
AN ENERGY-MINIMIZING INTERPOLATION FOR ROBUSTMULTIGRID METHODSW. L. WAN �, TONY F. CHAN y AND BARRY SMITH zAbstract. We propose a robust interpolation for multigrid based on the concepts of energyminimization and approximation. The formulation is general; it can be applied to any dimensions.The analysis for one dimension proves that the convergence rate of the resulting multigrid method isindependent of the coe�cient of the underlying PDE, in addition to being independent of the mesh size.We demonstrate numerically the e�ectiveness of the multigrid method in two dimensions by applyingit to a discontinuous coe�cient problem and an oscillatory coe�cient problem. We also show using aone-dimensional Helmholtz problem that the energy minimization principle can be applied to solvingelliptic problems that are not positive de�nite.1. Introduction. Multigrid methods are widely used as e�cient solvers for second order ellipticpartial di�erential equations (PDEs) because of their often optimal convergence behavior; that is,their convergence rate is independent of the mesh size. Optimal theory can be found, for example,in [2, 3, 4, 20, 27, 31, 38, 39]. However, the convergence rate may depend on the nature of thecoe�cients in the PDE. Typically, the convergence deteriorates as the coe�cients become rougher.Speci�cally, if the coe�cients are anisotropic [20], have large jumps [1, 5, 10, 11] or are highly oscillatory[17, 26, 34], standard multigrid methods will converge very slowly. Special techniques such as lineGauss-Seidel/block smoothing [5], semi-coarsening [12, 13, 32], algebraic multigrid [6, 28, 30, 33],frequency decomposition [14, 21, 34], and homogenization [17, 26] are used to handle some of thesecases. In this paper, we study the design of multigrid methods from the energy minimization point ofview, which gives powerful insight into the design of robust multigrid methods.The success of multigrid hinges on the choice of the coarse grid points, the smoothing procedure,the interpolation operators, and the coarser grid discretization. In standard multigrid, full coarsening,Jacobi or Gauss-Seidel smoothing, and linear interpolation are usually used. Classical convergencetheory shows that these simple ingredients are enough to achieve optimal convergence for smoothcoe�cient problems. In general, however, these choices may lead to slow convergence. In one dimension,to remedy the situation, a more robust interpolation [20, 28, 36] can be used. It is obtained by solvinglocal homogeneous PDEs, which are equivalent to minimizing the energy of the coarse grid basisfunctions.The extension of this approach to higher dimensions is not obvious. Nonetheless, many attempts[1, 10, 20, 19, 24, 29, 36] have been made to set up similar local PDEs for de�ning a robust interpolation.In place of setting up PDEs, we consider an equivalent minimization formulation and derive a so-calledenergy-minimizing interpolation with special emphasis on its stability and approximation properties,which are essential for optimal convergence. This approach to determining appropriate interpolationoperators has also been used for iterative substructuring [15]. It will be made more precise in Section3. � Department of Mathematics, University California at Los Angeles, Los Angeles, CA 90095-1555.Email: wlwan@math.ucla.edu. The author has been partially supported by the grants listed under thesecond author, under the auspices of the U.S. Department of Energy by Lawrence Livermore NationalLaboratory under Contract W07405-Eng-48, and by the Alfred P. Sloan Foundation as a DoctoralDissertation Fellow.y Department of Mathematics, University California at Los Angeles, Los Angeles, CA 90095-1555.Email: chan@math.ucla.edu. This author has been partially supported by the NSF under ContractASC-9720257.z Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.Email: bsmith@mcs.anl.gov. This work is supported by the Mathematical, Information, and Compu-tational Sciences Division subprogram of the O�ce of Computational and Technology Research, U.S.Department of Energy, under Contract W-31-109-Eng-38.1



Although it is well known that the one-dimensional interpolation mentioned above will produce arobust multigrid method, a convergence analysis has not been given in the literature. In Section 4, weanalyze the one-dimensional method derived from the energy-minimizing interpolation. We prove thatthe convergence rate is independent of the coe�cient of the underlying PDE, in addition to the meshsize. In Section 5, we give numerical examples mainly in two dimensions, including a discontinuouscoe�cient problem, an oscillatory coe�cient problem, and a Helmholtz problem. Finally, we summarizeour experience by several remarks in Section 6.We now set up notation to be used in the following sections. Let V = V h, and let V1 � V2 �� � � � VJ = V denote a sequence of nested subspaces of V de�ned by the span of nodal basis functions,f�ki gnki=1; k = 1; : : : ; J , at level k. The operator A : V ! V is self-adjoint and induces the A-innerproduct: (�; �)A � (A�; �). Also, we de�ne Ai : Vi ! Vi by (Aiui; vi) = (Aui; vi); ui; vi 2 Vi. Cor-respondingly, we have Ri : Vi ! Vi, which is an approximate inverse of Ai. Let Qi : V ! Vi andPi : V ! Vi be the projection operators with respect to the L2 and the A inner product, respectively.In the following analysis, the generic constant C is independent of the mesh size h.2. Stability and Approximation Property. Before we explain the formulation of the energy-minimizing interpolation, we �rst discuss our motivation from the classical results of multigrid anddomain decomposition methods. Two key properties, stability and approximation, must be satis�edby the coarse subspaces and the smoothers [20] in order to have optimal convergence results. These twoterms occur frequently in the literature but often appear in slightly di�erent forms. For example, in thesubspace correction framework [39], these two properties are built into the estimate of a constant K0,which in turn is used to prove optimal convergence together with another constant K1. The de�nitionsof K0 and K1 are as follows:K0: For any v 2 V , there exists a decomposition v =PJi=1 vi for vi 2 Vi such thatJXi=1(R�1i vi; vi) � K0(Av; v);(1)where Ri is usually known as the smoother in the multigrid context.K1: For any S � f1; : : : ; Jg � f1; : : : ; Jg and ui; vi 2 V for i = 1; : : : ; J ,X(i;j)2S(Tiui; Tjuj)A � K1( JXi=1(Tiui; ui)A) 12 ( JXj=1(Tjvj; vj)A) 12 ;(2)where Ti = RiAiPi.Theorem 2.1. Let EJ be the iteration matrix given by the V-cycle multigrid, namely,u� uk+1 = EJ (u� uk);where u is the exact solution and uk and uk+1 are two consecutive multigrid iterates. ThenEJ = (I � TJ )(I � TJ�1) � � � (I � T1);and kEJk2A � 1� 2� !1K0(1 +K1)2 ;where !1 = max1�i�J �(RiAi).Proof. See [39].By Theorem 2.1, the convergence rate can be improved by producing a smaller K0 or K1. Inthis paper, we propose an interpolation that will potentially decrease the size of the constant K0 byreducing its dependence on the coe�cients of the underlying elliptic PDE.2



