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AbstractTraditionally, much of the numerical analysis community has focused on issuesof error bounds, convergence rates and time and space complexity of numericalalgorithms, not on robust, reusable software implementations. Until recently,many of the computer science advances in software engineering rarely �lteredinto numerical codes.With the growing complexity of (1) parallel computers, (2) numerical algo-rithms, and (3) application physics that must be modeled, the community has�nally begun to realize the need for new techniques to manage the complexityof the codes. Thus, the entire community has entered a learning curve; somegroups are well advanced on the curve and develop and use sophisticated classlibraries and frameworks, while others are still struggling with dynamic memoryallocation and data structures.This article will discuss some of the issues involved in the transition froma Fortran 77 nuts-and-bolts approach to developing numerical code to a higherlevel, abstract, object-oriented methodology and how our PETSc developmentteam is trying to ease that transition. In addition, it will discuss two limita-tions in the Fortran 90 syntax that make it di�cult to take full advantage ofabstraction when programming purely in Fortran 90.



0.1 IntroductionNumerical algorithms are implemented today using a wide range of program-ming languages and environments: from Fortran 77 to C, C++, Matlab, Math-ematica, and now Java. But much of the heavy lifting is still done using Fortran77. This is due to a variety of both technical and sociological reasons. This pa-per will discuss some of the issues involved in the transition from a very concrete,procedural-oriented coding style (as exempli�ed by most numerical Fortran 77and C code), to more abstract coding techniques.As software engineering has evolved, like any discipline, it has developed alarge vocabulary of specialized terms. These terms are extremely valuable be-cause they allow e�cient, accurate communication of highly involved concepts,but, unfortunately, they form a barrier to large numbers of Fortran program-mers. Essentially, one has to learn the vocabulary and understand the conceptswell, before being able to e�ciently apply them to their problems. Many peoplefeel they cannot a�ord the \non-productive" months spent learning the newtechniques.The PETSc software package for the scalable solution of partial di�erentialequations being developed at Argonne National Laboratory is intended to allowthe gradual transition from traditional Fortran coding to more object-orientedtechniques. Our intention is that one need not throw away many years worthof coding and start again from scratch using new, not yet well understood, pro-gramming methodologies. Instead, one \morphs" the code over time, in smallincrements. The �nal code will often consist of portions that are virtually iden-tical to the original code (usually the computational kernels) and other portionsthat appear dramatically di�erent (generally the control structure). The goalis for Fortran programmers to, over time, learn the powerful new techniqueswhile continuing to productively generate code, thus eliminating much of the\down-time" associated with jumping over the conceptual barriers in a singlestep.PETSc is programmed completely in ANSI C and may be used from Fortran,C, and C++. This article focuses on its support for abstract programming inFortran 77 and C. Although PETSc support for upgrading (and parallelizing)legacy Fortran 77 code is crucial, our key focus is also on developing a modernenvironment for writing completely new codes.In order to limit the size and scope of this article, I have decided to focuson what I consider to be the crucial ingredients in applying some of the modernsoftware engineering techniques to numerical software. Thus I will gloss overmuch of the details, try to limit the vocabulary I introduce, and skip manypoints that others may feel are equally, or perhaps, even more important. Inparticular, I will not discuss templates at all. Based on personal experience,it is di�cult to appreciate the full power of these ideas until they have beenthoroughly absorbed. No single article, book, or even series of books can be asubstitute for actually learning the concepts by using them.A more speci�cally C++ oriented introduction to these ideas is [BL96]. Aninteresting set of opinions on C++ object-oriented programming is contained1



in [KM96],0.2 Seven Evolutionary StepsThe learning curve can be (somewhat arbitrarily) divided into seven conceptualstages. No single step is revolutionary; each is a natural progression of theprevious; but taken as a whole, they represent a fundamentally di�erent wayof thinking about programming numerical methods (in fact, programming ingeneral). The concepts associated with the steps are1) pointers,2) dynamic memory management,3) user de�ned data-structures,4) data encapsulation, opaque objects,5) polymorphism,6) inheritance and composition, and �nally7) a paradigm shift away from procedural programming.In the following seven sections I will discuss these steps in general and thenmention how the PETSc package provides appropriate support for Fortran 77and C code.0.2.1 PointersA pointer is simply a variable that contains, not a value, but rather a memoryaddress at which a value (or array of values) is stored. Pointers are familiar (ina hidden form) to all Fortran programmers, for example, when one doesdouble precision a(10,10)...call afunction(10,10,a)...-----------subroutine afunction(m,n,a)integer m,ndouble precision a(m,n)...Fortran does not copy all the values in the array into the subroutine. It merelypasses into the subroutine the address at which the values in the array are storedThis is an example of passing by pointer (also called passing by reference).2



