
OPTIMIZATION CASE STUDIES IN THE NEOS GUIDEJOSEPH CZY _ZYK� , TIMOTHY WISNIEWSKIy AND STEPHEN J. WRIGHTzPREPRINT ANL/MCS-P704-0198, JANUARY, 1998, (REVISED JULY, 1998),MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NATIONAL LABORATORY1. Introduction. The point of applied mathematics is that the theoretical andalgorithmic developments at the core of the subject are relevant to important applica-tions in the real world. In studying the subject, we learn the usefulness of abstractingindividual problem characteristics to a mathematical level. The connection to appli-cations motivates us to tackle many the conceptual di�culties that arise in our studyof the mathematics.In optimization and operations research, case studies have proved to be an e�ec-tive way to make the connection between theory and algorithms on the one hand andapplications on the other. The typical case study encompasses problem description,mathematical formulation, use of algorithms to obtain a solution, and interpretationof the results. The NEOS Guide case studies described in this paper have these fea-tures, with the addition of some extra ingredients made possible by the World-WideWeb: accessibility and interactivity. Accessibility means simply that the studies canbe accessed in seconds (via a few keystrokes and mouse clicks) by anyone with a con-nection to the Web. The advantage of such an access mode over obvious alternatives(such as obtaining and loading a piece of software from a diskette) may not seemsigni�cant, but it can be critical in an age when people have little time to waste.Indeed, the instantaneous nature of access to the Web has been a key element in itssuccess. Interactivity gives users the power to de�ne their own problems, within theframework of the case study in question. By relating the performance of the algorithmand properties of the solution to their choice of problem and data, they build intuitionabout the capabilities and limitations of the algorithm and formulation. Interactivitymakes the process active rather than passive, and therefore more fully educational.Each NEOS case study illustrates one of the standard optimization paradigms:linear programming, convex quadratic programming, integer linear programming, andso on. Each study starts with a brief description of the application and its background,and proceeds to the mathematical formulation of the problem. In some cases, we dis-play the formulation explicitly in terms of AMPL, a mathematical modeling languagespeci�cally tailored to optimization problems which can serve as an interface to manydi�erent software packages (see Fourer, Gay, and Kernighan [5]). Next, there is amenu or table that allows the users to interact with the case study, for example, byindicating the foods they are prepared to eat (in the case of the diet problem) orby de�ning their risk tolerance (in the case of portfolio optimization). The solutionof the user-de�ned problem is then computed and displayed, and its signi�cance isexplained in terms of the original application. The study concludes with pointers toadditional information about the underlying optimization paradigm, algorithm, andsoftware, much of which is found in other areas of the NEOS Guide.All the case studies can be accessed from the following URL:� Wroc lawska Szko la J�ezykowa, ul. K lodnicka 2, 54-217 Wroc law, Polandy 2515 Plaza Drive, State College, PA 16801, U.S.A.z Optimization Technology Center and Mathematics and Computer Science Division, ArgonneNational Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, U.S.A. This work was sup-ported by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. 1

