AN ENERGY-MINIMIZING INTERPOLATION FOR ROBUST
MULTIGRID METHODS
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Abstract. We propose a robust interpolation for multigrid based on the concepts of energy
minimization and approximation. The formulation is general; it can be applied to any dimensions.
The analysis for one dimension proves that the convergence rate of the resulting multigrid method is
independent of the coefficient of the underlying PDE, in addition to being independent of the mesh size.
We demonstrate numerically the effectiveness of the multigrid method in two dimensions by applying
it to a discontinuous coefficient problem and an oscillatory coefficient problem. We also show using a
one-dimensional Helmholtz problem that the energy minimization principle can be applied to solving
elliptic problems that are not positive definite.

1. Introduction. Multigrid methods are widely used as efficient solvers for second order elliptic
partial differential equations (PDEs) because of their often optimal convergence behavior; that is,
their convergence rate 1s independent of the mesh size. Optimal theory can be found, for example,
in [2, 3, 4, 20, 27, 31, 38, 39]. However, the convergence rate may depend on the nature of the
coefficients in the PDE. Typically, the convergence deteriorates as the coefficients become rougher.
Specifically, if the coefficients are anisotropic [20], have large jumps [1, 5, 10, 11] or are highly oscillatory
[17, 26, 34], standard multigrid methods will converge very slowly. Special techniques such as line
Gauss-Seidel /block smoothing [5], semi-coarsening [12, 13, 32], algebraic multigrid [6, 28, 30, 33],
frequency decomposition [14, 21, 34], and homogenization [17, 26] are used to handle some of these
cases. In this paper, we study the design of multigrid methods from the energy minimization point of
view, which gives powerful insight into the design of robust multigrid methods.

The success of multigrid hinges on the choice of the coarse grid points, the smoothing procedure,
the interpolation operators, and the coarser grid discretization. In standard multigrid, full coarsening,
Jacobi or Gauss-Seidel smoothing, and linear interpolation are usually used. Classical convergence
theory shows that these simple ingredients are enough to achieve optimal convergence for smooth
coefficient problems. In general, however, these choices may lead to slow convergence. In one dimension,
to remedy the situation, a more robust interpolation [20, 28, 36] can be used. It is obtained by solving
local homogeneous PDEs, which are equivalent to minimizing the energy of the coarse grid basis
functions.

The extension of this approach to higher dimensions is not obvious. Nonetheless, many attempts
[1, 10, 20, 19, 24, 29, 36] have been made to set up similar local PDEs for defining a robust interpolation.
In place of setting up PDEs, we consider an equivalent minimization formulation and derive a so-called
energy-minimizing interpolation with special emphasis on its stability and approximation properties,
which are essential for optimal convergence. This approach to determining appropriate interpolation
operators has also been used for iterative substructuring [15]. Tt will be made more precise in Section
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Although it is well known that the one-dimensional interpolation mentioned above will produce a
robust multigrid method, a convergence analysis has not been given in the literature. In Section 4, we
analyze the one-dimensional method derived from the energy-minimizing interpolation. We prove that
the convergence rate is independent of the coefficient of the underlying PDE, in addition to the mesh
size. In Section b, we give numerical examples mainly in two dimensions, including a discontinuous
coefficient problem, an oscillatory coefficient problem, and a Helmholtz problem. Finally, we summarize
our experience by several remarks in Section 6.

We now set up notation to be used in the following sections. Let V = V" and let V3 C V5 C

- C Vj = V denote a sequence of nested subspaces of V' defined by the span of nodal basis functions,
{(/)k}Z * ok =1,...,J, at level k. The operator A : V — V is self-adjoint and induces the A-inner
product: (-, )A = (A~,~). Also, we define A; : V; — V; by (Ajus,vi) = (Awg,v;),u5,v; € V. Cor-
respondingly, we have R; : V; — Vi, which is an approximate inverse of A;. Let @; : V — V; and
P, : V — V; be the projection operators with respect to the L? and the A inner product, respectively.
In the following analysis, the generic constant C' 1s independent of the mesh size h.

2. Stability and Approximation Property. Before we explain the formulation of the energy-
minimizing interpolation, we first discuss our motivation from the classical results of multigrid and
domain decomposition methods. Two key properties, stability and approximation, must be satisfied
by the coarse subspaces and the smoothers [20] in order to have optimal convergence results. These two
terms occur frequently in the literature but often appear in slightly different forms. For example, in the
subspace correction framework [39], these two properties are built into the estimate of a constant Ko,
which in turn is used to prove optimal convergence together with another constant K. The definitions
of Ky and K are as follows:

Ky: For any v € V, there exists a decomposition v = Z v; for v; € V; such that

i=1

J

(1) > (R i, vi) < Ko(Av,v),

i=1
where R; 1s usually known as the smoother in the multigrid context.

Ky:Forany SC{l,....J} x{l,...,J}and us,v; e Viori=1,... J,

J

J
(2) > (T, Tyup)a < Ki(Y (s, ui)a)*(Y_(Tjv5,v5)a
j=1

(i.4)€S i=1

l\J|>—A

where T; = R; A; P;.

THEOREM 2.1. Let FEj be the iteration matriz given by the V-cycle multigrid, namely,

u—uft = By(u—ub),

+1

where u is the exact solution and v* and v*t' are two consecutive multigrid iterates. Then

Ey=-T)(I=T-1)---(I-T),

and

2—(.d1

Eflp<l— ——M—
|| JHA = [{0(1_1_[{1)2’

where w1 = max;<;<y p(R; A;).
Proof. See [39]. O

By Theorem 2.1, the convergence rate can be improved by producing a smaller Ky or K;. In
this paper, we propose an interpolation that will potentially decrease the size of the constant Ky by
reducing its dependence on the coefficients of the underlying elliptic PDE.
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As shown in [39], the estimate of K relies on two inequalities:

J
(3) 1Quell + D 1(Qk — Qu-)vll Colll[%,

k=2
(4) 1@k — Qr_1)vll < Crhg||Qxvlla, vk > 1,

IN

where Qp : V — V} is any linear operator onto V.

