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tex singularity, Sidi transformation, extrapolationrunning title: Multidimensional Sidi Transformations1 Introduction and OutlineElementary transformations, helpful in integrating f(x) over a �nite interval [0; 1], include some ofthe form x =  (t), where (0) = 0  (1) = 1  0(t) > 0 8 t 2 (0; 1): (1:1)This transforms an integrand as follows:If = Z 10 f(x)dx = Z 10 f( (t)) 0(t)dt = IF; (1:2)where F (t) = f( (t)) 0(t) (1:3)is termed the transformed function. Transformations of this type are as old as integral calculusitself; traditionally, they are used when a primitive for F (t) is more readily available than one forf(x).Naturally, such a transformation may be used to replace f(x) by F (t) when an economic wayto integrate F (t) numerically is available. In numerical quadrature, one useful approach is tochoose  (t) so that F (t) is more amenable to integration by the trapezoidal rule than is f(x). Thissituation occurs when  (t) is chosen so that  0(t) is relatively \at" at both ends. In this context,properties (1.1) are obligatory. However, for e�ciency, one would like (s)(0) =  (s)(1) = 0 s 2 [1; p] (1:4)for a moderate or large value of p. For computing purposes as well as theoretical analysis, atransformation whose derivative is symmetric is often convenient; that is, 0(1� t) =  0(t): (1:5)While individual numerical approaches of this type must be as old as computing machines them-selves, the �rst systematic investigation appears to be due to Korobov [4] in 1963. He introduced a2



set of polynomial transformation functions that satis�ed (1.1) and (1.4). Independently, at aboutthe same time, Sag and Szekeres [11] popularized the approach. Their transformation function (t) = 12(1 + tanh(1=(1� t)� 1=t))has a symmetric derivative and satis�es (1.4) for all �nite p. Since then, several authors havedeveloped the technique. Among the better known methods are the IMT transformations [3]. Formore information, one may refer to Davis and Rabinowitz [2], pp. 142 et seq.In 1993, Sidi introduced a promising set of transformations in which  0p is a trigonometricpolynomial of period 2 and degree p satisfying (1.1), (1.4), and (1.5). Unlike Korobov's polynomials,Sidi's functions possess symmetry about each endpoint. Sidi derived a recursive relation for thenumerical evaluation of the transformations and some error expansions, useful for extrapolation.He showed by example that these transformations were indeed e�cient.Laurie [5] discussed in 1996 polynomial transformations which, like Sidi's trigonometric trans-formations, are more e�cient than Korobov's polynomial transformations. In the present paperwe restrict to Sidi's transformations. We expect however that the results extend to Laurie's trans-formations, but only partially since the symmetry of Sidi's transformations about the endpoints isnot shared by Laurie's polynomial transformations.The present paper is about integration over [0; 1]N using Sidi's transformation for each of the Ncomponents. We are particularly interested in quadrature error expansions of the Euler-Maclaurintype. When the integrand function is regular, the expansion (Theorem 5.2) turns out to be preciselywhat one might expect from the one-dimensional theory. Our principal result, Theorem 6.9, speci�esthe nature of the corresponding expansion when f(x) has an algebraic singularity at a vertex.This paper is arranged as follows. In Section 2, relevant general background material is dis-cussed. In Sections 3 and 4, Sidi's transformations are de�ned and one-dimensional results relevantto the subsequent N -dimensional theory are derived. These add little to Sidi's results [10], butestablish the notation, emphasize the expansions, and provide proofs that generalize in a straight-forward manner. In Section 5 we treat the somewhat pedestrian case when f(x) is regular. Theprincipal results of the rest of this paper appear in Section 6. As in previous theory, these ex-pansions depend on homogeneous functions (see De�nition 6.2). The key Theorem 6.6 speci�esan expansion of F (t) in terms of homogeneous functions when f(x) is itself one. Exploiting thestandard N -dimensional error expansion (Theorem 6.3), we obtain Theorem 6.7. This is a weak3



form of the principal theorem, as it includes, in the expansion, many terms that in fact vanish. InSection 8 we show, using analytical continuation in the complex plane, that these terms in the �nalexpansion do indeed vanish. Two appendixes, which are technical in nature, contain our long, butstraightforward, proofs of Theorems 6.6 and 6.3.2 BackgroundLet If stand for the �nite integral of f(x) over the interval [0,1],and let Qf = Qxf(x) be itsapproximation using a quadrature rule Q. Throughout this paper, we treat only quadrature rulesthat integrate constant functions exactly. Denote by Q(m) the m-copy version of QQ(m)f := m�1Xk=0 1mQxf �x+ km � = Qx  1m m�1Xk=0 f �x+ km �! : (2:1)Applied to an o�set trapezoidal rule, the Euler-Maclaurin expansion takes the form1m m�1Xk=0 f �x+ km � = qXs=0 Z 10 f (s)(t)dt�s(x)mss! + 1mq Z 10 f (q)(t)hq(x�mt)dt; (x 2 [0; 1]); (2:2)where �s is the Bernoulli polynomial of degree s andhq(x) = �q(x� [x])q! :Observe that the �rst term in this expansion is If . Applied in the context of (2.1), the Euler-Maclaurin expansion provides an asymptotic expansion for the error of a general m-copy ruleapplied to a regular integrand f(x) as stated in the following theorem.Theorem 2.1 When f(x) and its �rst q derivatives are integrable over [0; 1],Q(m)f � If = qXs=1 Bs(Q; f)ms + o(m�q); (2:3)where Bs(Q; f) = cs(Q) Z 10 f (s)(t)dt = cs(Q) �f (s�1)(1)� f (s�1)(0)� (2:4)and cs(Q) = Qx(�s(x)=s!): (2:5)4



