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Abstract
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establish the Euler-Maclaurin expansion for this rule, both in the case of a regular integrand

function f(x) and in the cases when f(#) has homogeneous singularities confined to vertices.
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1 Introduction and Outline

FElementary transformations, helpful in integrating f(«) over a finite interval [0, 1], include some of

the form = = (t), where
P(0)=0  P(1)=1 P(E)>0 ¥V te(0,1). (1.1)

This transforms an integrand as follows:

11= [ ftonte = [ gotoneto = 1r, (12

where
F(t) = f(4(1)d'(t) (1.3)

is termed the transformed function. Transformations of this type are as old as integral calculus
itself; traditionally, they are used when a primitive for F(¢) is more readily available than one for
f(a).

Naturally, such a transformation may be used to replace f(z) by F(¢) when an economic way
to integrate F'(t) numerically is available. In numerical quadrature, one useful approach is to
choose 1¥(t) so that F(t) is more amenable to integration by the trapezoidal rule than is f(z). This
situation occurs when () is chosen so that ¢/(¢) is relatively “flat” at both ends. In this context,

properties (1.1) are obligatory. However, for efficiency, one would like

YO0 =) =0 sellp (1.4)

for a moderate or large value of p. For computing purposes as well as theoretical analysis, a

transformation whose derivative is symmetric is often convenient; that is,

(L= 1) = (). (1.5)

While individual numerical approaches of this type must be as old as computing machines them-

selves, the first systematic investigation appears to be due to Korobov [4] in 1963. He introduced a



set of polynomial transformation functions that satisfied (1.1) and (1.4). Independently, at about

the same time, Sag and Szekeres [11] popularized the approach. Their transformation function
1
U(t) = 5(1+ tanb(1/(1— 1) = 1/1)

has a symmetric derivative and satisfies (1.4) for all finite p. Since then, several authors have
developed the technique. Among the better known methods are the IMT transformations [3]. For
more information, one may refer to Davis and Rabinowitz [2], pp. 142 et seq.

In 1993, Sidi introduced a promising set of transformations in which zbz’j is a trigonometric
polynomial of period 2 and degree p satisfying (1.1), (1.4), and (1.5). Unlike Korobov’s polynomials,
Sidi’s functions possess symmetry about each endpoint. Sidi derived a recursive relation for the
numerical evaluation of the transformations and some error expansions, useful for extrapolation.
He showed by example that these transformations were indeed efficient.

Laurie [5] discussed in 1996 polynomial transformations which, like Sidi’s trigonometric trans-
formations, are more efficient than Korobov’s polynomial transformations. In the present paper
we restrict to Sidi’s transformations. We expect however that the results extend to Laurie’s trans-
formations, but only partially since the symmetry of Sidi’s transformations about the endpoints is
not shared by Laurie’s polynomial transformations.

The present paper is about integration over [0, 1)"¥ using Sidi’s transformation for each of the N
components. We are particularly interested in quadrature error expansions of the Fuler-Maclaurin
type. When the integrand function is regular, the expansion (Theorem 5.2) turns out to be precisely
what one might expect from the one-dimensional theory. Our principal result, Theorem 6.9, specifies
the nature of the corresponding expansion when f(x) has an algebraic singularity at a vertex.

This paper is arranged as follows. In Section 2, relevant general background material is dis-
cussed. In Sections 3 and 4, Sidi’s transformations are defined and one-dimensional results relevant
to the subsequent N-dimensional theory are derived. These add little to Sidi’s results [10], but
establish the notation, emphasize the expansions, and provide proofs that generalize in a straight-
forward manner. In Section 5 we treat the somewhat pedestrian case when f(x) is regular. The
principal results of the rest of this paper appear in Section 6. As in previous theory, these ex-
pansions depend on homogeneous functions (see Definition 6.2). The key Theorem 6.6 specifies
an expansion of F(t) in terms of homogeneous functions when f(x) is itself one. Exploiting the

standard N-dimensional error expansion (Theorem 6.3), we obtain Theorem 6.7. This is a weak



form of the principal theorem, as it includes, in the expansion, many terms that in fact vanish. In
Section 8 we show, using analytical continuation in the complex plane, that these terms in the final
expansion do indeed vanish. Two appendixes, which are technical in nature, contain our long, but

straightforward, proofs of Theorems 6.6 and 6.3.

2 Background

Let If stand for the finite integral of f(z) over the interval [0,1],and let Qf = Q.f(x) be its
approximation using a quadrature rule ). Throughout this paper, we treat only quadrature rules

that integrate constant functions exactly. Denote by Q™) the m-copy version of Q

Qg =3 —a.r () =0 ( Zf(“’“)) (2.1)

k=0

Applied to an offset trapezoidal rule, the Euler-Maclaurin expansion takes the form

1 Z (x il ) Z / FO @y’
m :
where 3, is the Bernoulli polynomial of degree s and

By(@ — [2])
¢

/ POy (x — mt)dt, (x€[0,1]), (22)

m 5' mq

hy(z) =

Observe that the first term in this expansion is If. Applied in the context of (2.1), the Euler-
Maclaurin expansion provides an asymptotic expansion for the error of a general m-copy rule

applied to a regular integrand f(z) as stated in the following theorem.

Theorem 2.1 When f(x) and its first ¢ derivatives are integrable over [0, 1],

QUIf —If = i%ﬂ(m—q), (2.3)
where
BAQ.f) = (@) [ 10t = e.(Q) (£47(1) = £ (0) (2.4)
and
¢s(Q) = Qu(Ps(2)/s!). (2.5)



When f(z) has singular behavior within the interval [0,1], expansion (2.3) is not valid. However,

for the special case f(z) = f,(2) = 2%, when a > —1, Navot [8] has shown

QU fo —Ifo = % + ; # +o(m™1), (2:6)
where
Bo(Q, fo) = (@) FE7D(1) (2.7)
and
A(Q, fo) = Qu(C(—a32)). (2.8)

Here ((s; 2 ) is the generalized zeta function, that is the meromorphic extension w.r.t. s of the series
Yoreo(z + k)~°. Note that expression (2.7) coincides with (2.4) when Re(a) > s — 1 and that it
represents its analytic continuation w.r.t. « for the other values of a.