As shown in [39], the estimate of K0 relies on two inequalities:k ~Q1vk2A + JXk=2k( ~Qk � ~Qk�1)vk2A � C0kvk2A;(3) k( ~Qk � ~Qk�1)vk � C1hkk ~QkvkA; 8k > 1;(4)where ~Qk : V ! Vk is any linear operator onto Vk.Inequality (3) appears in the Partition Lemma, which is well known in the domain decompositionliterature [16, 31]. In the multigrid context, however, this inequality typically is used only implicitly.Intuitively speaking, (3) says that given any v 2 V , we must be able to decompose v into the subspacessuch that the total energy of all the pieces vi is bounded by a small constant factor of the originalenergy of v. Besides (3), we also require that functions on the coarser grids approximate those on the�ner grids to at least �rst order accuracy in hk. This requirement is quanti�ed by the inequality (4).If we have both (3) and (4), we can bound K0 by a constant independent of the mesh size h.Lemma 2.2. Let !0 = min2�i�J (�(Ai)�min(Ri)). Suppose (3) and (4) are satis�ed. ThenK0 � C!0 ;where C is a constant independent of the mesh size.Proof. See the appendix.To summarize, if the stability and the approximation properties (3) and (4) are satis�ed, optimalconvergence follows. Thus, these two properties characterize a good coarse subspace. It is interestingto note that linear �nite element subspaces are not compulsory for the Vk, though they are typicallyused or assumed in the classical analysis of multigrid methods. Moreover, the ~Qk in the approximationinequality (4) need not necessarily be the L2 projections Qk. Linear �nite element and L2 projec-tions are simply two convenient and powerful tools for showing the stability and the approximationproperties, but are not necessarily the only choice.Optimal convergence, however, need not mean rapid convergence. The reason is that, in general,K0 will depend on the PDE coe�cients. The implicit dependence of the coe�cient of the underlyingPDE in the convergence rate may cause the multigrid method to converge very slowly, for example,when the coe�cients are not smooth. In the following section, we construct coarse subspaces whosebasis functions are, in general, di�erent from piecewise linear �nite elements but possess the stabilityand the approximation properties. In addition, the resulting multigrid algorithm is less sensitive tothe coe�cients than is the standard multigrid method. Furthermore, we show that these two conceptslead to an optimal convergence for a one-dimensional multigrid method, and we illustrate how theymotivate a two-dimensional multigrid algorithm.3. Energy-minimizing Interpolation. In this section, we introduce the energy minimizationapproach to constructing the interpolation. The resulting formulation in the one-dimensional caseis well known in the literature [20, 28, 36]. We explain the energy-minimizing interpolation in onedimension �rst and then in two dimensions.3.1. One Dimension. We consider the following model problem:� ddxa(x) ddxu(x) = f in (0,1)(5) u = 0 at x = 0 and x = 1;where a(x) and f(x) are integrable and a(x) is uniformly positive.Let H1(0; 1) be the standard Sobolev space on the interval [0; 1] and H10 (0; 1) its subspace whosefunctions vanish at x = 0 and x = 1. Then the variational formulation of (5) is to �nd u 2 H10 (0; 1)such that a(u; v) = (f; v) 8v 2 H10 (0; 1);3



where a(u; v) = Z 10 a(x)u0(x)v0(x)dx; (f; v) = Z 10 f(x)v(x)dx:Given a uniform grid with grid size h = 1=n, let xhj = jh; j = 0; : : : ; n: De�ne the �ne grid linear �niteelement space to beV h = fvh 2 H10 (0; 1) : vh is linear on [xhj ; xhj+1]; j = 0; : : : ; n� 1g;and denote the set of nodal basis by f�hj gnj=1. The �nite element approximation to the solution of (5)is the function uh 2 V h, so that a(uh; vh) = (f; vh) 8vh 2 V h:(6)Let uh =Pnj=1 �j�hj and f =Pnj=1 �j�hj . Then (6) is equivalent to a linear system:Ah� =Mhb;where � = (�1; : : : ; �n)T , b = (�1; : : : ; �n)T , Ah is the sti�ness matrix, and Mh is the mass matrix.De�ne ~Ah to be the augmented sti�ness matrix that includes also the boundary points. Thus, ~Ah issingular with the null space consisting of constant functions, and Ah is a submatrix of it.Let xHi = xh2i; i = 0; : : : ; n=2 be the set of coarse grid points. Now we de�ne a coarse subspace V Hfor multigrid by de�ning the coarse grid nodal basis functions f�Hi g. That is,V H = spanf�Hi : i = 1; : : : ;mg;andm = n=2�1. Since f�Hi g are nodal basis functions on the coarse grid, �Hi (xh2i) = 1 and �Hi (xh2i�2) =�Hi (xh2i+2) = 0:We need only to de�ne �Hi (xh2i�1) and �Hi (xh2i+1) (see Figure 1). For example, if we letthem equal 1=2, the basis functions f�Hi g are just linear �nite elements, implying that the interpolationfrom the coarse grid to the �ne grid is piecewise linear.
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unknownFig. 1. 1D coarse grid basis function �Hi on its support [xh2i�2; xh2i+2].Since f�Hi g is a basis of V H , which is a subspace of V h, there exists a unique matrix IHh of sizen�m such that [�H1 � � ��Hm] = [�h1 � � ��hn]IHh :The matrix IHh is usually known as the prolongation (or interpolation) matrix and its transpose(IHh )T = IhH as the restriction matrix in the multigrid context. Hence, the set of coarse grid basisfunctions de�nes an interpolation and vice versa. In the following, instead of deriving an interpolationmethod directly, we construct an energy-minimizing basis.4