The limitation in Fortran 77, which is somewhat overcome in Fortran 90, isthat there is no concept of a pointer to a pointer. This is unfortunate becauseit means that there is, for example, no way to pass out of a subroutine an arraythat was created in the subroutine. For example, in C or C++ one could write:double *a;afunction(&a);a[5] = 23.0;....int afunction(double **a) {.../*allocate space for an array;put into a the address of that space;*/...}Note that the symbol * in front of a variable in C and C++ indicates that thevariable is a pointer; that is, it contains an address, not a value. The & operatorreturns the address of any variable (including a pointer variable). Thus, in thiscase, &a is a pointer to a pointer.In order to access arrays allocated in C fromFortran, there is a standard trickthat often works to allow one to pass an \address" back to the calling routine,but it is slightly cumbersome and not portable across all Fortran compilers. ThePETSc routines VecGetArray(), ISGetIndices(), etc. allow Fortran users toaccess the arrays generated by PETSc using this technique.Fortran 90 introduced the explicit concept of pointers to Fortran, but withone very unfortunate limitation: at compile time all routines that involve apointer must know exactly what type of data the pointer references; that is thecompiler has to have access to the module that de�nes the derived datatype.Below, when I discuss data encapsulation and opaque objects, it will becomeapparent how extremely limiting this seemingly harmless constraint is. Notethat the C compiler will still perform type-checking on the arguments, so theFortran 90 compiler does not actually provide any stronger error checking inthis regard.Though understanding pointers is crucial to the learning curve, it is inter-esting to note that at some higher level it is possible to remove the concept ofpointers. For example, the JAVA programming language does not have point-ers. The JAVA designers eliminated pointers from the language because theycan be dangerous, since they allow reading and writing directly to any memorylocation. JAVA does provide dynamic arrays which are essentially array point-ers with built-in bounds checking. This allows accessing array elements withoutthe danger of accessing inappropriate data.3



0.2.2 Dynamic Memory AllocationOnce one has a language syntax that supports pointer variables, it becomespossible to consider allocating memory space at run time, rather than only atcompile time in pre-dimensioned arrays. In C, this is done in a very simplenuts-and-bolts manner. A call to malloc() returns a pointer to a space (ofrequested size) in memory that may be then used for any purpose. C++ o�ersthe command new() which is not so close to the metal; it allocates memoryand automatically builds any data structure (technically an array, struct, orclass) that a library has previously de�ned.Memory allocation is nice because it allows one to set array dimensions atrun-time rather than compile time; but its real power is in supporting the next�ve stages in programming abstractions.0.2.3 User-De�ned Data StructuresIn Fortran 77 you often see calling sequences such assubroutine asolvg(m,n,ia,ja,a,x,b,work1,work2,...)integer m,n,ia(*),ja(*),work1(),...double precision a(*),x(*),b(*),work2(*),...This is because the language syntax gives no convenient way to gather severalrelated variables into a single item (except in common blocks). Thus, manyFortran 77 routines that are actually conceptually very simple, look complex.Data structures allow the organization of di�erent types of data togetheras a single entity. At the simplest level they can be used to shorten callingsequences and thus make code more manageable. For example, in C you mayrepresent a sparse matrix (in compressed sparse row format) astypedef struct {int m,n;int *ia;int *ja;double *a;} SpMat;and call a function whose calling sequence issolve(SpMat *mat,double *x, double *y, ...);Fortran 90 also provides the capability to construct new data structures,called derived types. Unfortunately, it has one seemingly minor constraint, thatwe'll see below has a very large impact: Fortran data structures cannot containpointers to functions.Again, like pointers and dynamic memory allocation, the ability to con-struct new problem-dependent data structures, though very powerful, does notfundamentally change the way one views computer programs. What has been4



