
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
NEOS AND CONDOR: SOLVING OPTIMIZATION PROBLEMSOVER THE INTERNETMichael C. Ferris, Michael P. Mesnier, and Jorge J. Mor�eMathematics and Computer Science DivisionPreprint ANL/MCS-P708-0398March 1998

This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. De-partment of Energy, under Contract W-31-109-Eng-38, by the National Science Foundationunder Grants CDA-9726385 and CCR-9619765, and by the National Science Foundation,through the Center for Research on Parallel Computation, under Cooperative AgreementNo. CCR-9120008.





NEOS AND CONDOR: SOLVING OPTIMIZATION PROBLEMSOVER THE INTERNET�Michael C. Ferrisy, Michael P. Mesnierz, Jorge J. Mor�exAbstractWe discuss the use of Condor, a distributed resource management system, as aprovider of computational resources for NEOS, an environment for solving optimizationproblems over the Internet. We also describe how problems are submitted and processedby NEOS, and then scheduled and solved by Condor on available (idle) workstations.1 IntroductionThe NEOS Server [8] is a novel environment for solving optimization problems over theInternet. There is no need to download an optimization solver, write code to call theoptimization solver, or compute derivatives for nonlinear problems. NEOS provides theuser with the input format and a list of solvers for the optimization problem. Given anoptimization problem, NEOS solvers compute derivatives and sparsity patterns of nonlin-ear problems with automatic di�erentiation tools, link with the appropriate libraries, andexecute the resulting binary. The user is provided with a solution and runtime statistics.Each solver in the NEOS optimization library is maintained by a software administratorthat is responsible for providing computing resources and for answering questions relatedto the solver. Registering the solver [8] on a few workstations provides adequate resourcesin most cases, but for large problems, however, we need a di�erent approach. The obviousdi�culty is that the owner of a workstation is reluctant to provide large amounts of com-puting cycles and memory. We use Condor [15, 11], a distributed resource managementsystem, as a provider of computational resources for a NEOS solver. The resources thatare managed by Condor are typically large clusters of workstations, many of which wouldotherwise be idle for long periods of time.We discuss the connection between NEOS and Condor in the context of a single butimportant optimization problem: mixed complementarity problems. Our discussion showsthat this approach can be extended to other problems as well.�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38, by the National Science Foundation under Grants CDA-9726385 and CCR-9619765, and by the National Science Foundation, through the Center for Research on Parallel Computation,under Cooperative Agreement No. CCR-9120008.yComputer Sciences Department, University of Wisconsin { Madison, 1210 West Dayton St., Madison,Wisconsin 53706. ferris@cs.wisc.eduzDepartment of Computer Science, University of Illinois, 1304 W. Spring�eld, Urbana, Illinois, 61801.mesnier@cs.uiuc.eduxMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439. more@mcs.anl.gov 1



Many di�erent applications can be formulated as mixed complementarity problems; ex-amples are given in [9, 13]. If the nonlinear function F : Rn 7! Rn describes the interactionsof a nonlinear process as a function of the variables x 2 Rn, then the mixed complementar-ity problem is to �nd a vector x, with components between lower and upper bounds ` andu (with ` < u), such that Fi(x) = 0 if `i < xi < ui;Fi(x) � 0 if xi = `i;Fi(x) � 0 if xi = ui: (1.1)Solving a mixed complementarity problem in the typical computational environment re-quires that the user �rst develop code for the evaluation of F . The user must then decideon an appropriate solver, retrieve the solver, develop code to evaluate the Jacobian matrixF 0(x) and sparsity pattern of F 0(x), link their code with the necessary libraries, and �nallyexecute the solver locally. With NEOS, the user need only specify the mixed complemen-tarity problem by providing code to evaluate the function F , the lower and upper bounds` and u, and a starting point. The NEOS solver then generates code to compute the Jaco-bian matrix and sparsity pattern, compiles the user subroutines, links with the appropriatelibraries, executes the solver on a NEOS machine, and returns a solution to the user.NEOS uses the Condor pool at the University of Wisconsin for solving complementarityproblems. The pairing of NEOS with Condor is an ideal combination. NEOS providesan interface that is problem oriented and independent of the computing resources. Usersneed only provide a speci�cation of the problem; all other information needed to solve theproblem is determined by the NEOS solver. Condor provides the computational resourcesto solve the problem.Condor acts as a matchmaker, pairing computational resources with jobs that requireprocessing. The job executes on the allocated workstation until completion or until theworkstation becomes unavailable. In the latter case, the job is frozen in its current state andthe workstation is returned to the owner. Condor is then contacted once again for pairingand the job is restarted from its frozen state on the newly allocated resource. Condorpays special attention to the needs of the workstation owner by allowing the owner tode�ne the conditions under which the workstation can be allocated. This policy encouragesworkstation owners to place their resources in the Condor pool, and as a consequence, theWisconsin pool currently has over 400 workstations.In Section 2 we describe the three interfaces that are currently available to submitproblems to NEOS: e-mail, the NEOS Submission Tool (neos-submit), and the NEOSWeb interface. These interfaces are designed so that problem submission is intuitive andrequires only essential information. Parameters that a�ect the progress of the solver arenot required but can be speci�ed, for example, by an auxiliary �le. We concentrate on theNEOS Submission Tool. The NEOS Web interface can be sampled by visiting the URL2