By extension, when f(z) = 2%¢g(x) and g(z) is smooth so that it can be expanded in a Taylor

series about the origin, we may obtain a correspondent to Theorem 2.1.

Theorem 2.2 When f(z) = z%g(x) and g(x) and its first q derivatives are integrable over [0, 1],

Ay Bs(Q, _
—1f = Z nia?l{t Z (Qs /) +o(m™7), (2.9)

s=1 m

where the index t in the first summation runs through the nonnegative integers not larger than
q— Re(a)—1 and
By(Q. f) = e(@)f*7V(1). (2.10)

When @ involves a function value f(0) that is not defined, formulas (2.6) and (2.9) remain valid
when f(0) is replaced by zero. Colloquially, the singularity may be ignored.
When @) is a symmetric rule, we may exploit the symmetry property of the Bernoulli polynomial

85 to establish that ¢4(@Q) vanishes when s is odd. It follows that for both (2.4) and (2.7), we have
Bs(Q,f)=0 YV s odd and symmetric @). (2.11)

The expansions in either of the above theorems may, as appropriate, be used to construct an
extrapolation technique for numerical quadrature. In the application of these extrapolation meth-
ods, detailed expressions for the coeflicients A; and B, are not required. It is important,however,

to know whether any coefficients vanish so that the corresponding terms may be removed from



the expansion before any extrapolation takes place, thus improving the convergence rate. A major
concern in this paper is the vanishing (or otherwise) of coefficients in expansions of this general
nature.

A traditional integration procedure which uses extrapolation is Romberg integration [9] (see also
Bauer, Rutishauser, and Stiefel [1] . This is based on (2.3) using mesh ratios m; = 2°,i = 0,1,2,...,
and setting ¢) to be the endpoint trapezoidal rule. This quadrature formula is symmetric and, in

setting up the extrapolation, (2.11) is invoked to remove the odd parity terms from this expansion.

3 Sidi Transformations (f(x) Regular)

The family v,(t) of transformation functions introduced by Sidi [10] may be defined for all positive
integer p by
P (t) = kKp(sin )P, (3.1)

where the (normalizing) constant &, is chosen to validate (1.1). These satisfy (1.1), (1.5), and (1.4)

for the stated value of p. We shall denote the transformed integrand by

Fy(t) = F(p(1))85(1). (3.2)
Thus, when f(z) is regular, so is Fj,(z). In our treatment we restrict ourselves to the trapezoidal
rule
(m) m—1 1 1 m
R f = ) + ; FG/m)+ 5 f(1) = EZ:: (j/m) (3-3)

for the integration!. However, as demonstrated by Sidi, the theory may be applied to the midpoint
rule, and even to more sophisticated symmetric rules, with virtually no modification. Note first

that

i p(i/m) = i F@p(g/m)) v, (5/m)/m. (3.4)

Thus, R(m)Fp can be considered to be a symmetric quadrature rule Q%m]f having abscissas ¥, (j/m)

and weights m_llbz’)(j/m). In general (i.e., except in the special case p = 0), no endpoint function

!The double prime attached to the summation symbol indicates that both the first and the last term in the

summation are to be halved.



values are needed. Specializing (2.3) and (2.4) to the trapezoidal rule, we state

-y BT 5 %(R)(Ff‘”g - 17 (0) (35)

s=1

The rest of this section is devoted to the vanishing of individual terms in this expansion (3.5).
To this end we examine the early coefficients in the Taylor expansion of F,(¢) about ¢ = 0. From

expression (3.1) we see that for any positive integer r,

(1) = ept” + cppat?T + L+ O (3.6)

/ ()t = O+,

and that

Thus,

Fy(t) = (1) (1) = (S(0) + f/(0)bp(t) + .. ) ¥ (1)

= (F(0)+ O(*)) (1)
= FO)g(1) + U (O (3.7)
= f(0)(cpt? + cpyat? + ) + O, (3.8)

While the second term here is of order O(t***1), the first involves alternate powers of ¢ starting

with t#. Thus, we have

F90)=0  sel0,p—1]

F;S)(O) =0 (p+s)odd s €[1,2p]. (3.9)

An identical argument gives corresponding results for the ¢ = 1 end of the integration interval.
Setting these results in (3.5), and recalling that By = 0 for all odd s (see (2.11)), we find immediately

Bs(Rva) = CS(R) /01 88; (f(lbp( ))Qb;)(t)) dt =0 peven, s € [272]7]- (310)

Note that in the above expression, when s € [p,2p], two distinct situations occur. On one hand,
when p is even, either the factor ¢s(R) is zero or its cofactor is zero, but not in general both. On
the other hand, when p is odd, either both ¢,(R) and its cofactor are zero or, in general, neither.

Hence we have the following specialization of Theorem 2.1.



Theorem 3.1 When p is an integer and f(z) has integrable derivatives of order ¢ over [0,1], then

By(R, F})

mS

R™WE, —If= Y

s even

s€p+1,q]

+o(m™7). (3.11)

where p = 2p+ 1 or p depending on whether p is even or odd.

4 Sidi Transformations for f(x) = z“g(x)

We now look at the case when f(x) has an algebraic singularity. Our first lemma is not directly

concerned with quadrature. It simply specifies the nature of the singularity of F,(¢) when
f(2) = fol) = 2°. (4.1)
Lemma 4.1 When f(z) is of form (4.1), the function F,(t) takes the form
Ey(t) = faltp(0)y(t) = t7ge(t), (4.2)

where

f=(a+Dp+1)-1 (4.3)

and g.(t) is an even regular function with g.(0) # 0.

Proof. It is convenient to use g.(¢) generically for an even regular function with ¢.(0) # 0.

Thus (3.6) may be expressed as ¥,(t) = tPg.(t), from which it follows that 1,(t) = tPTlg.(t) and

Fy(t) = 12 (go(1)*17ge(1) = 179 (1) (4.4)

Having established the nature of the singularity of F},(z) at the origin, we may now apply Navot’s
expansion (2.6), in the same way as it was applied to derive (2.9), to establish the expansion in the

following theorem.