discussed so far is not object-oriented programming, nor is it revolutionary. Butbuilding on these three techniques has led to a software revolution; the conceptsof object-oriented programming.Essentially, Fortran 90 and most traditional uses of C take advantage ofpointers, dynamic memory allocation and user de�ned data-structures, but donot go beyond this.0.2.4 Data Encapsulation and Opaque ObjectsOnce one is able to create data structures, such as sparse matrices, one can thenask: Is it possible to write most of my code so that it works independently of thespeci�cs of the data structure used to store the sparse matrix? This concealingof data structures from portions of the code is called data encapsulation (alsodata hiding).To make this concrete consider a speci�c example. Say you wish to solve alinear system using a non-preconditioned Krylov subspace method; thus, in thelinear system solve, only the matrix-vector product routine need be aware ofhow the sparse matrix is stored. (Here I do not discuss how to get the matrixvalues into the encapsulated data structure.) To accomplish this in C one couldde�ne in a public include �le (a �le included by all functions)typedef struct _SpMat *SpMat;This tells the compiler that you have (somewhere else) de�ned a data structurecalled SpMat that variables of type SpMat point to. It gives no indication of thecontents or organization of the data structure. Meanwhile in a private include�le de�ne the actual contentsstruct _SpMat {int m,n;int *ia,*ja;double *a;};Now, only the routines that include the private �le are aware of the internaldata structure that the sparse matrix is stored in. The other routines just knowthere is such a structure de�ned somewhere. So, if one changes the de�nitionof the data-structure, only those routines that include the private �le need bechanged; or even recompiled.The variable type SpMat is often referred to as an opaque object, becausemost of the code cannot see inside it.The syntax of C speci�cally allows one to make opaque objects; unfortu-nately Fortran 90, though it does allow pointers, requires that the compilerknow exactly what the pointer is pointing to in each routine it is used. Thusone cannot easily construct true opaque objects in Fortran 90. As mentionedabove, both languages support type checking that prevent users from passing inthe wrong argument type; so the use of opaque objects does allow for argumenttype checking. 5



0.2.5 PolymorphismData encapsulation allows one to organize a code so that each data structureis visible only to those routines that need direct access to it. This simpli�eschanging the data structures since only a limited number of routines need to bechanged or even recompiled. However, one still needs to link in di�erent codeto use a di�erent data structure.Say I have two di�erent sparse matrix representations SpMat1 and SpMat2and hence two di�erent sparse matrix-vector product routines Mult1() andMult2(). I could now write a solver that supports either of these two datastructures with calls of the formif (mattype == 1) {MatMult1(mat,x,y);else if (mattype == 2) {MatMult2(mat,x,y);}/* mat is a pointer to the matrix data structure;in one of two formats and x and y are pointersto arrays*/whenever I need to perform a matrix-vector product. This is clearly cumber-some. Polymorphism is the concept that the matrix-vector multiplication rou-tine itself automatically handles calling the correct function associated with thatparticular matrix data structure. Thus, naively, one could writeMatMult(void *matin,double *x,double *y){ if (mattype == 1) {MatMult1((SpMat1)mat,x,y);} else if (mattype == 2) {MatMult2((SpMat2)mat,x,y);}/* The (SpMat1) and (SpMat2) above simply indicateto the compiler that matrix mat is known to pointto a data structure in the format of SpMat1 or SpMat2respectively*/}Now the application code is much cleaner since it always calls MatMult();but this is not extensible. If wanted to add a third matrix data structure, Iwould have to edit the MatMult() routine to add a third conditional.To support a more extensible polymorphism (the ability to add new datastructures and corresponding code without editing or even recompiling the cur-rent code) one could have the data structure itself carry the functions that are6



required, in this case, the matrix-vector product. This can be implemented inC by having the matrix data structure consist of two parts; a common part anda private (data structure speci�c) part. In the simplest case the common partmight consist only of a pointer to the function that performs the matrix-vectorproduct. For example,struct _SpMat {/* The variable mult in the data structure below is apointer to a function that takes an SpMat and two doubleprecision arrays as input. The library can call thisfunction directly to evaluate the matrix-vector product*/int (*mult)(SpMat,double*,double*);void *private;};Recalltypedef struct _SpMat *SpMat;de�nes SpMat to be a pointer to the SpMat data structure. The \universal"matrix multiply routine can be written asint MatMult(SpMat mat,double *x,double *y){ /* This calls the function pointer with argumentsmat, x, and y*/return (*mat->mult)(mat,x,y);}and the two speci�c multiply routines might look like/* compress sparse row format */int MatMult1(SpMat mat,double *x,double *y){ /* Here we know that mat->data points to adata-structure of type SpMat_1 since thisfunction, MatMult1(), was called.*/SpMat_1 *mat_1 = (SpMat_1 *) mat->data;int n = mat_1->n, m = mat_1->m, *ia = mat_1->ia;int *ja = mat_1->ja;double *a = mat_1->a; 7