NEOS GUIDE CASE STUDIES 2http://www.mcs.anl.gov/otc/Guide/CaseStudies/They are frequently used for class assignments. In some cases, particularly for thesimplex applet described in Section 2, they could be used during a lecture or tutorial.Some could even be developed into self-contained course units, the equivalent of oneor two classes.The NEOS case studies are built from a number of tools, including HTML �lesfor the Web pages, perl scripts to drive the interactive aspects, AMPL to interfaceto optimization software, the graphics package gd 1.2 (a freely available product ofCold Spring Harbor Labs) to display the results, and Adobe Photoshop to add some(strictly nonprofessional) graphic design touches to the Web pages. The underlyingsolvers include standard optimization packages such as IBM's OSL, together withcustomized solvers programmed by us in Java.In the remainder of the paper, we briey describe three of the NEOS Guide casestudies, including the real-world application and the optimization tools (mathematicaland computational) that are used to solve it. We show how the user interacts withthe studies, illustatrating our results with a few screen shots. For more details of theexamples we discuss in this paper, see the web sitehttp://www.mcs.anl.gov/otc/Guide/SIREV/Section 2 describes the diet problem, a case study of a general linear programmingproblem, and mentions our applet implementation of the simplex method. In Sec-tion 3, we discuss the portfolio optimization problem, a case study for convex quadraticprogramming; and in Section 4, we describe the cutting-stock problem, a particulartype of integer linear program.2. The Diet Problem. Soon after the end of World War II, the U.S. Armycommissioned its mathematicians to �nd a one-day ration for its personnel that mettheir nutritional requirements while minimizing cost. We know this problem as thediet problem, and it is still in use today as a classic case study for linear programmingin many �rst courses in operations research.The arrival of optimization as a distinct discipline is usually dated from the late1940s, when George Dantzig invented of the simplex algorithm for linear program-ming. This enormously successful algorithm, still the most widely used algorithm forlinear programming, provided economists with a new tool for solving problems previ-ously thought of as intractable. Moreover, it was an ideal application for that newlyinvented wonder, the electronic digital computer. We mention a Java implementationof the simplex method later in this section.Linear programming is the problem of minimizing a linear function of real vari-ables over a set of linear constraints. It can be stated algebraically as follows:minx2Rn cTx subject to Ax = b, x � 0,(1)where c 2 Rn is known as the cost vector, A 2 Rm�n is the constraint matrix, andb 2 Rm is known as the dual cost vector. The particular formulation of the problemin (1) is by no means the only one possible, but it is a useful one for developingtheory and algorithms and is referred to as the standard form. Any optimizationproblem with a linear objective and linear constraints (linear inequality constraints,linear equality constraints, bounds) can be reformulated equivalently as a standard-form problem by a series of simple algebraic manipulations, including the insertionof \slack" and \surplus" variables. Texts on linear programming abound; see, forexample, Chv�atal [2].

NEOS GUIDE CASE STUDIES 3In the diet problem, the variable xi represents the number of servings of food i tobe eaten in a single day. The corresponding cost vector component ci represents thecost per serving of food i. The bound constraints x � 0 enforce the obvious conditionthat the quantities of each food to be eaten must be nonnegative. (The alternativedoes not bear thinking about.) The constraints arise from nutritional considerations,and possibly also matters of taste and digestibility. For example, if QAi denotes theamount of Vitamin A per serving of food i, then the total Vitamin A consumed inone day would be Pni=1QAi xi. A requirement that this quantity be at least equal tosome value qAi is modeled as the following inequality constraint:nXi=1 QAi xi � qAi :(2)To �t this constraint into the standard form (1) (where all constraints with the ex-ception of the bounds x � 0 are equality constraints), we de�ne a slack variable sAto be the amount by which the left-hand side in (2) exceeds the right-hand side. Theformula (2) can then be stated equivalently asnXi=1 QAi xi � sA = qAi ; sA � 0:(3)Other nutritional constraints also enter the problem, including upper and lower limitson the intake of other vitamins, salt, calories, and fat. The objective function issimply the total cost of the day's ration, which isnXi=1 cixi;(4)where ci is the cost per unit of food i.The diet problem case study is accessible athttp://www.mcs.anl.gov/otc/Guide/CaseStudies/diet/In this case study, users select from a large menu of possible food choices the itemsthey are prepared to include in their diet. The number of items they choose determinesthe number of variables n in the problem. (Because of the use of slack variables, thevalue of n in the actual problem formulation usually is larger than the number of itemschosen.) Information on nutritional content of each item was gleaned from the U.S.Department of Agriculture Web site. Prices per unit serving (that is, componentsof the cost vector c) were in most cases obtained from the same source, though wevisited the local supermarket to obtain some of the prices. Government pricing forsome items (most notably, butter) is curiously low, leading to a prevalence of theseitems in many of the calculated diets.After selecting the food items they are prepared to eat, users are o�ered theopportunity to modify the nutritional constraints and to impose their own constraints.This process implicitly modi�es the problem data (A, b, and the value of m) in (1).For instance, a user may decide that they are not prepared to eat more than twobananas per day, or may decide that at least one tomato per day should be includedin their diet. They could also decide to dispense altogether with the upper limit onfat intake|a useful feature for ice-cream fans! This constraint adjustment processimplicitly modi�es the problem data (A, b, and the value of m) in (1).

