
EFFECTS OF FINITE-PRECISION ARITHMETIC ONINTERIOR-POINT METHODS FOR NONLINEAR PROGRAMMINGSTEPHEN J. WRIGHT�Abstract. We show that the e�ects of �nite-precision arithmetic in forming and solving thelinear system that arises at each iteration of primal-dual interior-point algorithms for nonlinearprogramming are benign, provided that the iterates satisfy centrality and feasibility conditions ofthe type usually associated with path-followingmethods. When we replace the standard assumptionthat the active constraint gradients are independent by the weakerMangasarian-Fromovitz constraintquali�cation, rapid convergence usually is attainable, even when cancellation and roundo� errorsoccur during the calculations. In deriving our main results, we prove a key technical result about thesize of the exact primal-dual step. This result can be used to modify existing analysis of primal-dualinterior-point methods for convex programming, making it possible to extend the superlinear localconvergence results to the nonconvex case.AMS subject classi�cations. 90C33, 90C30, 49M451. Introduction. We investigate the e�ects of �nite-precision arithmetic on thecalculated steps of primal-dual interior-point (PDIP) algorithms for the nonlinearprogramming problemNLP: minz �(z) subject to g(z) � 0;(1.1)where � : IRn ! IR and g : IRn ! IRm are twice Lipschitz continuously di�erentiablefunctions. Optimality conditions for this problem can be derived from the Lagrangianfunction L(z; �), which is de�ned asL(z; �) = �(z) + mXi=1 �igi(z) = �(z) + �Tg(z);(1.2)where � 2 IRm is a vector of Lagrange multipliers. When a constraint quali�cation(discussed below) holds at the point z�, �rst-order necessary conditions for z� to bea solution of (1.1) are that there exists a vector of Lagrange multipliers �� 2 IRm suchthat the following conditions are satis�ed for (z; �) = (z�; ��):Lz(z; �) = r�(z) +rg(z)� = 0; g(z) � 0; � � 0; �T g(z) = 0;(1.3)where rg(z) = [rg1(z);rg2(z); : : : ;rgm(z)] :The conditions (1.3) are the well-known Karush-Kuhn-Tucker (KKT) conditions. Weuse S� to denote the set of vectors �� such that (z�; ��) satis�es (1.3). The primal-dualsolution set is de�ned by S = fz�g � S�:(1.4)�Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South CassAvenue, Argonne, Illinois 60439, U.S.A. This work was supported by the Mathematical, Information,and Computational Sciences Division subprogram of the O�ce of Advanced Scienti�c Computing,U.S. Department of Energy, under Contract W-31-109-Eng-38.1



2 STEPHEN J. WRIGHTThis paper discusses local convergence of PDIP algorithms for (1.1), assumingthat the algorithm is implemented on a computer that performs calculations accord-ing to the standard model of oating-point arithmetic. Because of our focus on localconvergence properties, we assume throughout that the current iterate (z; �) is closeenough to the solution set S that superlinear convergence would occur if exact steps(uncorrupted by �nite precision) were taken. In the interests of generality, we weakenan assumption that is often made in the analysis of algorithms for (1.1), namely,that the gradients of the active constraints are linearly independent at the solution.We replace this linear independence constraint quali�cation (LICQ) with the weakerMangasarian-Fromovitz constraint quali�cation (MFCQ) [18]. MFCQ allows con-straint gradients to become dependent at the solution, so that the set S� of optimalLagrange multipliers is no longer necessarily a singleton, though it remains bounded.We continue to assume that a strict complementarity (SC) condition holds, that is,gi(z�) = 0 ) ��i > 0; for some �� 2 S�:(1.5)In the context of rapidly convergent algorithms, the SC condition makes good sense.If SC fails to hold, superlinear convergence of Newton-like algorithms does not occur,except for specially modi�ed algorithms such as those that identify the active con-straints explicitly (see Monteiro and Wright [20] and El-Bakry, Tapia, and Zhang [8]).The major conclusion of the paper is that the e�ects of roundo� errors on therapid local convergence of the algorithm are fairly benign. When a standard second-order condition is added to the assumptions already mentioned, the steps producedunder oating-point arithmetic approach S almost as e�ectively as do exact steps,as long as the distance to the solution set remains signi�cantly greater than the unitroundo� u. The latter condition is hardly restrictive, since the data errors made instoring the problem in a digital computer mean that the solution set is known onlyto within some multiple of u in any case.The conclusions about the e�ectiveness of the computed steps are not obvious,because all three formulations of the linear system that must be solved to computethe step at each iteration may become highly ill conditioned near the solution. Ouranalysis would be signi�cantly simpler if we were to make the LICQ assumptionbecause, in this case, one formulation of the linear equations remains well conditioned,and stability of the three standard formulations can be proved by exploiting theirrelationship to this system of equations.This work is related to earlier work of the author on �nite-precision analysis ofinterior-point algorithms for linear complementarity problems [24] and linear pro-gramming [27, 30]. The existence of second-order e�ects gives the analysis here asomewhat di�erent avor, however. In addition, we go into more depth in checkingthat the computed iterates can continue to satisfy the approximate centrality con-ditions usually required in primal-dual algorithms, and in deriving expressions forthe rate at which the computed iterates approach the solution set. Related work byForsgren, Gill, and Shinnerl [9] deals with one formulation of the step equations forthe nonlinear programming problem|the so-called augmented form treated here inSection 6|but makes assumptions on the pivot sequence that do not always hold inpractice. M. H. Wright [23] recently presented an analysis of the condensed form ofthe step equations discussed in Section 5 under the assumption that LICQ holds, andfound that the computed steps were more accurate than would be expected from anaive analysis.For linear programming, the PDIP approach has emerged as the most powerful ofthe interior-point approaches. The supporting theory is strong, in terms of global and



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 3local convergence analysis and complexity theory (see the bibliography ofWright [26]).Implementations yield better results than pure-primal or barrier-function approaches;see Andersen et al. [1]. Strong theory is also available for these algorithms whenapplied to convex programming, in which �(�) and gi(�), i = 1; : : : ;m are all convexfunctions; see, for example, Wright and Ralph [31] and Ralph and Wright [21, 22].The latter paper drops the LICQ assumption in favor of MFCQ, making the localtheory stronger in one sense than the corresponding local theory for the sequentialquadratic programming (SQP) algorithm. The use of MFCQ complicates the analysisconsiderably, however; under LICQ, the implicit function theorem can be used to provea key technical result about the length of the step, while more complicated logic isneeded to derive this same result under MFCQ.A signi�cant by-product of the current paper is to prove the key technical resultabout the length of the rapidly convergent step (Corollary 4.3) under MFCQ and SC,even when the problem (1.1) is not convex. This allows the local convergence resultsof Ralph and Wright [31, 21, 22] to be extended to general nonconvex nonlinearproblems.The analysis of this paper could also be applied to the recently proposed stabilizedsequential quadratic programming (sSQP) algorithm (see Wright [29] and Hager [15]),in which small penalties on the change in the multiplier estimate � from one iterationto the next ensure rapid convergence even when LICQ is relaxed to MFCQ. A �nite-precision analysis of the sSQP method appears in [29, Section 3.2], but only for theaugmented form of the step equations. Analysis quite similar to that of the currentpaper could be applied to show that similar conclusions continue to hold when acondensed form of the step equations is used instead. We omit the details.The remainder of this paper is structured in the following way. Section 2 containsnotation, together with our basic assumptions about (1.1) and some relevant resultsfrom the literature. Section 3 discusses the primal-dual interior-point framework,de�ning the general form of each iteration and the step equations that must be solvedat each iteration. Subsection 3.2 proves an important technical result about therelationship between the distance of an interior-point iterate to the solution set S anda duality measure �. Section 4 describes perturbed variants of the linear systems thatare solved to obtain PDIP steps, and proves our key results about the e�ect of theperturbations on the accuracy of the steps.Section 5 focuses on one form of the PDIP step equations: the most compactform in which most of the computational e�ort goes into factoring a symmetric pos-itive de�nite matrix, usually by a Cholesky procedure. We trace the e�ect on stepaccuracy of errors in evaluation of the functions, formation of the system, and thefactorization/solution process. Further, we show the e�ects of these inaccuracies onthe distance that we can move along the steps before the interiority condition is vi-olated, and on various measures of algorithmic progress. An analogous treatment ofthe augmented form of the step equations appears in Section 6. The conclusions ofthis section depend on the actual algorithm used to solve the augmented system|it isnot su�cient to assume, as in Section 5, that any backward-stable procedure is usedto factor the matrix. (We note that similar results hold for the full form of the stepequations, but we omit the details of this case, which can be found in the technicalreport [28].) We conclude with a numerical illustration of the main results in Section 7and summarize the paper in Section 8.



4 STEPHEN J. WRIGHT2. Notation, Assumptions, and Basic Results. We use B to denote the setof active indices at z�, that is,B = fi = 1; 2; : : :;m j gi(z�) = 0g;(2.1)whereas N denotes its complementN = f1; 2; : : : ;mgnB:(2.2)The set B+ � B is de�ned asB+ = fi 2 B j��i > 0 for some �� satisfying (1.3)g:(2.3)The strict complementarity condition (1.5) is equivalent toB+ = B:(2.4)We frequently make reference to submatrices and subvectors corresponding to theindex sets B and N . For example, the quantities �B and gB(z) are the vectors con-taining the components �i and gi(z), respectively, for i 2 B, while rgB(z) is thematrix whose columns are rgi(z), i 2 B.The Mangasarian-Fromovitz constraint quali�cation (MFCQ) is satis�ed at z� ifthere is a vector �y 2 IRn such that rgB(z�)T �y < 0:(2.5)The following fundamental result about MFCQ is due to Gauvin [11].Lemma 2.1. Suppose that the �rst-order conditions (1.3) are satis�ed at z = z�.Then S� is bounded if and only if the MFCQ condition (2.5) is satis�ed at z�.This result is crucial because it allows our (local) analysis to place a uniformbound on all � in a neighborhood of the dual solution set S�.The second-order condition used in most of the remainder of the paper is thatthere is a constant � > 0 such thatwTLzz(z�; ��)w � �kwk2;(2.6)for all �� 2 S� and all w satisfyingrgi(z�)Tw = 0; for all i 2 B+;rgi(z�)Tw � 0; for all i 2 BnB+:(2.7)When the SC condition (1.5) (alternatively, (2.4)) is satis�ed, this direction set issimply nullrgB(z�)T .A simple example that satis�es MFCQ but not LICQ at the solution, and thatsatis�es the second-order conditions (2.6), (2.7) and the SC condition is as follows:minz2IR2 z1 subject to (z1 � 1=3)2 + z22 � 1=9; (z1 � 2=3)2 + z22 � 4=9:(2.8)The solution is z� = 0, and the optimal multiplier set isS� = f� � 0 j 2�1 + 4�2 = 3g:(2.9)The gradients of the two constraints are the solution are (�2=3; 0)T and (�4=3; 0)T ,respectively. They are linearly dependent, but the MFCQ condition (2.5) can besatis�ed by choosing �y = (1; 0)T .



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 5We use u to denote the unit roundo�, which we de�ne as the smallest number suchthat the following property holds: When x and y are any two oating-point numbers,op denotes +, �, �, or =, and (z) denotes the oating-point approximation of a realnumber z, we have (x op y) = (x op y)(1 + �); j�j � u:(2.10)Modest multiples of u are denoted by �u.We assume that the problem is scaled so that the values of g and � and their �rstand second derivatives in the vicinity of the solution set S, and the values (z; �) them-selves, can all be bounded by moderate quantities. When multiplied by u, quantitiesof this type are absorbed into the notation �u in the analysis below.Order notation O(�) and �(�) is used as follows: If v (vector or scalar) and �(nonnegative scalar) are two quantities that share a dependence on other variables,we write v = O(�) if there is a moderate constant �1 such that kvk � �1� for all valuesof � that are interesting in the given context. (The \interesting context" frequentlyincludes cases in which � is either su�ciently small or su�ciently large, but we oftenuse v = O(�) to indicate that kvk � �1� for all su�ciently small � that satisfy �� u,for some �1; see later discussion.) We write v = �(�) if there are constants �1 and �0such that �0� � kvk � �1� for all interesting values of �. Similarly, we write v = O(1)if kvk � �1, and v = �(1) if �0 � kvk � �1.We use the notation �(z; �) to denote the distance from (z; �) to the primal-dualsolution set, that is, �(z; �) def= min(z�;��)2S k(z; �)� (z�; ��)k:(2.11)It is well known (see, for example, Theorem A.1 of Wright [25]) that this distance canbe estimated in terms of known quantities at (z; �). We state this result formally asfollows.Theorem 2.2. Suppose that the �rst-order conditions (1.3), the MFCQ condition(2.5) and the second-order conditions (2.6), (2.7) are satis�ed at the solution z�. Thenif � � 0, we have �(z; �) = ��� Lz(z; �)min(�;�g(z)) �� :(2.12)We write the singular value decomposition (SVD) of the matrix rgB(z�) of �rstpartial derivatives as follows:rgB(z�) = � Û V̂ � � � 00 0 � � UTV T � = Û�UT ;(2.13)where the matrices � Û V̂ � and � U V � are orthogonal, and � is a diagonalmatrix with positive diagonal elements.Note that the columns of Û form a basis for the range space of rgB(z�), while thecolumns of V̂ form a basis for the null space of rgB(z�)T . Similarly, the columns of Uform a basis for the range space of rgB(z�)T , while the columns of V form a basis forthe null space of rgB(z�). These four subspaces are key to our analysis, particularlythe subspace spanned by the columns of V . For the computational methods used tosolve the primal-dual step equations discussed in this paper, the computed step in