When f(x) has singular behavior within the interval [0,1], expansion (2.3) is not valid. However,for the special case f(x) = f�(x) = x�, when � > �1, Navot [8] has shownQ(m)f� � If� = A(Q; f�)m�+1 + qXs=1 Bs(Q; f�)ms + o(m�q); (2:6)where Bs(Q; f�) = cs(Q)f (s�1)� (1) (2:7)and A(Q; f�) = Qx(�(��; x)): (2:8)Here �(s; x) is the generalized zeta function, that is the meromorphic extension w.r.t. s of the seriesP1k=0(x + k)�s. Note that expression (2.7) coincides with (2.4) when Re(�) > s � 1 and that itrepresents its analytic continuation w.r.t. � for the other values of �.By extension, when f(x) = x�g(x) and g(x) is smooth so that it can be expanded in a Taylorseries about the origin, we may obtain a correspondent to Theorem 2.1.Theorem 2.2 When f(x) = x�g(x) and g(x) and its �rst q derivatives are integrable over [0; 1],Q(m)f � If =Xt At(Q; f)m�+1+t + qXs=1 Bs(Q; f)ms + o(m�q); (2:9)where the index t in the �rst summation runs through the nonnegative integers not larger thanq � Re(�)� 1 and Bs(Q; f) = cs(Q)f (s�1)(1): (2:10)When Q involves a function value f(0) that is not de�ned, formulas (2.6) and (2.9) remain validwhen f(0) is replaced by zero. Colloquially, the singularity may be ignored.When Q is a symmetric rule, we may exploit the symmetry property of the Bernoulli polynomial�s to establish that cs(Q) vanishes when s is odd. It follows that for both (2.4) and (2.7), we haveBs(Q; f) = 0 8 s odd and symmetric Q: (2:11)The expansions in either of the above theorems may, as appropriate, be used to construct anextrapolation technique for numerical quadrature. In the application of these extrapolation meth-ods, detailed expressions for the coe�cients At and Bs are not required. It is important,however,to know whether any coe�cients vanish so that the corresponding terms may be removed from5



the expansion before any extrapolation takes place, thus improving the convergence rate. A majorconcern in this paper is the vanishing (or otherwise) of coe�cients in expansions of this generalnature.A traditional integration procedure which uses extrapolation is Romberg integration [9] (see alsoBauer, Rutishauser, and Stiefel [1] . This is based on (2.3) using mesh ratiosmi = 2i, i = 0; 1; 2; : : :,and setting Q to be the endpoint trapezoidal rule. This quadrature formula is symmetric and, insetting up the extrapolation, (2.11) is invoked to remove the odd parity terms from this expansion.3 Sidi Transformations (f(x) Regular)The family  p(t) of transformation functions introduced by Sidi [10] may be de�ned for all positiveinteger p by  0p(t) = �p(sin �t)p; (3:1)where the (normalizing) constant �p is chosen to validate (1.1). These satisfy (1.1), (1.5), and (1.4)for the stated value of p. We shall denote the transformed integrand byFp(t) = f( p(t)) 0p(t): (3:2)Thus, when f(x) is regular, so is Fp(x): In our treatment we restrict ourselves to the trapezoidalrule R(m)f := 12mf(0) + m�1Xj=1 f(j=m) + 12mf(1) := 1m mXj=000f(j=m) (3:3)for the integration1. However, as demonstrated by Sidi, the theory may be applied to the midpointrule, and even to more sophisticated symmetric rules, with virtually no modi�cation. Note �rstthat R(m)Fp = 1m mXj=000Fp(j=m) = mXj=000f ( p(j=m)) 0p(j=m)=m: (3:4)Thus, R(m)Fp can be considered to be a symmetric quadrature rule Q[m]p f having abscissas  p(j=m)and weights m�1 0p(j=m). In general (i.e., except in the special case p = 0), no endpoint function1The double prime attached to the summation symbol indicates that both the �rst and the last term in thesummation are to be halved. 6



values are needed. Specializing (2.3) and (2.4) to the trapezoidal rule, we stateR(m)Fp � If 'Xs=1 Bs(R; Fp)ms 'Xs=1 cs(R)(F (s�1)p (1)� F (s�1)p (0))ms : (3:5)The rest of this section is devoted to the vanishing of individual terms in this expansion (3.5).To this end we examine the early coe�cients in the Taylor expansion of Fp(t) about t = 0. Fromexpression (3.1) we see that for any positive integer r, 0p(t) = cptp + cp+2tp+2 + : : :+O(tp+2r) (3:6)and that  p(t) = Z t0  0p(t)dt = O(tp+1):Thus, Fp(t) = f ( p(t)) 0p(t) = �f(0) + f 0(0) p(t) + : : :� 0p(t)= �f(0) + O(tp+1)� 0p(t)= f(0) 0p(t) +  0p(t)O(tp+1) (3.7)= f(0)(cptp + cp+2tp+2 + : : :) +O(t2p+1): (3.8)While the second term here is of order O(t2p+1), the �rst involves alternate powers of t startingwith tp. Thus, we have F (s)p (0) = 0 s 2 [0; p� 1]F (s)p (0) = 0 (p+ s) odd s 2 [1; 2p]: (3.9)An identical argument gives corresponding results for the t = 1 end of the integration interval.Setting these results in (3.5), and recalling thatBs = 0 for all odd s (see (2.11)), we �nd immediatelyBs(R; Fp) = cs(R) Z 10 @s@ts �f( p(t)) 0p(t)�dt = 0 p even, s 2 [2; 2p]: (3:10)Note that in the above expression, when s 2 [p; 2p], two distinct situations occur. On one hand,when p is even, either the factor cs(R) is zero or its cofactor is zero, but not in general both. Onthe other hand, when p is odd, either both cs(R) and its cofactor are zero or, in general, neither.Hence we have the following specialization of Theorem 2.1.7



Theorem 3.1 When p is an integer and f(x) has integrable derivatives of order q over [0; 1], thenR(m)Fp � If = Xs evens 2 [p+ 1; q] Bs(R; Fp)ms + o(m�q): (3:11)where p = 2p+ 1 or p depending on whether p is even or odd.4 Sidi Transformations for f(x) = x�g(x)We now look at the case when f(x) has an algebraic singularity. Our �rst lemma is not directlyconcerned with quadrature. It simply speci�es the nature of the singularity of Fp(t) whenf(x) = f�(x) = x�: (4:1)Lemma 4.1 When f(x) is of form (4.1), the function Fp(t) takes the formFp(t) = f�( p(t)) 0p(t) = t�ge(t); (4:2)where � = (�+ 1)(p+ 1)� 1 (4:3)and ge(t) is an even regular function with ge(0) 6= 0.Proof. It is convenient to use ge(t) generically for an even regular function with ge(0) 6= 0.Thus (3.6) may be expressed as  0p(t) = tpge(t), from which it follows that  p(t) = tp+1ge(t) andFp(t) = t�(p+1)(ge(t))�tpge(t) = t�ge(t): (4:4)Having established the nature of the singularity of Fp(x) at the origin, we may now apply Navot'sexpansion (2.6), in the same way as it was applied to derive (2.9), to establish the expansion in thefollowing theorem. 8