[}

Theorem 4.2 When p is an integer and f(z) = z°,

App144(R, Fp) By(R, )
~ If + Z W + Z EEv—— (4.5)
t=20 s even
t even s>p+1

where = (a+ 1)(p+1)—1, and p =2p+ 1 or p depending on whether p is even or odd.

When 3 is an integer, the first summation is void.

Proof. Here, the restriction of the summation index ¢ to even values is a direct consequence of the
factor g.(¢) in (4.2). Straightforward substitution as indicated then gives the result, except that,
without further examination, the sum over s would appear to include all positive even integers. To

establish the stated restriction to s > p+ 1, we note that, from (2.7), we have
By(R, Fy) = ¢,(R)FF™D(1),

and in view of (3.9) and (2.11) this vanishes for all even s in [2,5 — 1]. (Note that the behavior of
F,(t) near t = 0 is not relevant here.)

Up to this point, the results coincide with those given by Sidi. (At most, we have given explicitly
the terms in the expansion that are implicit in Sidi’s work.) We have modified some proofs in order

to facilitate a subsequent generalization to a multidimensional context.

5 Multidimensional Transformation (Regular)

When f(x) is regular, the theory surrounding integration over [0, 1] using the Cartesian product
of N one-dimensional Sidi transformations is straightforward. One may allow different meshes m;
in each component and different p-values, say p;, without seriously disturbing this straightforward
theory.

In two dimensions, the Euler-Maclaurin expansion of a double sum may be simply obtained.

One sets
1

m—1 m—1 m
- Z f(x1+k1 xﬁkz)—iz x1+k 72), (5.1)
m
=0 k= k=0

m2 m



where

— k
$17$2 = Z (xlv vt ) 9 (52)

and applies the one-dimensional Euler-Maclaurin expansion (2.2) to the sum (5.2), treating z; as
an incidental parameter. One then substitutes this expansion into the right of (5.1) and applies
the Euler-Maclaurin expansion to sum each element of this expansion in the z{-direction.

In N dimensions, an iterated procedure of this sort gives

1 x+k 1 N al Bs, ()
X (B = S [ e e
m? ke{0,1,..,m—1}N m ls|<q mbl o, o s
1
— ®)(t)hg(x; mt)dVt. 5.3
g 2 e OOt (53
Here |s| = |(s1,...,8N)] := 81+ -+ -+ sy and
g1t
J® () = Lt tn).

DL Y

The representation of the kernels hg(x;t) was studied in [6]. We need only recall that these kernels

are bounded and periodic with period 1 in each ¢; and that

/[0 g hs(x;t)d™Nt = 0.

Equation (5.3) readily provides an N-dimensional version of Theorem 2.1, but limited to m-copies
of one-point rules Q(f) = f(x). However, one may expand a general quadrature rule ¢ in terms of

one-point rules, and so obtain the following general theorem.

Theorem 5.1 When f(x) together with all partial derivatives of total order q or less are integrable

over [0, 1]V, then

q
Qg —1p =3 PG ) (54)
s=1
where
BiQN)= 3 BQ D) = X @) [ 1000 (5.5)
[s|=s [s|=s ’
and

N .
C(sl,...,sN)(Q) = Q(xl,...,acN) (1:[1 %fl)) . (56)

10



We now apply this theorem to the N-dimensional product R of the m-copy one-dimensional
trapezoidal rules to the function
N

Fy(t) = J(¢p(tr), dp(ta), .o 0p(tn)) TT (). (5.7)

=1

We find quite generally that, when f(x) and all derivatives of total order ¢ are integrable,

1. Bs(R,F,)

RMWE, —IF,=%" + o(m™), (5.8)
s=1
where
Bs(R, Fp) = Y Boysysn (B, ) (5.9)
Ys;=s
and
N
B sasn (R Fp) = ] es(R) (5.10)
=1
1 1 9° N . N
<[] Gy i) dulte) -yt T wpti)a™s.

Examination of the integral in (5.10) shows that each one-dimensional integration is independent
of the others and coincides in form with the one in (3.10) when one treats the other (N —1) variables
t; as independent parameters. One may then apply the result (3.10) to each component in turn to
find

B sy.sn(R,F,) =0 when any s; € [1,2p+ 1], (5.11)
giving
By(R,F,) =0 sel,2p+1], (5.12)

which provides an N-dimensional version of Theorem 3.1 s follows.

Theorem 5.2 When p is an integer and f(x) has integrable derivatives of order q over [0,1]Y and
F, is given by (5.7)
By(R, F})

mS

R™ME, —If= Y

s even

s€p+1,q]

+ o(m™7), (5.13)

where p = 2p+ 1 or p depending on whether p is even or odd.

11



6 Singular Multidimensional Integrand

In this section we are interested in multidimensional integrands that are smooth except at the
origin. First we consider homogeneous functions and subsequently functions that can be expanded
in homogeneous functions. Finally we study the effect of such singularities at the origin when Sidi’s

transformation is applied.

Definition 6.1 Let R C RY be open. Then we say that a function f on R is smooth if its partial
derivatives &) of all orders k € INV exist and are continuous on R.

If R is not open but is contained in the closure of its interior, then we say that a function [ on
R is smooth if it is smooth on the interior of R and if the partial derivatives of [ of all orders

extend to a continuous function on R.

We shall use the following region of [0, 00)V:
LN[a,b] ={(21,...,2n)|Vi:z; > 0and a < mjaxxj < b} (6.1)
and its limit cases
IN(0,0] := U INa, 0] LV[a,0):= U INa, 0] LY (0,00) := U IN[a,b]. (6.2)
a>0 b>0 b>a>0

These are known as L-shaped regions because, in two dimensions, they resemble the letter L.
Several coefficients given below have integral representations in terms of these L-shaped regions.
Of these, some require integrals on UY = LN[1,1], which may be expressed as a sum of (N — 1)-

dimensional integrals as follows:
N1 N o1 1
/UN f(x)d" " x = Z/o .- -/0 fler, oo zjo0, 24, an)dey - -~ daejqde ey - - -day. (6.3)
7=1
Definition 6.2 Let R C RN be a cone, that is, for all x € R and for all X\ > 0,

Ax € R.

