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Abstract

Traditional methods for simulating rigid body dynamics involve determining the current
contact arrangement (e.g., each contact is either a “rolling” or “sliding” contact). this approach
is most clearly seen in the work of and Pfeiffer and Glocker. However, there has been a contro-
versy about the status of rigid body problems in the area that do not famous, if not the earliest
example is due Recently, a number of time-stepping methods have been developed to overcome
this difficulty. These time-stepping methods use wntegrals of the forces over forces. separate
newest of these methods are developed in terms of complementarity problems. time-stepping
procedure simulating rigid body dynamics with friction. Proof of the existence of solutions to
the continuous problem can be measure differential inclusions methods. There are, however, a
number of limitations with the methods. In this paper several variants will be discussed and
their essential properties proven.

1 Introduction

Recently, a number of new methods have been developed for solving problems in rigid body dynam-
ics that are explicitly based on a time-stepping formulation of the problem [4, 33, 36, 38, 39, 55, 56].

These methods contrast with the more traditional approaches, which involve formulating a
system of equations, or complementarity problem, at each time-step to be solved for the forces,
which are then used as input for a differential equations or differential-algebraic equations (DAE’s)
solver [22, 23, 30, 31, 32, 47]. The problem with the traditional approaches is that the systems
of equations or complementarity problems to be solved at each instant in time may not have a
solution. This difficulty relates directly to problems that do not appear to have solutions, discovered
by P. Painlevé [41] in 1895. The controversy begun by this discovery has continued ever since
[6, 7, 12, 13, 15, 28, 30, 31, 32, 33, 34, 36, 37, 38, 47].
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The point of the new time-stepping techniques is that they avoid this problem by implicitly
allowing impulsive forces at any time during contact, not just at the instant of impact.

Painlevé’s problems resulted in researchers focusing their efforts on finding computational tech-
niques. Relatively little effort has focused on the questions of convergence of these techniques or
on the nature of the resulting limiting trajectories. Notable exceptions are the work of Monteiro-
Marques [33] and Stewart [52, 53]. There is, however, much to be done in this area. In the above
works, the continuous problem of rigid body dynamics is understood in terms of measure differential
inclusions (see, e.g., [40]) and measure differential equations. These are problems of the kind

dv @_

M(q) at € K(q(t)), dt v, (1)

where K(-) is a set-valued function with closed and convex, but not necessarily bounded, values.
The unboundedness of K(q) allows for impulsive forces and accelerations associated with direc-
tions in which K(q) is unbounded. Impulsive forces give rise to discontinuities in the velocity
function v(-). The velocity function, however, is not completely irregular: not only is it bounded
on bounded intervals in time, but it is a function of bounded variation. The sum of the sizes of all
the discontinuities is therefore finite, and completely erratic behavior is not allowed.

A number of other conditions are imposed on the solutions of rigid body dynamics problems
as well as the measure differential inclusion condition. These conditions include the maximal
dissipation property of Coulomb’s friction law and the conditions describing the elasticity of impact
(ranging from completely inelastic to perfectly elastic).

This paper considers a wide range of time-stepping methods and discusses their implications
for convergence theory and the nature of the limiting solutions.

The variations in the time-stepping methods considered include the following:

1. Friction cones (the set of generalized contact forces for a given configuration) are approxi-
mated by polyhedral cones. New modifications have been developed recently that avoid this
approximation, for which existence results for the time-stepping scheme can be proven [45].

2. All collisions are perfectly inelastic (i.e. no bounce). One scheme that incorporates elastic
and partly elastic collisions while preserving the dissipativity property is reported in [4]. This
scheme splits the step into “compression” and “expansion” phases. Because this scheme is
developed in terms of the generalized forces, it is a “Poisson”-style scheme. Other schemes can
be developed in terms of the velocities without splitting the step; these are “Newton”-style
schemes.

3. It is assumed that the generalized coordinate vectors and the generalized velocity vectors have
the same dimension. This can be done for three-dimensional problems by using Euler angles,
for example, to specify the orientation of the rigid body. But any such parameterization must
have singularities. On the other hand, using unit quaternions or 3 X 3 orthogonal matrices
to represent the orientation of a body means that the angular velocity vector must have a
different dimension to the vector containing the orientation information. Also, care must
be taken to preserve the normalization properties of the vector containing the orientation
information.