http://www.mcs.anl.gov/otc/Server/for the NEOS Server. We emphasize mixed complementarity problems, but NEOS handlesa wide variety of linear and nonlinearly constrained optimization problems; solvers foroptimization problems subject to integer variables are being added. We do not discussthe design and implementation of the Server because these issues are covered by Czyzyk,Mesnier, and Mor�e [8]. Extensions to the NEOS Server and the network computing issuesthat arise from the emerging style of computing used by NEOS are discussed by Gropp andMor�e [14].Mixed complementarity problems submitted to the NEOS Server are currently solvedby the PATH [10, 12] solver, which implements a Newton-type method for solving systemsof non-di�erentiable equations. Sparse matrix techniques are used for large problems. Theprocess used to solve a nonlinear complementarity problem by this NEOS solver includesthe generation of derivative and sparsity information with the ADIFOR [4, 5] automaticdi�erentiation tool and the solution of the problem with Condor. The process is governed bya solver script that must check the user data and provide appropriate messages in the caseof errors. In Section 3 we describe the various issues that must be addressed by the solverscript. These issues are important to the development of reliable optimization software andproblem-solving environments.The automatic di�erentiation techniques used to generate derivatives and sparsity pat-terns for nonlinear complementarity problems are described in Section 4. In particular, weexplain how to obtain a sparse representation of the Jacobian matrix that is suitable forPATH. The Jacobian matrix generated by ADIFOR is accurate to full machine precision,while the Jacobian matrix generated by di�erences of function values su�ers from trunca-tion errors. Moreover, the code produced by ADIFOR for the computation of the sparseJacobian matrix is typically more e�cient than the code produced by di�erences. On theother hand, the code produced by ADIFOR may not be as e�cient as a hand-coded Jacobianmatrix. See [1] for a full comparison (in terms of memory and speed) of ADIFOR-generatedJacobian matrices with both hand-coded and di�erence approximations, and [2] and [7] forperformance issues related to the automatic computation of gradients.The automatic generation of the Jacobian matrix and sparsity pattern in the NEOSversion of PATH makes the code more accessible and useful than requiring the hand-codingof the Jacobian matrix. Indeed, all nonlinear solvers in NEOS use automatic di�erentiationtools to compute gradients, Jacobians, and sparsity patterns. We intend to incorporateADIC [6] into most of the nonlinear NEOS solvers to allow problems to be speci�ed in C,as well as Fortran.The �nal section of the paper describes how the Condor system at the University ofWisconsin is used to process the submitted jobs. Only large jobs are scheduled on Condorbecause there may be a delay in execution while waiting for an idle workstation. Small3