Theorem 4.2 When p is an integer and f(x) = x�,R(m)Fp ' If + Xt = 0t even A�+1+t(R; Fp)m�+1+t + Xs evens � p+ 1 Bs(R; Fp)ms ; (4:5)where � = (�+ 1)(p+ 1)� 1, and p = 2p+ 1 or p depending on whether p is even or odd.When � is an integer, the �rst summation is void.Proof. Here, the restriction of the summation index t to even values is a direct consequence of thefactor ge(t) in (4.2). Straightforward substitution as indicated then gives the result, except that,without further examination, the sum over s would appear to include all positive even integers. Toestablish the stated restriction to s � p+ 1, we note that, from (2.7), we haveBs(R; Fp) = cs(R)F (s�1)p (1);and in view of (3.9) and (2.11) this vanishes for all even s in [2; p� 1]. (Note that the behavior ofFp(t) near t = 0 is not relevant here.)Up to this point, the results coincide with those given by Sidi. (At most, we have given explicitlythe terms in the expansion that are implicit in Sidi's work.) We have modi�ed some proofs in orderto facilitate a subsequent generalization to a multidimensional context.5 Multidimensional Transformation (Regular)When f(x) is regular, the theory surrounding integration over [0; 1]N using the Cartesian productof N one-dimensional Sidi transformations is straightforward. One may allow di�erent meshes miin each component and di�erent p-values, say pi, without seriously disturbing this straightforwardtheory.In two dimensions, the Euler-Maclaurin expansion of a double sum may be simply obtained.One sets 1m2 m�1Xk1=0 m�1Xk2=0 f �x1 + k1m ; x2 + k2m � = 1m m�1Xk=0 s(x1 + km ; x2); (5:1)9



where s(x1; x2) = 1m m�1Xk=0 f �x1; x2 + km � ; (5:2)and applies the one-dimensional Euler-Maclaurin expansion (2.2) to the sum (5.2), treating x1 asan incidental parameter. One then substitutes this expansion into the right of (5.1) and appliesthe Euler-Maclaurin expansion to sum each element of this expansion in the x1-direction.In N dimensions, an iterated procedure of this sort gives1mN Xk2f0;1;:::;m�1gN f �x+ km � = Xjsj�q 1mjsj Z[0;1]N f (s)(t)dNt NYi=1 �si(xi)si!+ 1mq Xjsj=q Z[0;1]N f (s)(t)hs(x;mt)dNt: (5.3)Here jsj = j(s1; : : : ; sN)j := s1 + � � �+ sN andf (s)(t) := @s1+���+sN f@ts11 � � �@tsNN (t1; : : : ; tN ):The representation of the kernels hs(x; t) was studied in [6]. We need only recall that these kernelsare bounded and periodic with period 1 in each ti and thatZ[0;1]N hs(x; t)dNt = 0:Equation (5.3) readily provides an N -dimensional version of Theorem 2.1, but limited to m-copiesof one-point rules Q(f) = f(x). However, one may expand a general quadrature rule Q in terms ofone-point rules, and so obtain the following general theorem.Theorem 5.1 When f(x) together with all partial derivatives of total order q or less are integrableover [0; 1]N, then Q(m)f � If = qXs=1 Bs(Q; f)ms + o(m�q); (5:4)where Bs(Q; f) = Xjsj=sBs(Q; f) = Xjsj=s cs(Q) Z[0;1]N f (s)(x)dNx (5:5)and c(s1;:::;sN )(Q) = Q(x1;:::;xN ) NYi=1 �si(xi)si! ! : (5:6)10



We now apply this theorem to the N -dimensional product R of the m-copy one-dimensionaltrapezoidal rules to the functionFp(t) = f( p(t1);  p(t2); : : : ;  p(tN )) NYi=1 0p(ti): (5:7)We �nd quite generally that, when f(x) and all derivatives of total order q are integrable,R(m)Fp � IFp = qXs=1 Bs(R; Fp)ms + o(m�q); (5:8)where Bs(R; Fp) = X�si=sBs1;s2;:::;sN (R; Fp) (5:9)andBs1 ;s2;:::;sN (R; Fp) = NYi=1 csi(R) (5.10)� Z 10 : : :Z 10 @s@ts11 @ts22 : : : @tsNN (f( p(t1);  p(t2) : : : p(tN )) NYi=1 0p(ti))dNt:Examination of the integral in (5.10) shows that each one-dimensional integration is independentof the others and coincides in form with the one in (3.10) when one treats the other (N�1) variablesti as independent parameters. One may then apply the result (3.10) to each component in turn to�nd Bs1;s2:::sN (R; Fp) = 0 when any si 2 [1; 2p+ 1]; (5:11)giving Bs(R; Fp) = 0 s 2 [1; 2p+ 1]; (5:12)which provides an N -dimensional version of Theorem 3.1 s follows.Theorem 5.2 When p is an integer and f(x) has integrable derivatives of order q over [0; 1]N andFp is given by (5.7) R(m)Fp � If = Xs evens 2 [p+ 1; q] Bs(R; Fp)ms + o(m�q); (5:13)where p = 2p+ 1 or p depending on whether p is even or odd.11



6 Singular Multidimensional IntegrandIn this section we are interested in multidimensional integrands that are smooth except at theorigin. First we consider homogeneous functions and subsequently functions that can be expandedin homogeneous functions. Finally we study the e�ect of such singularities at the origin when Sidi'stransformation is applied.De�nition 6.1 Let R � IRN be open. Then we say that a function f on R is smooth if its partialderivatives f (k) of all orders k 2 INN exist and are continuous on R.If R is not open but is contained in the closure of its interior, then we say that a function f onR is smooth if it is smooth on the interior of R and if the partial derivatives of f of all ordersextend to a continuous function on R.We shall use the following region of [0;1)N :LN [a; b] := f(x1; : : : ; xN) j 8i : xi � 0 and a � maxj xj � bg (6:1)and its limit casesLN(0; b] := [a>0LN [a; b] LN [a;1) := [b>0LN [a; b] LN (0;1) := [b>a>0LN [a; b]: (6:2)These are known as L-shaped regions because, in two dimensions, they resemble the letter L.Several coe�cients given below have integral representations in terms of these L-shaped regions.Of these, some require integrals on UN = LN [1; 1], which may be expressed as a sum of (N � 1)-dimensional integrals as follows:ZUN f(x)dN�1x := NXj=1 Z 10 � � �Z 10 f(x1; : : : ; xj�1; 1; xj+1; : : : ; xN)dx1 � � �dxj�1dxj+1 � � �dxN : (6:3)De�nition 6.2 Let R � IRN be a cone, that is, for all x 2 R and for all � > 0,�x 2 R:A function f(x) on R is homogeneous of degree � when, for all x 2 R and for all � > 0,f(�x) = ��f(x):12



