNES, AND B. F. SMITH, Ef-
ficient management of parallelism in object oriented numerical
software libraries, in Modern Software Tools in Scientific Com-
puting, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,
Birkhauser Press, 1997, pp. 163-202.

, PETSc 2.0 users manual, Tech. Rep. ANL-95/11 - Re-

vision 2.0.21, Argonne National Laboratory, Nov. 1997.

, PETSc home page. http://www.mcs.anl.gov /petsc, July

1997.

[6] R. Das, M. UvysaL, J. SaLTZ, AND Y. S. HwanG, Communi-
cations optimizations for irregular scientific computations on
distributed memory architectures, Journal of Parallel and Dis-
tributed Computing, 22 (1994), pp. 462-479.

[7] S.J.Fmk, S. B. BADEN, AND S. R. KoHN, Flexible communica-
tion mechanisms for dynamic structured applications, in Irreg-
ular '96, 1996.

[8] D. Kausik, D. KEYES, AND B. SMITH, On the interaction of
architecture and algorithm in the domain based parallelism of
an unstructured grid incompressible flow code, in Proceedings of
10th International Symposium on Domain Decomposition Meth-
ods in Science and Industry, AMS, 1998. submitted.

[9] M. LEMKE AND D. QUINLAN, P++, a C++ virtual shared grids
based programming environment for architecture-independent
development of structured grid applications, in CONPAR/VAPP
V, in Lecture Notes in Computer Science, Springer Verlag, 1992.

[10] S. S. MUKHERJEE, S. D. SHARMANN, M. D. HiLr, J. R. LARUS,
A. ROGERS, AND J. SALTZ, Efficient support for irregular appli-
cations on distributed memory machines, in PPoPP 95, 1995.

[11] M. ParasHar anND J. C. BRowNE, DAGH: A data-management
infrastructure for parallel adaptive mesh refinment techniques,
tech. rep., Department of Computer Science, University of Texas
at Austin, 1995.

[12] R. PaRrsoNs AND D. QUINLAN, A ++/P++ array classes for ar-
chitecture independent finite difference computations, in Pro-
ceedings of the Second Annual Object-Oriented Numerics Con-
ference, 1994.