A function f(x) on R is homogeneous of degree o when, for all x € R and for all X > 0,

Jx) = A f(x).

12



Two-dimensional examples include
vz, (22 + ") (a4 2y)

which are homogeneous of degrees %, 3, and =, respectively. In this paper we are only interested in
homogeneous functions that are smooth on L™¥(0,400), i.e. singular only at the origin. The last
2 functions satisfy this condition, the first function 3 not, because this function is singular along
the whole line z = 0.

In [7] Lyness gives a set of results relating to integrands having homogeneous and logarithmic
singularities at vertices. Some of these are generalizations of Navot’s one-dimensional expansion

(2.6). A fundamental result is the following theorem.

Theorem 6.3 Let f(x) be homogeneous of degree a and smooth on LN (0,00). Then, ifa+N & IN
and ¢ > Re(a)+ N,

Q) f — maw Zq: Rq(ci;;”’f), (6.4)
where )
BQ.) = ﬁm;f@ [ 100 (65)
AQ.N) = Qf - ZB Q.f) +||Z / | Qxhs(x, 0 e)a e (6.6)
Ry(Q,m, f) = —mioN Z/ _@xhs (x,£)f®)(£)at = 0(1). (6.7)

l8/=q

When @ is symmetric w.r.t. the center of the cube [0, 1]V, then By(Q, f) = 0 for s odd.
This was proved first by Lyness [7]. A separate proof is given in Appendix A which provides
naturally this form of coefficient and is valid in the wider context of complex a and Re(a) < —N.
We shall now apply this theorem in a context in which the integrand is not homogeneous but

admits an expansion in homogeneous functions.

Definition 6.4 Let f be a smooth function on R ¢ RYN. Let (fj)?io be a sequence of smooth
homogeneous functions on a cone containing R, and let ¢; denote the degree of f;. Then we say

that f can be expanded in the f;, and we write
f~>0 0
=0

13



if, for each ¢ € R, the set
Jy={j € IN: Re(6;) < q}

is finite and if the remainder ry(x), defined by

F=>fi+r, (6.8)

J€dq

satisfies the following condition. For each k € INN there exists an My > 0 such that

Vx € R [r{O(x)] < M|, (6.9)

Please note that, in this definition and in the sequel, the index ¢ may take any real number and is
not (as it has been) restricted to integer values.

Remarks:

o If fis smooth in a neighborhood of 0, then the Taylor expansion of f about 0 is an expansion

of f in homogeneous functions of degree (j)32,.

o 7, has continuous partial derivatives up to order [§,] — 1 at the origin provided the origin

belongs to the closure of R.

o If f and ¢ both admit expansions in homogeneous functions, then so do f 4+ ¢ and fg, and

these expansions are obtained by formal addition and multiplication.

e When f(x) = h(x)g(x), where i(x) is a smooth homogenous function of degree a on LV (0, 00)
and g(x) is smooth on [0,1]", then f(x) admits an expansion in homogeneous functions of

degree (é;)52, with 6; = a +j.

Theorem 6.5 When f(x) on LN(0,1] admits an expansion in smooth homogeneous functions of

degree (6;)32, (see Definition 6.4), whereby é; + N ¢ IN, j = 0,1,..., then
™ f Z 5 +N Z (6.10)

Proof. This is a straightforward consequence of applying Q™ to each term in (6.8) above and
then using (6.4) for QU™ f; and (5.4) for QU™
1

14



Note that
Bs(Qvf): Z BS(Qvfj)—I_BS(Qqu)' (611)

J€Jq
In the one-dimensional case we showed that when f(z) = 2% ( a homogeneous function of degree
), the transformed function Fj(t) = fo(1p(1))9,(t) has an expansion in terms of homogeneous
functions of degrees 3, 342, 544, ..., where § = (a+1)(p+1)—1. That straightforward theorem was
easy to prove. The next theorem states the N-dimensional analogue. This theorem is independent
of quadrature. It is valid for all values of « including, for example, large negative integers. Our

somewhat lengthy proof may be found in Appendix B.

Theorem 6.6 Let f(x) be a smooth homogeneous function of degree a on LN (0,00). Then,

Fy(trsta, s tn) = F(@p(10), Yplta), - s Gp(En ) (1) 85 (12) - - (1) (6.12)

has an expansion in homogeneous functions of degree (5 + 2]’);?‘;0, where
f=(a+N)p+1)-N.

We now arrive at the principal results of this paper. These are the appropriate error expansions
when Sidi’s transformation is applied in an N-dimensional context to functions having certain
vertex algebraic singularities.

Our first, and basic, result is Theorem 6.7, which covers the case in which the integrand f(x)

is homogeneous. This is an N-dimensional version of Theorem 4.2.

Theorem 6.7 Let f(x) be a smooth homogeneous function of degree v on L™ (0,00), and let F,(t)
be given by (6.12); then, when + N ¢ 7,

AR, F,) By(R, F})

RME, ~ Y v el ) B e (6.13)
i—0 s=0
{ even

where § = (a+ N)(p+ 1) — N and where, as is conventional, 7 stands for the set of all integers.

Proof. The hypotheses of this theorem coincide with those of Theorem 6.6. It follows directly
from that theorem that Fj,(t) has an expansion in homogeneous functions of degrees (3 + 25)72.

This implies, in turn, that the function F,(t) satisfies the conditions required of f(x) in Theorem

15



6.5 with 6; = 3+ 2j. Setting () = R in that theorem, we find the result (6.10) reduces to the
required result (6.13) above.
1

It will come as no surprise to the reader to learn that, as in the case of a regular integrand,

many terms B(R, F,) in the expansion (6.13) vanish identically.

Theorem 6.8 Under the hypotheses of Theorem 6.7 we have
By(R, F,) =0, sis odd ors € [1,7].
where, as before, p denotes either 2p 4+ 1 or p depending on whether p is even or odd.