Each of these variations will be described, and the implications for computational practice
and for convergence theory will be described. In Section 2, the basic time-stepping scheme will be
described. In Section 3, the modifications for general nonpolyhedral friction cones will be explained.
In Section 4, both “Newton” and “Poisson” approaches to partly elastic contact will be explained
and compared. In Section 5, modifications for different dimensions of the coordinate ¢ and velocity
v vectors will be explained.

The model can be modified to handle equality constraints (joints) in a way that does not affect
either the solvability of the mixed linear complementarity problem or the upper bounds on the norm
of the resulting velocities [4]. Since the challenges of the problem we consider here reside in the
description and properties of the contact and friction constraints, we will confine our development
to the case in which no joints are involved.

2 Time-Stepping Methods and Convergence Theory

2.1 Rigid Body Dynamics

The study of rigid body dynamics seeks to understand and simulate systems of rigid bodies that
may or may not be in contact. These systems are good approximations to many situations in
the world around us, such as walking, using a bicycle, playing a ball game, or picking up a pen.
All of these activities involve contact between solid, fairly rigid bodies. Implicit in many of these
problems is the presence of dry, or Coulomb, friction.

When two bodies are not in contact, there are no contact forces between them (although there
may be small and subtle effects due to the motion of the fluid between them, for example). On the
other hand, when two bodies make contact, if they are rigid they cannot interpenetrate. Unless
there is adhesion (which depends on the physics of the situation), the normal component of the
contact force at a point on a body must be acting away from the body against the other.

Friction may be present, in which case equal and opposite tangential forces act on the two
bodies in contact. If the bodies are sliding against each other, the friction forces must oppose the
slip, although the forces may not be in the opposite direction to the slippage if the friction is not
isotropic. The magnitude of the frictional forces is bounded by NV, where p is the coeflicient of
friction and N is the normal component of the contact force. If there is slippage, the friction forces
must have exactly this magnitude (for isotropic friction); if there is no slippage, any equal and
opposite friction forces within this bound are admissible.

To obtain a mathematical formulation of these problems, we need to begin with a formulation
of rigid body dynamics without contact. Such a formulation can be obtained by using a Lagrangian
framework with generalized coordinates ¢ and corresponding generalized velocities v. (Usually
v = dq/dt, although this will be relaxed in Section 5.)

Let T'(q,v) = %vT M (q)v be the kinetic energy for configuration ¢ and velocity v; M(q) will
be called a mass matriz, although if ¢ contains angles, and thus » contains angular velocities,
some components of M(q) will be moments of inertia, rather than masses. Let V(g¢) denote the
potential energy of configuration q. Without external forces or contacts, and provided v = dg/dt,



the equations of motion can be written as
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where L(q,v) =T(q,v)— V(q) is the Lagrangian of the system. With a suitable rearrangement of
the equations, this can be put in more explicit form:

d
M(q)%7 = k(g,v) = VV(g) (2)
where ) 9 9 9
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In the case of frictionless contact, the only contact force is the normal contact force N. Contact
is assumed to be represented by a function f(g) so that if f(¢) > 0, there is no contact; if f(¢) =0,
there is contact; and if f(¢) < 0, then ¢ is an inadmissible configuration. The set of admissible
configurations is C' = {¢ | f(¢) > 0}. Assuming that f is a smooth function, where V f(q) # 0
whenever f(q) = 0, the equations of motion for frictionless contact can be written as

dv
M(q)— = k(g v) = VV(g) + NV f(q). (3)
Usually we write n(¢) = V f(¢) as the normal vector into the region of admissible configurations.
The contact conditions can be represented as a complementarity condition:

fle)z0,  N=0, flg)N=0. (4)

Frictional problems include a frictional force I’ that belongs to a suitable linear subspace of
the generalized coordinates. It is further restricted by the normal contact force N. More precisely,
we require that }' € N FCy(q), where F'Cy(q) is a convex, balanced (—FCy(q) = FCo(q)) set in
the space of generalized forces. The vector space span FCy(q) generated by FCy(q) represents the
plane in which the friction forces act. This plane must not contain the normal direction vector n(q);
otherwise, it would not be possible to separate normal contact forces from frictional forces. In the
case that n(q) is in span FCo(q), either the component of FCy(q) in that direction is redundant,
or friction forces could be used to “glue” the bodies together.