for ( i=0; i<m; i++ ) {y[i] = 0.0;for ( j=ia[i]; j<ia[i+1]; j++ ) {y[i] += a[j]*x[ja[j]];}}return 0;}/* compress sparse column format */int MatMult2(SpMat mat,double *x,double *y){ SpMat_2 *mat_2 = (SpMat_2 *) mat->data;int n = mat_2->n, m = mat_2->m, *ia = mat_2->ia;int *ja = mat_2->ja;double *a = mat_2->a;for ( i=0; i<m; i++ ) y[i] = 0.0;for ( i=0; i<n; i++ ) {for ( j=ia[i]; j<ia[i+1]; j++ ) {y[ja[j]] += a[j]*x[i];}}return 0;}The beauty of this approach is that it is completely extensible. To add a newmatrix data structure does not require changing a single line of previouscode, or even having access to the other source code or data struc-tures. In addition, data encapsulation and polymorphism eliminate the needfor reverse communication.PETSc handles data encapsulation and polymorphism in exactly the manneroutlined above. Direct support for Fortran 77 is provided by representing theopaque objects as integers in Fortran and converting them to C pointers in aFortran interface stub. For example, the matrix-vector multiplication routinecalled from Fortran could be written asvoid matmult_(int *mat,int *x,int *y, int *__ierr ){*__ierr = MatMult( (Mat) PetscToPointer( *mat ),(Vec) PetscToPointer( *x ),(Vec) PetscToPointer( *y ));}This converts each of the Fortran integers to the appropriate C pointer andthen calls the C routine. Note that, unlike in the previous example code, bothvectors and matrices in PETSc are treated as abstract objects; i.e. a vector isnot simply an array of values. 8



C++ includes in the language syntax a more direct way of implementingpolymorphism through the use of virtual functions in what are called classes,which are essentially data structures that contain both code and function point-ers. So the syntax to do this in C++ versus C is di�erent, but the fundamentalconcepts are identical. C++ classes cannot easily be used directly from Fortranor C.Polymorphism is sometimes called function overloading. A related conceptis operator overloading which allows you to not only have a single function(such as MatMult()) call di�erent underlying routines depending on the datastructures, but also the symbols +, -, *, / etc. C++ provides support foroperator overloading, C and JAVA do not. Even Fortran 77 has some limitedbuilt-in function and operator overloading; when you call the function abs()it calls the correct function depending whether its argument is an integer orsingle precision, double precision, or complex number. Similarly one uses a +b regardless of whether a and b are integers or 
oating point numbers. Thecompiler ensures that the correct operation is performed.0.2.6 Inheritance and CompositionData structures that contain their own functionality (via function pointers inC, or virtual functions in C++) are often referred to as objects. So de�ning theinterface (calling sequences of the virtual functions) and then implementing oneor more data structures and code to provide the functionality can be viewed asbuilding objects: data structures plus code to act on those data structures.One could, of course, always build new objects from scratch, de�ning thecomplete set of virtual functions, etc. But, as when building anything, it isoften convenient to build o� already existing objects. This can be done in avariety of ways. The simplest is to create a new object by including in it apreviously de�ned object. For example, I could de�ne a grid vector object tobe a new object that contains both a grid and a vector. This is an example ofcomposition.Inheritance is when one creates a new object by adding properties or datato an existing object. For example, from the general class of sparse matrices,one could add the property of symmetry and have a symmetric sparse matrixobject.The syntax in C++ provides a natural way to create new objects via inher-itance and composition. C does not provide any syntax to help in this process.In PETSc we provide support for composition by allowing any object to containpointers to other objects using a mechanism very similar to the attributes inMPI. This is currently done via calls to PetscObjectCompose().PETSc has an object called a grid-vector, GVec, that is obtained by compos-ing a grid object with a vector object. Grid-vectors can be treated as regularvectors, for exampling performing arithmetic on them or multiplying them bya matrix. In addition, one can perform grid speci�c operations such as visual-ization and evaluating grid-based functions.9