In Section 8, we shall treat families of homogeneous functions depending analytically on a pa-
rameter. For example, when f(x) satisfies the hypotheses of Theorems 6.6 and 6.7, the function
f2(x) = [|x]|”f(x) is a smooth homogeneous function of degree a, = a + 2. By Theorem 6.6,
the transformed function £, of f. then admits an expansion in homogeneous functions of degrees
(ﬁz-l-Qj)?io, with 8, = f+(p+1)z. The proof of Theorem 6.8 relies on Theorem 8.5 and Theorem 8.4
below. These theorems justify the extremely plausible suggestion that the expansion coefficients
B(R, F,,) depend analytically on the parameter z (in the region of definition 3, + N ¢ Z).
Proof of Theorem 6.8. I'ix an s that is odd or that does not exceed p. Let f, and F. , be asin
the discussion above. Then, for sufficiently large Re(z), the partial derivatives of F, ,(x) of order s
are continuous on [0, 1]V. We can then rely on Theorem 5.2 to state that By(R, I, ,) vanishes for
sufficiently large Re(z). But, as Bs(R, F,,) depends analytically on z in the region 8, + N ¢ Z,
it must vanish for all these z and in particular for z = 0.

When a smooth function f on LN(O, 1] is not homogeneous but admits an expansion in smooth
homogeneous functions, then the transformed function £, is the sum of the transformed functions
on the right-hand side of (6.8). The expansion of R(m)Fp is then obtained by applying Theorems 6.7
and 6.8 to the f; and (5.8) to the remainder r,.

We now state the results of carrying out this procedure in a standard case, where f(x) =

fo(x)g(x) and, as before, f,(x)is a smooth homogeneous function of degree o and g(x)is C*[0, 1]".
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Using a multivariate Maclaurin expansion, we may expand g(x) in a sequence of smooth homoge-
neous functions of nonnegative integer degree, providing an expansion for f(x) comprising terms of
homogeneous degree §(j) = a + j. Each of these terms gives rise to a different function F},, having
an individual value of # and a corresponding expansion. Since successive values of a differ by one
unit, the corresponding values of 3 differ by p 4+ 1 units. Applying Theorems 6.7 and 6.8 to each

of these functions in turn, one finds the following.

Theorem 6.9 When f(x) = f,(x)g(x) and f,(x) is a smooth homogeneous function of degree o
on LN (0,00) and g(x) is C*°[0,1]V, then

AR, F,) By(R, F,)
~If+ > B+N+t +> — £, (6.14)

teT sES

where = (a+ N)(p+ 1) — N and the integer sets S and T are

podd, :S={alevens>p+1}:7 ={ all event > 0}
peven, : S ={ all even s >2p+2}:7 ={ allt > 0 except odd t € [1,p—1]}.

If g(x) is even, i.e., if its Taylor expansion about the origin involves only monomials of even degree,

then we have for even p the stronger result
S={all even s>2p+2}:7 ={ all even t > 0}.

The reader will notice that the nature of these expansions is unaffected when a general even function
g is replaced by ¢g(x) = 1. In these cases, the expansion with p even requires fewer terms than with
p odd. However, with general g(x), this preference may be reversed. Ultimately, with p odd, two

even sequences appear, while with p even, there is one even and one full sequence.

7 Examples

The results of theorems 6.3, 6.7 and 6.8 are illustrated for the homogeneous function h(z,y) =
(z + y)_3/4 and the result of theorem 6.9 for the function f(z,y)= h(z,y)g(x,y) where

g(z,y) = exp ((x —g y)Z) :
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Note that g(z,y) is even.

We present in Tables 1 and 2 below the Romberg (extrapolation) tables containing quadrature
errors for respectively Sidi’s p = 0,2 and 4 transformations applied to A and f. The number of
panels, m, used in the computations is 8, 16, 32, 64 and 128. The early powers of 1/m in the

asymptotic error expansion are as follows:
e for p = 0 and the integrand h: 1.25,2, 4, 6 and 8;
e for p = 0 and the integrand f: 1.25, 2, 3.25, 4 and 5.25;
e for p = 2 and both integrands : 3.75, 5.75, 6, 7.75 and §;
o for p = 4 and both integrands : 6.25, 8.25, 10, 10.25 and 12.

The integrals of h(z,y) and f(z,y) over [0, 1]? are respectively

Th = (32/5)(2Y/* —1) = 1.210925536017414827,

If = 1.528421461141788355.
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8 Integrands depending Analytically on a Parameter

Many simple homogeneous functions f(x) are naturally embedded in a family of homogeneous

functions that depend analytically on the degree z. Examples include
=17 ey + pas].

Obviously, it is always possible to embed a homogeneous f(x) in such a family artificially. For
example, when f(x) is of homogeneous degree a, one such family comprises the functions f(x)||x||*.
The degree of a member of this family is a(z) = a + z.

In this section we study the analytic dependence on the parameter z of the terms appearing in
the asymptotic expansion of copy rules. This study is useful for two reasons. First, the previously
derived asymptotic expansions were valid only when the degrees of the homogeneous functions
were not exceptional, that is not integer. Knowing the analytic behavior of the terms of the error
expansion about the exceptional degrees, we may be able to obtain the error expansion for the
exceptional degrees as a limit case. Second, it turns out that explicit expressions of the terms
of the expansion may be simple for certain values of the parameter and complicated otherwise.
Instead of working with these complicated expressions, it is often easier to interpret them as the
analytic continuation of the simple expressions. The usefulness of this interpretation has appeared
in Theorem 5.1, where the vanishing of some terms in the expansion was established without relying
on the complicated explicit expressions of these terms.

We need a rigorous definition of analytic families of smooth functions.

Definition 8.1 Let Q be an open subset of U, and let f.(x) be a family of smooth functions on
R C R™ parametrized by = € Q. Then we say that f.(x) is an analytic family of smooth
functions on R if all its partial derivatives w.r.t. x of all orders fz(k)(x) are continuous on ) X R

and if for each fired x € R, fz(k)(x) s an analytic function of z on 1.

The key result of this section is the following somewhat trivial application of this definition to the

results of Theorem 6.3.