NEOS GUIDE CASE STUDIES 4The user now clicks a \solve" button. The next Web page now displays eitherthe optimal diet, or else a message indicating that the selection of foods provided bythe user was insu�cient to generate a feasible diet. In the latter case, the selection offoods and/or the constraints imposed are such that no combination of food quantitiesmeets all the constraints. In this situation, the case study suggests some food itemsthat can be added to the roster of possibilities to yield a feasible problem. The usercan then go back to the menu selection page, click on these foods (or some others),and try again.If the optimal diet was found, a table indicates the quantities and costs of eachfood item and the total cost. Usually, not all foods chosen by the user appear inthe �nal diet; some of the variables xi in the model (1) are zero at the solution. Inaddition, there are graphical depictions (in the form of pie charts, constructed withthe graphics utility package gd 1.2) of the contributions of each food in the optimaldiet to the nutritional constraints: the amount of Vitamin C, the total fat intake, andso on. Finally, there is a page of sensitivity information obtained from the solution ofthe dual problem.Often, the optimal diet is not particularly appetizing. The user may not �ndten servings of wheat bread per day an exciting prospect, for instance. A few clicksof the \back" button on the Web browser takes one back to the constraints page,where the upper bounds and lower bounds on the food items may be modi�ed and anew optimal diet calculated. This process of adjusting the model and reoptimizing isitself instructive, since it mirrors the way in which optimization software is used inreal-world problem solving.Figure 1 shows sample output for a diet problem trial in which we selected the�rst 25 foods from column 1 of the roster as foods that we are prepared to include inour diet. Four of these 25 are selected in the optimal diet, which has a daily cost of$1.04. The �gure shows the calories attributable to each of these foods. For furtherdetails on the solution of this sample problem, see the web site mentioned earlier.Duality. The problem (1) gives rise to a rich body of theory, which derives mainlyfrom two sources: the relationship between the algebraic and geometric properties ofthe problem (1) and the algorithms for solving it, and the relationship between theproblem (1) and another linear program known as the dual. The dual takes the dataobjects A, b, and c that de�ne (1) and uses them to de�ne a new linear program asfollows: max�2Rm bT� subject to AT� � c.(5)An alternative (and equivalent) statement of the dual is obtained by introducing slackvariables s for the constraints AT� � c and writingmax�2Rm ;s2Rn bT� subject to AT� + s = c, s � 0.(6)The duality theory of linear programming shows, among other things, that the optimalvalues of the primal and dual problems are the same. That is, if x� solves (1) and ��solves (5), we have cTx� = bT��:(7)Further, when x is any vector satisfying Ax = b, x � 0 and � is any vector such thatAT� � c, we have that cTx � cTx� = bT�� � bT�:

NEOS GUIDE CASE STUDIES 5

Fig. 1. Sample output: Calorie breakdown for optimal diet when the �rst 25 items from themenu are selected

NEOS GUIDE CASE STUDIES 6The solution of the dual problem (5) is easily recovered once the solution to (1) isknown, and vice versa. The dual solution is not just of academic interest; it providesthe modeler with important information about the original problem (1). Speci�cally,it quanti�es the sensitivity of the optimal objective value to changes in the elementsbi of the right-hand side of the constraint vector b. If �(A; b; c) denotes the optimalobjective value cTx� for (1), we have that@�(A; b; c)@bi = ��i ;where ��i is the ith component of the optimal dual vector ��.The Simplex Applet. As mentioned above, the simplex method has for manyyears been the standard tool for solving linear programming problems. For many peo-ple, particularly in the �nancial and economics �elds, the simplex method is the onlyoptimization algorithm to which they are ever exposed during their educational andprofessional lives. Even optimization specialists tend to learn about linear program-ming and the simplex method well in advance of hearing about other problem classesor algorithms in optimization. Indeed, the ideas behind the simplex method and thetechniques used to implement it have had a signi�cant inuence on the developmentof algorithms for nonlinear constrained optimzation problems.The NEOS Guide contains a Java implementation of the simplex method, avail-able as an applet athttp://www.mcs.anl.gov/otc/Guide/CaseStudies/simplex/Users can enter a small linear program and follow the progress of the algorithm indetail via windows that appear on their PC or workstation. The various steps ofthe algorithm|conversion to standard form, pricing, pivoting and selection of theentering variable|can be viewed individually. The user may even select the variableto enter the basis at each iteration if desired. The main window illustrates currentvalues of the basis components, basis matrix, multipliers, reduced costs, and so on;see Figure 2.For information about the simplex algorithm, follow the pointers from the Sim-plex Applet web page, or consult one of the many texts in the area (for example,Chv�atal [2]).3. The Portfolio Optimization Problem. Given a wide range of possibleinvestments, with their (possibly correlated) risks and rewards, how does an investorgo about selecting a portfolio that maximizes the expected return while meeting anacceptable standard of risk? Alternatively, what is the portfolio that meets a certaintarget level of return while minimizing risk? Questions like these are asked daily byboth individual and institutional investors, and they lie at the heart of the burgeoninginvestment advice industry. They were �rst formulated quantitatively in 1952 byMarkowitz [8], also known to computational mathematicians as the inventor of theMarkowitz pivot criterion for sparse matrix factorization.Today's investor can choose from a huge range of possible securities|bills andnotes from the U.S. Treasury, corporate and municipal bonds, individual stocks fromexchanges around the world, mutual funds, and so on|each of which has its ownpotential risks and rewards. The returns on some securities are unspectacular butsteady, while the returns on others are higher over the long term but are subject towild uctuations. Moreover, the returns on di�erent securities are often correlated,positively or negatively. For instance, the stock prices of gold mining companies and