Two-dimensional examples include x 12 ; (x2 + y2)�=2; (x+ 2y)which are homogeneous of degrees 12 , �, and , respectively. In this paper we are only interested inhomogeneous functions that are smooth on LN(0;+1), i.e. singular only at the origin. The last2 functions satisfy this condition, the �rst function x 12 not, because this function is singular alongthe whole line x = 0.In [7] Lyness gives a set of results relating to integrands having homogeneous and logarithmicsingularities at vertices. Some of these are generalizations of Navot's one-dimensional expansion(2.6). A fundamental result is the following theorem.Theorem 6.3 Let f(x) be homogeneous of degree � and smooth on LN(0;1). Then, if �+N 62 INand q > Re(�) +N , Q(m)f = A(Q; f)m�+N + qXs=0 Bs(Q; f)ms + Rq(Q;m; f)mq ; (6:4)where Bs(Q; f) = 1�+N � s Xjsj=s cs(Q) ZUN f (s)(x)dN�1x (6.5)A(Q; f) = Qf � qXs=0Bs(Q; f) + Xjsj=q ZLN [1;1)Qxhs(x; t)f (s)(t)dNt (6.6)Rq(Q;m; f) = �mq���N Xjsj=q ZLN [m;1)Qxhs(x; t)f (s)(t)dNt = O(1): (6.7)When Q is symmetric w.r.t. the center of the cube [0; 1]N , then Bs(Q; f) = 0 for s odd.This was proved �rst by Lyness [7]. A separate proof is given in Appendix A which providesnaturally this form of coe�cient and is valid in the wider context of complex � and Re(�) < �N .We shall now apply this theorem in a context in which the integrand is not homogeneous butadmits an expansion in homogeneous functions.De�nition 6.4 Let f be a smooth function on R � IRN . Let (fj)1j=0 be a sequence of smoothhomogeneous functions on a cone containing R; and let �j denote the degree of fj. Then we saythat f can be expanded in the fj , and we writef � 1Xj=0 fj13



if, for each q 2 IR, the set Jq = fj 2 IN : Re(�j) � qgis �nite and if the remainder rq(x), de�ned byf = Xj2Jq fj + rq (6:8)satis�es the following condition. For each k 2 INN there exists an Mk > 0 such that8x 2 R : jr(k)q (x)j �Mkkxkq�jkj: (6:9)Please note that, in this de�nition and in the sequel, the index q may take any real number and isnot (as it has been) restricted to integer values.Remarks:� If f is smooth in a neighborhood of 0, then the Taylor expansion of f about 0 is an expansionof f in homogeneous functions of degree (j)1j=0.� rq has continuous partial derivatives up to order d�qe � 1 at the origin provided the originbelongs to the closure of R.� If f and g both admit expansions in homogeneous functions, then so do f + g and fg, andthese expansions are obtained by formal addition and multiplication.� When f(x) = h(x)g(x), where h(x) is a smooth homogenous function of degree � on LN(0;1)and g(x) is smooth on [0; 1]N , then f(x) admits an expansion in homogeneous functions ofdegree (�j)1j=0 with �j = � + j.Theorem 6.5 When f(x) on LN(0; 1] admits an expansion in smooth homogeneous functions ofdegree (�j)1j=0 (see De�nition 6.4), whereby �j +N 62 IN; j = 0; 1; : : :, thenQ(m)f 'Xj=0 Aj(Q; f)m�j+N +Xs=0 Bs(Q; f)ms : (6:10)Proof. This is a straightforward consequence of applying Q(m) to each term in (6.8) above andthen using (6.4) for Q(m)fj and (5.4) for Q(m)rq.14



Note that Bs(Q; f) = Xj2Jq Bs(Q; fj) +Bs(Q; rq): (6:11)In the one-dimensional case we showed that when f(x) = x� ( a homogeneous function of degree�), the transformed function Fp(t) = f�( p(t)) 0p(t) has an expansion in terms of homogeneousfunctions of degrees �; �+2; �+4; :::;where � = (�+1)(p+1)�1. That straightforward theorem waseasy to prove. The next theorem states the N -dimensional analogue. This theorem is independentof quadrature. It is valid for all values of � including, for example, large negative integers. Oursomewhat lengthy proof may be found in Appendix B.Theorem 6.6 Let f(x) be a smooth homogeneous function of degree � on LN (0;1). Then,Fp(t1; t2; ; : : : ; tN ) = f( p(t1);  p(t2); : : : ;  p(tN )) 0p(t1) 0p(t2) � � � 0p(tN) (6:12)has an expansion in homogeneous functions of degree (� + 2j)1j=0; where� = (�+N)(p+ 1)�N:We now arrive at the principal results of this paper. These are the appropriate error expansionswhen Sidi's transformation is applied in an N -dimensional context to functions having certainvertex algebraic singularities.Our �rst, and basic, result is Theorem 6.7, which covers the case in which the integrand f(x)is homogeneous. This is an N -dimensional version of Theorem 4.2.Theorem 6.7 Let f(x) be a smooth homogeneous function of degree � on LN(0;1); and let Fp(t)be given by (6.12); then, when � +N 62 ZZ,R(m)Fp ' Xt = 0t even At(R; Fp)m�+N+t +Xs=0 Bs(R; Fp)ms ; (6:13)where � = (�+N)(p+ 1)�N and where, as is conventional, ZZ stands for the set of all integers.Proof. The hypotheses of this theorem coincide with those of Theorem 6.6. It follows directlyfrom that theorem that Fp(t) has an expansion in homogeneous functions of degrees (� + 2j)1j=0.This implies, in turn, that the function Fp(t) satis�es the conditions required of f(x) in Theorem15



6.5 with �j = � + 2j. Setting Q = R in that theorem, we �nd the result (6.10) reduces to therequired result (6.13) above.It will come as no surprise to the reader to learn that, as in the case of a regular integrand,many terms Bs(R; Fp) in the expansion (6.13) vanish identically.Theorem 6.8 Under the hypotheses of Theorem 6.7 we haveBs(R; Fp) = 0; s is odd or s 2 [1; p]:where, as before, p denotes either 2p+ 1 or p depending on whether p is even or odd.In Section 8, we shall treat families of homogeneous functions depending analytically on a pa-rameter. For example, when f(x) satis�es the hypotheses of Theorems 6.6 and 6.7, the functionfz(x) = kxkzf(x) is a smooth homogeneous function of degree �z = � + z. By Theorem 6.6,the transformed function Fz;p of fz then admits an expansion in homogeneous functions of degrees(�z+2j)1j=0, with �z = �+(p+1)z. The proof of Theorem 6.8 relies on Theorem 8.5 and Theorem 8.4below. These theorems justify the extremely plausible suggestion that the expansion coe�cientsBs(R; Fz;p) depend analytically on the parameter z (in the region of de�nition �z +N 62 ZZ).Proof of Theorem 6.8. Fix an s that is odd or that does not exceed p. Let fz and Fz;p be as inthe discussion above. Then, for su�ciently large Re(z), the partial derivatives of Fz;p(x) of order sare continuous on [0; 1]N . We can then rely on Theorem 5.2 to state that Bs(R; Fz;p) vanishes forsu�ciently large Re(z). But, as Bs(R; Fz;p) depends analytically on z in the region �z + N 62 ZZ,it must vanish for all these z and in particular for z = 0.When a smooth function f on LN (0; 1] is not homogeneous but admits an expansion in smoothhomogeneous functions, then the transformed function Fp is the sum of the transformed functionson the right-hand side of (6.8). The expansion of R(m)Fp is then obtained by applying Theorems 6.7and 6.8 to the fj and (5.8) to the remainder rq.We now state the results of carrying out this procedure in a standard case, where f(x) =f�(x)g(x) and, as before, f�(x) is a smooth homogeneous function of degree � and g(x) is C1[0; 1]N .16