For a single contact between three-dimensional bodies, this plane is typically two dimensional,
representing the tangent plane to the bodies in contact at the contact point. Multiple contacts and
“soft finger contact” [24] will change the number of dimensions spanned by FCy(q). The set of
possible contact forces is the friction cone:

FO(g)={F+ Nn(q) | F e N FCo(q)}, (5)

which is a closed, convex cone for each ¢. If there is no contact, then the total contact clearly must
be zero: FC(q) = {0}.

Given the friction cone FC(gq), Coulomb’s friction law can be cast in terms of the maximal
dissipation principle [20], which states that the frictional force maximizes the energy dissipation
rate over all possible friction forces F, given the normal contact force N. This formulation can be
used to describe nonisotropic friction, as occurs in ice-skating, for example.



2.2 Time-Stepping Methods

Time-stepping methods for rigid body dynamics are based on the idea of using integrals of the forces
over each time-step, rather than trying to find the instantaneous forces at each instant, and using
the results to drive an ODE solver of some kind. Since the friction cone F'C(g) is scale invariant, the
short-time integrals of the contact forces also belong to approximations of the friction cone. The
maximal dissipation formulation of Coulomb’s law can also be applied to the short-time integrals,
provided the velocity at the end of the time-step is used to determine the direction of slip. The
contact condition (no contact implies no contact forces) can be easily represented, although the
way that this is done has implications for the representation of the impact type (inelastic, partly
elastic, or perfectly elastic).

The basic formulation presented in this section is for inelastic impact. It is based on the
formulations of Stewart and Trinkle [55, 56] and Anitescu and Potra [4]. Work on the convergence
theory of related formulations of rigid body dynamics can be found in Stewart [52, 53].

The basic formulation uses a polygonal approximation to the friction cone:

FC(q) = cone {n(q) + pdi(q) | i=1,...,7}. (6)

(Note that cone X is the smallest cone containing X; it is the set of all linear combinations a2 +
...+ oz where z; € X and a; > 0 for all i.) Let D(q) = [d1(q), d2(q), ..., d:(q)].

Let A > 0 be the time-step used. The time-stepping formulation, given the configuration ¢!
and velocity v! for time t; = [ h, provides a way of computing the configuration ¢‘t! and velocity
ot for time t4, = (I+ 1)h. In the process, additional quantities are computed, such as the
integrated contact forces ¢/t n(q¢') + D(q¢') 3*'. The time-stepping formulation is presented as a

mixed complementarity problem: If f(¢' + hv') <0, then

M(g"+Y) (011 = ol) = n(g') 41 + D(gh) B+ + B k(g v') — VV(q))]

0 < n(ghTo? 1 cH >0
0 S Al—l—l6 + D((]l)T?Jl+1 L ﬁl—l—l Z 0 (7)
0< ,ucf;"l — eTﬁl‘H. L A+ >

Note that e is a vector of all ones e = [1, 1, ..., 1]7 of the appropriate size. Also note that “a L b”

means that «’b = 0, or if @ and b are both scalars, that a b = 0. The quantity A" is not in itself a
physical quantity, although it is usually equal to || DTv!*!||.., which represents the sliding velocity
at the contact.

Note that if M(q) is constant, then (7) can be reduced to a linear complementarity problem
(LCP) [11]in (51, g1 ML) by substituting for v/ in terms of ¢/! and 3!*!. It can be shown in
the case of constant M (q) that the matrix for the reduced LCP is copositive [11, pp. 176-184], and
from this, that solutions for (7) exist and can be found using Lemke’s algorithm [11, pp. 265-288].