NEOS GUIDE CASE STUDIES 7

Fig. 2. Main window of the simplex tool

NEOS GUIDE CASE STUDIES 8of gold itself tend to increase and decrease more or less synchronously, that is, theyare positively correlated. On the other hand, returns on gold investments may be neg-atively correlated for some reason with returns on the stock of paper manufacturers.By taking advantage of these correlations and of the expected average returns anductuations associated with each individual security, we can often design portfoliosthat achieve expected returns competitive with the best individual securities, but ata lower level of risk.To see how a portfolio can reduce risk, consider the simple case of two securities|call them A and B|for which the uctuations on return are negatively correlated.Both investments tend to be pro�table over time, but the return on A usually increaseswhenever the return on B decreases, and vice versa. It is easy to perceive that thereturns on a portfolio that mixes A and B will tend to uctuate less than the returnson an investment in A and B alone. The individual uctuations in the returns onA and B will tend to cancel each other out, while the long-term average return onthe mixed portfolio will (if the mix is chosen properly) be competitive with the long-term average return on both A and B individually. In other words, by mixing A andB appropriately, we can reduce the risk appreciably without a�ecting the expectedreturn.More generally, suppose that we have n securities, labeled by the index i =1; 2; : : : ; n, and let Xi be a random variable that represents the return on this se-curity during the next month. Naturally, we have no hope of solving the portfoliooptimization problem without some information about each Xi, so we assume thateach Xi is normally distributed and that values of the expected return �i = E[Xi]and the variance �2i = E[(Xi��i)2] are available for each security i. (The variance isa measure of risk, since it quanti�es the uctuation of the random variable about itsexpected value.) Moreover, we assume that values of the correlations between eachpair of securities, de�ned by�ij def= E[(Xi � �i)(Xj � �j)]�i�j ; i; j = 1; 2; : : : ; n;are also given. (Note that �ii = 1 for all i.) We return in a moment to the questionof how the �i, �i, and �ij , i; j = 1; 2; : : :; n are determined in practice.Suppose that we construct a portfolio by allocating a fraction wi of the availableresources to security i, for each i. Suppose too that we disallow short selling (whichis the practice of selling a stock that you don't currently hold, in the hope of buyingit some time later at a lower price). Under these assumptions, the value of wi mustlie in the range [0; 1], withPni=1wi = 1. The expected return on this portfolio isE " nXi=1 wiXi# = nXi=1 wiE[Xi] = wT�;(8)where w = (w1; w2; : : : ; wn)T and � = (�1; �2; : : : ; �n)T . The variance for the portfoliois nXi=1 nXj=1wiwj�i�j�ij = wTQw;(9)where Q is the matrix whose (i; j) element isQij = �ij�i�j:

NEOS GUIDE CASE STUDIES 9In general, we want to choose the allocation vector w so as to keep the expected return(8) large while keeping the variance (9) small. Exactly how these two objective shouldbe traded o� is a matter for the investor to decide. Those with a high tolerance for riskwill weight the expected return more heavily, while more conservative investors willbe more concerned with minimizing variance. We de�ne a \risk tolerance parameter"� to quantify the relative weighting of the two aims, and we de�ne our optimizationproblem as follows:minw �2wTQw � �Tw; subject to eTw = 1, w � 0.(10)Here, e is the vector (1; 1; : : : ; 1)T , so that the constraint eTw = 1 simply meansthat the sum of the fractions is 1, as discussed earlier. Risk-tolerant investors wouldtypically choose � near zero, while conservative investors would choose some largerpositive value for this parameter.The portfolio optimization problem can be derived from other perspectives aswell. For instance, this \balanced" problem is closely related to two other types ofportfolio optimization: one that minimizes risk for a given level of return, that is,minw 12wTQw subject to �Tw � ��, w � 0, eTw = 1,(11)and another that maximizes return for a given level of risk, that is,maxw �Tw subject to wTQw � �2�, w � 0, eTw = 1.(12)In (11), �� is the minimum acceptable return, while in (12), �2� is the maximumacceptable variance. When the optimality conditions for (11) and (12) are formu-lated, one can derive interesting relationships between the Lagrange multipliers forthe constraints �Tw � �� and wTQw � �2�, and the parameter �. Another interestingconcept is the \e�cient frontier," which is the set of allocation vectors such that thereexists no other vector with a higher return for equivalent variance, or lower variancefor an equivalent return. In many cases, the e�cient frontier is simply the set ofminimizers of (10), for each value of � in the range [0;1). For additional details, seethe case study web site, whose address is listed below.We now return to a critical issue: How do we choose the data for the expectedreturns, variances, and covariances? Possibly the most important source of informa-tion is historical data. If we know the monthly performance of each security for sometime past|the return on security i in month t was xit, for t = 1; 2; : : : ; N|then wecan set�i = NXt=1 xit=N; �2i = NXt=1(xit � �i)2=N; �ij = NXt=1(xit � �i)(xjt � �j)=(N�i�j):Use of historical data to set the parameters makes the implicit assumption that therandom variables Xi will continue to behave in much the same way as they did in thepast|an assumption that is shaky, to say the least. Some investment advisors weightthe historical data to emphasize data points that were collected at points in pastbusiness cycles that correspond to current conditions. In addition, there is plenty ofroom for subjective input|an investor that expects 2% monthly growth in the priceof a particular stock with 3% variance can set the data in his model accordingly. Asin all other areas of modeling and prediction, the rule of \garbage in, garbage out"applies.The portfolio optimization case study can be found at

NEOS GUIDE CASE STUDIES 10http://www.mcs.anl.gov/otc/Guide/CaseStudies/port/Our set of securities consists of the 30 stocks that make up the Dow Jones IndustrialAverage (as of mid-1996), together with a U.S. Treasury bill. The latter is assumedto be a risk-free investment, so that �i = 0 and all entries in the corresponding rowand column of Q are zero. We obtained data on monthly total returns (includingstock price changes and dividends) for the period 1/1/86{12/31/91 from the CRISPAdatabase at the University of Chicago, and we based our model parameters on thishistorical data alone.Users of the case study select the stocks they are willing to include in theirportfolio. (They can examine the six-year performance of each stock for backgroundinformation.) They also input the current annual return on short-term U.S. Treasurybills, and choose the value of their risk parameter �. The case study returns an outputpage that indicates the optimal portfolio (in tabular and graphical form), togetherwith its expected return and variance. The user can then experiment with othervalues of � to see how the optimal portfolio changes in response to changes in thisparameter.The underlying optimization problem is a convex quadratic program. By de�ni-tion, the matrix Q in (10) is positive semide�nite and the feasible region is bounded,so the problem certainly has a solution, though not necessarily a uniquely de�nedone.For additional information on portfolio optimization, see the books by Markowitz [9,10] and the article by Perold [12]. A number of enhancements to the basic problem(10) have been proposed by various researchers and practitioners. For one thing, con-straints on the allocation vector may be desirable; we may want to limit our exposureto technology stocks to 25% of our portfolio, for example. We can allow short-sellingof some securities in the model by moving the lower bound from 0 to some nega-tive number. We may want to limit the number of di�erent securities in our �nalportfolio to a reasonable number (10 or 20, say), since a solution that requires us toinvest in 500 di�erent �nancial instruments is not of much practical use. We mayalso want to include transaction costs in the objective function, or to impose a mini-mum balance on any securities that are included in the �nal portfolio. Some of theserequirements increase the complexity of the problem considerably (see Bienstock [1])and, in particular, may necessitate the use of integer programming algorithms.Figure 3 shows the composition for the optimal portfolio when we choose 29 of the30 stocks as possible investments|all except Philip Morris|and set the bond interestrate to 5.0% and the risk tolerance parameter � to 15. The optimal portfolio is quiteconservative; it suggests 43% of assets in bonds. However, its predicted annual returnof about 23% is high, while the conservative nature of the bond investment makes thestandard deviation of the portfolio less than half the deviations of any of the threestocks represented in the portfolio.4. The Cutting-Stock Problem. The cutting-stock problem is a classic linearprogramming problem, with important applications, that can be solved e�cientlywith a technique known as column generation. In fact, it is an integer linear program:All components of the solution are required to be integers.An excellent description of the problem and its history is given by Chv�atal [2,Chapter 13]; we present just a brief summary here. The problem originated in paperand textile mills that manufacture rolls of material in �xed widths, called \raws."Customers place orders for quantities of rolls with various widths, which are referredto as \�nals." Each raw is sliced (with a knife) into one or more �nals according to