6 STEPHEN J. WRIGHTthe B-components of the multipliers|that is, ��B|has a larger error in the rangespace of V than in the complementary subspace spanned by the columns of U . Theerrors in the computed primal step �z, the computed step of the N -components ofthe multipliers �N , and the computed step in the dual slack variables (de�ned later)are typically also less signi�cant than the error in V T��B. We show, however, thatthe potentially large error in V T��B does not a�ect the performance of primal-dualalgorithms that use these computed steps until � becomes similar to u1=2.When the stronger LICQ condition holds, the matrix V is vacuous, and the SVD(2.13) reduces torgB(z�) = Û�UT . Much of the analysis in this paper would simplifyconsiderably under LICQ, in part because V T��B|the step component with the largeerror|is no longer present.We use �min(�) to denote the smallest eigenvalue, and cond(�) to denote the con-dition number, as measured by the Euclidean norm.3. Primal-Dual Interior-Point Methods.3.1. Centrality Conditions and Step Equations. Primal-dual interior-pointmethods are constrained, modi�ed Newton methods applied to a particular form ofthe KKT conditions (1.3). By introducing a vector s 2 IRm of slacks for the inequalityconstraint, we can rewrite the nonlinear program asmin(z;s) �(z) subject to g(z) + s = 0, s � 0,and the KKT conditions (1.3) asLz(z; �) = 0; g(z) + s = 0; (�; s) � 0; �T s = 0:(3.1)Motivated by this form of the conditions, we de�ne the mapping F(z; �; s) byF(z; �; s) def= 24 r�(z) +rg(z)�g(z) + sS�e 35 ;(3.2)where the diagonal matrices S and � are de�ned byS def= diag(s1; s2; : : : ; sm); � def= diag(�1; �2; : : : ; �m);and e is de�ned as e = (1; 1; : : : ; 1)T :(3.3)The KKT conditions (3.1) can now be stated equivalently asF(z; �; s) = 0; (s; �) � 0:(3.4)Primal-dual iterates (z; �; s) invariably satisfy the strict bound (s; �) > 0, whilethey approach satisfaction of the condition F(�) = 0 in the limit. An importantmeasure of progress is the duality measure �(�; s), which is de�ned by�(�; s) def= �T s=m:(3.5)When � is used without arguments, we assume that � = �(�; s), where (z; �; s) isthe current primal-dual iterate. We emphasize that � is a function of (z; �; s), rather



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 7than a target value explicitly chosen by the algorithm, as is the case in some of theliterature.A typical step (�z;��;�s) of the primal-dual method satis�esrF(z; �; s)24 �z���s 35 = �F(z; �; s) � 24 00t 35 ;(3.6)where t de�nes the deviation from a pure Newton step for F (which is also known asa \primal-dual a�ne-scaling" step). The vector t frequently contains a centering term��e, where � is a centering parameter in the range [0; 1]. It sometimes also containshigher-order information, such as the product ��a��Sa�e, where ��a� and �Sa�are the diagonal matrices constructed from the components of the pure Newton step(Mehrotra [19]). In any case, the vector t usually goes to zero rapidly as the iteratesconverge to a solution, so that the steps generated from (3.6) approach pure Newtonsteps, which in turn ensures rapid local convergence. Throughout this paper, weassume that t satis�es the estimate t = O(�2):(3.7)All our major results continue to hold, with slight modi�cation, if we replace (3.7) byt = O(��), for some � 2 (1; 2]. Our essential point remains unchanged; the theoreticalsuperlinear convergence rate promised by this choice of t is not seriously compromisedby roundo� errors as long as � remains signi�cantly larger than the unit roundo� u.To avoid notational clutter, however, we analyze only the case (3.7).Using the de�nition (1.2), we can write the system (3.6) explicitly as follows:24 Lzz(z; �) rg(z) 0rg(z)T 0 I0 S � 3524 �z���s 35 = �24 Lz(z; �)g(z) + sS�e + t 35 :(3.8)Block eliminations can be performed on this system to yield more compact formula-tions. By eliminating �s, we obtain the augmented system form, which is� Lzz(z; �) rg(z)rg(z)T ���1S � � �z�� � = � �Lz(z; �)�g(z) + ��1t � :(3.9)By eliminating�� from this system, we obtain a system that is sometimes referred toas the condensed form (or in the case of linear programming as the normal equationsform), which is �Lzz(z; �) +rg(z)�S�1rg(z)T ��z(3.10) = �Lz(z; �)�rg(z)�S�1[g(z)� ��1t]:We consider primal-dual methods in which each iterate (z; �; s) satis�es the fol-lowing properties: krf (z; �)k � C�; where rf (z; �) def= Lz(z; �);(3.11a) krg(z; s)k � C�; where rg(z; s) def= g(z) + s;(3.11b) (�; s) > 0; �isi � �; for all i = 1; 2; : : : ;m,(3.11c)



8 STEPHEN J. WRIGHTfor some constants C > 0 and  2 (0; 1), where � is de�ned as in (3.5). (In muchof the succeeding discussion, we omit the arguments from the quantities �, rf , andrg when they are evaluated at the current iterate (z; �; s).) These conditions ensurethat the pairwise products si�i, i = 1; 2; : : :;m are not too disparate and that the�rst two components of F in (3.2) can be bounded in terms of the third component.They are sometimes called the centrality conditions because they are motivated bythe notion of a central path and its neighborhoods. Conditions of the type (3.11) areimposed in most path-following interior-point methods for linear programming (see,for example, [26]). For nonlinear convex programming, examples of methods thatrequire these conditions can be found in Ralph and Wright [31, 21, 22]. In nonlinearprogramming, we mention Gould et al. [14] (see Algorithm 4.1 and Figure 5.1) andByrd, Liu, and Nocedal [4]. In the latter paper, (3.11a) and (3.11b) are imposedexplicitly, while (3.11c) can be guaranteed by choosing �� = (1� )�. Even when thechoice �� = � is made, as in the bulk of the discussion in [4], their other conditionsconcerning positivity of (s; �) can be expected to produce iterates that satisfy (3.11c)in practice.For points (z; �; s) that satisfy (3.11), we can use � to estimate the distance�(z; �) from (z; �) to the solution set S (see (2.11)). These results, which are provedin the following subsection, can be summarized briey as follows. When the MFCQcondition (2.5) and the second-order conditions (2.6), (2.7) are satis�ed, we have that�(z; �) = O(�1=2). When the strict complementarity assumption (1.5) is added, weobtain the stronger estimate �(z; �) = O(�). We can use these estimates to obtainbounds on the elements of the diagonal matrices S, �, S�1�, and ��1S in the systemsabove; these bounds are the key to the error analysis of the remainder of the paper.3.2. Using the Duality Measure to Estimate Distance to the Solution.The main result of this section, Theorem 3.3, shows that under certain assumptions,the distance �(z; �) of a primal-dual iterate (z; �; s) to the solution set S can beestimated by the duality measure �. We start with a technical lemma that proves theweaker estimate �(z; �) = O(�1=2). Note that this result does not assume that theSC condition (1.5) holds.Lemma 3.1. Suppose that z� is a solution of (1.1) at which the MFCQ condition(2.5) and the second-order conditions (2.6), (2.7) are satis�ed. Then for all (z; �)with � � 0 for which there is a vector s such that (z; �; s) satis�es (3.11), we havethat �(z; �) = O(�1=2):(3.12)Proof. We prove the result by showing that� Lz(z; �)min(�;�g(z)) � = O(�1=2)(3.13)and then applying Theorem 2.2. Since Lz(z; �) = rf = O(�), the �rst part of thevector satis�es the required estimate. For the second part, we have from (3.11b) that�g(z) = s � rg = s+ O(�);and hence that min(�gi(z); �i) = min(si; �i) +O(�):(3.14)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 9Because of (3.5) and (3.11c), we have that si�i � m� and (�i; si) > 0. It followsimmediately that min(�i; si) � (m�)1=2 for i = 1; 2; : : : ;m. Hence, by substitutioninto (3.14), we obtainmin(�gi(z); �i) � (m�)1=2 + O(�) = O(�1=2):We conclude that the second part of the vector in (3.13) is of size O(�1=2), so theproof is complete.The following examples show the upper bound of Lemma 3.1 is indeed achievedand that it is not possible to obtain a lower bound on �(z; �) as a strictly increasingnonnegative function of �. To demonstrate the �rst claim, consider the problemmin 12z2 subject to �z � 0.The point (z; �; s) = (�; �; �) satis�esLz(z; �) = 0; g(z) + s = 0; s� = �2; � = �2;so that the conditions (3.11) are satis�ed. Clearly the distance from the point (z; �)to the solution set S = (0; 0) is p2� = p2�1=2. For the second claim, consider anynonlinear program such that B = f1; 2; : : :;mg (that is, all constraints active) andstrict complementarity (1.5) holds at some multiplier ��. Then for appropriate choicesof  and C, the point (z; �; s) = (z�; ��; (m�)=(eT��)e)(3.15)satis�es the de�nition (3.5) and the condition (3.11) for any � > 0. On the otherhand, we have �(z; �) = �(z�; ��) = 0 by de�nition, so there are no � > 0 and � > 0that yield a lower bound estimate of the form �(z; �) � ��� .We now prove an extension of Lemma 5.1 of Ralph and Wright [21], dropping themonotonicity assumption of this earlier result.Lemma 3.2. Suppose that the conditions of Lemma 3.1 hold and in addition thatthe SC condition (1.5) is satis�ed. Then for all (z; �; s) satisfying (3.11), we havethat i 2 B ) si = �(�); �i = �(1);(3.16a) i 2 N ) si = �(1); �i = �(�):(3.16b)Proof. By boundedness of S (Lemma 2.1), we have for all (z; �; s) su�cientlyclose to S that �i = O(1); si = �gi(z) + (rg)i = O(1):(3.17)Given (z; �; s) satisfying (3.11), let P (�) be the projection of � onto the set S�, andlet �� 2 S� be some strictly complementary optimal multiplier (for which (1.5) issatis�ed). From Lemma 3.1 we obtainkz � z�k = O(�1=2):(3.18)Using this observation together with smoothness of �(�) and g(�), we have for thegradient of L thatLz(z; �) �Lz(z�; ��)= r�(z)�r�(z�) +rg(z)� �rg(z�)��= O(�1=2) +rg(z)[�� P (�)] + [rg(z) �rg(z�)]P (�) +rg(z�)[P (�)� ��]:



10 STEPHEN J. WRIGHTSince P (�) and �� are both in S�, we �nd from (1.3) that the last term vanishes. From(3.18) and P (�) = O(1), the second-to-last term has size O(�1=2). For the remainingterm, we have rg(z) = O(1), and k��P (�)k � �(z; �) = O(�1=2). By assembling allthese observations, and using Lz(z�; ��) = 0, we obtainLz(z; �) = Lz(z; �) �Lz(z�; ��) = O(�1=2):(3.19)Using again that rg(z�)[P (�)� ��] = 0, we have from (3.18) that[P (�)� ��]T [g(z)� g(z�)] = [P (�)� ��]T [rg(z�)T (z � z�) + O(kz � z�k2)]= O(kz � z�k2) = O(�):(3.20)By gathering the estimates (3.12), (3.18), (3.19), and (3.20), we obtain� z � z�� � �� �T � Lz(z; �)�Lz(z�; ��)�g(z) + g(z�) �= � z � z��� P (�) �T � Lz(z; �)�Lz(z�; ��)�g(z) + g(z�) �+[P (�)� ��]T [�g(z) + g(z�)]= O(�(z; �))O(�1=2) +O(�) = O(�):(3.21)By substituting from (3.11) and using (3.21), we obtain� z � z�� � �� �T � rfs � rg � s� � = � z � z��� �� �T � Lz(z; �) �Lz(z�; ��)�g(z) + g(z�) � = O(�);and therefore (�� ��)T (s � s�) = �(z � z�)T rf + (�� ��)T rg +O(�):By using the conditions (3.11a), (3.11b), and the de�nition (3.5), we obtain� mXi=1 ��i si � mXi=1 �is�i= �(��)T s � �T s� = ��T s +O(�) +O(kz � z�kkrfk) +O(k� � ��kkrgk) = O(�):Since (�; s) > 0 and (��; s�) � 0, all terms ��i si and �is�i , i = 1; 2; : : : ;m are nonneg-ative, so there is a constant C1 > 0 such that0 � ��i si � C1�; 0 � �is�i � C1�; for all i = 1; 2; : : :;m.For all i 2 B, we have ��i > 0 by our strictly complementary choice of ��, and so0 < si � C1��i � � C1mini2B ��i � def= C2�:(3.22)On the other hand, we have by boundedness of S� and our assumption (3.11c) thatsi � ��i � min�; for all i = 1; 2; : : : ;m;(3.23)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 11for some constant min > 0. By combining (3.22) and (3.23), we have thatsi = �(�); for all i 2 B:For the �B component, we have thatsi�i � � ) �i � �si � C2 ; for all i 2 B:Hence, by combining with (3.17), we obtain that�i = �(1); for all i 2 B:This completes the proof of (3.16a). We omit the proof of (3.16b), which is similar.Next, we show that when the strict complementarity assumption is added to theassumptions of Lemma 3.1, the upper bound on the distance to the solution set in(3.12) can actually be improved to O(�).Theorem 3.3. Suppose that z� is a solution of (1.1) at which the MFCQ con-dition (2.5), the second-order conditions (2.6), (2.7), and the SC condition (1.5) aresatis�ed. Then for all (z; �) with � � 0 for which there is a vector s such that (z; �; s)satis�es (3.11), we have that �(z; �) = O(�):(3.24)Proof. From (3.11a), we have directly that rf = O(�). We have from (3.11) and(3.16a) thatgi(z) = �si + (rg)i = O(�); �i = �(1); �i > 0 for all i 2 B;so that min(�gi(z); �i) = �gi(z) = O(�); for all i 2 B,(3.25)whenever � is su�ciently small. For the remaining components, we havemin(�gi(z); �i) = �i = O(�); for all i 2 N .(3.26)By substituting (3.11a), (3.25), and (3.26) into (2.12), we obtain the result.Similar conclusions to Lemma 3.2 and Theorem 3.3 can be reached in the caseof linear programming algorithms. The second-order conditions (2.6), (2.7) are notrelevant for this class of problems, and the SC assumption (1.5) holds for every linearprogram that has a solution.4. Accuracy of PDIP Steps: General Results. By partitioning the con-straint index set f1; 2; : : :;mg into active indices B and inactive indices N , we canexpress the system (3.9) without loss of generality as follows:24 Lzz(z; �) rgB(z) rgN (z)rgB(z)T �DB 0rgN (z)T 0 �DN 3524 �z��B��N 35 = 24 �Lz(z; �)�gB(z) + ��1B tB�gN (z) + ��1N tN 35 ;(4.1)where DB and DN are positive diagonal matrices de�ned byDB = ��1B SB; DN = ��1N SN :(4.2)