0.2.7 Paradigm Shift Away fromProcedural ProgrammingTraditional numerical computing (even on parallel machines) has been almostexclusively thought of in terms of a single conceptual stream of computations.One provides a main program that calls subroutines, that may themselves callsubroutines, etc. The 
ow of control of the program is always determined by asingle (conceptual) program counter.With objects, one can think about a very di�erent paradigm of computing.Instead of thinking about control passing between subroutines, one thinks aboutobjects interacting with each other. Objects make requests of other objects andservice requests from other objects. For example, in PETSc the nonlinear solverobject, denoted by SNES, requests a linear solver object, denoted by SLES, toperform an approximate linear solution. The linear solver object services therequest from the nonlinear solver object. The linear solver object makes requestsof the matrix object and vector objects in the process of solving the system. Ina highly sophisticated simulation, one could see dozens of these various objectsinteracting.The cynic could argue this is only playing with language; after all, under-neath this there is still a Von Neumann architecture. This is true, however,I am coming to believe that accepting the paradigm shift is enormously liber-ating. Intellectually one is no longer strait-jacketed to 
oating down the riverperforming calculations along the way. One can think about side calculationscleanly without muddying the water. I give one example below.Consider a large-scale, three-dimensional 
uids calculation that you wish tovisualize in real time. Before passing the �eld data to the graphics pipes it willhave to be reduced to a level that the hardware can render in real time. In aprocedural style solution you could, at every timestep in the 
uids code, call areduction routine and from that stream the reduced data to the graphics engine.This is a �ne solution. A drawback is that the 
uid solver has to be consciousof the visualization; it has to call the reduction routine! In an object-basedmodel, the reduction object would request the current solution data from thesolver object. This is a subtle but crucial di�erence; the solver control structure(which doesn't know or care a hoot about the visualization) now is completelyseparated from the visualization control structure.Consider a slightly more complicated situation that perhaps more clearlyindicates the potential advantage. Assume person one is monitoring the solutionusing a PC connected to the simulation with a low bandwidth. He or she seessomething of interest and contacts person two who, on the 
y, creates a newdata reduction object for a high resolution three-dimensional visualization ofthe data. Person two monitors for a few minutes and then destroy the highresolution data reduction object. Again, a custom application could supportthis type of interaction but the control structure in the application code wouldbecome rather complicated.Objects allow one to encapsulation not only data, but also control. Thereis no longer a single river of control for the program, rather a separate streamof control for each object. This simpi�es programs that previously would have10



required a great deal of centralized control structure. Each object is insteadresponsible for its own, more or less, straightforward control.0.3 Concluding RemarksIn this article I've tried to summarize seven major steps in the learning curvefrom classical, procedural-oriented numerical programming to the more ab-stract, objected-oriented techniques. In addition, I've indicated how the PETScsoftware package provides at least some of the support needed to take advan-tage of these techniques from legacy Fortran 77 code. I've also tried to indicatewhy it is di�cult to use all seven of these techniques when programming purelyin Fortran 90. Speci�c problems with using Fortran 90 to implement data en-capsulation are that all routines that access a Fortran 90 pointer have to knowthe type of data structure it is pointing to and implementing polymorphism isdi�cult because Fortran 90 data structures cannot contain function pointers.The complete PETSc distribution is freely available at http://www.mcs.-anl.gov/petsc/. PETSc is part of the Advanced Large-scale Integrated Com-putational Environment (ALICE) [MCSD97], being developed in the Mathe-matics and Computer Science Division at Argonne National Laboratory.Other object-oriented numerically focused software systems include:� Blitz++, http://monet.uwaterloo.ca/blitz/,� Di�pack, http://www.nobjects.com/prodserv/di�pack/,� ISIS++, http://www.ca.sandia.gov/isis/,� POOMA, http://www.acl.lanl.gov/PoomaFramework/,� Overture, http://www.c3.lanl.gov/ henshaw/Overture/Overture.html,� OPlus, http://www.comlab.ox.ac.uk/oucl/oxpara/parallel/oplus.htm,� PLapack, http://www.cs.utexas.edu/users/plapack/interface/interface.html.These packages have varying support for mixing with legacy Fortran code.0.4 AcknowledgmentsI thank my fellow PETSc team members: Satish Balay, Bill Gropp and LoisCurfman McInnes. 11
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