NEOS GUIDE CASE STUDIES 11
Fig. 3. Sample output: Stocks in optimal portfolio when bond rate is %5 and risk toleranceparameter is � = 15some pattern. Typically, after one or more �nals are cut from a raw, a piece is left overand discarded as waste. The optimization problem is to �nd a scheme for satisfyingall customer orders while using the minimum number of raws. In other words, welook for the mix of slicing patterns, and the number of times each pattern is applied,that minimizes the total number of raws used.We describe the problem by studying the following speci�c example from [2].Suppose that the raws are 110 inches wide and that four orders for �nals of di�erentwidths have been received. The quantities of each width are shown in Table 1.Table 1Cutting-stock example inputorder number (i) 1 2 3 4order width (Wi) 43 36 29 13number ordered (bi) 297 713 147 301To meet these orders, each 110-inch roll is cut into one of a number of possible patterns.One pattern would consist of two 43-inch widths and a 13-inch width, leaving an 11-inch remainder that is discarded, since it is too narrow to be used for other �nals.A second pattern would consist of two 29-inch widths and a 43-inch width, leaving a9-inch strip of waste. Numerous other patterns are possible.We can model this problem as a linear program in which m is the number ofdistinct order widths, while p is the number of the possible patterns. The entry Aij ofthe m�p constraint matrix A would be the number of times that the order width Wiis represented in pattern j. For instance, if the two patterns discussed in the previous

NEOS GUIDE CASE STUDIES 12paragraph give rise to the �rst two columns of A, we would haveA = 2664 2 1 : : :0 0 : : :0 2 : : :1 0 : : : 3775 :If we let xj denote the number of raws that are cut into pattern j, we �nd that theith order is satis�ed provided that pXj=1Aijxj � bi:The total number of raws used in this process is simplyPpj=1 xj, which we can write aseTx, where e is the vector (1; 1; : : : ; 1)T . Moreover, common sense dictates that eachxj must be an integer and that it cannot be negative. In summary, the cutting-stockproblem can be written as follows:minPj xj = eTx; subject to Ax � b, x � 0,(13a) where each element of x is an integer:(13b)One di�culty in solving the problem (13) is the requirement of integrality ofthe solution components. In general, optimization problems that contain discretevariables (such as integers) are much more time-consuming to solve than those inwhich all variables are real numbers. In this particular case, however, solutions ofgood quality often can be obtained by simply ignoring the integrality requirement(13b) and adjusting the real numbers obtained by solving (13a) by small amounts toensure that the orders are met.The second, more signi�cant di�culty is that there are usually a huge number ofdi�erent ways to slice a raw into a collection of �nals. That is, the number of di�erentpatterns|the dimension p in the problem (13)|may be enormous. It is known fromthe theory of linear programming that a solution x� of (13a) need have no more thanm nonzero components, and in our case m is much smaller than p. It seems wasteful,then, to go to the trouble of actually �guring out all the di�erent patterns, since sucha small proportion of them have any impact on the solution. In fact, it is not necessaryto do so. The column generation approach, due to Gilmore and Gomory [6, 7], doesa good job of identifying the \useful" patterns|the ones most likely to contributeto the solution|while verifying that all the patterns not explicitly calculated are notrelevant to the solution. We include a brief description of column generation in thesubsection that follows.The NEOS cutting stock case study can be found athttp://www.mcs.anl.gov/otc/Guide/CaseStudies/cutting/In the demonstration, users select the number of distinct widths in their proposedorder (m, in the notation above) and then enter the widthsWi, the required quantitiesof each width bi, and the raw width L. NEOS then solves the problem and respondswith the following information (See Figure 4):- A table showing the patterns considered in generating the �nal result. Theseinclude the initial patterns and the patterns that come from the use of columngeneration.- Graphics illustrating the patterns chosen in the �nal solution and the quantityof each pattern needed to meet the customer orders.