jobs are executed immediately on non-clustered workstations. No computational results aregiven here. Users are encouraged either to submit one of the supplied sample problems orto generate new mixed complementarity problems to test the system.2 The NEOS ServerThe NEOS Server provides Internet access to a library of optimization solvers with user in-terfaces that abstract the user from the details of the optimization software. The user needsonly to describe the optimization problem in a particular format; all additional informationrequired by the optimization solver is determined automatically. This abstraction is similarto that provided by modeling languages. The NEOS solvers provide several di�erent inputformats to allow users to specify optimization problems in a convenient manner withoutnecessarily rewriting their problem in a modeling language.The NEOS approach o�ers considerable advantages over a conventional environment forsolving optimization problems. Consider, for example, mixed complementarity problems. ANEOS solver for mixed complementarity problems requires that the user specify the numberof variables n, a subroutine initpt(n,x) that de�nes the starting point, a subroutinexbound(n,xl,xu) that sets the lower and upper bounds, and a subroutine fcn(n,x,f)that evaluates the function F . Since there is no need to provide the Jacobian matrix orthe sparsity pattern of the Jacobian matrix, the user can concentrate on the speci�cationof the problem. Changes to the fcn subroutine can be made and tested immediately; theadvantages in terms of ease of use are considerable.Other optimization problems can be speci�ed in a similar manner. For example, thenonlinearly constrained optimization problemmin ff(x) : xl � x � xu; cl � c(x) � cugcan be speci�ed by four subroutines. The bounds xl and xu are speci�ed with the sub-routine xbound(n,xl,xu), the constraint bounds cl and cu are speci�ed with the subrou-tine cbound(m,cl,cu), the objective function f : Rn 7! R is de�ned by the subroutinefcn(n,x,f), and the nonlinear function c : Rn 7! Rm is de�ned by cfcn(m,x,c).We have mentioned nonlinear optimization solvers, but NEOS contains solvers in otherareas. A complete listing is available at the NEOS Server homepage:http://www.mcs.anl.gov/otc/Server/The addition of solvers is not di�cult. Indeed, as discussed in [8], NEOS was designed sothat solvers in a wide variety of optimization areas can be added easily.We provide Internet users the choice of three interfaces for submitting problems: e-mail,the NEOS Submission Tool, and the NEOS Web interface. These interfaces are designedso that problem submission is intuitive and requires the minimal amount of information.4



Figure 2.1: The NEOS submission form for PATHThe interfaces di�er only in the way that information is speci�ed and passed to the NEOSServer.The e-mail interface is relatively primitive, but useful because most users have easyaccess to e-mail. Information on the available solvers and on the format used to submitproblems via e-mail can be obtained by sending the mail message help toneos@mcs.anl.govUsers interested in the Web interface should visit the homepage for the NEOS Server, whichhas links to all the solvers in the library, as well as pointers to other NEOS information,in particular, the NEOS Guide. In the remainder of this section we examine the NEOSSubmission Tool.The NEOS Submission Tool provides a high-speed link to the NEOS Server via TCP/IPsockets. Once this tool is installed (only Perl [17] is required), the user has access to allsolvers o�ered by NEOS. Additional information on the NEOS Submission Tool, includinginstallation instructions, can be obtained from the NEOS Server homepage.Submission of problems via the NEOS Submission Tool is simple. The user must �rstchoose the type of optimization problem and then select the desired solver. Once the solveris selected, the user is given a submission form speci�c to the solver.The PATH submission form, shown in Figure 2.1, requires that the user specify thenumber of variables, the �les for the initial point, bounds on the variables, and functionevaluation subroutines.Figure 2.1 shows the NEOS Submission form for a model of oligopolistic pricing [16]5