Formulation. As noted above, the interpolation is uniquely de�ned if the coarse grid basisfunctions f�Hi g are known. We can de�ne �Hi (x) by solving the following local PDE problem in[xHi�1; xHi ] = [xh2i�2; xh2i]: � ddxa(x) ddx�Hi = 0 in [xh2i�2; xh2i];(7) �Hi (xh2i�2) = 0; �Hi (xh2i) = 1:We observe that the PDE formulation of the basis functions has a \physical" meaning attached toit. Speci�cally, it looks for basis functions that have small energy. It is best illustrated by the followingresult.Lemma 3.1. An equivalent formulation of (7) ismin a(�Hi ; �Hi ) in [xh2i�2; xh2i];(8) subject to �Hi (xh2i�2) = 0; �Hi (xh2i) = 1:Thus, the solution of the local PDE minimizes the energy of the coarse grid basis functions. Thisobservation turns out to be very convenient for extending the idea to higher dimensions.The solution of �Hi (x) on [xh2i�2; xh2i] de�nes �Hi (xh2i�1) implicitly. We can do the same for �Hi (xh2i+1)in [xh2i; xh2i+2]. The local PDE formulation calculates the \harmonic" function �Hi which minimizes theenergy on its support. If a(x) � 1, �Hi is a linear function and we get back linear interpolation, thatis, �Hi (xh2i�1) = �Hi (xh2i+1) = 1=2. In fact, in this case, �Hi is harmonic in the usual sense, and it hasminimum energy. In general, instead of 1/2, we have�Hi (xh2i�1) = � a(�h2i�1; �h2i)a(�h2i�1; �h2i�1) = � Ah2i�1;2iAh2i�1;2i�1 ;(9)where (Ahij) is the sti�ness matrix. Since our interpolation depends on the matrix Ah, sometimes it iscalled a matrix-dependent interpolation in the algebraic multigrid context. The resulting interpolationwas also described in [20, 28, 36] but from a di�erent point of view. Ours is novel in the sense thatwe interpret it from the energy-minimization principle, which provides a clue to developing similarinterpolation operators in higher dimensions.The approximation property (4) is closely related to preserving constant functions. In fact, thecoarse space V H constructed in this way automatically contains constant functions on the �ne grid.Lemma 3.2. mXi=1 �Hi (x) = 1:Proof. Let  H (x) =Pmi=1 �Hi (x). By (7), for i = 1; : : : ;m,  H satis�es the following:� ddxa(x) ddx H = 0 in [xh2i�2; xh2i]; H (xh2i�2) = 1;  H (xh2i) = 1:By uniqueness,  H � 1 on [xh2i�1; xh2i], and hence the result follows.Thus, the interpolation derived from the energy-minimizing coarse grid basis functions preservesconstants.Remarks: (1) If a(x) is piecewise constant, this interpolation preserves the continuity of the ux,a(x)ru, at the discontinuities [20]. (2) If red-black Gauss-Seidel is used as a smoother, the resultingmultigrid method coincides with the cyclic reduction method in the numerical linear algebra context.5



3.2. Higher Dimensions. The construction of the energy-minimizing interpolation describedin this section is valid for two and three dimensions. However, to facilitate understanding, we focuson the standard structured grid on the square domain 
: [0; 1]� [0; 1] in two dimensions. The modelproblem is �r � a(x; y)ru(x; y) = f(x; y); in 
(10) u = 0 on @
;with the same assumptions on a(x; y) and f(x; y) as before. Again, we use a �nite element method todiscretize (10).3.2.1. Formulation. The extension to higher dimensions of the local PDE approach is di�cultbecause there is no natural analog between one dimension and higher dimensions. For instance, inone dimension, the coarse grid points form the boundaries of the local subdomains so that well-posedPDEs can be easily de�ned. In higher dimensions, however, the boundaries consist of both coarsegrid and noncoarse grid points, and hence local boundary value problems apparently do not exist.Nevertheless, several possibilities for setting up local PDEs are discussed in the literature, for instance,the stencil or the so-called black-box multigrid approach [1, 10, 11, 20, 19, 23, 24, 36, 40], the Schurcomplement approach [18, 25, 29], and the algebraic multigrid approach [8, 9, 35], each of which mimicsthe one-dimensional case in some way.Our approach is based on the observation (8). The coarse grid basis functions f�Hi g should possessthe least amount of energy while preserving constant functions. The precise mathematical formulationis explained in the following.
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j4Fig. 2. 2D coarse grid basis function �Hi on its support. �Hi is a linear combination of �ne gridbasis functions �hj , j = j1; : : : ; j8 and ci.Suppose a maximal independent set of the vertices of the �ner grid is selected as coarse grid points,and denote the index set by M = fc1; : : : ; cmg, m = (n=2 + 1)2. Write the coarse grid nodal basisfunction �Hi at node xci as a linear combination of the �ne grid ones:�Hi = Xj2fl: ~Ahci ;l 6=0gnM 'ij�hj + �hci :(11)Thus, �Hi is a local combination of the �ne grid basis functions whose corresponding node is adjacentto node xci but not itself a coarse grid point. Figure 2 shows the support of �Hi in two dimensions.The indices j in the sum on the right-hand side of (11) correspond to j1; : : : ; j8. Since �Hi is a nodalbasis function, the coe�cient of �hci is equal to 1. We de�ne the interpolation by solving a constrainedminimization problem for f'ijg:min 12 mXi=1 k�Hi k2A subject to mXi=1 �Hi (x) = 1 in �
:(12) 6



Notice that the minimization problem is solved up to and including the boundary of 
. Usually, thegrid points on the boundary with Dirichlet boundary condition are treated separately, and no coarsegrid point is placed there. However, in our formulation, we compute all �Hi including the ones at theboundary, but only those not on the boundary with Dirichlet condition are used in the interpolation.Lemma 3.3. An equivalent formulation of (7) and (8) is the global minimizationmin 12 mXi=1 k�Hi k2A subject to mXi=1 �Hi (x) = 1 on [0; 1]:Thus, we see a way to naturally generalize the approach for generating a robust interpolation fromone dimension to multiple dimensions.Remarks: (1) The values of the basis functions are de�ned implicitlyby the solution of (12) and are notknown explicitly in general. However, for the Laplacian, we recover exactly the bilinear interpolationon tensor-product grids, which is known to lead to optimalmultigrid convergence for Poisson equations.Lemma 3.4. The solution of (12) gives the bilinear interpolation if a(x) � 1.Proof. See the appendix.We also remark that if triangular grids are used, the linear interpolation is almost recovered; numericalexperiments show that the interpolation values are close to 1/2.(2) Like algebraic multigrid, the construction of the interpolation operator is purely algebraic. Inother words, geometry and in particular the grid information are not needed. Besides, the formulationof the interpolation is still valid if the coarse grid points do not form an independent set. Independentsets are certainly bene�cial to e�ciency but are not necessary. In some situations, we may want toremove this requirement, for example, when semi-coarsening is used.(3) Finally, we remark that we may generalize the formulation further by putting in positive weights�i in front of k�Hi k2A. Similarly, we have the following equivalence.Lemma 3.5. An equivalent formulation of (7) and (8) is the global weighted minimizationmin 12 mXi=1 �ik�Hi k2A subject to mXi=1 �Hi (x) = 1 on [0; 1];for any sets of positive �i.In our experience, special scalings, for instance, �i = 1= ~Ahci;ci , may improve the performance forproblems such as discontinuous coe�cient PDEs where the discontinuities do not align with any coarsergrids. However, an optimal choice of �i has not yet been fully analyzed, and hence we shall not discussthis generalization further in the present paper.3.2.2. Solution of the Minimization Problem. We describe a solution procedure for theminimization problem (12) below. For each i, write �Hi = Pnj=1 'ij�hj and 'i = ('i1; : : : ; 'in)T . By(11), �i is a sparse vector. For example, in two dimensions, 'i has at most 9 nonzeros. For structuredtriangular grids, 'i has at most 7 nonzeros. Let � = ['1; � � � ;'m] be an mn � 1 vector obtainedby appending all the ''s. Note that k�Hi k2A = kPnj=1'ij�hj k2A = ('i)T ~Ah'i. (Recall that ~Ah is theaugmented sti�ness matrix on the �ne grid without incorporating any Dirichlet boundary condition.)Thus, (12) can be written as the following equivalent discrete linear constrained quadratic minimizationproblem. min 12�TQ� s.t. BT� = 1:(13)The symbol 1 denotes a vector of all 1's. The mn � mn SPD matrix Q is block diagonal with eachblock equal to ~Ahi which is de�ned as( ~Ahi )kl = � ~Ahkl if 'ik 6= 0 and 'il 6= 0�kl otherwise.7