Inequality (3) appears in the Partition Lemma, which is well known in the domain decomposition
literature [16, 31]. In the multigrid context, however, this inequality typically is used only implicitly.
Intuitively speaking, (3) says that given any v € V', we must be able to decompose v into the subspaces
such that the total energy of all the pieces v; is bounded by a small constant factor of the original
energy of v. Besides (3), we also require that functions on the coarser grids approximate those on the
finer grids to at least first order accuracy in hj. This requirement is quantified by the inequality (4).
If we have both (3) and (4), we can bound Ky by a constant independent of the mesh size h.

LEMMA 2.2, Let wg = mina<i<y (p(Ai)Amin(R;)). Suppose (3) and ({) are satisfied. Then

C
[(0 S ]
“o
where C' 1s a constant independent of the mesh size.
Proof. See the appendix. 0O

To summarize, if the stability and the approximation properties (3) and (4) are satisfied, optimal
convergence follows. Thus, these two properties characterize a good coarse subspace. It is interesting
to note that linear finite element subspaces are not compulsory for the Vi, though they are typically
used or assumed in the classical analysis of multigrid methods. Moreover, the Qk in the approximation
inequality (4) need not necessarily be the L? projections Q. Linear finite element and L? projec-
tions are simply two convenient and powerful tools for showing the stability and the approximation
properties, but are not necessarily the only choice.

Optimal convergence, however, need not mean rapid convergence. The reason is that, in general,
Ky will depend on the PDE coefficients. The implicit dependence of the coefficient of the underlying
PDE in the convergence rate may cause the multigrid method to converge very slowly, for example,
when the coefficients are not smooth. In the following section, we construct coarse subspaces whose
basis functions are, in general, different from piecewise linear finite elements but possess the stability
and the approximation properties. In addition, the resulting multigrid algorithm is less sensitive to
the coefficients than is the standard multigrid method. Furthermore, we show that these two concepts
lead to an optimal convergence for a one-dimensional multigrid method, and we illustrate how they
motivate a two-dimensional multigrid algorithm.

3. Energy-minimizing Interpolation. In this section, we introduce the energy minimization
approach to constructing the interpolation. The resulting formulation in the one-dimensional case
is well known in the literature [20, 28, 36]. We explain the energy-minimizing interpolation in one
dimension first and then in two dimensions.

3.1. One Dimension. We consider the following model problem:
(5) ——a(z)—ulx) = f in (0,1)
u = 0 at z =0 and z = 1,

where a(x) and f(x) are integrable and a(z) is uniformly positive.

Let H'(0,1) be the standard Sobolev space on the interval [0,1] and H{(0, 1) its subspace whose
functions vanish at # = 0 and # = 1. Then the variational formulation of (5) is to find v € HZ(0,1)
such that

a(u,v) = (f,v) VUEHé(O’l)a



where

w0 = [ e () () / fa

Given a uniform grid with grid size h = 1/n, let l‘ = jh,7=0,...,n. Define the fine grid linear finite
element space to be

b= {o" € H}(0,1) : v" is linear on [l‘h l‘]+1] Jj=0,...,n—1}

and denote the set of nodal basis by {qb]h }7=1. The finite element approximation to the solution of (5)
is the function u” € V", so that

(6) a(uh, vh) =(/f, vh) Vol e Vi
Let u? = Z?Il 1y (bf and f = Z?Il B; (bf Then (6) is equivalent to a linear system:
Al = M,

where g = (p1,. ., )t b= (B1,...,Ba)T, A" is the stiffness matrix, and M" is the mass matrix.
Define A" to be the augmented stiffness matrlx that includes also the boundary points. Thus, AP is
singular with the null space consisting of constant functions, and A" is a submatrix of it.

Let #f = 2% i=10,...,n/2 be the set of coarse grid points. Now we define a coarse subspace V
for multigrid by defining the coarse grid nodal basis functions {¢#}. That is,

VH = span{¢f :i=1,...,m},

and m = n/2—1. Since {¢F } are nodal basis functions on the coarse grid, ¢ (z2,) = 1 and ¢ (2%, _,) =
¢H(x22+2) = 0. We need only to define ¢ (2%, ) and ¢ (J:ZZ_H) (see Figure 1). For example, if we let
them equal 1/2, the basis functions {(/)H} are just linear finite elements, implying that the interpolation
from the coarse grid to the fine grid is piecewise linear.

! OR

l
unknown 5
X

unknown
X
1 I 1 I
'h h L h 'h
x2i-2 x2i-1 x2i x2i+1 x2i+2

FiG. 1. 1D coarse grid basis function ¢ on its support [xgi_z,xgi_l_z].

Since {¢} is a basis of V¥ which is a subspace of V", there exists a unique matrix I{I of size
n x m such that

[61 - o] = [61 - on]Th-

The matrix I{I is usually known as the prolongation (or interpolation) matrix and its transpose
(TH)YT = 7% as the restriction matrix in the multigrid context. Hence, the set of coarse grid basis
functions defines an interpolation and vice versa. In the following, instead of deriving an interpolation
method directly, we construct an energy-minimizing basis.
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Formulation. As noted above, the interpolation is uniquely defined if the coarse grid basis
functions {¢} are known. We can define ¢(z) by solving the following local PDE problem in

[$£1’ xfl] = [$gi—2’ l‘gl]
d d .
7 )L = o in o8, %),

ot (ahi_y) =0, ¢F(2h) =1

We observe that the PDE formulation of the basis functions has a “physical” meaning attached to
it. Specifically, it looks for basis functions that have small energy. It is best illustrated by the following
result.

LEMMA 3.1. An equivalent formulation of (7) is

(8) min a(¢f o) i [xh;_o, 2hy],

subject to f/>f[(l’gz—2) =0, Q{I(l’gz) =1

Thus, the solution of the local PDE minimizes the energy of the coarse grid basis functions. This
observation turns out to be very convenient for extending the idea to higher dimensions.