12 STEPHEN J. WRIGHTWhen the SC condition (1.5) is satis�ed, we have from Lemma 3.2 that the diagonalsof DB have size �(�) while those of DN have size �(��1). By eliminating ��N from(4.1), we obtain the following intermediate stage between (3.9) and (3.10):� H(z; �) rgB(z)rgB(z)T �DB � � �z��B �(4.3) = � �Lz(z; �)�rgN (z)D�1N [gN (z) � ��1N tN ]�gB(z) + ��1B tB � ;where we have de�nedH(z; �) def= Lzz(z; �) +rgN (z)D�1N rgN (z)T :(4.4)In this section, we start by proving a key result about the solutions of perturbedforms of the system (4.3). Subsequently, we use this result as the foundation forproving results about the three alternative formulations (3.8), (3.9), and (3.10) ofthe PDIP step equations. The principal reason for our focus on (4.3) is that theproof of the main result can be derived from fairly standard linear algebra arguments.Gould [13, Section 6] obtains a system similar to (4.3) for the Newton equations forthe primal log-barrier function, and notes that the matrix approaches a nonsingularlimit when certain optimality conditions, including LICQ, are satis�ed. Because wereplace LICQ by MFCQ, the matrix in (4.3) may approach a singular limit in ourcase.We note that the form (4.3) is also relevant to the stabilized sequential quadraticprogramming (sSQP) method of Wright [29] and Hager [15]; that is, slight modi�ca-tions to the results of this paper can be used to show that the condensed and aug-mented formulations of the step equations for the sSQP algorithm yield good stepseven in the presence of roundo� errors and cancellation. We omit further details inthis paper.Errors in the step equations arise from cancellation and roundo� errors in evalu-ating both the matrix and right-hand side and from roundo� errors that arise in thefactorization/solution process. We discuss these sources of error further and quantifythem in the next section. In this section, we consider the following perturbed versionof (4.3):� H(z; �) + ~E11 rgB(z) + ~E12rgB(z)T + ~E21 �DB + ~E22 � � wy � = � r1rgB(z�)T r3 + r4 � :(4.5)Here, ~E is the perturbation matrix (appropriately partitioned and not assumed tobe symmetric) and r1, r3, and r4 represent components of a general right-hand side.Note the partitioning of the second right-hand side component into a componentrgB(z�)T r3 in the range space of rgB(z�)T and a remainder term r4. When LICQ issatis�ed, the range space of rgB(z�)T spans the full space, so we can choose r4 to bezero. Under MFCQ, however, we have in general that r4 must be nonzero. The maininterest of the results below is in isolating the component of the solution of (4.5) thatis sensitive to r4.To make the results applicable to a wider class of linear systems, we do notimpose the assumptions that were needed in the preceding section to ensure that thematrices DB and DN de�ned by (4.2) have diagonals of the appropriate size. Instead,we assume that the diagonals have the given size, and derive the application to the



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 13linear systems of interest (those that arise in primal-dual interior-point methods) asa special case.Our results in this and later sections make extensive use of the SVD (2.13) ofrgB(z�). They also make assumptions about the size of the smallest singular valueof this matrix, and about the size of the smallest eigenvalue of V̂ TLzz(z�; ��)V̂ , thetwo-sided projection of the Lagrangian Hessian onto the active constraint manifold.Theorem 4.1. Let (z; �) be an approximate primal-dual solution of (1.1) with�(z; �) = O(�), and suppose the diagonal matrices DB and D�1N de�ned by (4.2) haveall their diagonal elements of size �(�). Suppose that the perturbation submatrices in(4.5) satisfy ~E11 = �u=�+O(�); ~E21; ~E12; ~E22 = �u;(4.6)and that the following conditions hold for some � > 0:u=�� 1; u� 1;(4.7a) �min(�) � �max(�1=3;u=�);(4.7b) �min(V̂ TLzz(z�; ��)V̂ ) � �max(�1=3;u=�); for all �� 2 S�:(4.7c)Then if � is su�ciently large (in a sense to be speci�ed in the proof), the step (w; y)computed from (4.5) satis�es(UTy; V̂ Tw; ÛTw) = O(kr1k+ kr3k+ kr4k);V T y = O(kr1k+ kr3k+ kr4k=�):Proof. If we de�neyU = UT y; yV = V T y; wÛ = ÛTw; wV̂ = V̂ Tw;we have y = UyU + V yV ; w = ÛwÛ + V̂ wV̂ :Using this notation, we can rewrite (4.5) as2664 ÛTM11Û ÛTM11V̂ ÛTM12U ÛTM12VV̂ TM11Û V̂ TM11V̂ V̂ TM12U V̂ TM12VUTM21Û UTM21V̂ UTM22U UTM22VV TM21Û V TM21V̂ V TM22U V TM22V 37752664 wÛwV̂yUyV 3775(4.8) = 2664 ÛT r1V̂ T r1UTrgB(z�)T r3 + UT r4V TrgB(z�)T r3 + V T r4 3775 ;where we have de�nedM11 = H(z; �) + ~E11; M12 = rgB(z) + ~E12;(4.9) M21 = rgB(z)T + ~E21; M22 = �DB + ~E22;and H(�; �) is de�ned in (4.4). From (2.13), we haveV TrgB(z�)T = 0; UTrgB(z�)T = �ÛT :



14 STEPHEN J. WRIGHTThe fact that V T annihilates rgB(z�)T is crucial, because it causes the term with r3to disappear from the last component of the right-hand side of (4.8), which becomes2664 ÛT r1V̂ T r1�ÛT r3 + UT r4V T r4 3775 :(4.10)From the de�nitions (4.9) and (4.4), the perturbation bound (4.6), our assumptionsthat D�1N = O(�) and �(z; �) = O(�), compactness of S, and the fact that Lzz isLipschitz continuous, we have thatM11 = Lzz(z�; ��) + �u=�+O(�);(4.11)for some �� 2 S�. Using these same facts, we have likewise thatM21 = rgB(z�)T + �u + O(�);so by substituting from (2.13), we have thatUTM21Û = �+ �u +O(�); UTM21V̂ = �u +O(�);(4.12a) V TM21Û = �u +O(�); V TM21V̂ = �u + O(�):(4.12b)Similarly, from the de�nition of M12, we haveÛTM12U = �+ �u +O(�); ÛTM12V = �u +O(�);(4.13a) V̂ TM12U = �u +O(�); V̂ TM12V = �u + O(�):(4.13b)For the M22 block, we have from (4.9) and (4.6) thatUTM22U = �UTDBU + �u = O(�) + �u;(4.14a) UTM22V = O(�) + �u; V TM22U = O(�) + �u;(4.14b) V TM22V = �V TDBV + �u = ~MV V + �u;(4.14c)where ~MV V def= �V TDBV has all its singular values of size �(�), so that~M�1V V = �(��1):(4.15)Using these estimates together with (4.10), we can rewrite (4.8) as�� Q 00 ~MV V �+ � Ê11 Ê12Ê21 Ê22 ��2664 wÛwV̂yUyV 3775 = 2664 ÛT r1V̂ T r1�ÛT r3 + UT r4V T r4 3775 ;(4.16)where Q = 24 ÛTLzz(z�; ��)Û ÛTLzz(z�; ��)V̂ �V̂ TLzz(z�; ��)Û V̂ TLzz(z�; ��)V̂ 0� 0 0 35(4.17) +24 �u=�+ O(�) �u=�+O(�) �u +O(�)�u=�+ O(�) �u=�+O(�) 0�u +O(�) 0 0 35def= 24 NUU NUV ��1NV U NV V 0��2 0 0 35 ;(4.18)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 15while Ê11 = 24 0 0 00 0 �u +O(�)0 �u +O(�) �u +O(�) 35 ;(4.19)and Ê12; Ê21 = �u + O(�) = O(�); Ê22 = �u:(4.20)For purposes of specifying the required conditions on � in (4.7b) and (4.7c), wede�ne � to be a constant such that expressions of size �u and O(�) that arise in theperturbation terms in the coe�cient matrix in (4.16) can be bounded by �u and ��,respectively. For example, we suppose that the perturbations in ��1, ��2, and NV Vcan bounded as follows:k��1 � �k � �(�+ u); k��2 � �k � �(�+ u);(4.21a) kNV V � V̂ TLzz(z�; ��)V̂ k � �(u=�+ �);(4.21b)and thatkÊ11k � �(u+ �); kÊ12k � �(u+ �); kÊ21k � �(u+ �); kÊ22k � �u:(4.22)From (4.21a) and (4.7b), we have thatk��1 � �k � �max(�1=3;u=�) � (�=�)�min(�) � (�=�)k�k:It is therefore easy to show that if � can be chosen large enough that � > 2� (whilestill satisfying (4.7b) and (4.7c)), thenk��1k � 2k�k; k���11 k � 2k��1k:(4.23)Similarly, we can show thatk��2k � 2k�k; k���12 k � 2k��1k;(4.24) kNV V k � 2kV̂ TLzz(z�; ��)V̂ k; kN�1V V k � 2k(V̂ TLzz(z�; ��)V̂ )�1k:(4.25)Note, too, that because of Lipschitz continuity of Lzz and compactness of S, and thebounds (4.7a), the norms of NUU , NUV , NV U , NV V , and � are all O(1). Hence thematrix Q is itself invertible, and we haveQ�1 = 24 0 0 ���120 N�1V V �N�1V VNV U ���12���11 ����11 NUVN�1V V ����11 (NUU �NUVN�1V VNV U )���12 35 :(4.26)Noting that (Q + Ê11)�1 = (I +Q�1Ê11)�1Q�1;(4.27)we examine the size of Q�1Ê11. Note �rst from (4.7b) and (4.7c) together with (4.23),(4.24), and (4.25) thatk���11 k � 2� (u=�)�1; k���12 k � 2� (u=�)�1; kN�1V V k � 2� (u=�)�1;(4.28a) k���11 k � 2���1=3; k���12 k � 2� ��1=3; kN�1V V k � 2� ��1=3:(4.28b)



16 STEPHEN J. WRIGHTBy forming the product of (4.26) with (4.19) and using the bounds in (4.28), we canshow that the norm of Q�1Ê11 can be made less than 1=2 provided that � in (4.7b),(4.7c) is su�ciently large. The (3; 3) block of Q�1Ê11, for instance, has the form����11 NUVN�1V V (�u +O(�)) + ���11 (NUU � NUVN�1V VNV U)���12 (�u +O(�)):Because of (4.22), its norm can be bounded by a quantity of the formC� �k���11 k kN�1V V k+ k���11 k k���12 k kN�1V V k+ k���11 k k���12 k� ((u=�)�+ �) ;(for some C that depends on kLzz(z�; ��)k), which in turn because of (4.28) is boundedby the following quantity:8C�� 1�2�2=3 + 1�3�1=3�+ 8C�� 1�2 �1=3 + 1�3� :Provided that � is large enough that this and the other blocks of Q�1Ê11 can bebounded appropriately, we have that kQ�1Ê11k � 1=2, and therefore from (4.27) wehave k(Q+ Ê11)�1k = 2kQ�1k:Our conclusion is that for � satisfying the conditions outlined in this paragraph, theinverse of the (1; 1) block of the matrix in (4.16) can be bounded in terms of kQ�1k,which because of (4.23), (4.24), (4.25), and (4.26) can in turn be bounded by a �nitequantity that depends only on the problem data and not on �.Returning to (4.16), and using (4.20), we have that24 wÛwV̂yU 35 = �(Q+ Ê11)�1Ê12yV + (Q+ Ê11)�124 ÛT r1V̂ T r1�ÛT r3 + UT r4 35= O(kÊ12kkyV k) + O(kr1k+ kr3k+ kr4k)= O(�)kyV k+O(kr1k+ kr3k+ kr4k):(4.29)Meanwhile, for the second block row of (4.16), we obtainyV = �( ~MV V + Ê22)�1Ê2124 wÛwV̂yU 35+ ( ~MV V + Ê22)�1V T r4:(4.30)Since from (4.15), (4.20), and (4.7a), we have( ~MV V + Ê22)�1 = (I + ~M�1V V Ê22)�1 ~M�1V V = (I + �u=�) ~M�1V V = O(��1);it follows from (4.30) and (4.20) thatyV = O(��1)O(�) 24 wÛwV̂yU 35+ O(��1)O(kr4k):By substituting from (4.29), we obtainkyV k = O(�)kyV k+ O(kr1k+ kr3k+ kr4k) + O(kr4k=�);