Theorem 8.2 Let f.(x) (2 € Q) be an analytic family of smooth functions on LV (0,00), each

member of which is homogeneous of degree a(z), where a(z) depends analytically on z. Let s be
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a positive integer. Then there exists an analytic function Fs(z) on Q such that the coefficient
By(Q, f.) in (6.5) satisfies

BAQ. 1) = ) (3.1

(z)+ N —s
when a(z)+ N ¢ IN .

Proof. For all functions satisfying the hypothesis of the theorem, each term in the summation
in (6.5) is analytic in 2 for all z € Q.
1

The use of analytic families also provides an N-dimensional analogue of formula (2.8) for the
coefficient A(Q, f) in Theorem 6.3. Let f be a homogeneous function of degree a, let f.(x) =
||x]|? f(x), and, for simplicity, let @ be a one-point rule, say, @ f = f(t). Then, when Re(a+z)+N <
0, we have by (6.4) that

AQ.f) = lim m*tNQUM(f1)
= dm B A4

ke{0,1,..,m—1}V

Y f(t+k). (8.2)
ke NV

By (6.6), the sum (8.2) admits a meromorphic extension in z with possible simple poles at z =
—a— N+ s, s € IN. For a general @, A(Q, f) is thus equal to () applied to the meromorphic
extension of (8.2) at # = 0. This result was first derived in [12, 13], together with corresponding
results for more general singularities.

The behavior of the coefficients Bs(Q, f) and A(Q, f) in Theorem 6.3 near the poles is not
without interest. Suppose a(zp) + N = s € IN but a(z) + N # s for z # 2z but close to z5. Then
the only terms in (6.4) that are not analytic at zo are the A-term and the Bs-term, but it is readily
verified that their sum has a limit as 2 — 2. Results given in [7] and [12, 13] show that this limit

is of the form
hm A(Q7f2) _I_ BS(Qva) — C(Qvfzo)logm—l_D(Qvfzo)‘

2=z mo()+N ms ms

The expansion in the exceptional case a4+ N € IV is simply the limit of the expansion in the regular

case o + N ¢ IN.
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The remainder of this section is devoted to establishing the analyticity of the coefficients By in
a wider context. This comprises a somewhat pedestrian extension of definitions and results. The

next definition extends Definition 6.4 to analytic families of functions.

Definition 8.3 Let f. be an analytic family of smooth functions on R C R™ where z runs through
Q. Let (fj7z);?°;0 be a sequence of analytic families of smooth homogeneous functions on a cone
containing R, and let §;(z) denote the degree of f; .. Then we say that f, can be expanded in the

fi» analytically in z, and we write
o0
fz ~ Z fj,z
=0

iof, for each ¢ € R and each compact subset K of Q, the set
Joix ={j € IN : Re(6;(2)) < ¢ for some z € K}

is finite and if the remainder r, i .(x), defined by

fz = Z f],z + T, K,z (83)

JE€Jg K
satisfies the following condition. For each k € INN there exists an My > 0 such that

(k)
q,K,z

Vx € Rz e K :|r'S) (x)] < My||x||*~ X, (8.4)

Theorem 8.4 Let f.(x) (z € Q) be an analytic family of smooth functions on LN (0, 1] that can be
expanded in homogeneous functions of degrees (8;(2));2y as in Definition 8.3. Let s be a positive
integer. Then there exists a sequence of analytic functions (I} (7)), on Q such that for all ¢ > s

and all compact subsets K of Q, the coefficient Bs(Q, f.) in (6.10) admits the expansion

BQf)= Y i R, (5.5)

JE€Jq K
when 6;(2)+ N ¢ IN for allj € J, x. Here R, i s(2) is a continuous function on K that is analytic

in the interior of K.
Proof. Applying (6.11) to f, given in (8.3), we find

Bs(Qvfz) = Z Bs(Qvfj,z) + Bs(Qarq,K,z)- (8'6)

JE€Jg K
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By (6.5), or better, by Theorem 8.2 there exist analytic functions F} ;(2) on  such that

Fis(2)

Bs(Q, fj:) = G LN = (8.7)

when 6;(2)+ N € IN. By (5.5), Ry ks(2) = Bs(Q,7yK,.) (2 € K) can be expressed as a linear
combination of the integrals on the cube [0,1]" of the partial derivatives of order s of e K.2(X).
We now consider an approximation to R, i s(2). This is R, k s(2) (¢ > 0), an expression obtained
from (5.5) by replacing these integrals on the cube by integrals on the region L™¥[e,1]. Since the
partial derivatives of r, i .(x) depend analytically on z when x is restricted to LV e, 1], we have
that R., x s(2)is an analytic function on Q. By (8.4),as ¢ — 0%, R, , i s(z) converges to R, x s(2),
uniformly for z € K. Hence, since R, i s(7) is the uniform limit of continuous functions on K, it
is itself continuous on K, and, since it is the uniform limit of analytic functions on the interior of

K, it is itself analytic on the interior of K.

Note that the exceptional case, 6; + N € IN for some j € IV, not considered in Theorem 6.5,
can be treated as a limit case of that theorem.

Theorem 6.6 can also be extended to the context of analytic families.

Theorem 8.5 If in Theorem 6.6 f(x) depends analytically on a parameter, then the expansion

of (6.12) also depends analytically on that parameter.

The proof of this theorem is given in Appendix B as a supplement to the proof of Theorem 6.6.

A Proof of Theorem 6.3 and An Associated Lemma

Theorem 6.3 specifies the quadrature error expansion for a homogeneous integrand function with a
vertex singularity. The coefficients are in terms of integrals over L-shaped regions defined in (6.1)
and over UV defined in (6.3).

The proof of Theorem 6.3 relies on the following lemma.

Lemma A.1 Let f(x) be a homogeneous function of degree o € @' that is continuous on L™ (0, cc).