The solution of ¢ (z) on [z, _, 28] defines ¢ (x%,_,) implicitly. We can do the same for (/)fI(xgl_I_l)
in [z%, J:ZZ»_I_Z]. The local PDE formulation calculates the “harmonic” function ¢! which minimizes the
energy on its support. If a(z) = 1, ¢! is a linear function and we get back linear interpolation, that
is, o (af;_1) = ¢F (¢ ,1) = 1/2. In fact, in this case, ¢f is harmonic in the usual sense, and it has
minimum energy. In general, instead of 1/2, we have

B Lo Al
9 He ho a(@y;_y, $3i) _ __TE)-E) ’
) o) a(¢3;_1, 65;_1) Al

€)—00,E)—00

where (.,4<|) is the stiffness matrix. Since our interpolation depends on the matrix A{, sometimes it is
called a matrix-dependent interpolation in the algebraic multigrid context. The resulting interpolation
was also described in [20, 28, 36] but from a different point of view. Ours is novel in the sense that
we interpret it from the energy-minimization principle, which provides a clue to developing similar
interpolation operators in higher dimensions.

The approximation property (4) is closely related to preserving constant functions. In fact, the
coarse space VH constructed in this way automatically contains constant functions on the fine grid.

LEMMA 3.2.

D of(@) =1

Proof. Let ¥ (z) =370, ¢ (2). By (7), for i = 1,...,m, ¥ satisfies the following:

d .
——xa(l‘)—d)H =0 in [23;_s, 23],

By uniqueness, ¥ = 1 on [z%,_,, #%], and hence the result follows. O

Thus, the interpolation derived from the energy-minimizing coarse grid basis functions preserves
constants.

Remarks: (1) If a(x) is piecewise constant, this interpolation preserves the continuity of the flux,
a(z)Vu, at the discontinuities [20]. (2) If red-black Gauss-Seidel is used as a smoother, the resulting
multigrid method coincides with the cyclic reduction method in the numerical linear algebra context.



3.2. Higher Dimensions. The construction of the energy-minimizing interpolation described
in this section is valid for two and three dimensions. However, to facilitate understanding, we focus
on the standard structured grid on the square domain Q: [0, 1] x [0, 1] in two dimensions. The model
problem is

(10) =V a(z,y)Vu(z,y) = f(z,y), inQ
u = 0 on 0%,

with the same assumptions on a(z,y) and f(z,y) as before. Again, we use a finite element method to
discretize (10).

3.2.1. Formulation. The extension to higher dimensions of the local PDE approach is difficult
because there is no natural analog between one dimension and higher dimensions. For instance, in
one dimension, the coarse grid points form the boundaries of the local subdomains so that well-posed
PDEs can be easily defined. In higher dimensions, however, the boundaries consist of both coarse
grid and noncoarse grid points, and hence local boundary value problems apparently do not exist.
Nevertheless, several possibilities for setting up local PDEs are discussed in the literature, for instance,
the stencil or the so-called black-box multigrid approach [1, 10, 11, 20, 19, 23, 24, 36, 40], the Schur
complement approach [18, 25, 29], and the algebraic multigrid approach [8, 9, 35], each of which mimics
the one-dimensional case in some way.

Our approach is based on the observation (8). The coarse grid basis functions {¢'} should possess
the least amount of energy while preserving constant functions. The precise mathematical formulation
is explained in the following.

I I PR I

© ----

Fic. 2. 2D coarse grid basis function ¢ on its support. ¢ is a linear combination of fine grid
basis functions (b]h, j=7Ji,...,J8 and ¢;.

Suppose a maximal independent set of the vertices of the finer grid is selected as coarse grid points,
and denote the index set by M = {ec1,...,em}, m = (n/2 4+ 1)?. Write the coarse grid nodal basis
function ¢ at node z., as a linear combination of the fine grid ones:

(11) o = Y eertel

je{rAL #ON\M

Thus, ¢ is a local combination of the fine grid basis functions whose corresponding node is adjacent
to node z., but not itself a coarse grid point. Figure 2 shows the support of ¢ in two dimensions.
The indices j in the sum on the right-hand side of (11) correspond to ji, ..., js. Since ¢ is a nodal
basis function, the coefficient of (b?l is equal to 1. We define the interpolation by solving a constrained
minimization problem for {goé }:

1 — _
(12) min 5 ; loH|%  subject to Z¢)f‘r(l‘) =1in Q.
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Notice that the minimization problem is solved up to and including the boundary of 2. Usually, the
grid points on the boundary with Dirichlet boundary condition are treated separately, and no coarse
grid point is placed there. However, in our formulation, we compute all ¢ including the ones at the
boundary, but only those not on the boundary with Dirichlet condition are used in the interpolation.

LEMMA 3.3. An equivalent formulation of (7) and (8) is the global minimization
R 4 -
min o Z lo 1% subject to quf[(x) =1 on[0,1].
i=1 i=1

Thus, we see a way to naturally generalize the approach for generating a robust interpolation from
one dimension to multiple dimensions.

Remarks: (1) The values of the basis functions are defined implicitly by the solution of (12) and are not
known explicitly in general. However, for the Laplacian, we recover exactly the bilinear interpolation
on tensor-product grids, which is known to lead to optimal multigrid convergence for Poisson equations.

LEMMA 3.4. The solution of (12) gives the bilinear interpolation if a(x) = 1.
Proof. See the appendix. 0O

We also remark that if triangular grids are used, the linear interpolation is almost recovered; numerical
experiments show that the interpolation values are close to 1/2.

(2) Like algebraic multigrid, the construction of the interpolation operator is purely algebraic. In
other words, geometry and in particular the grid information are not needed. Besides, the formulation
of the interpolation is still valid if the coarse grid points do not form an independent set. Independent
sets are certainly beneficial to efficiency but are not necessary. In some situations, we may want to
remove this requirement, for example, when semi-coarsening is used.

(3) Finally, we remark that we may generalize the formulation further by putting in positive weights
0; in front of ||¢||%. Similarly, we have the following equivalence.

LEMMA 3.5. An equivalent formulation of (7) and (8) is the global weighted minimization
1l 4 =
min 5 Z O:il|lof 1% subject to Z(bf](l‘) =1 on0,1],
i=1 i=1

for any sets of positive 0;.

In our experience, special scalings, for instance, 6; = 1/./4?“01, may improve the performance for

problems such as discontinuous coefficient PDEs where the discontinuities do not align with any coarser
grids. However, an optimal choice of 8; has not yet been fully analyzed, and hence we shall not discuss
this generalization further in the present paper.