The n �mn rectangular matrix BT = [J T1 � � �J Tm ], where Ji = J Ti is a matrix corresponding to therestriction operator that maps v to vi such that (v)k = (vi)k on supp(�Hi ) and (vi)k = 0 otherwise.More precisely, (Ji)kl = � 1 if k = l and 'ik 6= 00 otherwise.It is clear that J Ti 'i = 'i and hence BT � = Pmi=1 J Ti 'i = Pmi=1 'i = 1. We solve the dis-crete linearly constrained minimization problem (13) by the Lagrange multiplier formulation, which isequivalent to � Q BBT 0 � � �� � = � 01 � ;(14)where � is an n� 1 vector of Lagrange multipliers. If � is known, � can be computed by solvingQ� = �B�:(15)Since Q is block diagonal and inverting each block corresponds to solving a matrix of at most 9� 9 insize, it is trivial to compute � once � is known. Thus, the entire minimization procedure is reducedto solving for the Lagrange multipliers � via(BTQ�1B)� = �1:(16)Note that B and Q�1 are sparse matrices. We can solve the linear system by conjugate gradient (CG).The solution process of (16) could be costly. Depending on the conditional number of Q�1, theCG iteration may converge slowly. We shall discuss how to speed up the process. First, we need notcompute (BTQ�1B)�11 exactly because we are merely computing the interpolation to be used in themultigrid method. In fact, the numerical results in Section 5 indicate that � is usually accurate enoughwhen the relative residual of (16) is less then 10�2.Besides, we have a readily obtainable initial guess for �. Consider equation (15). Multiplying bothsides by BT , we have � = �(BTB)�1Q�:As shown in the proof of Lemma A.2 in the appendix, BTB is a diagonal matrix. Hence, this gives aneasy way to compute an initial guess for � from �. Since the interpolation weights are between 0 and1, the solution � usually is not very far from the linear interpolation. It may be advantageous to usethe linear interpolation as an initial guess for �, which in turn provides an initial guess for �.It is interesting to note that ~Ah is a free and natural preconditioner for BQ�1B. By the de�nitionby B and Q, rewrite the product BTQ�1B as a sum of matrices:BTQ�1B = mXi=1 J Ti ( ~Ahi )�1Ji = mXi=1RTi (Ri ~AhRTi )�1Ri;where Ri is the submatrix of the nonzero rows of Ji and it is sometimes known as the restrictionmatrix in the domain decomposition context. Clearly, BTQ�1B is an overlapping additive Schwarzpreconditioner of ~Ah. Unfortunately, ~Ah is singular in our case. A simple remedy is to use ~Ah + �Iinstead as the preconditioner.Because of the potentially high cost of computing �, the energy-minimizing interpolation is aimedat problems for which linear interpolation does not work well. Quite often, we may need to solve thesame system many times, for instance, in time-dependent problems. The expensive setup cost can becompensated by the rapid convergence of each multigrid solve.8



3.2.3. Connections to Other Approaches. As noted above, the entire procedure of con-structing the interpolation is algebraic, and so it can be considered as a type of algebraic multigrid.In fact, it is related to the one derived by Vanek, Mandel, and Brezina [35]. In their approach, groupsof �ne grid elements are agglomerated to form larger elements, or macroelements. In each agglom-erated region (which can be thought of a subdomain in the domain decomposition context), a valueof 1 is assigned to each node as an initial guess of the coarse grid basis. Because of the high energyof the piecewise constant basis functions, they are smoothed by a few steps of Jacobi iteration. Ourenergy-minimizing coarse grid basis can also be thought of being formed by agglomerating nearby �negrid elements, but the agglomeration only occurs at elements whose node is a coarse grid node. Alsothere are overlaps among agglomerated regions, while there is none in the approach of Vanek et al.Moreover, the support of their basis functions will increase when the Jacobi \smoothing" steps areapplied to the basis functions. In our approach, the supports are �xed and the energy is minimized bysolving the minimization problem (12).Because of the agglomerationview of the construction, our approach is also related to the one derivedby Chan et al. [8, 9]. They explicitly form the macroelements by agglomeration using standard graphtheoretical techniques. Then they have several way of de�ning the coarse grid basis functions. Oneway is the following. The noncoarse grid points on the edge of a macroelement are assigned a valueusing the graph distance, and those noncoarse grid points in the interior are obtained by solving a localhomogeneous PDE. Our approach does not prescribe a value on the edges of the macroelements �rstand then solve for the interior points. Rather, we take all the unknowns together and solve for all thevalues simultaneously by solving the minimization problem.4. Convergence Analysis. Much of the classical multigrid convergence analysis cannot be ap-plied directly to the proposed multigrid algorithm because the coarse spaces de�ned by the basisfunctions are not standard �nite element spaces. The one-dimensional analysis is complete and ispresented here.First, we show the stability property (3). The proof is based on the observation that the coarse gridbasis functions contain a hierarchy of A-orthogonal basis functions; in other words, they are orthogonalin the A-inner product. Note that the coarse grid points are chosen to be the even �ne grid points (seeSection 3.1), that is, xk�1i = xk2i.Lemma 4.1. For any l < k; i = 1; : : : ; nl; j = 1; : : : ; nk=2, we havea(�li; �k2j�1) = 0:(17)Proof. Let k be �xed. We �rst prove the case l = k� 1 using a technique suggested by Xu [37]. Inthis case, (17) is just the direct consequence of the fact that the equivalent variational formulation of(7) implies that a(�k�1i ; �k2i�1) = 0; and the support of �k�1i is only on [xk2i�2; xk2i+2].Now suppose it is true for l = �k. By de�nition,��k�1i = 2i+1Xj=2i�1�j��kj ;where �2i = 1, �2i�1 = ��k�1i (x�k2i�1), and �2i+1 = ��k�1i (x�k2i+1) are given by (9). Thusa(��k�1i ; �k2j�1) = �2i�1a(��k2i�1; �k2j�1) + a(��k2i; �k2j�1) + �2i+1a(��k2i+1; �k2j�1) = 0;since all the terms vanish by assumption. The result follows from induction.Lemma 4.1 implies that the interpolation algorithm generates implicitly a set of A-orthogonalhierarchical basis functions. The orthogonality property immediately implies the stability of the nestedsubspaces.Lemma 4.2. For any v 2 V , there is a nontrivial decomposition v = PJk=1 vk with vk 2 Vk suchthat JXk=1(vk; vk)A = (v; v)A:(18) 9