NEOS GUIDE CASE STUDIES 13

Fig. 4. Output from the cutting-stock case study

NEOS GUIDE CASE STUDIES 14- The proportion of waste generated in the �nal pattern.The user can also examine the AMPL formulation of the column generation procedure.As with most AMPL models, this one is simple and intuitive.Column Generation. To outline the column generation approach, we need tomention a few points from the duality theory of linear programming (see Section 2).Recalling (5), and accounting for the slightly di�erent form of (13a), we can write itsdual as max bT�; subject to AT� � e, � � 0:(14)Recall from Section 2 that if x is feasible for (13a) while � is feasible for (14), we haveeTx � bT�, and that equality of these two objectives is attained at optimality.Column generation starts by choosing a few patterns, which together correspondto a column submatrix of A. Denoting this submatrix by �A, and using �x to denote thecorresponding subvector of x, we then solve the following reduced version of (13a):min�x �eT �x; subject to �A�x � b, �x � 0;(15)for which the dual problem ismax� bT�; subject to �AT� � �e, � � 0:(16)(The vector �e also contains all 1s, but has smaller dimension than the vector e in(13a) and (14).) Denoting the solutions of (15) and (16) by �x� and ��, respectively,we have from the duality theorem that �eT �x� = bT��. We now ask the question: Canthe solution to the reduced problem be extended to a solution of the original problem(13a) merely by padding out the vector �x� with zeros, or must we add some columnsto �A to make it a closer match to the original problem? In the latter case, how do wedetermine the column to add?The column generation approach answers these questions by looking for a newpattern that violates the dual feasibility condition AT�� � e. That is, it seeks acolumn of A (which we denote by z 2 IRm and which is not currently represented inthe reduced matrix �A) such that zT�� > 1. To be a valid pattern, the components ofz must of course be nonnegative integers and must satisfy the constraintmXi=1Wizi � L:In other words, the total width of the �nals in this pattern do not exceed the widthof the raw. To seek the column z of A that actually maximizes the violation of thedual feasibility condition, we solve the following problem:maxz zT��; subject to Pmi=1Wizi � L, each zi a nonnegative integer,(17)which is known as a knapsack problem. If the solution z of this problem satis�eszT�� � 1, we conclude that the dual feasibility condition AT�� � e is satis�ed bythe original problem. In this case, the reduced solution �x� yields (after padding withzeros) a solution of the original problem (13a). Otherwise, when zT�� > 1, thevector z represents the \most troublesome" pattern, that is, the one whose omissionis most responsible for the reduced problem (15) being an inadequate substitute for