3.2.2. Solution of the Minimization Problem. We describe a solution procedure for the
minimization problem (12) below. For each i, write ¢ = Z?Il QD;QS]h and ¢ = (pi,...,¢")T. By
(11), ¢* is a sparse vector. For example, in two dimensions, ¢’ has at most 9 nonzeros. For structured
triangular grids, ¢ has at most 7 nonzeros. Let ® = [p!;---;¢™] be an mn x 1 vector obtained
by appending all the ¢’s. Note that ||¢||% = || 2?21 SD;QS?H,% = (p)T A" (Recall that A" is the
augmented stiffness matrix on the fine grid without incorporating any Dirichlet boundary condition.)
Thus, (12) can be written as the following equivalent discrete linear constrained quadratic minimization
problem.

1
(13) min 5<1>TQ<1> st. BT®=1.

The symbol 1 d~enotes a vector of all 1’s. The mn x mn SPD matrix Q is block diagonal with each
block equal to A? which is defined as

iy AZ, if i # 0 and ¢! # 0
(AP )wr = { Sz otherwise.

7



The n x mn rectangular matrix BT = [«707; .. ~jﬁT], where ‘7) = ‘7)7 i1s a matrix corresponding to the

restriction operator that maps v to v; such that (v); = (v;)r on supp(¢f!) and (v;)r = 0 otherwise.
More precisely,

(1 ifk=1land ¢l #0
(Hiy = { 0 otherwise.

It is clear that j)Tgo) = ¢! and hence BT @ = Z?:Oo ‘7)7’@) = Z?:Oo @) = 1. We solve the dis-
crete linearly constrained minimization problem (13) by the Lagrange multiplier formulation, which is
equivalent to

19 L ][]0

where A is an n X 1 vector of Lagrange multipliers. If A is known, ® can be computed by solving
(15) QP = —BA.

Since @ is block diagonal and inverting each block corresponds to solving a matrix of at most 9 x 9 in
size, 1t 1s trivial to compute ® once A is known. Thus, the entire minimization procedure is reduced
to solving for the Lagrange multipliers A via

(16) (BYQ7'B)A = 1.

Note that B and Q~ are sparse matrices. We can solve the linear system by conjugate gradient (CG).

The solution process of (16) could be costly. Depending on the conditional number of @7, the
CG iteration may converge slowly. We shall discuss how to speed up the process. First, we need not
compute (BF'Q71B)~11 exactly because we are merely computing the interpolation to be used in the
multigrid method. In fact, the numerical results in Section b indicate that A is usually accurate enough
when the relative residual of (16) is less then 1072

Besides, we have a readily obtainable initial guess for A. Consider equation (15). Multiplying both
sides by BT, we have

A=—(B"B)"'Qd.

As shown in the proof of Lemma A.2 in the appendix, BB is a diagonal matrix. Hence, this gives an
easy way to compute an initial guess for A from ®. Since the interpolation weights are between 0 and
1, the solution ® usually is not very far from the linear interpolation. It may be advantageous to use
the linear interpolation as an initial guess for ®, which in turn provides an initial guess for A.

It is interesting to note that A" is a free and natural preconditioner for BQ~°°B. By the definition
by B and Q, rewrite the product BY Q=8 as a sum of matrices:

BTQ™=B =) 71 (A} 7 = Y R (RAA"RT) ™R,

i=1 i=1

where R; is the submatrix of the nonzero rows of J; and it 1s sometimes known as the restriction
matrix in the domain decomposition context. Clearly, BY Q~>°B is an overlapping additive Schwarz
preconditioner of AP Unfortunately, AP is singular in our case. A simple remedy is to use AP 4 nZ
instead as the preconditioner.

Because of the potentially high cost of computing @, the energy-minimizing interpolation is aimed
at problems for which linear interpolation does not work well. Quite often, we may need to solve the
same system many times, for instance, in time-dependent problems. The expensive setup cost can be
compensated by the rapid convergence of each multigrid solve.



3.2.3. Connections to Other Approaches. As noted above, the entire procedure of con-
structing the interpolation is algebraic, and so it can be considered as a type of algebraic multigrid.
In fact, it is related to the one derived by Vanek, Mandel, and Brezina [35]. In their approach, groups
of fine grid elements are agglomerated to form larger elements, or macroelements. In each agglom-
erated region (which can be thought of a subdomain in the domain decomposition context), a value
of 1 is assigned to each node as an initial guess of the coarse grid basis. Because of the high energy
of the piecewise constant basis functions, they are smoothed by a few steps of Jacobi iteration. Our
energy-minimizing coarse grid basis can also be thought of being formed by agglomerating nearby fine
grid elements, but the agglomeration only occurs at elements whose node is a coarse grid node. Also
there are overlaps among agglomerated regions, while there is none in the approach of Vanek et al.
Moreover, the support of their basis functions will increase when the Jacobi “smoothing” steps are
applied to the basis functions. In our approach, the supports are fixed and the energy is minimized by
solving the minimization problem (12).

Because of the agglomeration view of the construction, our approach is also related to the one derived
by Chan et al. [8, 9]. They explicitly form the macroelements by agglomeration using standard graph
theoretical techniques. Then they have several way of defining the coarse grid basis functions. One
way 1s the following. The noncoarse grid points on the edge of a macroelement are assigned a value
using the graph distance, and those noncoarse grid points in the interior are obtained by solving a local
homogeneous PDE. Our approach does not prescribe a value on the edges of the macroelements first
and then solve for the interior points. Rather, we take all the unknowns together and solve for all the
values simultaneously by solving the minimization problem.

4. Convergence Analysis. Much of the classical multigrid convergence analysis cannot be ap-
plied directly to the proposed multigrid algorithm because the coarse spaces defined by the basis
functions are not standard finite element spaces. The one-dimensional analysis is complete and is
presented here.

First, we show the stability property (3). The proof is based on the observation that the coarse grid
basis functions contain a hierarchy of A-orthogonal basis functions; in other words, they are orthogonal
in the A-inner product. Note that the coarse grid points are chosen to be the even fine grid points (see
Section 3.1), that is, xf_l = k.

LEMMA 4.1. Forany l<k,i=1,...,n;,j=1,...,n,/2, we have

(17) a( i’a ¢§j—1) =0.