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 17and therefore kyV k = O(kr1k+ kr3k+ kr4k=�);as claimed. The estimate for (wÛ ; wV̂ ; yU ) is obtained by substituting into (4.29).The conditions (4.7) need a little explanation. For the typical value u = 10�16, theminimum value of the quantity max(�1=3;u=�) is 10�4, achieved at ��12. Moreover,we have max(�1=3;u=�) � 10�2 only for � in the range [10�14; 10�6]. It would seem,then, that the problem would need to be quite well conditioned for (4.7b) and (4.7c)to hold and that � may have to become quite small before the results apply. Wenote, however, that the purpose of the bounds (4.7b) and (4.7c) is to ensure thatthe inverse of Q+ Ê11 can be bounded independently of �, and that for this purposethey are quite conservative. That is, we would expect to �nd that k(Q+ Ê11)�1k isnot too much larger than the norm of the inverse of the corresponding exact matrix(the �rst term on the right-hand side of (4.17)) for � not much less than the smallesteigenvalues of � and V̂ TLzz(z�; ��)V̂ .The requirement that u=� and � both be small in (4.7) may not seem to sit wellwith expressions such as O(�) and O(�2), which crop up repeatedly in the analysisand which assert that certain bounds hold \for all su�ciently small �." As noted inthe preceding paragraph, this requirement implies that the analysis holds for � in acertain range, or \window," of values. Similar windows are used in the analysis ofS. Wright [24, 27, 30], and M. H. Wright [23], and numerical experience indicates thatsuch a window does indeed exist in most practical cases. We expect the same to betrue of the problem and algorithms discussed in this paper.At this point, we assemble the assumptions that are made in the remainder ofthe paper into a single catch-all assumption.Assumption 4.1.(a) z� is a solution of (1.1), so that the condition (1.3) holds. The MFCQ con-dition (2.5), the second-order conditions (2.6), (2.7), and the SC condition(1.5) are satis�ed at this solution. The current iterate (z; �; s) of the PDIPalgorithm satis�es the conditions (3.11), and the right-hand side modi�cationt satis�es (3.7).(b) The quantities �, u (2.10), Lzz(z�; ��), �, and V̂ (2.13) satisfy the conditions(4.7).From our observations following (4.2), we have under this assumption thatDB = O(�); D�1B = O(��1); DN = O(��1); D�1N = O(�):(4.31)Our next result considers a perturbed form of the system (4.1), with a generalright-hand side. By eliminating one component to obtain the form (4.3), we can applyTheorem 4.1 to obtain estimates of the dependence of the solution on the right-handside components.Theorem 4.2. Suppose that Assumption 4.1 holds. Consider the linear system24 Lzz(z; �) +E11 rgB(z) +E12 rgN (z) + E13rgB(z)T +E21 �DB + E22 E23rgN (z)T + E31 E32 �DN +E33 3524 wyq 35= 24 r5rgB(z�)T r6 + r7r8 35 ;(4.32)



18 STEPHEN J. WRIGHTwhere E11 = �u=�; E33 = �u=�2;(4.33a) E12; E21; E22 = �u; E13; E31; E23; E32 = �u=�:(4.33b)Then the step (w; y; q) satis�es the following estimates:(UTy; w) = O(kr5k+ kr6k+ kr7k+ �kr8k);V Ty = O(kr5k+ kr6k+ kr7k=�+ (�u=�+O(�))kr8k);q = O(�) [kr5k+ kr6k+ kr8k] + (�u=�+ O(�))kr7k:Proof. From (4.31) and the assumed bound (4.33a) on the size of E33, we havethat (�DN +E33)�1= �(I �D�1N E33)�1D�1N = (I +O(�)�u=�2)O(�) = O(�):(4.34)By eliminating q from (4.32), we obtain the reduced system� H(z; �) + ~E11 rgB(z) + ~E12rgB(z)T + ~E21 �DB + ~E22 � � wy � = � r5 + O(�)kr8krgB(z�)T r6 + r7 + �ukr8k � ;where from (4.7) and (4.4), we obtain~E11 = E11 � (rgN (z) +E13)(�DN +E33)�1(rgN (z)T +E31)�rgN (z)D�1N rgN (z)T= �u=�+O(�);~E12 = E12 � (rgN (z) +E13)(�DN +E33)�1E32 = �u + O(1)O(�)�u=� = �u;~E21 = E21 � E23(�DN + E33)�1(rgN (z)T + E31) = �u + (�u=�)O(�)O(1) = �u;~E22 = E22 � E23(�DN + E33)�1E32 = �u + (�u=�)2O(�) = �u:These perturbation matrices satisfy the assumptions of Theorem 4.1, which can beapplied to give(UTy; V̂ Tw; ÛTw) = O(kr5k+ kr6k+ kr7k+ �kr8k);(4.35a) V T y = O(kr5k+ kr6k+ kr7k=�) + (�u=�+O(�))kr8k:(4.35b)From the last block row of (4.32), and using (4.7), (4.34), (4.35), we obtainq = (�DN + E33)�1 �r8 � (rgN (z)T + E31)w �E32y�= O(�) [kr8k+ kwk+ (�u=�)kyk]= O(�) [kr5k+ kr6k+ kr7k+ kr8k] +�u [kr5k+ kr6k+ kr7k=�+ (�u=�+ O(�))kr8k]= O(�) [kr5k+ kr6k+ kr8k] + (�u=�+O(�))kr7k:An estimate for the solution of the exact system (3.8) follows almost immediatelyfrom this result. This is the key technical result used by Ralph and Wright [21, 22] toprove superlinear convergence of PDIP algorithms for convex programming problems.The result below, however, does not require a convexity assumption.



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 19Corollary 4.3. Suppose that Assumption 4.1(a) holds. Then the (exact) solu-tion (�z;��;�s) of the system (3.8) satis�es(�z;��;�s) = O(�):(4.36)Proof. Note �rst that Assumption 4.1(b) holds trivially in this case for � su�-ciently small, because our assumption of exact computations is equivalent to settingu = 0. We prove the result by identifying the system (4.1) with (4.32) and thenapplying Theorem 4.2.For the right-hand side, we note �rst that, because of smoothness of g, Taylor'stheorem, the de�nition (2.1) of B, and Theorem 3.3,gB(z) = gB(z�) +rgB(z�)T (z � z�) + O(kz � z�k2)= rgB(z�)T (z � z�) +O(�2):(4.37)We now identify the right-hand side of (4.1) with (4.32) by settingr5 = �Lz(z; �);r6 = (z � z�);r7 = �rgB(z�)T (z � z�)� gB(z) + ��1B tB;r8 = �gN (z) + ��1N tN :The sizes of these vectors can be estimated by using (3.11), Lemma 3.2, (4.37), The-orem 3.3, and the assumption (3.7) on the size of t to obtainr5 = O(�); r6 = O(�); r7 = O(�2); r8 = O(1):(4.38)(By choosing r6 and r7 in this way, we ensure that the terms involving kr7k=� in theestimates of the solution components in Theorem 4.2 are not grossly larger than theother terms in these expressions.) We complete the identi�cation of (4.1) with (4.32)by setting all the perturbation matrices E11; E12; : : : ; E33 to zero and by identifyingthe solution vector components �z, ��B, and ��N with w, y, and q, respectively. Bydirectly applying Theorem 4.2, substituting the estimates (4.38), and setting �u = 0(since we are assuming exact computations), we have that(UT��B;�z) = O(�); V T��B = O(�); ��N = O(�):To show that the remaining solution component �s of (3.8) is also of size O(�),we write the second block row in (3.8) as�s = �(g(z) + s) �rg(z)T�z;from which the desired estimate follows immediately by substituting from (3.11b) and�z = O(�).The next result uses Theorem 4.2 to compare perturbed and exact solutions ofthe system of the system (4.1).Corollary 4.4. Suppose that Assumption 4.1 holds. Let (w; y; q) be obtainedfrom the following perturbed version of (3.9):24 Lzz(z; �) +E11 rgB(z) +E12 rgN (z) + E13rgB(z)T +E21 �DB + E22 E23rgN (z)T + E31 E32 �DN +E33 3524 wyq 35= 24 �Lz(z; �) + f1�gB(z) + ��1B tB + f2�gN (z) + ��1N tN + f3 35 ;(4.39)



20 STEPHEN J. WRIGHTwhere Eij, i; j = 1; 2; 3, satisfy the conditions (4.33) and f1, f2, and f3 are all of size�u. Then if (�z;��;�s) is the (exact) solution of the system (3.8), we have(�z �w;UT (��B � y)) = �u;V T (��B � y) = �u=�;��N � q = �u:Proof. By combining (4.39) with (4.1), we obtain24 Lzz(z; �) +E11 rgB(z) +E12 rgN (z) + E13rgB(z)T +E21 �DB +E22 E23rgN (z)T +E31 E32 �DN + E33 3524 w ��zy ���Bq ���N 35= 24 f1f2f3 35� 24 E11 E12 E13E21 E22 E23E31 E32 E33 3524 �z��B��N 35 :(4.40)From the bounds on the perturbations E in (4.33) and the result of Corollary 4.3, wehave for the right-hand side of this expression that24 r5r7r8 35 def= 24 f1f2f3 35� 24 E11 E12 E13E21 E22 E23E31 E32 E33 3524 �z��B��N 35= 24 �u + (�u=�)�+ �u�+ (�u=�)��u + �u� + �u�+ (�u=�)��u + (�u=�)�+ (�u=�)� + (�u=�2)� 35 = 24 �u�u�u=� 35 :(4.41)Using these estimates, we can simply apply Theorem 4.2 to (4.40) (with r6 = 0) toobtain the result.For later reference, we show how the estimates of Corollary 4.4 can be modi�edwhen the perturbations have a special form. Suppose thatE23 = 0; E33 = �u=�; f2 = UfU2 + O(�2); where fU2 = �u;(4.42)where U is the matrix from (2.13). Instead of setting r6 = 0 as in the proof above,we set r6 = Û�fU2 = �u(using (2.13) to obtain an r6 for which rgB(z�)T r6 = UfU2 ). By modifying (4.41) toaccount for the remaining perturbations, we can identify (4.40) with (4.32) by setting24 r5r7r8 35 def= 24 f1f2 � UfU2f3 35� 24 E11 E12 E13E21 E22 E23E31 E32 E33 3524 �z��B��N 35= 24 �u + (�u=�)�+ �u�+ (�u=�)�O(�2) + �u�+ �u��u + (�u=�)� + (�u=�)�+ (�u=�2)� 35 = 24 �uO(�2)�u=� 35 :(4.43)Using these modi�ed right-hand side estimates, we can apply Theorem 4.2 to obtainthe following improved bound on one of the components:V T (��B � y) = O(�):(4.44)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 21The bounds on the other components remain unchanged.We emphasize that the conditions (3.11), and in particular (3.11c), are criticalto the results of this and all the remaining sections of the paper. These conditionsenable Lemma 3.2, which in turn enable us to assert that the diagonals of DB all havesize �(�) while those of DN all have size �(��1) (see (4.31)). This neat classi�cationof the diagonals of D into two categories drives all the subsequent analysis. Themotivation for conditions like (3.11) in the literature for path-followingmethods (withexact steps) is not unrelated: It allows us to obtain bounds on the steps and to showthat we can move a signi�cant distance along this direction while ensuring that (3.11)continues to be satis�ed at the new iterate. (See, for example, [26, Chapters 5 and6] and its bibliography for the case of linear programming and [31, 21, 22] for thecase of nonlinear convex programming.) In the analysis above, we obtain bounds onthe errors (rather than the steps themselves) when perturbation terms of a certainstructure appear in the matrix and right-hand side.Many practical implementations of path-following methods for linear program-ming do not explicitly check that the condition (3.11c) is satis�ed by the calculatediterates (see, for example, [19] and [5]). However, the heuristics for \stepping back"from the boundary of the nonnegative orthant by a small but signi�cant quantity aremotivated by this condition, and it is observed to hold in practice on all but the mostrecalcitrant problems.5. The Condensed System. Here we consider an algorithm in which the con-densed linear system (3.10) is formed and solved to obtain �z, and the remainingstep components �� and �s are recovered from (3.8). We obtain expressions for theerrors in the calculated step (c�z; c��; c�s) and discuss the e�ects of these errors oncertain measures of step quality. We also derive conditions under which the Choleskyfactorization applied to (3.10) is guaranteed to run to completion.Formally, the complete procedure can be described as follows:procedure condensedgiven the current iterate (z; �; s)form the coe�cient matrix and right-hand side for (3.10);solve (3.10) using a backward stable algorithm to obtain �z;set �� = D�1[g(z) � ��1t+rg(z)T�z];set �s = �(g(z) + s) �rg(z)T�z.We have used the de�nition (4.2) of the matrix D. For convenience, we restatethe system (3.10) here as follows:�Lzz(z; �) +rg(z)D�1rg(z)T ��z = �Lz(z; �)�rg(z)D�1[g(z) � ��1t]:(5.1)Note that this procedure requires evaluation ofD�1 = S�1�, rather thanD itself.5.1. Quantifying the Errors. When implemented in �nite-precision arith-metic, solution of (5.1) gives rise to errors of three types:- cancellation in evaluation of the matrix and right-hand side;- roundo� errors in evaluation of the matrix and right-hand side;- roundo� errors that accumulate during the process of factoring the matrixand using triangular substitutions to obtain the solution.Cancellationmay be an issue in the evaluation of the nonlinear functions Lzz(z; �),Lz(z; �), g(z), and rg(z), because intermediate terms computed during the additiveevaluation of these quantities may exceed the size of the �nal result (see Golub and