Then, if a+ N #0 and 0 < a < b,

/ f( )dN _M/ f( )dN—l
LN[a,}] x)ex= a+ N RS -
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Proof. We subdivide LN[a,b] in N parts

I
=
B~

J=1
where
L;y[a,b] = {(z1,...,2n) € LV[a,b] : z; = max{zy,...,2N}}
= {t(ulv'"7uj—1717uj+17"'7uN) e [avb]vulv'"7uj—17uj+17"'7uN € [071]}

Then we have

/LN[ab] X_Z/Nab

The j th integral in this sum is computed by the change of variable z; =t and 2}, = tu, (k # 7).

x)dNx
/LN[abf( )
= // / tul,...,tUj_l,t,tUj+1,...,tuN)tN_ldtdul---de_lde+1---duN

1
= /ta"'N_ldt/ / flur, .o oouj—q, L ujeq, o un)duy - - duj_qdujgq - - -duy
boz—I—N oz—I—N

= Tad N / / flug, .o oouj—q, L uj, o un)duy -+ - duj_qdujpq - - dup.

Summation over j completes the proof.

Proof of Theorem 6.3. As f is homogeneous of degree a, we have

= Y (et T A (A

ke{0,1,..,m—1}V 0£ke{0,1,..,m—1}V

where fi(x) = f(k +x). As fi is smooth on [0,1]V, it can be replaced by its Euler-Maclaurin

expansion (5.3) (with m = 1)

filx) = Z/[01]Nf()( +k dNtHﬁs’ D)y Z/ (t + K)hs(x; t + k)dVt.

Is|<q Isl=q

Here we have used the periodicity of the kernel hg. LY [1,m] may be subdivided into m® identical

unit cubes, aligned with the axes. We denote the cube [k1, k1 + 1] X [k, ko + 1] X - -+ X [kn, kv + 1]
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by k + [0,1]"; summation over k yields

> fx(x) = Z/

0£ke{0,1,...m—11N lsj<q ” L L]

Ly / ()hs (x; £)d . (A.3)

Is|=q

t)d™t H ﬁ“‘" 2) (A.2)

The integrand f®) in (A.2) is homogeneous of degree o — |s|. Therefore, by Lemma A.1, we can

write
moz—|s|—|—N -1

/ vy P = T [ (A4)
Each integral over LN[1,m]in (A.3) may be expressed as the difference of the integral over LV[1, )
and the integral over LN[m, o0). Separating the terms with different asymptotic behavior w.r.t.
m, and applying ) to the sum (A.1), gives the relation (6.4).
To bound |R,(Q),m, f)|, we use the fact that |Qxhs(x,t)| is bounded in t, say by M,, and that
| f®)] is homogeneous of degree Re(a) — ¢. This gives

[Ry(Q.m, f)] < miFe@) NZM/ 1) ()|

[s|=¢ Mlm,00)

q—Rea Z/ dN t

B Proof of Theorem 6.6 and Theorem 8.5

These concern the expansion of Fj,(t) when f(x) is homogeneous of degree a. We define

g1, an) = fPT e, (B.1)

Then g is a smooth homogeneous function of degree ¥ = (p 4 1)a on [0,00)" \ {0}. Obviously, we

have
F(@p(ta)s -, p(tn)) = g((t1), - - ., 9(in)), (B.2)

where



This function ¢ : [0, 1] — [0, 1] is smooth, and there exist constants b > a > 0 such that
at < ¢(t) < bt. (B.4)

We can decompose ¢(t) as
B(t) = et + 3h(1), (B.5)

where a < ¢ < b and h(?) is a smooth function with an expansion in even powers of t.
We will now show that g(¢(t1),...,¢(tn)) admits an expansion in homogeneous functions of
degrees (7 + 27)52,.

Fix an arbitrary real number ¢, and choose p € IN sufficiently large so that

Re(y)+2p > q. (B.6)
We have the Taylor expansion
p—1
g(x+y) =D Hilg;x,y)+ Ry(g:%,y). (B.7)
k=0
Here
k yfl .. y]k/\‘fN
Hi(gix,y)= 3 ¢ )(X)W (B.8)
fkl=k D
and
k yfl .. y]k/\‘fN
Ry(gix,y)= Y ¢M(x+ Oy ) T (B.9)
i e k!

for some # € (0,1). In this Taylor expansion, we substitute

x; = ctj, Y = t?h(t]‘). (B.lO)
This gives, from (B.5),
p—1
g(d(t), ..., o(tn)) = Z Hi(g;et, (tTh(t), .., th(IN))) + Rp(g; ety (G5R(t1), . . . t37h(EN)))-
k=0
(B.11)

Here

h(t)F - h(ty)kw
Hy(gi et (50(0), s thlin)) = 3 gy ML
K=k ‘ ‘

(B.12)
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Each term in this sum is a homogeneous function of degree v — k 4+ 3k multiplied with a smooth
function that admits a Taylor expansion in homogeneous polynomials of even degree. Hence, (B.12)
admits an expansion in smooth homogeneous functions of degrees (7 + 2k +25)52,. We now search

a bound for the remainder

Ry(g;ct, (5h(t1), ..., t3h(tN))) =
3y h(tl)kl .. .h(tN)kN

S g ety + 065h(ty), ety + O (N ) -t
Pt k! Ekn!

(B.13)

Let (i, be sufficiently large so that for all x € [0,00)" with ||x|| = 1 and all k € INY with |k| < p,
we have

19 (x)] < G, (B.14)
Then we have for |k| = p that
198 ety +06h(t1), ..., ety +03h(tN )| < Goll(cty+08h(Ly), . . ., ety +0t3h(ty )| =7. (B.15)

By (B.4), we have that
at < ct + 0t°h(t) = (1 — O)ct + 0(t) < bt,

whence
190ty + B8R0, ..t + O(N )] < G [HIFC) P max{aRe)2 pRI2Y (B.16)
Taking the modulus of (B.13) and substituting (B.16) in it, we have

| By(gs et (17h(t1), . ... txch(tn )]
< GylI0) max{aleo)-p, pre -y gop (WLl b ()"
—= ? p'

M|t|)* (B.18)

(B.17)

IN

for some M > 0. To obtain similar bounds for the partial derivatives of the remainder (B.13), we

observe that we have the following rules of differentiation:

0 ‘ B dg

—axij(gvxvY) = Hk(awjvxv3’)