Proof. Let k be fixed. We first prove the case | = k — 1 using a technique suggested by Xu [37]. In
this case, (17) is just the direct consequence of the fact that the equivalent variational formulation of
(7) implies that a((/)f_l, ok )= 0, and the support of qbf_l is only on [zf, ., x§i+2]~

Now suppose it 1s true for [ = k. By definition,

B 2i+1 B
67t = Y ajd),
j=2i—-1

where ag; = 1, g1 = qbf_l

a(‘ﬁ_la ¢§j—1) = aZi—la(¢§i—1a ¢’12€j—1) + a(¢§z’a ¢]§j—1) + a2i+1a(¢§i+1a ¢]§j—1) =0,

since all the terms vanish by assumption. The result follows from induction. 0O

(2, 1), and agipy = ¢>§‘1(x§i+1) are given by (9). Thus

Lemma 4.1 implies that the interpolation algorithm generates implicitly a set of A-orthogonal
hierarchical basis functions. The orthogonality property immediately implies the stability of the nested
subspaces.

LEMMA 4.2. For any v € V, there is a nontrivial decomposition v = Zgzl vy with vy € Vi such
that

(18) > vk, vk)a = (v,0) 4.
9



Proof. For any v € V, Lemma 4.1 implies that there exists an orthogonal hierarchical decomposition
of v constructed as follows. We first define v; to be the nodal value interpolant of v at the coarsest
level V. Then we subtract vy from v to obtain ws. Because of the nodal interpolation, the values of
ws at x},1 =1,...,ny, are zero. We proceed similarly by defining v2 to be the nodal value interpolant
of ws and so on. Formally, we have the following:

n1 Nk
(19) 1}1221}(1‘3)(153 and vk:Zwk(l‘f) k k=2,...,J,
i=1

i=1

where wy, = v — Zfz_ll v;. Our decomposition implies that vy (2

Lemma 4.1, the vp’s are A-orthogonal, since if [ < k, we have

k

i)= wk(xf) =0, even. Therefore, by

a(vi,vp) = a(d wix))el, Y wi(af)e))
i=1 ji=1

ny nk/2

Z Z wl(xi»)wk(xgj_l)a( L ¢§j—1)

i=1 j=1

= 0.

The equality (18) follows immediately from the orthogonality of v;’s. O

COROLLARY 4.3. Let Wy = Vi and Wy = Vi © Vi_1,k=2,...,J, tn the A-inner product. Then
V' can be expressed as a direct sum of Wy's:

V=WeW.s oW

Corollary 4.3 induces a projection operator Qy : V — V; defined by

(20) Qrv=v1 + vy + -+ vg,

where v = vy + - -+ vy, vy € Wy, is the unique representation of v defined in (19). This operator
Qi will be used to prove the approximation property (4). Here we do not use the L? projection Qj
because (), is a more natural and convenient choice in the one-dimensional case. In view of Lemma
4.2 and Corollary 4.3, the stability property (3) is satisfied.

In the literature, the approximation property (4) is typically proved by making use of the fact that
the interpolation preserves constant functions. In the two level case, we have shown in Lemma 3.2 that
constant functions are indeed preserved by the coarse grid basis functions in our case. Using the same
proof technique, we can easily show that it is also true for the multilevel case.

LEMMA 4.4, Forany k=1,...,J,

With this result, we can now prove the approximation property (4).

LEmMMA 4.5. Foranyv €V and any k =2,...,J,

(21) 1(Qx — Qr—1)v]] < Chyl|Qrv||4.

Proof. We compute the quantities on both sides explicitly to see how preserving constant functions
comes into play. Since @ is a projection, we can always change v to Qv in the left-hand side of (21).

Without loss of generality, we assume v € Vj,, that is, v = Z:L:kl v;¢¥. This means we need only prove

o — Qr—1v]] < Challv]|a.
10



By the definition of Q;_; in (20),

Nk—1

. .
Qr_1v = Z vaidy Tt

i=1
Let w=v— Qp_1v = Yok w;#¥. Then we can verify that
wWa; = 0, i:l,...,nk/Q,
wai—1 = Va1 — (avai_2 + Bray),

where o = (bf__ll(x’z“i_l) and 8 = qbf_l(x’z“i_l). Because the coarse grid basis functions preserve constant,

we have o + 3 = 1 and hence
woic1 = (a4 Fveict — (avsi_o + B,
= avoi_1 — vai—2) — B(vai — vai—1).
Now we estimate the L? norm of w on [zf, ., 2% ]:

k k

T2 5 T2 i 5
LW de = ) (wai—195,_1) dx
([/‘21_2 ([/‘21_2
2 & k 2
= sz'—1/ (¢5;_1)"dx
l‘k
21—2
_ 2 I
- wZz—lMe)_ooye)_ooa

where M!)_wye)_w is the (20 — 1,27 — 1) entry of M), which is the mass matrix with respect to

{¢F}2% . Using the formula for ws;_; and the elementary inequality: (aA — 8B)? < aA? + 3B? for
a + B = 1, we have that

(22) / wide = M!)_oo e)_oo[a(’/e)—oo —vey—e) — Blvey — VE)—OO)]E

< Mmoo [0e oo — vey- )€ + Blre) — vey-oo)€].
But the A-norm of v is given by

k
Ta4

a(a:)(v/)zdx
l‘k
21—2
k

P21 [ B2 O ! B2
= a(®)(Vai—o¢ni_o + Voi—1¢09;_1 ) dr + a(x)(vai—105;_1 + V2idy; ) da

ek, ek,

2 Zhios [ 2 & ok
= —(vai—1 — v2i-2) . a(x)pn;_o G5y dx — (Vo — V2i—1) . a(x)ps; g ¢5; d,
Toi—2 Toi—1

since ¢&. ,(z) + ¢%._ () = 1 on [z%,_, 2% ], which implies (bgi_zl(l‘) + (bgi_l/(x) = 0. A similar
argument also holds for the second integral. Together with the formulas for o and 5 in (9), we have

/ " a(@)(0)2da = [a(vait — vaia)? + Blvs — e AL

where A!) is the (20— 1,2i—1) entry of A which is the stiffness matrix at level k with respect

—00,E)—00
to the basis {¢F}7* . Combining with (22), we have
k k
Loy ./\/l” Loy
(23) / wider < w/ a(z)(v') de.
xl;z—2 A!)_oo €)—o0 xl;z—2

11



It is easy to show that

and

Thus, (23) becomes

k k

/21 wzdngh%/ B a(z)(v')de,

21—2 x21—2

where (' 1s independent of h;. Summing over ¢, we obtain the approximation property. 0O

Hence, by Lemma 2.2, Ky is bounded by a constant independent of the mesh size A, although the
constant may depend on the coefficient a(z). The coefficient dependence comes from the bound given
by the approximation property (see Lemma 4.5). Tt turns out that we can eliminate the coefficient
dependence by estimating Ky directly from its definition (1) if the damped Jacobi or Gauss-Seidel
smoothings are used.