The conditions of (7) can be interpreted physically. The first line is simply a discrete approxi-
mation to the equations of motion. The second line is the contact condition: no contact force unless
there is contact at the end of the time-interval. The right-hand side of line 3 and the left-hand side
of line 4 of (7) imply that the contact force n(q)ctt! + D(q)3!*! lies in the approximate friction
cone f@(ql). Unless 5'*! = 0 (i.e., no friction force), the complementarity condition in line 3



implies that ﬂf»"’l > 0 only if d;(¢")Tv"*! minimizes d;(¢")Tv!T! over all j. That is, the friction
force A+ maximizes the dissipation —(8'TH)T D(¢")Tv™*! over all permissible 3+!. Finally, the
complementarity condition on line 4 implies that the contact force n(q)cl*! + D(q)3*" must lie
on the boundary of the approximate friction cone ]@(ql), unless D(¢')Tv!*! = 0; that is, the total
contact force can only lie strictly inside the friction cone if the sliding velocity is zero.

2.3 Convergence Theory and the Continuous Problem

A proper mathematical framework to describe rigid body dynamics must handle inequalities, im-
pulsive forces and discontinuous relationships, such as arise in Coulomb friction. In order to incor-
porate impulses, the theory should be grounded in measure theory on the real line. A measure p
is a function of sets F in the real line R: p(#) is a real number, or perhaps a vector. For rigid
body dynamics, () is usually understood as defining the total impulse, the integral of the force,
acting over the time represented by the set £/ C R. If there are no impulses in the set F, and the
(finite) force at time ¢ is F(t), then

W(E) = /E F(t) di

is the total impulse over the time period represented by F.

Discontinuities from Coulomb friction provide another challenge. Even with known normal
contact forces that do not have impulses, the equations of motion for one object sliding against
another are discontinuous. As such, the equations of motion do not necessarily have solutions
[17, 18, 19]. What is needed is to change the problem from a discontinuous differential equation to
a differential inclusion: Replace

mz—: = F(q,v) with m(fi—: € Flq,v)
where F(q,v) is a set valued function of (¢,v). Where F' is continuous, F is single-valued and
continuous; where F' is discontinuous, F is set-valued. The set F(q,v) is the convex hull of the
limits of F(q,v) for points (¢,?) converging to (¢, v).

The mathematical theory that can best deal with these two issues is that of measure differential
inclusions invented by J. J. Moreau [36, 38, 40] and used by Monteiro-Marques These are differential
inclusions having the form

dv ) dq
o €K+ flev), = =dlgv),
where f(q,v) and ¢(q,v) are ordinary continuous functions of (¢, v). Note that K(q) is a set-valued
function that has closed, convex values and whose graph {(u,q) | u € K(q)} is a closed set. The
equations of motion with the friction cone in place of the contact forces is a suitable measure
differential inclusion:

dv dq

M(q)— € FClq) + k(g v) = VV(q), priall (8)



Alternatively, it can be described as a measure differential equation:

M(q)fl—: = n(q) ea + D(q) B+ k(g,v) = VV(q), % =, (9)
where ¢,, is the normal contact force measure, and D(q) 5 is the frictional force measure. Using the
measure differential equation representation, we need to add conditions to the measures ¢, and (3
to ensure that “n(q) ¢, + D(q)f € FC(q)” for all time.

Other conditions can be described directly in terms of complementarity conditions, and other
relationships involving measures and functions. For example, the contact condition can be simply

described by the conditions

flg(t))>0  forallt,

c, >0 as a measure, (10)

/f(q(t)) en(dt) = 0.

The condition that “c,, > 0 as a measure” simply amounts to requiring that ¢, (F) > 0 for all Borel
measurable sets F; or, alternatively, that

/(b(t) ca(dt) > 0 (11)

for all continuous functions ¢ where ¢(¢) > 0 for all ¢. The requirement that the contact force lie
inside the approximate friction cone F'C(¢(t)) becomes the requirement that

ey — Z G;: >0 as a measure. (12)
r=1

The maximal dissipation property can be represented as

 IDGn o @)l + dita)To*(1)] sitae) = 0 (13)

for all 1.