22 STEPHEN J. WRIGHTVan Loan [12, p. 61]). The intermediate terms generally contain rounding error (whichoccurs whenever real numbers are represented in �nite precision). Cancellation be-comes a signi�cant phenomenon whenever we take a di�erence of two nearly equalquantities, since the error in the computed result due to roundo� in the two argu-ments may be large relative to the size of the result. If, as we can reasonably assume,intermediate quantities in the calculations of our right-hand sides remain bounded,the absolute size of the errors in the result is �u. In the case of Lz(z; �) and gB(z),the �nal result in exact arithmetic has size O(�), so that the error �u takes on a largerelative signi�cance for small values of �. This fact causes the error bound in somecomponents of the solution to be larger than in others, as we see in (5.6c) below. Insummary, the computed versions of the quantities discussed above di�er from theirexact values in the following way: computed Lzz(z; �) Lzz(z; �) + �F;(5.2a) computed Lz(z; �) Lz(z; �) + �f ;(5.2b) computed rg(z) rg(z) + F = � rgB(z)rgN (z) �+ � FBFN � ;(5.2c) computed g(z) g(z) + f = � gB(z)gN (z) �+ � fBfN � ;(5.2d)where �F , �f , F , and f are all of size �u. Earlier discussion of cancellation in similarcontexts can be found in the papers of S. Wright [24, 27, 30] and M. H. Wright [23].The second source of error is evaluation of the matrix D�1. From the model(2.10) of oating-point arithmetic and the estimates (3.16) of Lemma 3.2, we havethat computed D�1B  (DB + GB)�1; GB = ��u;(5.3a) computed D�1N  (DN +GN )�1; GN = �u=�;(5.3b)where GB and GN are both diagonal matrices that can be composed into a singlediagonal matrix G.Third, we account for the error in forming the matrix and right-hand side of(5.1) from the computed quantities described in the last two paragraphs. Since weare now dealing with oating-point numbers, the model (2.10) applies; that is, anyadditional errors that arise during the combination of these oating-point quantitieshave size u relative to the size of the result of the calculation. Since the norm ofthe coe�cient matrix is of size O(��1) while the right-hand side has size O(1) (see(3.11)), we represent these errors by a matrix F̂ of size �u=� and a vector f̂ of size�u. Finally, we account for the error that arises in the application of a backward-stablemethod to solve (5.1). Speci�cally, we assume that the method yields a computedsolution that is the exact solution of a nearby problem whose data contains relativeperturbations of size u. The absolute sizes of these terms would therefore be �u=� inthe case of the matrix and �u in the case of the right-hand side. Since these errorsare the same size as those discussed in the preceding paragraph, we incorporate theminto the matrix F̂ and the vector f̂ .Summarizing, we �nd that the computed solution c�z of (5.1) satis�es the follow-ing system:hLzz(z; �) + �F + (rg(z) + F )(D +G)�1(rg(z) + F )T + F̂ i c�z(5.4)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 23= �Lz(z; �) � �f � (rg(z) + F )(D + G)�1[g(z) + f � ��1t] + f̂ ;where the perturbation terms �F , F , F̂ , G, �f , f̂ , and f are described in the paragraphsabove. By \unfolding" this system and using the partitioning of F , G, and f de�nedin (5.2) and (5.3), we �nd that c�z also satis�es the following system, for some vectorsy and q: 24 Lzz(z; �) + �F + F̂ rgB(z) + FB rgN (z) + FNrgB(z)T + F TB �DB � GB 0rgN (z)T + FTN 0 �DN � GN 3524 c�zyq 35(5.5) = 24 �Lz(z; �)� �f + f̂�gB(z) + ��1B tB � fB�gN (z) + ��1N tN � fN 35 :This system has precisely the form of (4.39) (in particular, the perturbation matricessatisfy the appropriate bounds). Hence, by a direct application of Corollary 4.4, weconclude that �z � c�z = �u;(5.6a) UT (��B � y) = �u;(5.6b) V T (��B � y) = �u=�:(5.6c)We return now to the recovery of the remaining solution components c�� and c�sin the procedure condensed. We have from Assumption 4.1 together with (3.11b),Lemma 3.2, (4.36), (5.6a), (5.3a), (4.7), and (4.31) thatgB(z) = rg(z; s)B � sB = O(�); ��1B = �(1); c�z = �z + �u = O(�);(5.7a) (DB + GB)�1 = (I +D�1B GB)D�1B = (I + �u)�1O(��1) = O(��1):(5.7b)Since t = O(�2), we have from our model (2.10) that the oating-point version of thecalculation of c��B in the procedure condensed satis�es the following:c��B = (DB +GB)�1 hgB(z) + fB � ��1B tB + (rgB(z) + FB)T c�z + ��ui+ �u:(The �nal term �u arises from (2.10) because our best estimate of the quantity in thebrackets at this point of the analysis is O(�), so from (5.7b) the result has size O(1).)Meanwhile, we have from the second block row of (5.5) thaty = (DB + GB)�1 hgB(z) + fB � ��1B tB + (rgB(z) + FB)T c�zi :By a direct comparison of these two expressions, and using (DB +GB)�1 = O(�), we�nd that c��B � y = �u:(5.8)By combining (5.8) with (5.6b) and (5.6c), we �nd thatUT (��B � c��B) = �u; V T (��B � c��B) = �u=�:(5.9)



24 STEPHEN J. WRIGHTFor the \nonbasic" part c��N , we have from (3.11b), Lemma 3.2, (4.36), (5.6a),(5.3b), (4.7), and (4.31) thatgN (z) = O(1); ��1N = O(��1); c�z = O(�);(5.10a) (DN +GN )�1 = (I +D�1N GN )�1D�1N = D�1N + ��u = O(�):(5.10b)By using tN = O(�2) and applying the model (2.10) to the appropriate step in theprocedure condensed, we obtainc��N = (DN +GN )�1 hgN (z) + fN � ��1N tN + (rgN (z) + FN )T c�z + �ui+ ��u:By comparing this expression with the corresponding exact formula, which is��N = D�1N �gN (z)� ��1N tN +rgN (z)T�z� ;and by using the bounds (5.10) and the fact that fN and FN have size �u, we obtainc��N ���N = ��u + (DN +GN )�1[fN + �u] +[(DN +GN )�1 �D�1N ][gN (z)� ��1N tN ] +(DN + GN )�1(rgN (z) + FN )T c�z �D�1N rgN (z)T�z= ��u + (DN +GN )�1[rgN (z)T (c�z ��z) + F TN c�z][(DN +GN )�1 �D�1N ]rgN (z)T�z= ��u:(5.11)Finally, for the recovered step c�s, we have from the last step of procedure con-densed, together with (3.11b), (5.2d), (5.7b), and (2.10) thatc�s = �(g(z) + f + s) � (rg(z) + F )T c�z + �u;where the �nal term accounts for the rounding error (2.10) that arises from accumu-lating the terms in the sum, which are all bounded. By substituting the expressionfor the exact �s together with the estimates (5.2d) and (5.7b) on the sizes of theperturbation terms, we obtainc�s = �(g(z) + s) �rg(z)T�z � f �rg(z)T (c�z ��z)� F T c�z + ��u= �s+ �u:(5.12)We summarize the results obtained so far in the following theorem.Theorem 5.1. Suppose that Assumption 4.1 holds. Then when the step(c�z; c��; c�s) is calculated in a �nite-precision environment by using the procedurecondensed (and where, in particular, a backward stable method is used to solve thelinear system for the c�z component), we have that(�z � c�z; UT (��B � c��B);�s� c�s) = �u;(5.13a) V T (��B � c��B) = �u=�;(5.13b) ��N � c��N = ��u:(5.13c)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 25This theorem extends the result of M. H. Wright [23] for accuracy of the computedsolution of the condensed system by relaxing the LICQ assumption to MFCQ. WhenLICQ holds, the matrix V is vacuous, so the absolute error in all components is of sizeat most �u. The higher accuracy (5.13c) of the components c��N (also noted in [23])does not contribute signi�cantly to the progress that can be made along the inexactdirection (c�z; c��; c�s), in the sense of Section 5.3.We return briey to the case discussed immediately after Corollary 4.4, in whichthe perturbations have the special form (4.42), using these results to show that thebound (5.13b) can be strengthened when fB satis�esV TfB = O(�2):(5.14)This case is of interest when the cancellation errors in computing gB(z) are smallerthan the estimate we made following (5.2d), possibly because of use of higher-precisionarithmetic or the fact that the computation did not require di�erencing of quantitieswhose size is large relative to the �nal result. When (5.14) holds, we see by comparing(4.39) with (5.5) thatE23 = 0; E33 = GN = �u=�; f2 = UUTfB +O(�2); where fB = �u:Therefore, we deduce from (4.44) that (5.6c) can be replaced byV T (��B � y) = O(�):Using (5.8) and �� �u, we can therefore replace (5.13b) in this case byV T (��B � c��B) = O(�):(5.15)5.2. Termination of the Cholesky Algorithm. In deriving the estimate(5.6), we have assumed that a backward stable algorithm is used to solve (5.1). Be-cause of (2.6), (2.7), and the SC condition, and the estimates of the sizes of thediagonals of D (from (4.2) and Lemma 3.2), it is easy to show that the matrix in(5.1) is positive de�nite for all su�ciently small �. The Cholesky algorithm is there-fore an obvious candidate for solving this system. However, the condition number ofthe matrix in (5.1) usually approaches 1 as � # 0, raising the possibility that theCholesky algorithm may break down when � is small. A simple argument, which wenow sketch, su�ces to show that successful completion of the Cholesky algorithm canbe expected under the assumptions we have used in our analysis so far.We state �rst the following technical result. Since it is similar to one proved byDebreu [6, Theorem 3], its proof is omitted.Lemma 5.2. Suppose that M and A are two matrices with the properties that Mis symmetric and ATx = 0 ) xTMx � �kMkkxk2;for some constant � > 0. Then for all � such that0 < � < �� def= min��kAk24kMk ; kAk�kMk� ;we have that xT (M + ��1AAT )x � �2 kxk2; for all x.