LEMMA 4.6. Let R{?J and RkGS be the approzimate inverses of Ay giwven by the damped Jacobi
method and the Gauss-Seidel method, respectively:

1
DJ BT 1k
(Rg " vk, vk) W(V ) (D)™ v,
(R ok, v) = (vF)T(DF = £F)~1F,
where A¥ = D* — £F — (L¥)T D* = diagonal of A* and vy = Z?; 1/]’»C f Then
[(0 S 3a
for the damped Jacobi smoothing, and
Ko =1,

for the Gauss-Seidel smoothing, and they are both independent of the coefficient of the PDE.

Proof. This proof is a modification of the proof of Lemma A.1. For any v € V| let v = Zizl vy be
a decomposition of v given by (3), that is, v, = (Qk — Qk_l)v. We first estimate Ky for the damped
Jacobi smoothing and then for Gauss-Seidel smoothing. In view of the definition of Ky, for each k > 1,
we consider

(RY7)™ g, vr) = p((DF) 1 AR) (V9T DR,
From the calculations in the proof of Lemma 4.5, we showed that 1/]’»C =0, j even. Thus
W) DEE = ()T ARV = oy 5.
The estimate of p((D*)~1A*) = p((D*)=1/2 A%(D*)=1/2) is purely algebraic. Note that the product

(D)2 AR (DF)H/? is simply the matrix obtained by the diagonal scaling of A*F. Hence, it is still
tridiagonal, and its diagonal elements are all 1’s. The element of the (i,i 4+ 1)th entry is given by

./4?72»4_1/ ./452»./4?_'_172»_'_1. Since A* is SPD, it is easy to show that the (i,i + 1)th entry is bounded by 1

12



in size. By the Gershgorin Circle Theorem, p((D*)~1A%) < 3. Hence

J J
SR oe, o) = loalla + D (RET) ™ ok, or)
k=1 k=2
J
< i +3D luwli
k=2
< 3l

By the definition of Ky, the estimate follows.
Similarly, for the Gauss-Seidel smoothing, we consider

(REHY Lo, o) = (H)T(DY = LRy
— ;( )TDk k_|_ ;( k)T.AkI/k
— ( )T.Ak k
= Jloll3.

Thus, Ky = 1, since

J J
DRI e o) = ol = [l
k=1 k=1

For the estimate for K, instead of the V, we consider the W} defined in Corollary 4.3. It is not
hard to see that all the previous results still hold. In addition, we have P;P; = 0, for any ¢ # j.

LEMMA 4.7. Let wq be the smallest constant such that
(Apvp, vp) < wl(RI;lvk, vg) Yo, € V;.
Then
K <ws.

If Ry = RPY | then wy = 1. If Ry = RSS | then wy < 2.

Proof. The bound for K is a direct consequence of Lemma 4.6 in [39] and the fact that P;P; =0
for i # j. If Ry = RP7, then

= p(RP7 Ay) = Ay =1

1
o)
If R, = RkGS, then

(Apvp,ve) (v k)TAk %
(RG%)Tug,vp)  L(F)TDEpE 4 L(oF)T AR <2.

Hence wy < 2. O

5. Numerical Results. In this section, we present results of numerical experiments mainly in
two dimensions to verify that the multigrid algorithm resulting from the energy-minimizing interpola-
tion has optimal convergence behavior and is robust with respect to the coefficients of the PDEs. In
all the numerical examples; the computational domain is = [0, 1] x [0, 1] with homogeneous Dirich-
let boundary condition. In the multigrid procedure, a V-cycle is used with two pre- and two post-
pointwise Gauss-Seidel smoothings. The iteration was terminated when the relative residual norm was

13



less than 107%. The number of multigrid levels is such that the coarsest grid is a single point, or as
otherwise stated.

In Section 3.2.1, we mentioned that it is not necessary to compute the Lagrange multipliers to
machine precision. In all cases discussed below, we used piecewise linear or bilinear interpolation as
our initial guess for the minimization problem. In the numerical results, we show how the accuracy
of the Lagrange multipliers affect the efficiency and convergence of the resulting multigrid method.
Moreover, as discussed in Section 3.2.2, the augmented stiffness matrix AP, or more precisely, A" +nZ,
is a free preconditioner for solving the Lagrange multiplier equation (16). In the numerical examples,
this preconditioner is used with 5 chosen as 1073.

Example 1: In the appendix, we prove that the energy-minimizing interpolation recovers the bilinear
interpolation if a(z) = 1 in the case when the structured square grid is used. But linear interpolation
is not exactly obtained in the triangular grid case. In this example, we solve the Poisson equation

—Au =1,

on the triangular grid. The result is shown in Table 1. We vary the grid size from h = 1/16 to h = 1/64
and the number of multigrid levels from 3 to 6. We see that both the linear and the energy-minimizing
interpolations give a convergence rate independent of the mesh size and the number of multigrid level.

Linear Energy-min

h 34|56 3|4]|5]|6

e (|77 -|-11717]-1-

/32 (|6 |77 |-16|7]|7]-

1/64 || 6| 7| 7| 7| 67|77
TABLE 1

Number of V-cycles using linear and energy-minimizing interpolations when a(x) = 1.

Example 2: In this example, we verify numerically that the convergence rate does not depend on the
number of levels. Here we consider the following PDE with a smooth coefficient:

=V (1 +zexp(y))Vu=1.