with 63 variables. The model is de�ned by the �le op fcn, while the initial point and thebounds on the problem are de�ned by the �les op initpt and op xbound. Note that inthis case two PATH options are set and that we have requested the use of Condor for thesolution of this problem.The user has the option of using a Condor pool of workstations for solving the submittedproblem. Since Condor is essentially a batch processing mechanism, the user is also allowedto specify a timeout for Condor. After this period of time, the Web browser or SubmissionTool is released from its busy state and returned to the user. The job, however, continuesto process, and the results are returned to the user at a later date via e-mail. The defaulttimeout is 5 minutes; Condor is used by default on all problems that are larger than 500variables.The PATH submission form allows the user to provide a speci�cation �le that can beused to set tolerances and other parameters that govern the algorithm. For most problemsthe defaults provided are adequate. Figure 2.1 shows two options in use for this submission.The �rst provides a listing of the current settings of all the available options for this run;the second just turns o� the default crash technique. The form also has room for comments,which can be used to identify the problem submission.Once speci�ed, the problem is submitted to NEOS where it is then scheduled for execu-tion. A variety of computers, even a massively parallel processor, could be used to solve theproblem. At present these computers are workstations that reside at Argonne National Lab-oratory, Northwestern University, the University of Wisconsin, Lawrence Berkeley NationalLaboratory, the Technical University of Ilmenau in Germany, and Arizona State University.3 Solving Complementarity Problems: PATHThe process used to solve a nonlinear complementarity problem by NEOS is illustratedin Figure 3.1. This process includes the generation of derivative and sparsity informationwith the ADIFOR [5, 4] automatic di�erentiation tool and the solution of the problem withthe Condor [15, 11] distributed resource management system. We discuss ADIFOR furtherin Section 4, while Condor is discussed in Section 5. In this section we discuss issues inthe solution process that are pertinent to the development of optimization software andproblem-solving environments. Although the discussion is speci�c to PATH [10, 12], mostof the issues are applicable to all the solvers of nonlinear optimization problems in NEOS.Submitting a problem to the NEOS Server does not guarantee success, but NEOS usersare able to solve di�cult optimization problems without worrying about many of the detailsthat are typical in a conventional computing environment. Even if the user has suitable op-timization software, the user would need to read the documentation, write code to interfacehis problem with the optimization software, and then debug this code. The user would alsohave to write code to evaluate the Jacobian matrix and sparsity pattern, and debug that6



sparsity pattern

function

ADIFOR/SparsLinC

Jacobian

PATH

CONDORFigure 3.1: PATH and Condorcode|a nontrivial undertaking in most cases.For a typical submission, the user receives information on the progress, and the solution.Figure 3.2 shows part of the output received when the problem in Figure 2.1 is submittedto NEOS via the NEOS Submission Tool. In particular, we see the NEOS server selectingan available workstation, transferring all user data to the workstation, and then invokingthe solver remotely. The solver (in this case PATH) checks the data and compiles the user'scode. If any errors are found at this stage, the compiler error messages are returned to theuser, and execution terminates.If the user's code compiles correctly, the automatic di�erentiation tool ADIFOR [5, 4]is used to generate the Jacobian matrix and the sparsity pattern. Additional details onthis part of the process are discussed in Section 4. Once the Jacobian matrix and sparsitypattern are obtained, the user's code is linked with the optimization libraries, and executionbegins. Results are returned in the window generated by the NEOS Submission Tool.The solver script that handles the solution process must check the input data to makesure that the job submission is valid. A typical error at this stage of the solution process isfor the user to interchange �les and to send, for example, subroutine initpt where NEOS isexpecting subroutine xbound. A similar error is to neglect to send one of the �les requiredfor the job submission. These errors are detected by the solver script by checking that the�les that specify fcn, initpt, and xbound exist and that they reference the appropriatesubroutine. The solver script also checks that the problem dimensions are positive.Even if the supplied subroutines compile correctly, ADIFOR may �nd an error duringthe generation of the fcn subroutine. The most common error here is for the submission tocontain an improper calling sequence. For example, if the calling sequence of the submittedfcn is fcn(n,x,y), ADIFOR generates an error because it is assuming that the independent7