26 STEPHEN J. WRIGHTWe apply this result to (5.1) by settingM = Lzz(z; �) +rgN (z)D�1N rgN (z)T = Lzz(z; �) +O(�);A = �1=2rgB(z)D�1=2B(where again we use (4.2) and Lemma 3.2 to derive the order estimates). The con-ditions (2.6), (2.7), and strict complementarity ensure that this choice of M and Asatis�es the assumptions of Lemma 5.2. The result then implies that the smallestsingular value of the matrix in (5.1) is positive and of size �(1) for all values of �below a threshold that is also of size �(1). Since D = O(��1), the largest eigenvalueof this matrix is of size O(��1), so we havecond(Lzz(z; �) +rg(z)D�1rg(z)T ) = O(��1):(5.16)(An estimate similar to this is derived by M. H. Wright [23, Theorem 3.2], under theLICQ assumption.) It is known from a result of Wilkinson (cited by Golub and VanLoan [12, p. 147]) that the Cholesky algorithm runs to completion if qn�ucond(�) � 1,where qn is a modest quantity that depends polynomially on the dimension n of thematrix. By combining this result with (5.16), we conclude that for the matrix in (5.1),we can expect completion of the Cholesky algorithm whenever � � �u. That is, nonew assumptions need to be added to those made in deriving the results of earliersections.We note that this situation di�ers a little from the case of linear programmingwhere, because second-order conditions are not applicable, it is usually necessary tomodify the Cholesky procedure to ensure that it runs to completion (see [30]).5.3. Local Convergence with Computed Steps. We begin this section byshowing how the quantities rf , rg, and � change along the computed step (c�z; c��; c�s)obtained from the �nite-precision implementation of the procedure condensed. Wecompare these with the changes that can be expected along the exact direction(�z;��;�s). We then consider the e�ects of these perturbations on an algorithm ofthe type in which the iterates are expected to satisfy the conditions (3.11). Rapidlyconvergent variants of these algorithms for linear programming problems usually al-low the values of C and  in these conditions to be relaxed, so that a near-unit stepcan be taken. We address the following question: If similar relaxations are allowed inan algorithm for nonlinear programming, are near-unit steps still possible when thesteps contain perturbations of the type considered above?We show in particular that for the computed search direction, the maximum steplength that can be taken without violating the nonnegativity conditions on � and ssatis�es 1� �̂max = �u=�+O(�);(5.17)while the reductions in pairwise products, �, rf , and rg satisfy(�i + �c��i)(si + �c�si) = (1� �)�isi + �u + O(�2); i = 1; 2; : : : ;m;(5.18a) �(�+ �c��; s+ �c�s) = (1� �)�+ �u + O(�2);(5.18b) rf (z + �c�z; �+ �c��) = (1� �)rf + �u + O(�2);(5.18c) rg(z + �c�z; s+ �c�s) = (1� �)rg + �u + O(�2):(5.18d)



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 27The corresponding maximum steplength for the exact direction satis�es1� �max = O(�);(5.19)while the reductions in rf , rg, and � satisfy(�i + ���i)(si + ��si) = (1� �)�isi + O(�2); i = 1; 2; : : :;m;(5.20a) �(�+ ���; s+ ��s) = (1� �)�+ O(�2);(5.20b) rf (z + ��z; �+ ���) = (1� �)rf + O(�2);(5.20c) rg(z + ��z; s+ ��s) = (1� �)rg + O(�2):(5.20d)Our proof of the estimates (5.17) and (5.18) is tedious but not completely straight-forward, and we have included it in the Appendix.It is clear from (5.17) and (5.18) that the direction (c�z; c��;c�s) makes goodprogress toward the solution set S. If the actual steplength � is close to its maximumvalue �̂max, in the sense that �̂max � � = �u=�+O(�);(5.21)we have by direct substitution in (5.17) and (5.18) that�(� + �c��; s+ �c�s) = �u + O(�2);rf (z + �c�z; �+ �c��) = �u + O(�2);rg(z + �c�z; s+ �c�s) = �u + O(�2):These formulae suggest that �nite precision does not have an observable e�ect on thequadratic convergence rate of the underlying algorithm until � drops below aboutpu. Stopping criteria for interior-point methods usually include a condition such as� � 104u or � � pu (see, for example, [5]), so that � is not allowed to become sosmall that the assumption �� u made in (4.7) is violated.In making this back-of-the-envelope assessment, however, we have not taken intoaccount the approximate centrality conditions (3.11), which must continue to hold(possibly in a relaxed form) at the new iterate. These conditions play a central roleboth in the analysis above and in the convergence analysis of the underlying \exact"algorithms, and also appear to be important in practice. Typically (see, for example,Ralph andWright [21]), the conditions (3.11) are relaxed by allowing a modest increasein C and a modest decrease in  on the rapidly convergent steps. We show in the nextresult that enforcement of these relaxed conditions is not inconsistent with taking astep length � that is close to �̂max, so that rapid convergence can still be observedeven in the presence of �nite-precision e�ects.Theorem 5.3. Suppose that Assumption 4.1 holds. Then when the step(c�z; c��; c�s) is calculated in a �nite-precision environment by using the procedurecondensed, there is a constant Ĉ such that for all � 2 [0; 1=2] and all � satisfying� 2 [0; 1� Ĉ��1(u=�+ �)];(5.22)the following relaxed form of the approximate centrality conditions holds:rf (z + �c�z; �+ �c��) � C(1 + � )�(�+ �c��; s+ �c�s);(5.23a) rg(z + �c�z; s+ �c�s) � C(1 + � )�(�+ �c��; s+ �c�s);(5.23b) (�i + �c��i)(si + �c�si) � (1 � � )�(� + �c��; s+ �c�s);(5.23c) for all i = 1; 2; : : : ;m,



28 STEPHEN J. WRIGHTwhere C is the constant from conditions (3.11). Moreover, when we set � to its upperbound in (5.22), we �nd that�(z + �c�z; �+ �c��) � ��1(�u + O(�2)):(5.24)Proof. From (3.11) and (5.18), we have thatkrf (z + �c�z; �+ �c��)k= (1� �)krfk+ �u + O(�2)� C(1� �)�+ �u + O(�2)= C(1 + � )(1� �)��C� (1� �)�+ �u +O(�2)= C(1 + � )�(� + �c��; s+ �c�s)� C� (1� �)�+ �u + O(�2):We deduce that the required condition (5.23a) will hold provided that�u + O(�2) � C� (1� �)�:Since by de�nition we have that �u + O(�2) � �C(u+ �2) for some positive constant�C, we �nd that a su�cient condition for the required inequality is that(1� �) � ( �C=C)��1(u=�+ �);which is equivalent to (5.22) for an obvious de�nition of Ĉ. Identical logic can beapplied to krgk to yield a similar condition on �.For the condition (5.23c), we have from (3.11) and (5.18) that(�i + �c��i)(si + �c�si)= (1� �)�isi + �u +O(�2)� (1� �)� + �u + O(�2)= (1 � � )(1� �)�+ � (1 � �)�+ �u +O(�2)= (1 � � )�(� + �c��; s+ �c�s) + � (1 � �)�+ �u + O(�2):Hence, the condition (5.23c) holds provided that� (1 � �)�+ �u +O(�2) � 0:Similar logic can be applied to this inequality to derive a bound of the type (5.22),after a possible adjustment of Ĉ.Finally, we obtain (5.24) by substituting � = 1� Ĉ��1(u=�+ �) into (5.18) andapplying Theorem 3.3. (Note that, despite the relaxation of the centrality conditions(5.23), the result of Theorem 3.3 still holds; we simply modify the proof to replace Cby (3=2)C in (3.11a) and (3.11b), and  by =2 in (3.11c).)6. The Augmented System. In this section, we consider the case in which theaugmented system (3.9) (equivalently, (4.1)) is solved to obtain (�z;��), while theremaining step component �s is recovered from (3.8). The formal speci�cation forthis procedure is as follows:



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 29procedure augmentedgiven the current iterate (z; �; s)form the coe�cient matrix and right-hand side for (4.1);solve (4.1) to obtain (�z;��);set �s = �(g(z) + s) �rg(z)T�z.Much of our work in analyzing the augmented system form (4.1) has already beenperformed in Section 4; the main error result is simply Corollary 4.4. However, wecan apply this result only if the oating-point errors made in evaluating and solvingthis system satisfy the assumptions of this corollary. In particular, we need to showthat the perturbation matrices Eij, i; j = 1; 2; 3 in (4.39) satisfy the estimates (4.33).This task is not completely straightforward. Unlike the condensed and full-systemcases, it is not simply a matter of assuming that a backward-stable algorithm has beenused to solve the system (4.1). The reason is that the largest terms in the coe�cientmatrix in (3.9)|the diagonal elements in the matrix DN|have size O(��1). Theusual analysis of backward-stable algorithms represents the oating-point errors as aperturbation of the entire coe�cient matrix whose size is bounded by �u times thematrix norm|in this case, �u=�. However, Corollary 4.4 requires some elements of theperturbation matrix to be smaller than this estimate; in particular, the submatricesE12, E21, and E22 need to be of size �u. Therefore, we need to look closely at theparticular algorithms used to solve (4.1) to see whether they satisfy the followingcondition.Condition 6.1. The solution obtained by applying the algorithm in question tothe system (4.1) in oating-point arithmetic is the exact solution of a perturbed systemin which the perturbations of the coe�cient matrix satisfy the estimates (4.33), whilethe right-hand side is unperturbed.We focus on diagonal pivoting methods, which take a symmetric matrix T andproduce a factorization of the formPTPT = LY LT ;(6.1)where P is a permutation matrix, L is unit lower triangular, and Y is block diagonal,with a combination of 1� 1 and symmetric 2� 2 blocks. The best-known methods ofthis class are due to Bunch and Parlett [3] and Bunch and Kaufman [2], while Du� etal. [7] and Fourer and Mehrotra [10] have described sparse variants. These algorithmsdi�er in their selection criteria for the 1� 1 and 2� 2 pivot blocks. In our case, thepresence of the diagonal elements of size �(��1) (from the submatrix DN = ��1N SN )and their place in these pivot blocks are crucial to the result.We start by stating a general result of Higham [17] concerning backward stabilitythat applies to all diagonal pivoting schemes. We then examine the Bunch-Kaufmanscheme, showing that the large diagonals appear only as 1 � 1 pivots and that thisalgorithm satis�es Condition 6.1. (In [17, Theorem 4.2], Higham actually proves thatthe Bunch-Kaufman scheme is backward stable in the normwise sense, but this resultis not applicable to our context, for the reasons mentioned above.)Next, we briey examine the Bunch-Parlett method, showing that it starts outby selecting all the large diagonal elements in turn as 1� 1 pivots, before going on tofactor the remaining matrix, whose elements are all O(1) in size. This method alsosatis�es Condition 6.1. We then examine the sparse diagonal pivoting approaches ofDu� et al. [7] and Fourer and Mehrotra [10], which may not satisfy Condition 6.1,because of the possible presence of 2� 2 pivots in which one of the diagonals has size�(��1). These algorithms can be modi�ed in simple ways to overcome this di�culty,



30 STEPHEN J. WRIGHTpossibly at the expense of higher density in the L factor. We then mention Gaussianelimination with pivoting and refer to previous results in the literature to show thatthis approach satis�es Condition 6.1. Finally, we state a result like Theorem 5.3about convergence of a �nite-precision implementation of an algorithm based on theaugmented system form.Higham [17, Theorem 4.1] proves the following result.Theorem 6.1. Let T be an �n� �n symmetric matrix, and let x̂ be the computedsolution to the linear system Tx = b produced by a method that yields a factorizationof the form (6.1), with any diagonal pivoting strategy. Assume that, during recoveryof the solution, the subsystems that involve the 2 � 2 diagonal blocks are solved viaGaussian elimination with partial pivoting. Then we have that(T +�T )x̂ = b; j�T j � �u(jT j+ PT jL̂jjŶ jjL̂T jP ) + �2u;(6.2)where L̂ and Ŷ are the computed factors, and jAj denotes the matrix formed from Aby replacing all its elements by their absolute values.In Higham's result, the coe�cient of u in the �u term is actually a linear poly-nomial in the dimension of the system. The partial pivoting strategy for the 2 � 2systems can actually be replaced by any method for which the computed solutionof Ry = d satis�es (R + �R)ŷ = d, where R is the 2 � 2 matrix in question andj�Rj � �ujRj. This property was also key in an earlier paper of S. Wright [27], whoderived a result similar to Theorem 6.1 in the context of the augmented systems thatarise from interior-point methods for linear programming.All the procedures below have the property that the growth in the maximumelement size in the remaining submatrix is bounded by a modest quantity at each in-dividual step of the factorization. (In the case of Bunch-Kaufman and Bunch-Parlett,this bound averages about 2.6 per elimination step; see Golub and Van Loan [12, Sec-tion 4.4.4].) As with Gaussian elimination with partial pivoting, exponential elementgrowth is possible, so that L and Y in (6.1) contain much larger elements than theoriginal matrix T . Such behavior is, however, quite rare and is con�ned to pathologi-cal cases and certain special problem classes. In our analysis below, we make the safeassumption that catastrophic growth of this kind does not occur.6.1. The Bunch-Kaufman Procedure. At each iteration, the Bunch-Kaufman procedure chooses either a 1� 1 or 2 � 2 pivot by examining at most twocolumns of the remaining matrix, that is, the part of the matrix that remains to befactored at this stage of the process. It makes use of quantities �i de�ned by�i = maxj j j 6=i jTijj;where in this case T denotes the remaining matrix. We de�ne the pivot selectionstrategy for the �rst step of the factorization process. The entire algorithm is obtainedby applying this procedure recursively to the remaining submatrix.set � = (1 +p17)=8;calculate �1, and store the index r for which �1 = jTr1j;if jT11j � ��1choose T11 as a 1� 1 pivot;else calculate �r ;if �rjT11j � ��21



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 31choose T11 as a 1� 1 pivot;else if jTrrj � ��rchoose Trr as a 1� 1 pivot;else choose a 2� 2 pivot with diagonals T11 and Trr ;end ifend if.For each choice of pivot, the permutation matrix P1 is chosen so that the desired1� 1 or 2� 2 pivot is in the upper left of the matrix P1TP T1 . If one writesP1TP T1 = � R CTC T̂ � ;where R is the chosen pivot, the �rst step of the factorization yieldsP1TPT1 = � ICR�1 I � � R �T � � I R�1CTI � ;(6.3)where �T = T̂ �CR�1CT is the matrix remaining after this stage of the factorization.At the �rst step of the factorization, the quantities �1 and �r (if calculated) bothhave size O(1), since the large elements of this matrix occur only on the diagonal.Since a 2� 2 pivot is chosen only ifjT11j < ��1 and jTrrj < ��r;it follows immediately that both diagonals in a 2� 2 pivot must be O(1). Hence, thepivot chosen by this procedure is one of three types:1� 1 pivot of size O(1);(6.4a) 2� 2 pivot in which both diagonals have size O(1);(6.4b) 1� 1 pivot of size �(��1).(6.4c)In fact, the pivots are one of the types (6.4) at all stages of the factorization, notjust the �rst stage. The reason is that the updated matrix �T in (6.3) has the sameessential form as the original matrix T|its elements are all of size O(1) except forsome large diagonal elements of size �(��1). We demonstrate this claim by showingthat the update CR�1CT that is applied to the remaining matrix in (6.3) is a matrixwhose elements are of size at most O(1), regardless of the type of pivot, so that itdoes not disturb the essential structure of the remaining matrix. When the pivots areof type (6.4a) and (6.4b), the standard argument of Bunch and Kaufman [2] can beapplied to show that the norm of CR�1CT is at most a modest multiple of kCk. Weknow that kCk = O(1), since C consists only of o�-diagonal elements, so we concludethat kCR�1CTk = O(1) in this case as claimed. For the other pivot type (6.4c), wehave R = �(��1) and C = O(1), so the elements of CR�1CT have size O(�), andthe claim holds in this case too.In the rest of this subsection, we show by using Theorem 6.1 that Condition 6.1holds for the Bunch-Kaufman algorithm. In fact, we prove a stronger result: WhenT in Theorem 6.1 is the matrix (4.1), the perturbation matrix �T contains elementsof size �u, except in those diagonal locations corresponding to the elements of DN ,where they may be as large as �u=�. Given the bound on j�T j in (6.2), we need only