Table 2 shows the number of multigrid iterations to convergence. We denote the multigrid method
with bilinear interpolation by MGBL and our energy-minimizing multigrid method by MGE(e), where
¢ specifies the stopping criterion for the conjugate gradient (CG) method applied to the Lagrange
multiplier equation (16). More precisely, the CG iteration is stopped when the relative residual norm
is less than e¢. We see that when the optimization problem is effectively solved (¢ = 107!%), the
convergence rate is independent of the mesh size & and the number of levels. In fact, we observe
that same convergence rate can be achieved even if the optimization problem is solved approximately
(e = 1071). Thus, we may reduce the cost by applying significantly fewer number of CG iterations as
shown in Table 3, which gives the number of conjugate gradient iterations at each multigrid level to
solve (16).

We remark that this example is used to illustrate the optimal convergence of MGE(e) and the
effect of varying € only. It is not cost effective to use energy-minimizing interpolation when bilinear
interpolation works well.

Example 3: We compare the multigrid method using bilinear interpolation with that using energy-
minimizing interpolation by solving the following discontinuous coefficient problem [1, modified Exam-
ple IJ:

=V a(z,y)Vu=1,

where

at 02<2<07 & 0.26<y<0.75
a(z,y) = _

a otherwise.

14



MGBL MGE(lO—l) MGE(lO‘lZ)

h 41516 | 745674567

1/16 51 --1-1Id-1-|-lId]-1]-]-

1/32 515 -]-||b|b|-|-1b]|bd]|-]-

1/64 5155 |-|[b|b|b]|-|b|b]|5H]-

1/128 || 5|5 |5 |5 ||5|5|5|5]|5|b|5]5
TABLE 2

Number of V-cycles using bilinear and energy-minimizing interpolations when a(z) = 1 + x exp(y).

h level
1/16

=
o
=
=

UG U WY [ S O Y [y e — Y

MGE(10~'?)
53
22
98
33
22
180
53
22
309
98
33
1 22
TABLE 3
Number of CG iterations at each multigrid level with varying € when a(x) = 1 + z exp(y).

e

1/32

1/64

17128

MO QO O =IO N W oY

We fix ¢~ = 1 and vary at from 10 to 10%. The convergence results are given in Table 4. Same notations
are used as in Example 1. Here * denotes convergence beyond 100 multigrid iterations. Consistent with
the classical theory, the convergence rate of the standard multigrid does not depend on the mesh size h.
However, the convergence rate deteriorates substantially as the jump of the discontinuity increases. On
the other hand, the convergence of the energy-minimizing multigrid method does not depend both on
the mesh size and the size of the jump. Again, MGE(10~!) shows similar convergence as MGE(10712).

Table 5 shows the average number of CG iterations on the fine grid, in place of the number of CG
iterations on each grid level shown in Table 3. It is computed as follows. One CG iteration on the first
coarse grid is counted as 1/2 CG iteration on the fine grid and so on. By applying only three extra
CG iterations to construct the energy-minimizing interpolation, the convergence of the multigrid is
improved significantly. This result demonstrates that extra cost of solving the minimization problem
1s justified by the much faster convergence of the multigrid method.

MGBL MGE(lO—l) MGE(lO‘lZ)

h 10 [ 102 [ 103 [ 10* || 10 | 102 [ 103 | 10* || 10 | 10% | 103 | 10*
1/16 14 * * * 6 5 6 6 6 5 5 5
1/32 14 * * * 6 6 6 6 6 6 6 6
1/64 14 * * * 6 6 7 7 6 6 6 6
1/128 || 14 * * * 7 7 7 7 7 6 6 6

TABLE 4

Number of V-cycles using bilinear and energy-minimizing interpolations for the discontinuous co-
efficient problem. The jump at = 10,107,103, 10%. * More than 100 V-cycles required for convergence.

Example 4: We solve another PDE to demonstrate the robustness of the energy-minimizing multigrid
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MGE(1071) || MGE(10~1%)
h 10 10% 10 10?
1/16 || 3.00 | 3.00 || 3.00 | 5.50
1/32 || 2.50 | 2.50 || 2.50 | 3.63
1/64 || 2.25 | 2.25 || 2.25 | 2.88
1/128 || 2.13 | 2.13 || 2.13 | 2.44
TABLE 5

Average number of CG iterations on the fine grid for the discontinuous coefficient problem. The

jump at =10, 10%.

method. The coefficient is oscillatory, and the equation is [22, Example 7.4]:

1
YV G¥ Pen(e/ @+ Pem(ye) T

We chose P = 1.99 and €=0.1 and 0.01. The results are shown in Tables 6 and 7. This time,
the coefficient is very rough, and the minimization problem is more difficult to solve. In the case,
MGE(1071) is not accurate enough to have good convergence. However, with a slight increase in the
accuracy, MGE(10~%) recovers the same rapid convergence of MGE(10712).

We remark that the nonuniform number of V-cycles to convergence for the case ¢ = 0.01 may be
because the mesh size h is not small enough to resolve the coefficient a(z,y) for the first couple of
values of h.

MGBL || MGE(10-7) || MGE(10-%) || MGE(10~12)

h |[OT]0O0L |01 00L |[0I] 001 |01 0.01
16 || = | 4 || 7 5 7 5 7 5
1/32 [[ 51 | = || 23| 14 7 14 7 14
1/64 || 65 | 58 || = 11 7 7 7 7
/128 [ 66 | * || = 11 7 10 7 10

TABLE 6
Number of V-cycles using bilinear and energy-minimezing interpolations for the oscillatory coeffi-
ctent problem. ¢ = 0.1,0.01. * More than 100 V-cycles required for convergence.

MGE(10~1) MGE(10~7) MGE(10~'%)
h 0.1 0.01 0.1 0.01 0.1 0.01
1/16 || 38.75 | 1.75 42.25 1.75 90.75 | 56.75
1/32 || 13.63 | 63.88 62.38 | 71.00 || 124.13 | 184.13
1/64 3.81 | 82.94 || 115.94 | 127.94 || 228.06 | 308.69
1/128 || 2.22 | 211.22 || 177.94 | 316.22 || 388.78 | 664.22
TABLE 7

Average number of CG iterations on the fine grid for the oscillatory coefficient problem. e =
0.1,0.01.