Proof. For any v 2 V , Lemma 4.1 implies that there exists an orthogonal hierarchical decompositionof v constructed as follows. We �rst de�ne v1 to be the nodal value interpolant of v at the coarsestlevel V1. Then we subtract v1 from v to obtain w2. Because of the nodal interpolation, the values ofw2 at x1i ; i = 1; : : : ; n1, are zero. We proceed similarly by de�ning v2 to be the nodal value interpolantof w2 and so on. Formally, we have the following:v1 = n1Xi=1 v(x1i )�1i and vk = nkXi=1 wk(xki )�ki ; k = 2; : : : ; J;(19)where wk = v �Pk�1i=1 vi. Our decomposition implies that vk(xkj ) = wk(xkj ) = 0; j even. Therefore, byLemma 4.1, the vk's are A-orthogonal, since if l < k, we havea(vl; vk) = a( nlXi=1 wl(xli)�li; nkXj=1wk(xkj )�kj )= nlXi=1 nk=2Xj=1 wl(xli)wk(xk2j�1)a(�li; �k2j�1)= 0:The equality (18) follows immediately from the orthogonality of vk's.Corollary 4.3. Let W1 = V1 and Wk = Vk 	 Vk�1; k = 2; : : : ; J , in the A-inner product. ThenV can be expressed as a direct sum of Wk's:V = W1 �W2 � � � � �WJ :Corollary 4.3 induces a projection operator ~Qk : V ! Vk de�ned by~Qkv = v1 + v2 + � � �+ vk;(20)where v = v1 + � � �+ vJ ; vk 2 Wk, is the unique representation of v de�ned in (19). This operator~Qi will be used to prove the approximation property (4). Here we do not use the L2 projection Qkbecause ~Qk is a more natural and convenient choice in the one-dimensional case. In view of Lemma4.2 and Corollary 4.3, the stability property (3) is satis�ed.In the literature, the approximation property (4) is typically proved by making use of the fact thatthe interpolation preserves constant functions. In the two level case, we have shown in Lemma 3.2 thatconstant functions are indeed preserved by the coarse grid basis functions in our case. Using the sameproof technique, we can easily show that it is also true for the multilevel case.Lemma 4.4. For any k = 1; : : : ; J , nkXi=1 �ki (x) = 1:With this result, we can now prove the approximation property (4).Lemma 4.5. For any v 2 V and any k = 2; : : : ; J ,k( ~Qk � ~Qk�1)vk � Chkk ~QkvkA:(21)Proof. We compute the quantities on both sides explicitly to see how preserving constant functionscomes into play. Since ~Qk is a projection, we can always change v to ~Qkv in the left-hand side of (21).Without loss of generality, we assume v 2 Vk, that is, v =Pnki=1 �i�ki . This means we need only provekv � ~Qk�1vk � ChkkvkA:10



By the de�nition of ~Qk�1 in (20), ~Qk�1v = nk�1Xi=1 �2i�k�1i :Let w = v � ~Qk�1v =Pnki=1 !i�ki . Then we can verify that!2i = 0; i = 1; : : : ; nk=2;!2i�1 = �2i�1� (��2i�2+ ��2i);where � = �k�1i�1 (xk2i�1) and � = �k�1i (xk2i�1). Because the coarse grid basis functions preserve constant,we have �+ � = 1 and hence!2i�1 = (�+ �)�2i�1 � (��2i�2 + ��2i);= �(�2i�1� �2i�2)� �(�2i � �2i�1):Now we estimate the L2 norm of w on [xk2i�2; xk2i]:Z xk2ixk2i�2 w2dx = Z xk2ixk2i�2 (!2i�1�k2i�1)2dx= !22i�1 Z xk2ixk2i�2 (�k2i�1)2dx= !22i�1Mk2i�1;2i�1;where Mk2i�1;2i�1 is the (2i � 1; 2i � 1) entry of Mk, which is the mass matrix with respect tof�ki gnki=1. Using the formula for !2i�1 and the elementary inequality: (�A � �B)2 � �A2 + �B2 for�+ � = 1, we have thatZ xk2ixk2i�2 w2dx = Mk2i�1;2i�1[�(�2i�1 � �2i�2)� �(�2i � �2i�1)]2(22) � Mk2i�1;2i�1[�(�2i�1 � �2i�2)2 + �(�2i � �2i�1)2]:But the A-norm of v is given byZ xk2ixk2i�2 a(x)(v0)2dx= Z xk2i�1xk2i�2 a(x)(�2i�2�k2i�20 + �2i�1�k2i�10)2dx+ Z xk2ixk2i�1 a(x)(�2i�1�k2i�10 + �2i�k2i0)2dx= �(�2i�1 � �2i�2)2 Z xk2i�1xk2i�2 a(x)�k2i�20�k2i�10dx� (�2i � �2i�1)2 Z xk2ixk2i�1 a(x)�k2i�10�k2i0dx;since �k2i�2(x) + �k2i�1(x) = 1 on [xk2i�2; xk2i�1], which implies �k2i�20(x) + �k2i�10(x) = 0. A similarargument also holds for the second integral. Together with the formulas for � and � in (9), we haveZ xk2ixk2i�2 a(x)(v0)2dx = [�(�2i�1� �2i�2)2 + �(�2i � �2i�1)2]Ak2i�1;2i�1 ;where Ak2i�1;2i�1 is the (2i�1; 2i�1) entry of Ak which is the sti�ness matrix at level k with respectto the basis f�ki gnki=1. Combining with (22), we haveZ xk2ixk2i�2 w2dx � Mk2i�1;2i�1Ak2i�1;2i�1 Z xk2ixk2i�2 a(x)(v0)2dx:(23) 11