32 STEPHEN J. WRIGHTto show that PT jL̂jjŶ jjL̂jTP has the desired structure. In fact, it su�ces to showthat the exact factor product PT jLjjY jjLjTP has the structure in question, since thedi�erence between these two products is just �u in size.We demonstrate this claim inductively, using a re�ned version of the argumentsfrom Higham [17, Section 4.3] for some key points, and omitting some details. Forsimplicity, and without loss of generality, we assume that P = I.When �n = 1 (that is, T is 1� 1), we have that L = 1 and Y = T , and the resultholds trivially. When �n = 2, there are three cases to consider. If the matrix containsno elements of size �(��1), then the analysis for general matrices can be used toshow that jLjjY jjLjT = O(1), as required. If either or both diagonal elements havesize �(��1), then both pivots are 1� 1, and the factors have the formL = � 1 0T21=T11 1 � ; Y = � T11 00 T22 � T 221=T11 � :(6.5)Two cases arise.(i) A diagonal of size O(1) is accepted as the �rst pivot and moved (if necessary)to the (1; 1) position. We then havejT11j � ��1 = ��2 = �jT21j;and therefore jT21=T11j � 1=� and hence jT 221=T11j � jT21j=� = O(1). If the(2; 2) diagonal is also O(1), we have that L = O(1) and Y = O(1), and we aredone. Otherwise, T22 = �(��1), and so the (2; 2) element of Y satis�es thissame estimate. We conclude from (6.5) that jLjjY jjLjT also has an �(��1)element in the (2; 2) position and O(1) elements elsewhere.(ii) A diagonal of size �(��1) is accepted as the �rst pivot and moved (if neces-sary) to the (1; 1) position. We then havejT21=T11j = O(�); jT 221=T11j = O(�):It follows from (6.5) thatjLjjY jjLjT = � jT11j jT21jjT21j jT22j+O(�) � ;which obviously has the desired structure.We now assume that our claim holds for some dimension �n � 2, and we provethat it continues to hold for dimension �n + 1. Using the notation of (6.3) (assumingthat P1 = I), and denoting the factorization of the Schur complement �T in (6.3) by�T = �L �Y �LT , we have thatT = LY LT = � ICR�1 �L � � R �Y � � I R�1CT�LT � :(6.6)It follows thatjLjjY jjLjT = � jRj jRjjR�1CT jjCR�1jjRj jCR�1jjRjjR�1CT j+ j�Ljj�Y jj�LjT � :(6.7)Since, as we mentioned above, the norm of CR�1CT is at most O(1), the Schurcomplement �T = T̂ � CR�1CT has size O(1) except for large �(��1) elements inthe same locations as in the original matrix. Hence, by our inductive hypothesis,



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 33j�Ljj�Y jj�LjT has a similar structure, and we need to show only that the e�ects of the�rst step of the factorization (6.3) do not disturb the desired structure.For the case in which R is a pivot of type either (6.4a) and (6.4b), Higham [17,Section 4.3] shows all elements of both jCR�1jjRj and jCR�1jjRjjR�1CT j are boundedby a modest multiple of either �1 (if T11 was selected as the pivot because it passedthe test jT11j � ��1) or (�1 + �r), where r is the \other" column considered duringthe selection process. In our case, this observation implies that both jCR�1jjRj andjCR�1jjRjjR�1CT j have size O(1). By combining these observations with those of thepreceding paragraph, we conclude that for pivots of types (6.4a) and (6.4b), \large"elements of the matrix in (6.7) occur only in the diagonal locations originally occupiedby DN .For the remaining case|pivots of type (6.4c)|we have that C has size O(1) whileR�1 has size O(�). Therefore, jCR�1jjRj has size O(1) and jCR�1jjRjjR�1CT j hassize O(�), while jRj, which occupies the (1; 1) position in the matrix (6.7), just as itdid in the original matrix T , has size �(��1). We conclude that the desired structureholds in this case as well.We conclude from this discussion that Condition 6.1 holds for the Bunch-Kaufmanprocedure. We show later that the perturbations arising from other sources, namely,roundo� and cancellation in the evaluation of the matrix and right-hand side, alsosatisfy the conditions of Corollary 4.4, so this result can be used to bound the errorin the computed steps.Finally, we note that it is quite possible for pivots of types (6.4a) and (6.4b)to be chosen while diagonal elements of size �(��1) still remain in the submatrix.Therefore, a key assumption of the analysis of Forsgren, Gill, and Shinnerl [9, Theo-rem 4.4]|namely, that all the diagonals of size �(��1) are chosen as 1�1 pivots beforeany of the other diagonals are chosen|may not be satis�ed by the Bunch-Kaufmanprocedure.6.2. The Bunch-Parlett Procedure. The Bunch-Parlett procedure is con-ceptually simpler but more expensive to implement than Bunch-Kaufman, since itrequires O(n2) (rather than O(n)) comparisons at each step of the factorization. Thepivot selection strategy is as follows.set � = (1 +p17)=8;calculate �o� = jTrsj = maxi 6=j jTijj, �diag = jTppj = maxi jTiij;if �diag � ��o�choose Tpp as the 1� 1 pivot;else choose the 2� 2 pivot whose o�-diagonal element is Trs;end if.The elimination procedure then follows as in (6.3).It is easy to show that the Bunch-Parlett procedure starts by selecting all thediagonals of size �(��1) in turn as 1� 1 pivots. (Because of this property, it satis�esthe key assumption of [9] mentioned at the end of the preceding section.) The updateCR�1CT generated by each of these pivot steps has size only O(�), so the matrixthat remains after this phase of the factorization contains only O(1) elements. Theremaining pivots are then a combination of types (6.4a) and (6.4b).By using the arguments of the preceding subsection in a slightly simpli�ed form,we can show that Condition 6.1 holds for this procedure as well.



34 STEPHEN J. WRIGHT6.3. Sparse Diagonal Pivoting. For large instances of (1.1), the Bunch-Kaufman and Bunch-Parlett procedures are usually ine�cient because they do nottry to maintain sparsity in the lower triangular factor L. Sparse variants of thesealgorithms, such as those of Du� et al. [7] and Fourer and Mehrotra [10], use pivot se-lection strategies that combine stability considerations with Markowitz-like estimatesof the amount of �ll-in that a candidate pivot will cause in the remaining matrix.At each stage of the factorization, both algorithms examine a roster of possible1� 1 and 2� 2 pivots, starting with those that would create the least �ll-in. As soonas a pivot is found that meets the stability criteria described below, it is accepted.Both algorithms prefer to use 1� 1 pivots where possible.For candidate 1�1 pivots, Du� et al. [7, p. 190] use the following stability criterion:jR�1jkCk1 � �;(6.8)where the notation R and C is from (6.3) and � 2 [2;1) is some user-selected pa-rameter that represents the tolerable growth factor at each stage of the factorization.For a 2� 2 pivot, the criterion isjR�1j � kC�;1k1kC�;2k1 � � � �� � ;(6.9)where C�;1 and C�;2 are the two columns of C. The stability criteria of Fourer andMehrotra [10] are similar.As they stand, the stability tests (6.8) and (6.9) do not necessarily restrict thechoice of pivots to the three types (6.4). If a 1 � 1 pivot of size �(��1) is everconsidered for structural reasons, it will pass the test (6.8) (the left-hand side of thisexpression will have size O(�)) and therefore will be accepted as a pivot. However, itis possible that 2�2 pivots in which one or both diagonals have size �(��1) may passthe test (6.9) and may therefore be accepted. Although the test (6.9) ensures thatthe size of the update CR�1CT is modest (so that the update �T = T̂ �CR�1CT doesnot disturb the large-diagonal structure of T̂ ), there is no obvious assurance that thematrix jLjjY jjLjT in (6.7) mirrors the structure of jT j, in terms of having the largediagonal elements in the same locations. The terms jCR�1jjRj and jCR�1jjRjjR�1CT jin (6.7) may not have size O(1), as they do for pivots of the three types (6.4) arisingfrom the Bunch-Kaufman and Bunch-Parlett selection procedures.The Fourer-Mehrotra algorithm does, however, rule out the possibility of a 2� 2pivot in which both diagonals are of size �(��1). It considers a 2�2 candidate only ifone of its diagonal elements has previously been considered as a 1�1 pivot but failedthe stability test. However, if either of the diagonals had been subjected to the test(6.8), they would have been accepted, as noted in the preceding paragraph, so thissituation cannot occur.If the sparse algorithms are modi�ed to ensure that all pivots have one of thethree types (6.4), and all continue to satisfy the stability tests (6.8) or (6.9), thensimple arguments (simpler than those of Section 6.1!) can be applied to show thatCondition 6.1 is satis�ed. One possible modi�cation that achieves the desired e�fectis to require that a 2 � 2 pivot be allowed only if both its diagonals have previouslybeen considered as 1� 1 pivots but failed the stability test (6.8).6.4. Gaussian Elimination. Another possibility for solving the system (4.1) isto ignore its symmetry and apply a Gaussian elimination algorithm, with row and/orcolumn pivoting to preserve sparsity and prevent excessive element growth. Such



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 35a strategy satis�es Condition 6.1. In [24], the author uses a result of Higham [16]to show that the e�ects of the large diagonal elements are essentially con�ned to thecolumns in which they appear. Assuming that the pivot sequence is chosen to preventexcessive element growth in the remaining matrix, and using the notation of (4.32)and (4.33), we can account for the e�ects of roundo� error in Gaussian eliminationwith perturbations in the coe�cient matrix that satisfy the following estimates:E11; E21; E31; E12; E22; E32 = �u; E13; E23; E33 = �u=�:These certainly satisfy the conditions (4.33), so Condition 6.1 holds.6.5. Local Convergence with the Computed Steps. We can now state aformal result to show that when the evaluation errors are taken into account as well asthe roundo� errors from the factorization/solve procedure discussed above, the accu-racies of the computed steps obtained from the procedure augmented, implementedin �nite precision, satisfy the same estimates as for the corresponding steps obtainedfrom the procedure condensed. The result is analogous to Theorem 5.1.Theorem 6.2. Suppose that Assumption 4.1 holds. Then when the step(c�z; c��; c�s) is calculated in a �nite-precision environment by using the procedureaugmented, where the algorithm used to solve (4.1) satis�es Condition 6.1, we have(�z � c�z; UT (��B � c��B);�s� c�s) = �u;(6.10a) V T (��B � c��B) = �u=�;(6.10b) ��N � c��N = �u:(6.10c)Proof. The proof follows from Corollary 4.4 when we show that the perturbationsto (4.1) from all sources|evaluation of the matrix and right-hand side as well as thefactorization/solution procedure|satisfy the bounds required by this earlier result.Because of Condition 6.1, perturbations arising from the factorization/solutionprocedure satisfy the bounds (4.33). The expressions (5.2) show that the errors arisingfrom evaluation of Lzz(z; �), Lz(z; �), rg(z), and g(z) are all of size �u, and hencethey too satisfy the required bounds. Similarly to (5.3), evaluation of DB and DNyields errors of relative size �u, that is,computed DB  DB + GB; GB = ��u;(6.11a) computed DN  DN + GN ; GN = �u=�;(6.11b)where GB and GN are diagonal matrices.We now obtain all the estimates in (6.10) by a direct application of Corollary 4.4,with the exception of the estimate for (�s�c�s). Since the expressions for recovering�s are identical in procedures condensed and augmented, we can apply expression(5.12) from Section 5.1 to deduce that the desired estimate holds for this componentas well.The only di�erence between the error estimates of Theorem 5.1 for the condensedsystem and those obtained above for the augmented system is that the c��N com-ponents are slightly less accurate in the augmented case. If we work through theanalysis of Section 5.3 with the estimate (6.10c) replacing (5.13c), we �nd that themain results are una�ected. Therefore, we conclude this section by stating withoutproof a result similar to Theorem 5.3.