Using a multivariate Maclaurin expansion, we may expand g(x) in a sequence of smooth homoge-neous functions of nonnegative integer degree, providing an expansion for f(x) comprising terms ofhomogeneous degree �(j) = �+ j. Each of these terms gives rise to a di�erent function Fp, havingan individual value of � and a corresponding expansion. Since successive values of � di�er by oneunit, the corresponding values of � di�er by p + 1 units. Applying Theorems 6.7 and 6.8 to eachof these functions in turn, one �nds the following.Theorem 6.9 When f(x) = f�(x)g(x) and f�(x) is a smooth homogeneous function of degree �on LN (0;1) and g(x) is C1[0; 1]N, thenR(m)Fp ' If +Xt2T At(R; Fp)m�+N+t +Xs2S Bs(R; Fp)ms ; (6:14)where � = (�+N)(p+ 1)�N and the integer sets S and T arep odd, : S = f all even s � p+ 1g : T = f all even t � 0gp even, : S = f all even s � 2p+ 2g : T = f all t � 0 except odd t 2 [1; p� 1]g:If g(x) is even, i.e., if its Taylor expansion about the origin involves only monomials of even degree,then we have for even p the stronger resultS = f all even s � 2p+ 2g : T = f all even t � 0g:The reader will notice that the nature of these expansions is una�ected when a general even functiong is replaced by g(x) = 1. In these cases, the expansion with p even requires fewer terms than withp odd. However, with general g(x); this preference may be reversed. Ultimately, with p odd, twoeven sequences appear, while with p even, there is one even and one full sequence.7 ExamplesThe results of theorems 6.3, 6.7 and 6.8 are illustrated for the homogeneous function h(x; y) =(x+ y)�3=4 and the result of theorem 6.9 for the function f(x; y) = h(x; y)g(x; y) whereg(x; y) = exp �x+ y2 �2! :17



Note that g(x; y) is even.We present in Tables 1 and 2 below the Romberg (extrapolation) tables containing quadratureerrors for respectively Sidi's p = 0; 2 and 4 transformations applied to h and f . The number ofpanels, m, used in the computations is 8, 16, 32, 64 and 128. The early powers of 1=m in theasymptotic error expansion are as follows:� for p = 0 and the integrand h: 1.25, 2, 4, 6 and 8;� for p = 0 and the integrand f : 1.25, 2, 3.25, 4 and 5.25;� for p = 2 and both integrands : 3.75, 5.75, 6, 7.75 and 8;� for p = 4 and both integrands : 6.25, 8.25, 10, 10.25 and 12.The integrals of h(x; y) and f(x; y) over [0; 1]2 are respectivelyIh = (32=5)(21=4� 1) = 1:210925536017414827;If = 1:528421461141788355:
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8 Integrands depending Analytically on a ParameterMany simple homogeneous functions f(x) are naturally embedded in a family of homogeneousfunctions that depend analytically on the degree z. Examples includekxkz; j�x1 + �x2jz :Obviously, it is always possible to embed a homogeneous f(x) in such a family arti�cially. Forexample, when f(x) is of homogeneous degree �, one such family comprises the functions f(x)kxkz.The degree of a member of this family is �(z) = � + z:In this section we study the analytic dependence on the parameter z of the terms appearing inthe asymptotic expansion of copy rules. This study is useful for two reasons. First, the previouslyderived asymptotic expansions were valid only when the degrees of the homogeneous functionswere not exceptional, that is not integer. Knowing the analytic behavior of the terms of the errorexpansion about the exceptional degrees, we may be able to obtain the error expansion for theexceptional degrees as a limit case. Second, it turns out that explicit expressions of the termsof the expansion may be simple for certain values of the parameter and complicated otherwise.Instead of working with these complicated expressions, it is often easier to interpret them as theanalytic continuation of the simple expressions. The usefulness of this interpretation has appearedin Theorem 5.1, where the vanishing of some terms in the expansion was established without relyingon the complicated explicit expressions of these terms.We need a rigorous de�nition of analytic families of smooth functions.De�nition 8.1 Let 
 be an open subset of C, and let fz(x) be a family of smooth functions onR � IRn parametrized by z 2 
. Then we say that fz(x) is an analytic family of smoothfunctions on R if all its partial derivatives w.r.t. x of all orders f (k)z (x) are continuous on 
�Rand if for each �xed x 2 R, f (k)z (x) is an analytic function of z on 
.The key result of this section is the following somewhat trivial application of this de�nition to theresults of Theorem 6.3.Theorem 8.2 Let fz(x) (z 2 
) be an analytic family of smooth functions on LN (0;1), eachmember of which is homogeneous of degree �(z), where �(z) depends analytically on z. Let s be19



a positive integer. Then there exists an analytic function Fs(z) on 
 such that the coe�cientBs(Q; fz) in (6.5) satis�es Bs(Q; fz) = Fs(z)�(z) +N � s (8:1)when �(z) +N 62 IN .Proof. For all functions satisfying the hypothesis of the theorem, each term in the summationin (6.5) is analytic in z for all z 2 
.The use of analytic families also provides an N -dimensional analogue of formula (2.8) for thecoe�cient A(Q; f) in Theorem 6.3. Let f be a homogeneous function of degree �, let fz(x) =kxkzf(x), and, for simplicity, let Q be a one-point rule, say, Qf = f(t). Then, when Re(�+z)+N <0, we have by (6.4) that A(Q; fz) = limm!1m�+z+NQ(m)(fz)= limm!1 Xk2f0;1;:::;m�1gN fz(t+ k)= Xk2INN fz(t+ k): (8.2)By (6.6), the sum (8.2) admits a meromorphic extension in z with possible simple poles at z =�� � N + s, s 2 IN . For a general Q, A(Q; f) is thus equal to Q applied to the meromorphicextension of (8.2) at z = 0. This result was �rst derived in [12, 13], together with correspondingresults for more general singularities.The behavior of the coe�cients Bs(Q; f) and A(Q; f) in Theorem 6.3 near the poles is notwithout interest. Suppose �(z0) +N = s 2 IN but �(z) +N 6= s for z 6= z0 but close to z0. Thenthe only terms in (6.4) that are not analytic at z0 are the A-term and the Bs-term, but it is readilyveri�ed that their sum has a limit as z ! z0. Results given in [7] and [12, 13] show that this limitis of the form limz!z0 A(Q; fz)m�(z)+N + Bs(Q; fz)ms = C(Q; fz0) logm+D(Q; fz0)ms :The expansion in the exceptional case �+N 2 IN is simply the limit of the expansion in the regularcase � +N 62 IN . 20