Figure 3.2: Output from the NEOS Submission toolvariables are f. On the other hand, ADIFOR does not generate an error if the callingsequence is fcn(n,x,f,w) because now there is a dependence on f. All error messagesgenerated by ADIFOR are sent back to the user.If the derivative and sparsity information is generated, this information is sent to PATH.Errors may also occur during this part of the solution process, and it is again importantto send appropriate messages back to the user. At present, we check only that the userfunction does not create any system exceptions during the evaluation of the function at thestarting point or at any of the iterates. Although simple, this test catches many user errors.In particular, this test does not allow a calling sequence of the form fcn(n,x,f,w).Additional checks on the function would be desirable, but seem to be di�cult to imple-ment. For example, we would like to check that the function provided is indeed di�eren-tiable. If the user provides a function that is discontinuous, automatic di�erentiation toolswill generate the Jacobian matrix but will not be able to detect this situation.4 ADIFORFigure 3.1 shows that given the function F that de�nes the mixed complementarity problem,the automatic di�erentiator tool ADIFOR/SparsLinc [3, 5] is used to produce the Jacobianmatrix of F and the sparsity structure of the Jacobian matrix. This information is thenfed to PATH. In this section we describe the process for generating a representation of thesparse Jacobian matrix of the function F that is submitted to the PATH solver. This processis of interest to any researcher who wishes to use automatic di�erentiation tools.The �rst step in using ADIFOR is to create a script �le that de�nes the dependent andindependent variables, the name of the subroutine that needs to be di�erentiated, and acomposition �le. 8



AD PROG = fcn.compAD TOP = fcnAD IVARS = xAD DVARS = fAD SEP =AD OUTPUT DIR = .AD FLAVOR = sparseFigure 4.1: Script �le fcn.script for ADIFORFigure 4.1 shows the script �le that is used with PATH. This �le tells ADIFOR that thesubroutine that needs to be di�erentiated is called fcn, that the independent variables arex, and that the dependent variables are f. The composition �le is speci�ed with AD PROG,so in this case the composition �le is fcn.comp.The composition �le contains a list of all the �les that are required to compute thefunction, and also a sample program that speci�es the calling sequence for the subroutinefcn. The composition �le used with PATH is shown below:fcn.ffcn sample.fThis �le tells ADIFOR that �le fcn.f contains the subroutine fcn and that the sampleprogram is contained in �le fcn sample.f.All subroutines that are required to evaluate the function must be in the �le fcn.f.If other subroutines are needed (for example, some blas subroutines), they also must beincluded in fcn.f.The sample �le fcn sample.f is not strictly needed because we already know that thesubroutine to be di�erentiated is called fcn. However, in older versions of ADIFOR, this �leis needed. Figure 4.2 shows the sample �le that is used with PATH. The only informationspeci�ed by this �le is the calling sequence used by fcn.program fcn sampleinteger ndouble precision x(n), f(n)call fcn(n,x,f)endFigure 4.2: Sample �le fcn comp for ADIFORGiven the information in the script and composition �les, ADIFOR can be used togenerate a subroutine that computes the Jacobian matrix. Since we are interested in com-puting sparse Jacobian matrices, the subroutine that ADIFOR generates uses special datastructures (called objects) to de�ne the Jacobian matrix.9



The command Adifor2.0 AD SCRIPT=fcn.script instructs ADIFOR to generate a sub-routine of the form g fcn(n,x,g x,f,g f)where g x is a gradient object for the independent variable x and g f is a gradient object forthe function F . These objects are manipulated and accessed by PATH as described below.Further details on how to invoke ADIFOR can be found in [3, 5].We compute the Jacobian of F by manipulating the gradient object with subroutinesprovided by ADIFOR in the SparsLinc [4] library. We �rst set the gradient object g x forthe independent variable x to the identity matrix with the code segmentdo j = 1, ncall dspsd(g_x(j),j,1.d0,1)end doOnce g x is de�ned, we use the ADIFOR-supplied subroutine dspxsq to compute the Jaco-bian matrix. The callcall dspxsq(ind col,val,n,g f(i),lenrow,info)extracts the ith row of the Jacobian matrix. On exit from this call to dspxsq, the arrayind col contains the column indices of the ith row of the Jacobian matrix, the array valcontains the values of the ith row, and the variable lenrow is the number of nonzeros.Two key di�culties arise when using the derivative information provided by ADIFOR inPATH. The �rst di�culty is that PATH, like most optimization software for sparse problems,assumes that the sparsity structure is known for all values of the independent variables x.This information is needed in order to preallocate enough storage for the Jacobian matrixand to minimize the cost of preprocessing the Jacobian matrix. For example, orderingsthat reduce the �ll in an elimination algorithm use the sparsity structure, so if the sparsitystructure changes at each iteration, then the ordering will have to be recomputed at eachiteration. Dynamic storage allocation schemes could be used, but these schemes tend toincrease the overall computing time signi�cantly.We determine a sparsity structure that is valid for all values of the independent variablesx by evaluating the Jacobian matrix at a random perturbation of the initial point providedby the user. We cannot use the initial point provided by the user to determine a sparsitystructure that is valid for all values of the independent variables x because the initialstarting point tends to be special (for example, the vector of all zeros or all ones), andthus the resulting sparsity structure is not representative. This heuristic was also used byBouaricha and Mor�e [7] in a similar situation.If the sparsity pattern changes as the iteration proceeds then the heuristic that we areusing may fail. However, this situation seems to be rare. Heuristics that detect changes insparsity patterns are the subject of current research.10