36 STEPHEN J. WRIGHTiter log� logkc�zk log kUT c��Bk logkV T c��Bk �̂max �T0 -1.0 -0.9 -1.9 -1.9 .9227 (1.00,.20)1 -2.7 -1.5 -1.3 -1.2 .9193 (0.99,.19)...5 -9.4 -6.7 -6.3 -4.6 1.0 (1.04,.23)6 -11.4 -8.7 -8.3 -5.9 1.0 (1.04, .23)7 -13.4 -10.7 -10.3 -3.8 .9999 (1.04,.23)8 -15.4 -12.7 -12.3 -1.2 .9439 (1.04,.23)9 -17.1 -13.9 -13.4 -0.6 .9723 (1.10,.20)Table 7.1Details of iteration sequence for PDIP applied to (2.8), with steps computed by solving theaugmented system.Theorem 6.3. Suppose that all the assumptions of Theorem 5.3 hold, exceptthat the step (c�z; c��;c�s) is calculated by using the procedure augmented with afactorization/solution algorithm that satis�es Condition 6.1. Then the conclusions ofTheorem 5.3 hold.7. Numerical Illustration. We illustrate the results of Sections 5 and 6 usingthe two-variable example (2.8). Consider a simple algorithm that takes steps satisfying(3.8) with t set rather arbitrarily to t = �2e. (The search directions thus used arelike those generated in the later stages of a practical primal-dual algorithm such asMehrotra's algorithm [19].) We start this algorithm from the pointz0 = (1=30; 1=9)T ; �0 = (1; 1=5)T ; s0 = (1=10; 1=2):(It is easy to check that the conditions (3.11) are satis�ed at this point for a modestvalue of C.) At each step we calculated �̂max, de�ned in Section 5.3, and took anactual step of :99�̂max.We programmed the method in Matlab, using double-precision arithmetic. In our�rst experiment, we solved the formulation (4.1) of the linear equations using Matlab'sstandard Gaussian elimination solver for general systems of linear equations, whichwas analyzed in Section 6.4. From Theorem 6.2, the estimates (6.10) apply to thiscase.Results are tabulated in Table 7.1. Note �rst the size of the component kV T c��Bk,which grows as � decreases below u1=2, in accordance with (6.10b). (We cannottabulate the di�erence kV T (c��B���Bk) because of course we do not know the truestep (�z;��;�s), but since the true step has size O(�) (Corollary 4.3), the error isdominated by the term V T c��B in any case.) As predicted by (5.17), the maximumstep �̂max becomes signi�cantly smaller than 1 as � is decreased below u1=2. Asindicated by (5.18), however, good progress still can be made along this direction(in the sense of reducing � and the norms of the residuals rf and rg) almost until �reaches the level of u. In fact, between iterations 5 and 8 we see the reduction factorof 100 that we would expect by moving a distance of :99 along a direction that is closeto the pure Newton direction. The component with the large error|V T c��B|doesnot interfere signi�cantly with rapid convergence, but only causes the � iterates tomove tangentially to S�. This e�ect may be noted in the �nal iterate where the valueof � changes signi�cantly. In some cases, however, when the current � is near theedge of the set S�, this error may result in a severe curtailment of the step length.



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 37iter log� logkc�zk log kUT c��Bk logkV T c��Bk �̂max �T0 -1.0 -0.9 -1.9 -1.9 .9227 (1.00,.20)1 -2.7 -1.5 -1.3 -1.2 .9193 (0.99,.19)...5 -9.4 -6.7 -6.3 -4.6 1.0 (1.04,.23)6 -11.4 -8.7 -8.3 -5.7 1.0 (1.04, .23)7 -13.4 -10.7 -10.3 -8.3 1.0 (1.04,.23)8 -15.4 -12.7 -12.4 -10.3 1.0 (1.04,.23)9 -17.4 -14.7 -13.3 -12.3 1.0 (1.04,.23)Table 7.2Details of iteration sequence for PDIP applied to (2.8), with steps computed by solving thecondensed system.Next, we performed the same experiment using the condensed formulation (3.10)of the linear system, as described in Section 5. Results are shown in Table 7.2. Themain di�erence with Table 7.1 is that there is no increase in the value kV T c��Bkas � approaches unit roundo�; this component appears to decrease at the same rateas the other step components. This observation can be explained by our analysis ofthe case in which the cancellation error term fB incurred in the evaluation of gB(z)satis�es (5.14). We calculated the product V T (gB(z) + fB) (the product of V withour computed version of gB(z)) and found it to be exactly zero on iterations 7, 8, and9. Therefore, using Taylor's theorem, (2.13), and Theorem 3.3, we haveV TfB = �V T gB(z) = �V TrgB(z�)(z � z�) +O(kz � z�k2) = O(�2):Hence, (5.15) together with Corollary 4.3 shows that V T c��B = O(�), which is con-sistent with the results in Table 7.2. Note too that because of the higher accuracy inthe V T c��B component, the maximum step length stays very close to 1 during thelast few iterations. By comparing Tables 7.1 and 7.2, however, we can verify thatthe convergence of � to zero, and of the iterates to the solution set, is not materiallya�ected by the presence or absence of the large error in V T c��B.To show that the lack of cancellation e�ects in Table 7.2 cannot be assumed ingeneral, we modi�ed problem (2.8) slightly, changing the second constraint tog2(z) def= 23p5(z1 �p5)2 + z22 � 2p53 � 0:(7.1)The primal and dual solutions remain unchanged, and we ran the condensed-equationsversion of the algorithm from the same starting point as above. Results are shown inTable 7.3. We observed that gB(z) did not escape cancellation errors in this instanceand, as in Table 7.1, we observe signi�cant errors in V T c��B that do not materiallya�ect the convergence of the algorithm to the solution set.8. Summary and Conclusions. In this paper, we have analyzed the �nite-precision implementation of a primal-dual interior point method whose convergencerate is theoretically superlinear. We have made the standard assumptions that appearin most analyses of local convergence of nonlinear programming algorithms and path-following algorithms, with one signi�cant exception: The assumption of linearly inde-pendent active constraint gradients is replaced by the weaker Mangasarian-Fromovitz



38 STEPHEN J. WRIGHTiter log� logkc�zk log kUT c��Bk logkV T c��Bk �̂max �T0 -1.0 -0.9 -2.1 -2.3 .9161 (1.00,.20)1 -2.7 -1.5 -1.3 -1.4 .8872 (0.99,.20)...5 -7.6 -5.7 -5.7 -4.2 .9999 (.93,.29)6 -9.5 -7.7 -7.7 -6.3 1.0 (.93, .29)7 -11.5 -9.7 -9.7 -4.3 .9999 (.93, .29)8 -13.5 -11.7 -11.5 -2.6 .9960 (.93,.29)9 -15.3 -13.5 -11.7 -0.6 .7386 (.93,.29)Table 7.3Details of iteration sequence for PDIP applied to (2.8), (7.1), with steps computed from thecondensed system.constraint quali�cation, which is equivalent to boundedness of the set of optimalLagrange multipliers. Because of this assumption, it is possible that all reasonableformulations of the step equations|the linear system that needs to be solved to ob-tain the search direction|are ill conditioned, so it is not obvious that the numericalerrors that occur when this system is solved in �nite precision do not eventually ren-der the computed search direction useless. We show that although the error in thecomputed step may indeed become large as � decreases, most of the error is restrictedto a subspace that does not matter, namely, the null space of the matrix rgB(z�) of�rst derivatives of the active constraints. Although this error causes the computediterates to \slip" in a tangential direction to the optimal Lagrange multiplier set, itdoes not interfere with rapid convergence of the iterates to the primal-dual solutionset. We found that the centrality conditions (3.11), which are usually applied in path-following methods, played a crucial role in the analysis, since they enabled us toestablish the estimates (3.16) in Lemma 3.2 concerning the sizes of the basic andnonbasic components of s and � near the solution set. The analysis of Section 4,culminating in Corollary 4.4, �nds bounds on the errors induced in step componentsby certain structured perturbations of the step equations. We show in the samesection that the exact step is O(�), allowing the local convergence analysis of Ralphand Wright [22] to be extended from convex programs to nonlinear programs.In Sections 5 and 6 we apply the general results of Section 4 to the two mostobvious ways of formulating and solving the step equations; namely, as a \condensed"system involving just the primal variables z, or as an \augmented" system involv-ing both z and the Lagrange multipliers �. In each case, the errors introduced in�nite-precision implementation have the structure of the perturbations analyzed inSection 4, so the error bounds obtained in Corollary 4.4 apply. In Section 5.3 (whoseanalysis also applies to the computed solutions analyzed in Section 6), we show thatthe potentially large error component discussed above does not interfere appreciablywith the near-linear decrease of the quantities �, rf , and rg to zero along the computedsteps, indicating that until � becomes quite close to u, the convergence behavior pre-dicted by the analysis of the \exact" algorithm will be observed in the �nite-precisionimplementation. We conclude in Section 7 with a numerical illustration of our ma-jor observations on a simple problem with two variables and two constraints, �rstintroduced in Section 2.



FINITE-PRECISION EFFECTS IN NONLINEAR PROGRAMMING 39Acknowledgments. Many thanks are due to an anonymous referee for close andcareful readings of various versions of the paper and for many helpful suggestions.Appendix A.Justi�cation of the Estimates (5.17) and (5.18).To prove (5.17), we use analysis similar to that of S. Wright [30]. From thede�nition (3.5) of �, and the centrality condition (3.11c), we have that�isi = �(�); for all i = 1; 2; : : : ;m.Hence, from the third block row of (3.8) and the assumption (3.7) on the size of t, wehave that��i�i + �sisi = �1� tisi�i = �1 + O(�); for all i = 1; 2; : : : ;m.(A.1)We have from Lemma 3.2 and (4.36) that ��i=�i = O(�) for all i 2 B. Hence, byusing (3.16a) from (3.2) together with (A.1), we obtain�si = �si +O(�2); for all i 2 B.(A.2)For the computed step components c�sB, we have by combining (5.13a) with (A.2)that c�si = �si + �u +O(�2); for all i 2 B.(A.3)Therefore, if si + �c�si = 0 for some i 2 B and some � 2 [0; 1], we have by using(3.16a) again that si + �(�si + �u +O(�2)) = 0) (1� �)si = �u +O(�2)) (1� �) = �u=�+ O(�); for any i 2 B.(A.4)Meanwhile, for i 2 N , we have from Lemma 3.2, (4.36), and (5.13a) thatsi + �c�si > 0; for all i 2 N and all � 2 [0; 1],(A.5)so the components c�sN do not place a limit on the step length bound �̂max. For thecomponents c��N , we have by using Lemma 3.2, (4.36), (5.13c), and (A.1) thatc��i = ��i + ��u + O(�2); for all i 2 N .Therefore, if �i + �c��i = 0 for some i 2 N and some � 2 [0; 1], we have by arguingas in (A.4) that 1� � = �u + O(�):(A.6)Finally, for i 2 B, we have from Lemma 3.2 that �i = �(1), while from (4.36), (5.13a),and (5.13b), we have that��i = O(�); c��i = O(�) + �u=�; for all i 2 B.(A.7)Therefore, we have for �� u that�i + �c��i > 0; for all i 2 B and all � 2 [0; 1].(A.8)



40 STEPHEN J. WRIGHTBy combining the observations (A.4), (A.5), (A.6), and (A.8), we conclude that thereis a value �̂max satisfying�̂max 2 [0; 1]; 1� �̂max = �u=�+ O(�)such that (�; s) + �(c��; c�s) > 0; for all � 2 [0; �̂max],proving the claim (5.17). By making various simpli�cations to the analysis above, itis easy to show that (5.19) holds as well.We now prove the claims (5.18) concerning the changes in the feasibility andduality measures along the computed step.From (1.2), (3.11a), and the �rst block row of (3.8), we haverf (z + �c�z; �+ �c��)= Lz(z + �c�z; �+ �c��)= Lz(z; �) + �Lzz(z; �)c�z + �rg(z)c�� +O(�2kc�zk2)= (1� �)Lz(z; �) + �Lzz(z; �)(c�z ��z) + �rgB(z)(c��B � c��B)+�rgN (z)(c��N ���N ) + O(�2kc�zk2):(A.9)From (4.36) and (5.13a), we have c�z = �u + O(�), so for � � u and � 2 [0; 1], wehave �2kc�zk2 = O(�2):(A.10)From the de�nition (2.13) of the SVD of rgB(z�), Theorem 3.3, and (5.13a), we havethatrgB(z)(c��B ���B) = rgB(z�)(c��B ���B) +O(kz � z�kkc��B ���Bk)= Û�UT (c��B ���B) +O(�)�u=�= �u:(A.11)Note that the larger error (5.13b) in the component V T (c��B���B), which is presentwhen MFCQ is satis�ed but not when LICQ is satis�ed, does not enter into theestimate (A.11). By substituting this estimate into (A.9) together with estimates forc�z ��z and c��N ���N from (5.13), we obtain thatrf (z + �c�z; �+ �c��) = (1� �)rf + �u + O(�2);verifying our claim (5.18c). The potentially large error (5.13b) does not a�ect rapiddecrease of the rf component along the computed search direction.For the second feasibility measure rg, we have from (3.11b), the second block rowof (3.8), and the estimates (5.13a) and (A.10) thatrg(z + �c�z; s+ �c�s)= g(z + �c�z) + s + �c�s= g(z) + �rg(z)T c�z + s + �c�s+ O(�2kc�zk2)= (1� �)(g(z) + s) + �rg(z)T (c�z ��z) + �(c�s��s) +O(�2)= (1� �)rg + �u +O(�2);
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