Example 5: We show by a one-dimensional Helmholtz equation that the energy minimization principle
1s not restricted to positive definite second order elliptic PDEs. The model equation is

(24) Au+aou =1,

where « 1s a positive constant. This operator is indefinite.
We use multigrid to solve the linear system .A". For this problem, we obtained ¢ from solving
the local PDEs (7), not from the minimization problem (12), since constant functions are not in the
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h Linear | Energy
1/32 * 5
1/64 * 5

1/128 * 5
TABLE 8

Number of V-cycles using linear and energy-minimizing interpolations for the Helmholtz problem.

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

FiG. 3. Left to right: errors after 0, 4 and 8 Gauss-Seidel iterations when A" is the Helmholtz
operator.

kernel of A", The convergence results of the multigrid methods using linear and energy-minimizing
interpolations are shown in Table 8. The # in the first column indicates that standard multigrid takes
more than 100 V-cycles to convergence. The poor convergence comes from the effect of smoothing
and the way the interpolation is done. The eigenfunctions of the operator A" corresponding to small
energy are oscillatory, whereas those corresponding to large energy are relatively smooth. As a result of
standard relaxation smoothings, the errors become more oscillatory. Figure 3 shows the effect of 4 and
8 1terations of Gauss-Seidel smoothing applied to a smooth initial error. Such a phenomenon was also
discussed in [7]. Hence, if we use linear interpolation, it will not be able to approximate the oscillatory
error on the coarser subspaces. This fact causes the failure of the standard multigrid method.

On the other hand, the multigrid method using energy-minimizing interpolation works fine and
shows no deterioration, because the energy minimization captures the property of this type of operators
and produces oscillatory coarse grid basis functions (see Figure 4). This consistency enables a good
approximation on the coarser subspaces, and hence the multigrid convergence is much better.

Remark: The coarse grid basis functions obtained by solving the local PDEs do not preserve constants,
an approach that is natural because the operator A does not annihilate constant functions. If we were
to extend our minimization formulation to this case in higher dimensions, we would have to modify
the constraint in (12).

6. Concluding Remarks. Through the analytical and numerical results, we have demonstrated
that energy-minimizing and constant preserving are two key properties of the coarse grid interpolation
required to have a robust multigrid method. An obvious drawback to the construction of the robust
interpolation is the expensive solve of the minimization problem. An inexact preconditioned conjugate
gradient method with the linear interpolation as initial guess is proposed to overcome this problem.
The numerical results show that the setup cost 1s not too expensive, especially when the system is to
be solved many times. Nevertheless, more efficient methods to solve the minimization problem need
to be derived and studied.

Finally, because of the algebraic nature of the construction of the interpolation, our method is
also applicable to complicated geometries, for instance, unstructured grids, but these cases are not
discussed in the present paper.
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0.5

-0.5

5 10 15 20 25 30

F1G. 4. A coarse grid basis function obtained by the energy minimization when A? is the Helmholts
operator.

A. Appendix. In the following, we give the proofs of some of the previous results. In Section 2,
we claimed that if the stability and the approximation properties (3), (4) are satisfied, the parameter
Ky can be bounded by a constant independent of the mesh size. Note that the following result is stated
without proof in [39].

LEMMA A.1. Let wy = mina<i<y (p(Ai)Amin (). Suppose (3) and ({) are satisfied. Then

C
Ko < —.
wo

Proof. For any v € V, let v = Zizl v be a decomposition of v given by (3), namely v, =
(Qk — Qk_l)v. In view of the definition of Ky and, for each k > 1, we consider

1 p(Ar)
— (v, ) < —=
Amin(Rk)( g k) T Wy

by (4) and p(Ag) = O(h,;z). Substituting v by ¢ = (Qk — Qk_l)v in (4) and rewriting ¢ = v, we have

1(Qr — Qr-1)v]] < Chi]|(Qr — Qr—1)v[a.

_ . c o
(Rj; vg, ) < 1(Qk — Qr—1)v]]* < W—OHkaHi,

Hence,
-1 o A 2
(R}, vk, ve) < w_0||(Qk = Qr-1)v[|%-
For k =1, since Ry = Al_l, we get instead
(Ry o1, 1) = (RiA) ™ on, Aven) = [l = (1@l

Combining with (3), we have

J

J
D (Bitog,u) = ||le||,24+Z(Rilvk,vk)
k=1

IN

||le||A+—Z|| (Qr — Qe—1)v|)%

k 2

< max{l, %} (Z ||(Qk - Qk—l)vni)
k=1
C
max{l, w_o} vl
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By the definition of Ky, the estimate follows. 0O

We next prove a result in Section 3.2.1 that states that if a(#) = 1, the minimization problem will
recover the bilinear interpolation in the square grid case.

LEMMA A.2. The solution of (12) gives the bilinear interpolation if a(x) = 1.

Proof. Let ®g = [¢; - +;¢7] be the vector corresponding to the bilinear interpolation. Thus, the
n x 1 sparse vector !, corresponding to the coefficients of (bf in the expansion of ¢!, has nonzeros
1/4, 1/2, and 1 only. We verify by direct substitution that ®, satisfies the Euler-Lagrange equation
(14) with an appropriately defined Ag.

Since ¢} is sparse, we may consider the nonzeros of ¢} only when computing the product fifgof)
Define

Q; = {272} is an interior noncoarse grid point which does not connect to any
coarse grid points on the mesh.}

Q, = {xZ : l‘Z is an interior noncoarse grid point which connects to exactly 2
coarse grid points on the mesh.}

Qs = {27 :2"is a noncoarse grid boundary point.}

By the definition of th, after some calculation, we can verify that

o 0 if «f €y
(25) (APl =< 3/2 ifal ey
3/4  if 2? € Q3.

Here .%Lh is the nine point stencil

-1 -1 -1
-1 8 -1
-1 -1 -1

The values at the coarse grid points are not considered because the solution @ must have a value of 1
there.
Let Ag be the vector of Lagrange multipliers defined by

0 if el e
(Ao)p =4 —3/2 ifzl e
—3/4 ifzh € Q3.

First, from (25), we see that the values of fi?gpé depend not on the location of ¢} but on the location
corresponding to the component & only. Second, B is a column of restriction matrices that have either
1 or 0 on the diagonal. It is not hard to see that Q®y + BAg = 1. Hence, the result follows. 0O
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