The second di�culty is that PATH uses a pivotal method to compute the step betweeniterates, and this method requires that the Jacobian matrix be stored by columns. On theother hand, ADIFOR computes the Jacobian matrix by rows. Storing the Jacobian matrixin a compressed column format speci�ed by an array ind row of row indices and an arraycol ptr that points to the start of each column is not di�cult. We use an additional arraycol start that initially agrees with col ptr. As we run through the rows of the Jacobianmatrix generated by using dspxsq, the entries from val are immediately put into theircorrect location (as determined by ind row), and the corresponding entry of col start isincremented. Note that the resulting column-wise storage is sorted by row indices, eventhough this is not required by PATH. A �nal check to determine whether the allocatedstorage is su�cient is carried out after all rows have been processed.5 CondorCondor [11, 15] is a distributed resource management system, developed at the Univer-sity of Wisconsin, that manages large heterogeneous clusters of workstations. Due to theever decreasing cost of low-end workstations, such resources are becoming prevalent inmany workplaces. The Condor design was motivated by the needs of users who would liketo take advantage of the underutilized capacity of these clusters for their long-running,computationally-intensive jobs. Condor has been ported to most UNIX platforms and hasbeen used in production mode for more than eight years in the Computer Sciences De-partment of the University of Wisconsin and many other sites. A version that runs underWindows NT is under development. The system is publicly available under the GNU copy-left restrictions and can be downloaded fromhttp://www.cs.wisc.edu/condor/In order to generate vast amounts of computational resources, such a system must useany kind of resource whenever it is made available. Condor acts like a matchmaker, pairingthese computational resources with jobs that require processing. The job executes on theallocated machine until it completes or the resource disappears. In the latter case, the jobis checkpointed, the machine is returned to the owner, and Condor is contacted once againfor pairing. Checkpointing a job is the process of saving the current state of the job in away that allows restarting from precisely the same point of execution.Condor preserves a large measure of the originating machine's environment on the exe-cution machine, even if the originating and execution machines do not share a common �lesystem. Condor jobs that consist of a single process (it is possible to run PVM on a Condorcluster) are automatically checkpointed and migrated between workstations as needed toensure eventual completion. Condor is exible and fault-tolerant: the design features ensurethe eventual completion of the job. This feature is important for our application.11



A key design feature of the Condor system is that the owner of the resource should haveas little interference from the resource allocation server as possible; in this way, more ownerswill make their resources available to the pool. Condor pays special attention to the needsof the interactive user of the workstation by allowing the user to de�ne the conditions underwhich the workstation can be allocated by Condor to a batch user. As a consequence, thereare currently over 400 workstations in the Wisconsin pool.The use of Condor for solving complementarity problems generated from NEOS is in-tended to be an example, showing how a wide variety of software tools can be interfacedand used in a practical operations research environment. The development of softwaretools is extremely important, but frequently there are few examples demonstrating how thedeveloper envisioned these tools being used. Such examples serve as a prototype for newapplications and show potential users how to develop their applications and problems fornetwork solution.Figure 3.1 shows all the steps used by NEOS to solve a mixed nonlinear complementarityproblem. We have already discussed the generation of derivative and sparsity patternsin Section 4. We now outline how Condor schedules job submissions on an appropriateworkstation from the Wisconsin pool.Using Condor-managed resources is easy. Fortran or C code that runs under one of thesupported systems can be relinked by using libraries from the Condor system without anychanges to the source code. The solver script schedules only large jobs for this facility, sincethere may be a delay in execution while waiting for an appropriate idle workstation. Smalljobs are executed directly on a non-clustered machine at Wisconsin.The �rst step in preparing a code for solution using Condor is to ensure that the codecompiles and runs on the native machine of that class. Since the PATH solver is alreadytested and available in library form, this amounts to checking that the submitted routinesand ADIFOR-generated routines can be compiled, exactly as is done for a submission thatis to run on a local machine. The second step links these objects to the PATH objects,replacing some of the standard libraries with Condor-supplied replacements. Our interfacereplaces a single line in the standalone make�le, namely,f77 -o pathsol $(OBJECTS) $(LIBS)with the following linecondor compile f77 -o pathsol $(OBJECTS) $(LIBS)Both of these make�les use precisely the same library of routines that implement PATH asdescribed in [12]. The only di�erence is that di�erent system libraries are linked into theexecutable in order to facilitate the checkpointing that was mentioned above.12