It is easy to show that Mk2i�1;2i�1 = Z xk2ixk2i�2(�k2i�1)2dx � O(hk);and Ak2i�1;2i�1 = Z xk2ixk2i�2 a(x)(�k2i�10)2dx � O(h�1k ):Thus, (23) becomes Z xk2ixk2i�2 w2dx � Ch2k Z xk2ixk2i�2 a(x)(v0)2dx;where C is independent of hk. Summing over i, we obtain the approximation property.Hence, by Lemma 2.2, K0 is bounded by a constant independent of the mesh size h, although theconstant may depend on the coe�cient a(x). The coe�cient dependence comes from the bound givenby the approximation property (see Lemma 4.5). It turns out that we can eliminate the coe�cientdependence by estimating K0 directly from its de�nition (1) if the damped Jacobi or Gauss-Seidelsmoothings are used.Lemma 4.6. Let RDJk and RGSk be the approximate inverses of Ak given by the damped Jacobimethod and the Gauss-Seidel method, respectively:(RDJk vk; vk) = 1�((Dk)�1Ak) (�k)T (Dk)�1�k;(RGSk vk; vk) = (�k)T (Dk � Lk)�1�k;where Ak = Dk �Lk � (Lk)T ;Dk = diagonal of Ak and vk =Pnkj=1 �kj �kj . ThenK0 � 3;for the damped Jacobi smoothing, and K0 = 1;for the Gauss-Seidel smoothing, and they are both independent of the coe�cient of the PDE.Proof. This proof is a modi�cation of the proof of Lemma A.1. For any v 2 V , let v =PJk=1 vk bea decomposition of v given by (3), that is, vk = ( ~Qk � ~Qk�1)v. We �rst estimate K0 for the dampedJacobi smoothing and then for Gauss-Seidel smoothing. In view of the de�nition of K0, for each k > 1,we consider ((RDJk )�1vk; vk) = �((Dk)�1Ak) (�k)TDk�k:From the calculations in the proof of Lemma 4.5, we showed that �kj = 0, j even. Thus(�k)TDk�k = (�k)TAk�k = kvkk2A:The estimate of �((Dk)�1Ak) = �((Dk)�1=2Ak(Dk)�1=2) is purely algebraic. Note that the product(Dk)1=2Ak(Dk)1=2 is simply the matrix obtained by the diagonal scaling of Ak. Hence, it is stilltridiagonal, and its diagonal elements are all 1's. The element of the (i; i + 1)th entry is given byAki;i+1=qAki;iAki+1;i+1. Since Ak is SPD, it is easy to show that the (i; i+ 1)th entry is bounded by 112



in size. By the Gershgorin Circle Theorem, �((Dk)�1Ak) � 3. HenceJXk=1((RDJk )�1vk; vk) = kv1k2A + JXk=2((RDJk )�1vk; vk)� kv1k2A + 3 JXk=2kvkk2A� 3kvk2A:By the de�nition of K0, the estimate follows.Similarly, for the Gauss-Seidel smoothing, we consider((RGSk )�1vk; vk) = (�k)T (Dk � Lk)�k= 12(�k)TDk�k + 12(�k)TAk�k= (�k)TAk�k= kvkk2A:Thus, K0 = 1, since JXk=1((RGSk )�1vk; vk) = JXk=1kvkk2A = kvk2A:For the estimate for K1, instead of the Vk, we consider the Wk de�ned in Corollary 4.3. It is nothard to see that all the previous results still hold. In addition, we have PiPj = 0, for any i 6= j.Lemma 4.7. Let !1 be the smallest constant such that(Akvk; vk) � !1(R�1k vk; vk) 8vk 2 Vk:Then K1 � !1:If Rk = RDJk , then !1 = 1. If Rk = RGSk , then !1 < 2.Proof. The bound for K1 is a direct consequence of Lemma 4.6 in [39] and the fact that PiPj = 0for i 6= j. If Rk = RDJk , then!1 = �(RDJk Ak) = 1�((Dk)�1Ak)�((Dk)�1Ak) = 1:If Rk = RGSk , then (Akvk; vk)((RGSk )�1vk; vk) = (�k)TAk�k12(�k)TDk�k + 12 (�k)TAk�k < 2:Hence !1 < 2.5. Numerical Results. In this section, we present results of numerical experiments mainly intwo dimensions to verify that the multigrid algorithm resulting from the energy-minimizing interpola-tion has optimal convergence behavior and is robust with respect to the coe�cients of the PDEs. Inall the numerical examples, the computational domain is 
 = [0; 1]� [0; 1] with homogeneous Dirich-let boundary condition. In the multigrid procedure, a V-cycle is used with two pre- and two post-pointwise Gauss-Seidel smoothings. The iteration was terminated when the relative residual norm was13



less than 10�6. The number of multigrid levels is such that the coarsest grid is a single point, or asotherwise stated.In Section 3.2.1, we mentioned that it is not necessary to compute the Lagrange multipliers tomachine precision. In all cases discussed below, we used piecewise linear or bilinear interpolation asour initial guess for the minimization problem. In the numerical results, we show how the accuracyof the Lagrange multipliers a�ect the e�ciency and convergence of the resulting multigrid method.Moreover, as discussed in Section 3.2.2, the augmented sti�ness matrix ~Ah, or more precisely, ~Ah+�I,is a free preconditioner for solving the Lagrange multiplier equation (16). In the numerical examples,this preconditioner is used with � chosen as 10�3.Example 1: In the appendix, we prove that the energy-minimizing interpolation recovers the bilinearinterpolation if a(x) � 1 in the case when the structured square grid is used. But linear interpolationis not exactly obtained in the triangular grid case. In this example, we solve the Poisson equation��u = 1;on the triangular grid. The result is shown in Table 1. We vary the grid size from h = 1=16 to h = 1=64and the number of multigrid levels from 3 to 6. We see that both the linear and the energy-minimizinginterpolations give a convergence rate independent of the mesh size and the number of multigrid level.Linear Energy-minh 3 4 5 6 3 4 5 61/16 7 7 - - 7 7 - -1/32 6 7 7 - 6 7 7 -1/64 6 7 7 7 6 7 7 7Table 1Number of V-cycles using linear and energy-minimizing interpolations when a(x) � 1.Example 2: In this example, we verify numerically that the convergence rate does not depend on thenumber of levels. Here we consider the following PDE with a smooth coe�cient:�r � (1 + x exp(y))ru = 1:Table 2 shows the number of multigrid iterations to convergence. We denote the multigrid methodwith bilinear interpolation by MGBL and our energy-minimizing multigrid method by MGE(�), where� speci�es the stopping criterion for the conjugate gradient (CG) method applied to the Lagrangemultiplier equation (16). More precisely, the CG iteration is stopped when the relative residual normis less than �. We see that when the optimization problem is e�ectively solved (� = 10�12), theconvergence rate is independent of the mesh size h and the number of levels. In fact, we observethat same convergence rate can be achieved even if the optimization problem is solved approximately(� = 10�1). Thus, we may reduce the cost by applying signi�cantly fewer number of CG iterations asshown in Table 3, which gives the number of conjugate gradient iterations at each multigrid level tosolve (16).We remark that this example is used to illustrate the optimal convergence of MGE(�) and thee�ect of varying � only. It is not cost e�ective to use energy-minimizing interpolation when bilinearinterpolation works well.Example 3: We compare the multigrid method using bilinear interpolation with that using energy-minimizing interpolation by solving the following discontinuous coe�cient problem [1, modi�ed Exam-ple I]: �r � a(x; y)ru = 1;where a(x; y) = � a+ 0:25 � x � 0:75 & 0:25 � y � 0:75a� otherwise: 14