The remainder of this section is devoted to establishing the analyticity of the coe�cients Bs ina wider context. This comprises a somewhat pedestrian extension of de�nitions and results. Thenext de�nition extends De�nition 6.4 to analytic families of functions.De�nition 8.3 Let fz be an analytic family of smooth functions on R � IRN where z runs through
. Let (fj;z)1j=0 be a sequence of analytic families of smooth homogeneous functions on a conecontaining R, and let �j(z) denote the degree of fj;z. Then we say that fz can be expanded in thefj;z analytically in z, and we write fz � 1Xj=0 fj;zif, for each q 2 IR and each compact subset K of 
, the setJq;K = fj 2 IN : Re(�j(z)) � q for some z 2 Kgis �nite and if the remainder rq;K;z(x), de�ned byfz = Xj2Jq;K fj;z + rq;K;z (8:3)satis�es the following condition. For each k 2 INN there exists an Mk > 0 such that8x 2 R; 8z 2 K : jr(k)q;K;z(x)j �Mkkxkq�jkj: (8:4)Theorem 8.4 Let fz(x) (z 2 
) be an analytic family of smooth functions on LN(0; 1] that can beexpanded in homogeneous functions of degrees (�j(z))1j=0 as in De�nition 8.3. Let s be a positiveinteger. Then there exists a sequence of analytic functions (Fj;s(z))1j=0 on 
 such that for all q > sand all compact subsets K of 
, the coe�cient Bs(Q; fz) in (6.10) admits the expansionBs(Q; fz) = Xj2Jq;K Fj;s(z)�j(z) +N � s + Rq;K;s(z); (8:5)when �j(z)+N 62 IN for all j 2 Jq;K. Here Rq;K;s(z) is a continuous function on K that is analyticin the interior of K.Proof. Applying (6.11) to fz given in (8.3), we �ndBs(Q; fz) = Xj2Jq;K Bs(Q; fj;z) + Bs(Q; rq;K;z): (8:6)21



By (6.5), or better, by Theorem 8.2 there exist analytic functions Fj;s(z) on 
 such thatBs(Q; fj;z) = Fj;s(z)�j(z) +N � s; (8:7)when �j(z) + N 62 IN . By (5.5), Rq;K;s(z) = Bs(Q; rq;K;z) (z 2 K) can be expressed as a linearcombination of the integrals on the cube [0; 1]N of the partial derivatives of order s of rq;K;z(x).We now consider an approximation to Rq;K;s(z). This is R�;q;K;s(z) (� > 0), an expression obtainedfrom (5.5) by replacing these integrals on the cube by integrals on the region LN [�; 1]. Since thepartial derivatives of rq;K;z(x) depend analytically on z when x is restricted to LN [�; 1], we havethat R�;q;K;s(z) is an analytic function on 
. By (8.4), as � ! 0+, R�;q;K;s(z) converges to Rq;K;s(z),uniformly for z 2 K. Hence, since Rq;K;s(z) is the uniform limit of continuous functions on K, itis itself continuous on K, and, since it is the uniform limit of analytic functions on the interior ofK, it is itself analytic on the interior of K.Note that the exceptional case, �j + N 2 IN for some j 2 IN , not considered in Theorem 6.5,can be treated as a limit case of that theorem.Theorem 6.6 can also be extended to the context of analytic families.Theorem 8.5 If in Theorem 6.6 f(x) depends analytically on a parameter, then the expansionof (6.12) also depends analytically on that parameter.The proof of this theorem is given in Appendix B as a supplement to the proof of Theorem 6.6.A Proof of Theorem 6.3 and An Associated LemmaTheorem 6.3 speci�es the quadrature error expansion for a homogeneous integrand function with avertex singularity. The coe�cients are in terms of integrals over L-shaped regions de�ned in (6.1)and over UN de�ned in (6.3).The proof of Theorem 6.3 relies on the following lemma.Lemma A.1 Let f(x) be a homogeneous function of degree � 2 C that is continuous on LN(0;1).Then, if �+N 6= 0 and 0 < a < b,ZLN [a;b] f(x)dNx = b�+N � a�+N�+N ZUN f(x)dN�1x:22



Proof. We subdivide LN [a; b] in N partsLN [a; b] = N[j=1LNj [a; b];whereLNj [a; b] = f(x1; : : : ; xN) 2 LN [a; b] : xj = maxfx1; : : : ; xNgg= ft(u1; : : : ; uj�1; 1; uj+1; : : : ; uN) : t 2 [a; b]; u1; : : : ; uj�1; uj+1; : : : ; uN 2 [0; 1]g:Then we have ZLN [a;b] f(x)dNx = NXj=1 ZLNj [a;b] f(x)dNx:The j th integral in this sum is computed by the change of variable xj = t and xk = tuk (k 6= j).ZLNj [a;b] f(x)dNx= Z ba Z 10 � � �Z 10 f(tu1; : : : ; tuj�1; t; tuj+1; : : : ; tuN)tN�1dtdu1 � � �duj�1duj+1 � � �duN= Z ba t�+N�1dt Z 10 � � �Z 10 f(u1; : : : ; uj�1; 1; uj+1; : : : ; uN)du1 � � �duj�1duj+1 � � �duN= b�+N � a�+N�+N Z 10 � � �Z 10 f(u1; : : : ; uj�1; 1; uj+1; : : : ; uN)du1 � � �duj�1duj+1 � � �duN :Summation over j completes the proof.Proof of Theorem 6.3. As f is homogeneous of degree �, we have1mN Xk2f0;1;:::;m�1gN f �x+ km � = 1m�+N f(x) + 1m�+N X0 6=k2f0;1;:::;m�1gN fk(x); (A:1)where fk(x) = f(k + x). As fk is smooth on [0; 1]N , it can be replaced by its Euler-Maclaurinexpansion (5.3) (with m = 1)fk(x) = Xjsj�q Z[0;1]N f (s)(t+ k)dNt NYi=1 �si(xi)si! + Xjsj=q Z[0;1]N f (s)(t+ k)hs(x; t+ k)dNt:Here we have used the periodicity of the kernel hs. LN [1; m] may be subdivided into mN identicalunit cubes, aligned with the axes. We denote the cube [k1; k1+ 1]� [k2; k2+ 1]� � � �� [kN ; kN + 1]23