Instead of executing pathsol on the machine where it was compiled, the solver scriptgenerates a job description �le that details the location of the executable, the requirementsof the job, and all input and output �les. For NEOS, the job description �le jdf isExecutable = pathsolLog = condor dir/condor.logCoresize = 0Notification = neverQueueThis �le speci�es, in particular, that condor.log, in directory condor dir, is the Condorlog �le. The purpose of the log �le is discussed below.The job is submitted to Condor by using the command condor submit -v jdf. Atthis stage, Condor takes over control of the job. For security purposes, the job runs as usernobody, thereby limiting the access of the submitted job to �les that it owns.In the remainder of this section, we outline how we allow NEOS to timeout from theCondor job and how we guarantee that the job results are returned to the NEOS user -even if the machine that submitted the job to Condor dies during the execution of the job,or communication between NEOS and Condor dies. Note that the Condor job is detachedfrom the submitting machine and is guaranteed to continue to execute to completion.We �rst create a persistent directory, condor dir, on the machine that submits theCondor job. All �les related to Condor jobs are located in condor dir. When a job issubmitted, we create a symbolic link into condor dir the job directory created by theNEOS Communications Package - the facility enabling communication between a solverand the NEOS Server. This job directory serves as the repository for both incoming jobsubmissions and outgoing results.The Condor log �le, condor.log, resides in condor dir and shows where each job fromNEOS was submitted and executed. We have created a program for monitoring this logwith the UserLogAPI that is part of the Condor distribution. The monitoring program,watchlog, is regularly invoked by the system utility cron and immediately exits if it �ndsanother version of watchlog running.The purpose of watchlog is to ensure that the results of any job submitted to Condorare written to the appropriate job directory and to signal that the Condor job is �nished.Condor writes to condor.log every time the status of the job changes. The watchlogmonitoring program acts upon two events that are written into condor.log, namely, EXE-CUTE and TERMINATE. If the job in question starts executing on a machine, watchlogadds the IP address of this machine to the list of machines that have been used for this job.At the end of processing, this list is appended to the job results; an example of such a listis given below: 13



<128.105.40.8:32776><128.105.41.104:32839><128.105.76.12:36651><128.105.5.11:56558>The second event that triggers the watchlog program is the fact that the job in questionis terminating. In this case, watchlog writes the status of the Condor job to a �le calledCONDOR DONE in the job directory. Once the job completes, the results are returned to theNEOS user by the mechanism we now describe.First note that even if a job was executed under Condor, the solver creates exactly thesame solution �les and writes these �les in the job directory as before. To guarantee that theresults are returned to the NEOS user we have to deal with two cases. Firstly, the submittingmachine may die while the job is being executed under Condor and secondly, the NEOSuser may not be willing to wait more than 5 minutes for the job results to be returned. Todeal with both these cases, we have created another cron program, job-checker, to ensurethat the job results are returned either to NEOS or directly to the user via e-mail.This program simply monitors the job directory, checking for the existence of the �lesCONDOR and CONDOR DONE (signifying that Condor was used and that Condor had completedthe job) and that the �le DONE does not exist. The solver script creates the �le DONE oncethe user has been noti�ed of the job results. Thus if this �le is not present, and the job wasa Condor job that had timed-out, we return the job results to the user via e-mail. Thereis a slight race condition here: it is possible that a (Condor) timeout can occur while thejob is being returned to NEOS. In this case, the user may get noti�ed of the results bothin the NEOS submission tool or WEB browser and via email. We believe this strategy ispreferable to the possibility of losing some results.AcknowledgmentsWe thank the developers of Condor and ADIFOR for sharing their expertise with us. ToddMunson deserves special thanks for his contributions to the development of the currentversion of PATH.References[1] B. M. Averick, J. J. Mor�e, C. H. Bischof, A. Carle, and A. Griewank,Computing large sparse Jacobian matrices using automatic di�erentiation, SIAM J.Sci. Statist. Comput., 15 (1994), pp. 285{294.[2] C. Bischof, A. Bouaricha, P. Khademi, and J. J. Mor�e, Computing gradientsin large-scale optimization using automatic di�erentiation, INFORMS J. Computing,9 (1997), pp. 185{194. 14