MGBL MGE(10�1) MGE(10�12)h 4 5 6 7 4 5 6 7 4 5 6 71/16 5 - - - 5 - - - 5 - - -1/32 5 5 - - 5 5 - - 5 5 - -1/64 5 5 5 - 5 5 5 - 5 5 5 -1/128 5 5 5 5 5 5 5 5 5 5 5 5Table 2Number of V-cycles using bilinear and energy-minimizing interpolations when a(x) = 1 + x exp(y).h level MGE(10�1) MGE(10�12)1/16 4 1 532 1 221/32 5 1 983 1 332 1 221/64 6 1 1804 1 532 1 221/128 7 1 3095 1 983 1 332 1 22Table 3Number of CG iterations at each multigrid level with varying � when a(x) = 1 + x exp(y).We �x a� = 1 and vary a+ from 10 to 104. The convergence results are given in Table 4. Same notationsare used as in Example 1. Here � denotes convergence beyond 100 multigrid iterations. Consistent withthe classical theory, the convergence rate of the standard multigrid does not depend on the mesh size h.However, the convergence rate deteriorates substantially as the jump of the discontinuity increases. Onthe other hand, the convergence of the energy-minimizing multigrid method does not depend both onthe mesh size and the size of the jump. Again, MGE(10�1) shows similar convergence as MGE(10�12).Table 5 shows the average number of CG iterations on the �ne grid, in place of the number of CGiterations on each grid level shown in Table 3. It is computed as follows. One CG iteration on the �rstcoarse grid is counted as 1/2 CG iteration on the �ne grid and so on. By applying only three extraCG iterations to construct the energy-minimizing interpolation, the convergence of the multigrid isimproved signi�cantly. This result demonstrates that extra cost of solving the minimization problemis justi�ed by the much faster convergence of the multigrid method.MGBL MGE(10�1) MGE(10�12)h 10 102 103 104 10 102 103 104 10 102 103 1041/16 14 � � � 6 5 6 6 6 5 5 51/32 14 � � � 6 6 6 6 6 6 6 61/64 14 � � � 6 6 7 7 6 6 6 61/128 14 � � � 7 7 7 7 7 6 6 6Table 4Number of V-cycles using bilinear and energy-minimizing interpolations for the discontinuous co-e�cient problem. The jump a+ = 10; 102; 103; 104. � More than 100 V-cycles required for convergence.Example 4: We solve another PDE to demonstrate the robustness of the energy-minimizing multigrid15



MGE(10�1) MGE(10�12)h 10 104 10 1041/16 3.00 3.00 3.00 5.501/32 2.50 2.50 2.50 3.631/64 2.25 2.25 2.25 2.881/128 2.13 2.13 2.13 2.44Table 5Average number of CG iterations on the �ne grid for the discontinuous coe�cient problem. Thejump a+ = 10; 104.method. The coe�cient is oscillatory, and the equation is [22, Example 7.4]:�r � 1(2 + P sin(x=�))(2 + P sin(y=�))ru = 1:We chose P = 1:99 and �=0.1 and 0.01. The results are shown in Tables 6 and 7. This time,the coe�cient is very rough, and the minimization problem is more di�cult to solve. In the case,MGE(10�1) is not accurate enough to have good convergence. However, with a slight increase in theaccuracy, MGE(10�2) recovers the same rapid convergence of MGE(10�12).We remark that the nonuniform number of V-cycles to convergence for the case � = 0:01 may bebecause the mesh size h is not small enough to resolve the coe�cient a(x; y) for the �rst couple ofvalues of h. MGBL MGE(10�1) MGE(10�2) MGE(10�12)h 0:1 0:01 0:1 0:01 0:1 0:01 0:1 0:011/16 � 4 7 5 7 5 7 51/32 51 � 23 14 7 14 7 141/64 65 58 � 11 7 7 7 71/128 66 � � 11 7 10 7 10Table 6Number of V-cycles using bilinear and energy-minimizing interpolations for the oscillatory coe�-cient problem. � = 0:1; 0:01. � More than 100 V-cycles required for convergence.MGE(10�1) MGE(10�2) MGE(10�12)h 0:1 0:01 0:1 0:01 0:1 0:011/16 38.75 1.75 42.25 1.75 90.75 56.751/32 13.63 63.88 62.38 71.00 124.13 184.131/64 3.81 82.94 115.94 127.94 228.06 308.691/128 2.22 211.22 177.94 316.22 388.78 664.22Table 7Average number of CG iterations on the �ne grid for the oscillatory coe�cient problem. � =0:1; 0:01.Example 5: We show by a one-dimensional Helmholtz equation that the energy minimization principleis not restricted to positive de�nite second order elliptic PDEs. The model equation is�u+ �u = 1;(24)where � is a positive constant. This operator is inde�nite.We use multigrid to solve the linear system Ah. For this problem, we obtained �Hi from solvingthe local PDEs (7), not from the minimization problem (12), since constant functions are not in the16