) dg

—Hi(g; = Hp_(=—= k

dy; k9%, y) k 1(8$]‘7X7y) (k> 0),
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whence, using (B.7), also

9 . 9 .
%Rp(gvxv}d Rp(a—xjvxv}I)

O k(g _ J9 .
8—ijp(g7X7Y) - Rp—l(axj7X7Y) (p>0)

By induction on s, we now show that each partial derivative of order s of (B.13) can be written as

a finite sum of terms of the form
R,_i(g;ct, (t:{’h(tl), .. .,tf’vh(t]\r)))ﬂ(t)a(t), (B.19)

where § is a partial derivative of ¢ of order k41, 7(t) is a homogeneous polynomial of degree 2/ —m,

and o(t) is smooth. k, [, and m are nonnegative, and
E+14+m<s. (B.20)

For s = 0 this obviously holds. It remains to check that differentiating (B.19) w.r.t. ¢; gives a finite
sum of terms of the same type as (B.19) but with s incremented with 1. Differentiating the first
factor of (B.19) w.r.t. ¢; gives by the chain rule 2 terms to which the above rules of differentiation
can be applied. The derivative of (B.19) w.r.t. ¢; consists of the sum of the following four terms,

the first two of which are are produced by differentiating the first factor of (B.19):

Rp_l(aa—jj; ct, (t:l)’h(tl), .. .,t?\fh(tN)))Cﬂ'(t)O'(t),

which is of the same type as (B.19) but with £ and s incremented with 1,
R 99 B t3h(t t2r(t)) ((3h(t;) + ik (t;))a(t))
%Fm%#cml<nwuwv<m»(ﬂ<n< (1) + ' (1)) (4)) ,

which is of the same type as (B.19) but with [ and s incremented with 1,

- or
Ryi(gs et (11h(11), -, T h(In ) 5= (8)a(t),
J
which is of the same type as (B.19) but with m and s incremented with 1, and finally

R%A@amﬁuuxuwﬁhmw»ﬂwggu»

which is of the same type as (B.19) with s incremented with 1.
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Using (B.17), we can bound the modulus of (B.19) by

HtH(Re(w)—(k-l—l))-l—2(p—l)HtH2l—m _ HtHRe(’y)-l—Qp—k—l—m

multiplied by a constant factor, and this can be further bounded by M;||t]|?"* for some M, > 0.
We thus have shown that the remainder (B.13) and its partial derivatives are suitably bounded.
We conclude that f(1,(t1),...,¢Yu(tN)) = g(P(t1),...,¢(tn)) admits an expansion in smooth ho-
mogeneous functions of degrees (7 +25)52,. The desired expansion for F,(t1,...,ty) is established
by multiplying this expansion with the expansion of the sz’j(tj). This completes the proof of Theo-
rem 6.6.

Now consider the case when f depends analytically on a parameter z € 2. Then clearly ¢
also depends analytically on that parameter, and both o and v are analytic functions of z. It is
immediate that the expansion of (B.12) then analytically depends on z. Let K be an arbitrary
compact subset of . Then we can choose p sufficiently large so that (B.6) holds for all 2 € K,
and we can also choose G, and M sufficiently large so that (B.14) and (B.18) hold for all z € K.
Observe that in (B.19), the functions 7(t) and o(t) are independent of z. Therefore, it is readily
verified that the constant My can be chosen so that the bound M;||t||?~* for the modulus of (B.19)
holds for all = € K. This shows that the expansion of g(¢(t1),...,¢(tn)) depends analytically on

z and thus also the expansion of Fj,(¢1,...,ty). This completes the proof of Theorem 8.5
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Table 1: Errors in extrapolation table for the integrand h

p=0| m=8]|-0.2748-01
0.1078e-02
m =16 | -0.1093e-01 -0.3781e-06
0.2692¢-03 -0.1792e-09
m = 32 | -0.4439e-02 -0.2380e-07 -0.3220e-13
0.6728e-04 10.2833e-11
m = 64 | -0.1827e-02 -0.1490e-08
0.1682e-04
m = 128 | -0.7586¢-03
p=2| m=8]-0.3624e03
0.3229¢-05
m =16 | -0.2395e-04 0.8779¢-10
0.6009e-07 0.1061e-10
m = 32 | -0.1724e-05 -0.9076e-11 -0.2465¢-13
0.1108e-08 -0.7394e-13
m = 64 | -0.1271e-06 0.2145e-12
0.2037e-10
m = 128 | -0.9430e-08
p=4| m=8]| 0.3522e03
0.2017e-05
m= 16| 0.6619-05 0.5179¢-08
0.1179e-07 0.3499e-11
m= 32| 0.9859-07 0.8553e-11 0.1332e-14
0.4725¢-10 0.4441e-14
m= 64| 0.1342e-08 0.1266Del3
0.1679-12
m =128 | 0.1780e-10
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Table 2: Errors in extrapolation table for the integrand f.

p=20 m = 8 | -0.2630e-01
0.7290e-03
m = 16 | -0.1063e-01 -0.7695e-07
0.1822e-03 0.1187e-07
m = 32 | -0.4365e-02 0.2537e-08 0.1536e-10
0.4555e-04 0.7565e-09
m = 64 | -0.1809e-02 0.9436e-09
0.1139e-04
m = 128 | -0.7540e-03
p=2 m = 8 | -0.3605e-03
0.3103e-05
m = 16 | -0.2392e-04 0.6257e-09
0.5827e-07 -0.1302e-10
m = 32 | -0.1724e-05 -0.3044e-11 -0.2354e-13
0.1080e-08 -0.8371e-13
m = 64 | -0.1271e-06 -0.1301e-12
0.1994e-10
m = 128 | -0.9430e-08
p=4 m =28 | 0.3527e-03
0.2011e-05
m =16 | 0.6619e-05 0.5197e-08
0.1179e-07 0.3486e-11
m = 32| 0.9859e-07 0.8558e-11 -0.8882e-15
0.4725e-10 0.1998e-14
m = 64 | 0.1342e-08 0.1021e-13
0.1654e-12
m = 128 | 0.1780e-10
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