by k+ [0; 1]N ; summation over k yieldsX0 6=k2f0;1;:::;m�1gN fk(x) = Xjsj�q ZLN [1;m] f (s)(t)dNt NYi=1 �si(xi)si! (A.2)+ Xjsj=q ZLN [1;m] f (s)(t)hs(x; t)dNt: (A.3)The integrand f (s) in (A.2) is homogeneous of degree � � jsj. Therefore, by Lemma A.1, we canwrite ZLN [1;m] f (s)(t)dNt = m��jsj+N � 1�� jsj+N ZUN f (s)(t)dNt: (A:4)Each integral over LN [1; m] in (A.3) may be expressed as the di�erence of the integral over LN [1;1)and the integral over LN [m;1). Separating the terms with di�erent asymptotic behavior w.r.t.m, and applying Q to the sum (A.1), gives the relation (6.4).To bound jRq(Q;m; f)j, we use the fact that jQxhs(x; t)j is bounded in t, say by Mq, and thatjf (s)j is homogeneous of degree Re(�)� q. This givesjRq(Q;m; f)j � mq�Re(�)�N Xjsj=qMq ZLN [m;1) jf (s)(t)jdNt= Mqq � Re(�)�N Xjsj=q ZUN jf (s)(t)jdN�1t:B Proof of Theorem 6.6 and Theorem 8.5These concern the expansion of Fp(t) when f(x) is homogeneous of degree �: We de�neg(x1; : : : ; xN) = f(xp+11 ; : : : ; xp+1N ): (B:1)Then g is a smooth homogeneous function of degree  = (p+ 1)� on [0;1)N n f0g. Obviously, wehave f( p(t1); : : : ;  p(tN)) = g(�(t1); : : : ; �(tN)); (B:2)where �(t) = ( p(t)) 1p+1 : (B:3)24



This function � : [0; 1]! [0; 1] is smooth, and there exist constants b > a > 0 such thatat � �(t) � bt: (B:4)We can decompose �(t) as �(t) = ct+ t3h(t); (B:5)where a � c � b and h(t) is a smooth function with an expansion in even powers of t.We will now show that g(�(t1); : : : ; �(tN)) admits an expansion in homogeneous functions ofdegrees ( + 2j)1j=0.Fix an arbitrary real number q, and choose p 2 IN su�ciently large so thatRe() + 2p > q: (B:6)We have the Taylor expansiong(x+ y) = p�1Xk=0Hk(g;x;y)+Rp(g;x;y): (B:7)Here Hk(g;x;y) = Xjkj=k g(k)(x)yk11 � � �ykNNk1! � � �kN ! (B:8)and Rp(g;x;y) = Xjkj=p g(k)(x+ �y)yk11 � � �ykNNk1! � � �kN ! (B:9)for some � 2 (0; 1). In this Taylor expansion, we substitutexj = ctj ; yj = t3jh(tj): (B:10)This gives, from (B.5),g(�(t1); : : : ; �(tN)) = p�1Xk=0Hk(g; ct; (t31h(t1); : : : ; t3Nh(tN ))) + Rp(g; ct; (t31h(t1); : : : ; t3Nh(tN ))):(B:11)Here Hk(g; ct; (t31h(t1); : : : ; t3Nh(tN))) = Xjkj=k g(k)(ct)t3k11 � � � t3kNN h(t1)k1 � � �h(tN )kNk1! � � �kN ! : (B:12)25



Each term in this sum is a homogeneous function of degree  � k + 3k multiplied with a smoothfunction that admits a Taylor expansion in homogeneous polynomials of even degree. Hence, (B.12)admits an expansion in smooth homogeneous functions of degrees (+2k+2j)1j=0. We now searcha bound for the remainderRp(g; ct; (t31h(t1); : : : ; t3Nh(tN ))) =Xjkj=p g(k)(ct1 + �t31h(t1); : : : ; ctN + �t3Nh(tN ))t3k11 � � � t3kNN h(t1)k1 � � �h(tN )kNk1! � � �kN ! : (B.13)Let Gp be su�ciently large so that for all x 2 [0;1)N with kxk = 1 and all k 2 INN with jkj � p,we have jg(k)(x)j � Gp: (B:14)Then we have for jkj = p thatjg(k)(ct1+�t31h(t1); : : : ; ctN+�t3Nh(tN ))j � Gpk(ct1+�t31h(t1); : : : ; ctN+�t3Nh(tN ))kRe()�p: (B:15)By (B.4), we have that at � ct+ �t3h(t) = (1� �)ct+ ��(t) � bt;whencejg(k)(ct1 + �t31h(t1); : : : ; ctN + �t3Nh(tN ))j � GpktkRe()�pmaxfaRe()�p; bRe()�pg: (B:16)Taking the modulus of (B.13) and substituting (B.16) in it, we havejRp(g; ct; (t31h(t1); : : : ; t3Nh(tN )))j� GpktkRe()�pmaxfaRe()�p; bRe()�pgktk3p (jh1(t1)j+ � � �+ jhN(tN )j)pp! (B.17)� Mktkq (B.18)for some M > 0. To obtain similar bounds for the partial derivatives of the remainder (B.13), weobserve that we have the following rules of di�erentiation:@@xjHk(g;x;y) = Hk( @g@xj ;x;y)@@yjHk(g;x;y) = Hk�1( @g@xj ;x;y) (k > 0);26



whence, using (B.7), also @@xjRp(g;x;y) = Rp( @g@xj ;x;y)@@yjRp(g;x;y) = Rp�1( @g@xj ;x;y) (p > 0):By induction on s, we now show that each partial derivative of order s of (B.13) can be written asa �nite sum of terms of the formRp�l(~g; ct; (t31h(t1); : : : ; t3Nh(tN )))�(t)�(t); (B:19)where ~g is a partial derivative of g of order k+l, �(t) is a homogeneous polynomial of degree 2l�m,and �(t) is smooth. k, l, and m are nonnegative, andk + l +m � s: (B:20)For s = 0 this obviously holds. It remains to check that di�erentiating (B.19) w.r.t. tj gives a �nitesum of terms of the same type as (B.19) but with s incremented with 1. Di�erentiating the �rstfactor of (B.19) w.r.t. tj gives by the chain rule 2 terms to which the above rules of di�erentiationcan be applied. The derivative of (B.19) w.r.t. tj consists of the sum of the following four terms,the �rst two of which are are produced by di�erentiating the �rst factor of (B.19):Rp�l( @~g@xj ; ct; (t31h(t1); : : : ; t3Nh(tN )))c�(t)�(t);which is of the same type as (B.19) but with k and s incremented with 1,Rp�l�1( @~g@xj ; ct; (t31h(t1); : : : ; t3Nh(tN))) �t2j�(t)� �(3h(tj) + t1h0(tj))�(t)� ;which is of the same type as (B.19) but with l and s incremented with 1,Rp�l(~g; ct; (t31h(t1); : : : ; t3Nh(tN))) @�@tj (t)�(t);which is of the same type as (B.19) but with m and s incremented with 1, and �nallyRp�l(~g; ct; (t31h(t1); : : : ; t3Nh(tN)))�(t)@�@tj (t);which is of the same type as (B.19) with s incremented with 1.27