h Linear Energy1/32 � 51/64 � 51/128 � 5Table 8Number of V-cycles using linear and energy-minimizing interpolations for the Helmholtz problem.
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Fig. 3. Left to right: errors after 0, 4 and 8 Gauss-Seidel iterations when Ah is the Helmholtzoperator.kernel of Ah. The convergence results of the multigrid methods using linear and energy-minimizinginterpolations are shown in Table 8. The � in the �rst column indicates that standard multigrid takesmore than 100 V-cycles to convergence. The poor convergence comes from the e�ect of smoothingand the way the interpolation is done. The eigenfunctions of the operator Ah corresponding to smallenergy are oscillatory, whereas those corresponding to large energy are relatively smooth. As a result ofstandard relaxation smoothings, the errors become more oscillatory. Figure 3 shows the e�ect of 4 and8 iterations of Gauss-Seidel smoothing applied to a smooth initial error. Such a phenomenon was alsodiscussed in [7]. Hence, if we use linear interpolation, it will not be able to approximate the oscillatoryerror on the coarser subspaces. This fact causes the failure of the standard multigrid method.On the other hand, the multigrid method using energy-minimizing interpolation works �ne andshows no deterioration, because the energy minimization captures the property of this type of operatorsand produces oscillatory coarse grid basis functions (see Figure 4). This consistency enables a goodapproximation on the coarser subspaces, and hence the multigrid convergence is much better.Remark: The coarse grid basis functions obtained by solving the local PDEs do not preserve constants,an approach that is natural because the operator A does not annihilate constant functions. If we wereto extend our minimization formulation to this case in higher dimensions, we would have to modifythe constraint in (12).6. Concluding Remarks. Through the analytical and numerical results, we have demonstratedthat energy-minimizing and constant preserving are two key properties of the coarse grid interpolationrequired to have a robust multigrid method. An obvious drawback to the construction of the robustinterpolation is the expensive solve of the minimization problem. An inexact preconditioned conjugategradient method with the linear interpolation as initial guess is proposed to overcome this problem.The numerical results show that the setup cost is not too expensive, especially when the system is tobe solved many times. Nevertheless, more e�cient methods to solve the minimization problem needto be derived and studied.Finally, because of the algebraic nature of the construction of the interpolation, our method isalso applicable to complicated geometries, for instance, unstructured grids, but these cases are notdiscussed in the present paper. 17
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Fig. 4. A coarse grid basis function obtained by the energy minimization when Ah is the Helmholtzoperator.A. Appendix. In the following, we give the proofs of some of the previous results. In Section 2,we claimed that if the stability and the approximation properties (3), (4) are satis�ed, the parameterK0 can be bounded by a constant independent of the mesh size. Note that the following result is statedwithout proof in [39].Lemma A.1. Let !0 = min2�i�J (�(Ai)�min(Ri)). Suppose (3) and (4) are satis�ed. ThenK0 � C!0 :Proof. For any v 2 V , let v = PJk=1 vk be a decomposition of v given by (3), namely vk =( ~Qk � ~Qk�1)v. In view of the de�nition of K0 and, for each k > 1, we consider(R�1k vk; vk) � 1�min(Rk) (vk; vk) � �(Ak)!0 k( ~Qk � ~Qk�1)vk2 � C!0k ~Qkvk2A;by (4) and �(Ak) = O(h�2k ). Substituting v by ~v = ( ~Qk � ~Qk�1)v in (4) and rewriting ~v = v, we havek( ~Qk � ~Qk�1)vk � Chkk( ~Qk � ~Qk�1)vkA:Hence, (R�1k vk; vk) � C!0 k( ~Qk � ~Qk�1)vk2A:For k = 1, since R1 = A�11 , we get instead(R�11 v1; v1) = ((R1A1)�1v1; A1v1) = kv1k2A = k ~Q1vk2A:Combining with (3), we haveJXk=1(R�1k vk; vk) = k ~Q1vk2A + JXk=2(R�1k vk; vk)� k ~Q1vk2A + C!0 JXk=2k( ~Qk � ~Qk�1)vk2A� max�1; C!0� JXk=1k( ~Qk � ~Qk�1)vk2A!= max�1; C!0� kvk2A:18



By the de�nition of K0, the estimate follows.We next prove a result in Section 3.2.1 that states that if a(x) � 1, the minimization problem willrecover the bilinear interpolation in the square grid case.Lemma A.2. The solution of (12) gives the bilinear interpolation if a(x) � 1.Proof. Let �0 = ['10; � � � ;'m0 ] be the vector corresponding to the bilinear interpolation. Thus, then � 1 sparse vector 'i0, corresponding to the coe�cients of �hj in the expansion of �Hi , has nonzeros1/4, 1/2, and 1 only. We verify by direct substitution that �0 satis�es the Euler-Lagrange equation(14) with an appropriately de�ned �0.Since 'i0 is sparse, we may consider the nonzeros of 'i0 only when computing the product ~Ahi 'i0.De�ne 
1 = fxhk : xhk is an interior noncoarse grid point which does not connect to anycoarse grid points on the mesh.g
2 = fxhk : xhk is an interior noncoarse grid point which connects to exactly 2coarse grid points on the mesh.g
3 = fxhk : xhk is a noncoarse grid boundary point.gBy the de�nition of ~Ahi , after some calculation, we can verify that( ~Ahi 'i0)k = 8<: 0 if xhk 2 
13=2 if xhk 2 
23=4 if xhk 2 
3:(25)Here ~Ahi is the nine point stencil 24 �1 �1 �1�1 8 �1�1 �1 �1 35 :The values at the coarse grid points are not considered because the solution � must have a value of 1there.Let �0 be the vector of Lagrange multipliers de�ned by(�0)k = 8<: 0 if xhk 2 
1�3=2 if xhk 2 
2�3=4 if xhk 2 
3:First, from (25), we see that the values of ~Ahi 'i0 depend not on the location of 'i0 but on the locationcorresponding to the component k only. Second, B is a column of restriction matrices that have either1 or 0 on the diagonal. It is not hard to see that Q�0 + B�0 = 1. Hence, the result follows.REFERENCES[1] R. E. Alcou�e, A. Brandt, J. E. Dendy, Jr., and J. W. Painter. The multi-grid method forthe di�usion equation with strongly discontinuous coe�cients. SIAM J. Sci. Stat. Comput.,2(4):430{454, 1981.[2] J. Bramble. Multigrid Methods. Longman Scienti�c & Technical, Essex, UK, 1993.[3] J. Bramble, J. Pasciak, J. Wang, and J. Xu. Convergence estimates for multigrid algorithmswithout regularity assumptions. Math. Comp., 57:23{45, 1991.[4] J. Bramble, J. Pasciak, J. Wang, and J. Xu. Convergence estimates for product iterative methodswith applications to domain decomposition and multigrid. Math. Comp., 57:1{21, 1991.19
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