[3] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR:Generating derivative codes from Fortran programs, Scienti�c Programming, 1 (1992),pp. 1{29.[4] C. Bischof, A. Carle, and P. Khademi, Fortran 77 interface speci�cation to theSparsLinC library, Technical Report ANL/MCS-TM-196, Argonne National Labora-tory, Argonne, Illinois, 1994.[5] C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system forthe automatic di�erentiation of Fortran 77 programs, Preprint MCS-P381-1194, Ar-gonne National Laboratory, Argonne, Illinois, 1994. Also available as CRPC-TR94491,Center for Research on Parallel Computation, Rice University.[6] C. Bischof, L. Roh, and A. Mauer, ADIC: An extensible automatic di�erentiationtool for ANSI-C, Software | Practice and Experience, 27 (1997), pp. 1427{1456.[7] A. Bouaricha and J. J. Mor�e, Impact of partial separability on large-scale optimi-zation, Comp. Optim. Appl., 7 (1997), pp. 27{40.[8] J. Czyzyk, M. P. Mesnier, and J. J. Mor�e, The Network-Enabled OptimizationSystem (NEOS) Server, Preprint MCS-P615-0996, Argonne National Laboratory, Ar-gonne, Illinois, 1996. To appear in IEEE Computational Science & Engineering.[9] S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed comple-mentarity problems, Optim. Methods Software, 5 (1995), pp. 319{345.[10] , The PATH solver: A non-monotone stabilization scheme for mixed complemen-tarity problems, Optim. Methods Software, 5 (1995), pp. 123{156.[11] D. H. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, A world-wide ock of condors: Load sharing among workstation clusters, Journal on FutureGenerations of Computer Systems, (1996).[12] M. C. Ferris and T. S. Munson, Interfaces to PATH 3.0: Design, implementationand usage, Mathematical Programming Technical Report 97-12, Computer SciencesDepartment, University of Wisconsin, Madison, Wisconsin, 1997.[13] M. C. Ferris and J.-S. Pang, Engineering and economic applications of comple-mentarity problems, SIAM Rev., 39 (1997), pp. 669{713.[14] W. Gropp and J. J. Mor�e, Optimization environments and the NEOS server, inApproximation Theory and Optimization, M. D. Buhmann and A. Iserles, eds., Cam-bridge University Press, 1997, pp. 167{182.15



[15] M. J. Litzkow, M. Livny, and M. W. Mutka, Condor - A hunter of idle work-stations, in Proceedings of the 8th International Conference on Distributed Comput-ing Systems, Washington, District of Columbia, 1988, IEEE Computer Society Press,pp. 108{111.[16] E. Simantiraki and D. F. Shanno, An infeasible-interior-point algorithm for solvingmixed complementarity problems, in Complementarity and Variational Problems: Stateof the Art, M. C. Ferris and J. S. Pang, eds., Philadelphia, Pennsylvania, 1997, SIAMPublications, pp. 386{404.[17] L. Wall, T. Christiansen, and R. L. Schwartz, Programming Perl, O'Reilly &Associates, Inc., second ed., 1996.

16