Using (B.17), we can bound the modulus of (B.19) byktk(Re()�(k+l))+2(p�l)ktk2l�m = ktkRe()+2p�k�l�mmultiplied by a constant factor, and this can be further bounded by Msktkq�s for some Ms > 0.We thus have shown that the remainder (B.13) and its partial derivatives are suitably bounded.We conclude that f( p(t1); : : : ;  p(tN )) = g(�(t1); : : : ; �(tN)) admits an expansion in smooth ho-mogeneous functions of degrees (+2j)1j=0. The desired expansion for Fp(t1; : : : ; tN) is establishedby multiplying this expansion with the expansion of the  0p(tj). This completes the proof of Theo-rem 6.6.Now consider the case when f depends analytically on a parameter z 2 
. Then clearly galso depends analytically on that parameter, and both � and  are analytic functions of z. It isimmediate that the expansion of (B.12) then analytically depends on z. Let K be an arbitrarycompact subset of 
. Then we can choose p su�ciently large so that (B.6) holds for all z 2 K,and we can also choose Gp and M su�ciently large so that (B.14) and (B.18) hold for all z 2 K.Observe that in (B.19), the functions �(t) and �(t) are independent of z. Therefore, it is readilyveri�ed that the constantMs can be chosen so that the bound Msktkq�s for the modulus of (B.19)holds for all z 2 K. This shows that the expansion of g(�(t1); : : : ; �(tN)) depends analytically onz and thus also the expansion of Fp(t1; : : : ; tN). This completes the proof of Theorem 8.5References[1] F. L. Bauer, H. Rutishauser, and E. Stiefel. New aspects in numerical quadrature, Proc. Symp.Appl. Math. 15, American Mathematical Society, Providence, R.I., 1963, pp. 199{218.[2] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, London,1984.[3] M. Iri, S. Moriguti and Y. Takasawa, On a certain quadrature formula, Kokyuroku, Res. Inst.Sci. Kyoto 91: 82{118, 1970 (in Japanese). English translation in J. Comp. Appl. Math., 17,pp.3-20, 1987.[4] N. M. Korobov, Number-Theoretic Methods of Approximate Analysis, GIFL, Moscow (1963)(in Russian). 28



[5] D.P. Laurie, Periodizing Transformations for Numerical Integration, JCAM, 66: 337{344, 1996.[6] J. N. Lyness and J. J. McHugh, On the remainder term in the N -dimensional Euler-Maclaurinexpansion, Numer. Math., 15: 333{334, 1970.[7] J. N. Lyness, An error expansion for N -dimensional quadrature with an integrand functionsingular at a point. Math. Comp., 113: 1{23, 1976.[8] I. Navot, An extension of the Euler-Maclaurin summation formula to functions with a branchsingularity, J. Math. and Phys., 40, 271{276, 1961.[9] W. Romberg, Vereinfachte numerische Integration, Norske Vid. Selsk. Forh. (Trondheim) 28,pp.30{36, 1955.[10] A. Sidi, A new variable transformation for numerical integration, Numerical Integration IV,(H. Br�ass and B. H�ammerlin, eds.), Birkh�auser Verlag, Basel, 1993, pp. 359-373.[11] T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math. Comp.,18: 245{253, 1964.[12] P. Verlinden, Cubature Formulas and Asymptotic Expansions, thesis, Katholieke UniversiteitLeuven, 1993.[13] P. Verlinden and A. Haegemans, An error expansion for cubature with an integrand withhomogeneous boundary singularities, Numer. Math., 65: 383{406, 1993.
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Table 1: Errors in extrapolation table for the integrand hp = 0 m = 8 -0.2748e-01 0.1078e-02m = 16 -0.1093e-01 -0.3781e-060.2692e-03 -0.1792e-09m = 32 -0.4439e-02 -0.2380e-07 -0.3220e-130.6728e-04 -0.2833e-11m = 64 -0.1827e-02 -0.1490e-080.1682e-04m = 128 -0.7586e-03p = 2 m = 8 -0.3624e-03 0.3229e-05m = 16 -0.2395e-04 0.8779e-100.6009e-07 -0.1061e-10m = 32 -0.1724e-05 -0.9076e-11 -0.2465e-130.1108e-08 -0.7394e-13m = 64 -0.1271e-06 -0.2145e-120.2037e-10m = 128 -0.9430e-08p = 4 m = 8 0.3522e-03 0.2017e-05m = 16 0.6619e-05 0.5179e-080.1179e-07 0.3499e-11m = 32 0.9859e-07 0.8553e-11 0.1332e-140.4725e-10 0.4441e-14m = 64 0.1342e-08 0.1266De130.1679e-12m = 128 0.1780e-10 30



Table 2: Errors in extrapolation table for the integrand f .p = 0 m = 8 -0.2630e-01 0.7290e-03m = 16 -0.1063e-01 -0.7695e-070.1822e-03 0.1187e-07m = 32 -0.4365e-02 0.2537e-08 0.1536e-100.4555e-04 0.7565e-09m = 64 -0.1809e-02 0.9436e-090.1139e-04m = 128 -0.7540e-03p = 2 m = 8 -0.3605e-03 0.3103e-05m = 16 -0.2392e-04 0.6257e-090.5827e-07 -0.1302e-10m = 32 -0.1724e-05 -0.3044e-11 -0.2354e-130.1080e-08 -0.8371e-13m = 64 -0.1271e-06 -0.1301e-120.1994e-10m = 128 -0.9430e-08p = 4 m = 8 0.3527e-03 0.2011e-05m = 16 0.6619e-05 0.5197e-080.1179e-07 0.3486e-11m = 32 0.9859e-07 0.8558e-11 -0.8882e-150.4725e-10 0.1998e-14m = 64 0.1342e-08 0.1021e-130.1654e-12m = 128 0.1780e-10 31