NEOS GUIDE CASE STUDIES 15the full problem (13a). We respond by adding this column z to the matrix �A (therebyincreasing the dimension of the of the reduced problem by 1), and then repeat theprocess of solving (15) followed by (17).The knapsack problem (17) can be solved by a specialized branch-and-boundprocedure; see Chv�atal [2] for details. The �nal step in the process is to add theintegrality constraints (13b) to the solution of the the continuous problem (13a) thatarises from the column generation procedure. It usually su�ces to make some ad-hocadjustments, that is, rounding non-integer components of the solution x� up to thenext integer. In the NEOS Guide, we use the more rigorous approach of solving aninteger version of the �nal reduced problem (15), in which the restriction of integralityis included. This problem is much smaller than the full problem (13) (since just asmall proportion of the p columns of A are represented in the �nal �A) and so is nottoo time-consuming to solve.5. Other Features of NEOS. Apart from the case studies, the NEOS Guidecontains comprehensive information about optimization software and algorithms. TheSoftware Guide area describes about 120 codes, packages, and modeling languages,outlining their algorithmic capabilities and hardware requirements and giving Webpointers and contact information for the authors and vendors of the software. Classi-�cation by problem area makes it easier for users to �nd the codes with just the rightcombination of capabilities that they need. (The material in the Software Guide wasoriginally drawn from the 1993 book of Mor�e and Wright [11], but has been augmentedand enhanced.)Another NEOS Guide feature, the OptimizationTree, contains thumbnail sketchesof di�erent areas of optimization. The \leaves" of the tree contain descriptions of aparticular problem class, along with a sketch of the main algorithms and pointersto the relevant software packages in the Software Guide. The FAQs for linear andnonlinear programming, maintained for some years by John Gregory on Usenet, arenow maintained in the NEOS Guide by Bob Fourer. A repository of test problems isin the early stages of preparation.The NEOS Guide remains under continuous development. Our intent is for itto be a community resource for optimization, and we always solicit input from ourcolleagues to help �ll the many gaps that remain in our coverage. The Guide can beaccessed athttp://www.mcs.anl.gov/otc/Guide/Another branch of NEOS, the NEOS Server, is a facility for solving optimiza-tion problems remotely over the Internet. The Server now supports solvers for manyclasses of problems, including linear and nonlinear constrained optimization, uncon-strained and bound-constrained optimization, nonlinear complementarity, and linearnetwork optimization. Users communicate with the Server via email, the Web, or aTcl/Tk tool running on their own workstation. They submit data and code (writtenin Fortran, C, or AMPL) that de�ne their optimization problem, and in some caseschoose algorithmic parameters for the particular code they are using. The Serverthen schedules their job for execution on one of its roster of workstations, and �nallytransmits the results to the user.For more information on the NEOS Server, visit its Web page athttp://www.mcs.anl.gov/otc/Server/or see the reports of Czyzyk, Mesnier, and Mor�e [3] and Ferris, Mesnier, and Mor�e [4].Acknowledgments. We acknowledge the important contributions of other mem-bers of the Optimization Technology Center to this work, including Rob Stubbs (port-

NEOS GUIDE CASE STUDIES 16folio optimization study), Yuan Che (cutting-stock study), Bob Fourer, Jorge Mor�e,and Jorge Nocedal. We are also indebted to our many users|teachers, students, andindustrial users of optimization|whoprovided valuable feedback and suggested manyimprovements.We are also pleased to acknowledge the support of the Mathematical, Information,and Computational Sciences Division subprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy, and of Northwestern University.REFERENCES[1] D. Bienstock, Computational study of a family of mixed-integer quadratic programming prob-lems, Mathematical Programming, 74 (1997), pp. 121{140.[2] V. Chv�atal, Linear Programming, W. H. Freeman and Company, New York, 1983.[3] J. Czyzyk, M. P. Mesnier, and J. J. Mor�e, The network-enabled optimization system(NEOS) server, Preprint MCS-P615-1096, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, Ill., October 1996.[4] M. C. Ferris, M. Mesnier, and J. J. Mor�e, NEOS and Condor: Solving optimization prob-lems over the Internet, tech. rep., MCS Division, Argonne National Laboratory, Argonne,Ill., 1998.[5] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathe-matical Programming, The Scienti�c Press, South San Francisco, Calif., 1993.[6] P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting-stock prob-lem, Operations Research, 9 (1961), pp. 849{859.[7] , A linear programming approach to the cutting-stock problem|Part II, Operations Re-search, 11 (1963), pp. 863{888.[8] H. Markowitz, Portfolio selection, Journal of Finance, 8 (1952), pp. 77{91.[9] , Mean-Variance Analysis in Portfolio Choice and Capital Markets, Basil Blackwell, NewYork, N.Y., 1987.[10] , Portfolio Selection: E�cient Diversi�cation of Investments, Basil Blackwell, Cam-bridge, Mass., 1991.[11] J. J. Mor�e and S. J. Wright, Optimization Software Guide, no. 15 in Frontiers in AppliedMathematics, SIAM, Philadelphia, Pa, 1993.[12] A. F. Perold, Large-scale portfolio optimization, Management Science, 30 (1984), pp. 1143{1160.