The main problem for the convergence theory is to show that the numerical trajectories (¢"(-), v(-))
produced by a time-stepping scheme such as (7) converge (in some suitable sense) to a limit as the
step size h | 0 and that these limits satisfy all the conditions required in the continuous problem.
This effort usually amounts to showing that for a subsequence of (¢"(-),v"(+)), ¢"(*) — q(-) uni-

formly, while vh(-) — v(-) pointwise. The impulses el and B! are used to construct measures

ch = Zl[i/oh] c*1and ph = Zl[i/oh] B+, for which there are subsequences that converge weak* to
measures ¢,(-) and 5(-).

The strongest convergence proof for problems of this kind can be found in Stewart [52]. A
summary of the results and a sketch of the proof can be found in [53].



2.4 Multiple contacts

Multiple contacts do not require completely new ways of reformulating contact problems. Rather,
it is a matter of adding contact forces and contact constraints appropriate for each contact. So,
for the jth contact, there is a contact normal n(j)(q) with a normal contact force 07(1]), a matrix
of direction vectors D(j)(q) that define the frictional forces DU U and a constraint f(j)(q) >0
that represents the “no-interpenetration” condition for the jth contact. Let p be the number of

contacts. Then the corresponding formulation to (7) for multiple contacts is

Mgt oy = 3 [n(j)(ql) DL D(i)(ql)ﬁ(j)lﬂ]

7€J(g,v)
+hk(q',0') = VV(q)],
0 < nl)(ghTo+? 1 >0 forje J(q,v), (14)
0 < AW HLe 4 DU(HTpiH1 1 pUIHL > for j € J(q,v),
0< ,uc( N _ el pli)i+1 1 AL > for j € J(q,v),

where J(q,v) = {j | fO(¢ +hov')<0}.

Note that the set of possible (total) contact forces is the sum of the friction cones for each of
the contacts in generalized coordinates. (Note that adding bodies to a system means adding to the
dimensionality of the ¢ and v vectors, as well as adding to the set of possible contacts.)

Large systems of particles appear to produce large complementarity problems. Since even
solving linear equations for n unknowns requires O(n>) time using conventional algorithms, these
problems seem to be extremely expensive. However, independent subsystems can be solved in-
dependently. Hence, a pair of bodies that are not in contact, and cannot be connected by pairs
of bodies that are in contact, can be dealt with independently. Typically, no more than three to
four bodies will be connected to each other in this way. Thus, instead of having to solve for tens,
hundreds, or thousands of bodies in a single system, one can solve a large number of small systems,
which will take O(n) time instead of O(n?) time.

One of the most time-intensive aspects of multibody dynamics problems with large numbers of
bodies is collision detection. While this topic is beyond the scope of this article, it is an important
issue and has been extensively discussed in the robotics, graphics, and computational geometry
literature. (See, for example, [10, 25, 35].) These algorithms can be used with the above formulation
to produce fast algorithms for rigid body simulations.

2.5 Equality Constraints

Equality constraints can also be incorporated into the above formulation (7). This can be done
by using Lagrange multipliers as (generalized) forces. Given a single unilateral contact, and a
number of other equality constraints g;(q) = 0, i = 1,2,...,q, we introduce a vector ¢, =
[Cots €ay-evy €y |t of Lagrange multipliers. Then (7) is replaced with the following: if f(q' +



ho') <0, then

M(q™h) (0"t =) = n(g") ;! + D(g) B + (Va(g)) e,
+hlk(g',0") = VV ()]

0 < n(ghTo? 1 cH >0
0 S Al—l—l6 + D((]l)T?Jl+1 L ﬁl—l—l Z 0 (15)
0 < peltt — T pitt 1 A+ >

0= Vg(q") o't

Provided that o )
is linear independent for all ¢

satisfying g(¢q) = 0, (16)

this complementarity problem can be solved. (This condition is known as a constraint qualification
in optimization and is often necessary for Lagrange multipliers to exist.)

A practical problem with this version of the method is that the solution can “drift” from
g(q) = 0. That is, the distance from the computed ¢’ and the manifold {¢ | g(¢) = 0} can
increase until the constraint does not hold in any practical sense. There are ways of correcting
this problem, of which projection is the simplest. This technique involves periodically solving the
Newton equations Vg(¢'T1)d¢t! = —g(¢'t!) — in fact, finding the smallest such é¢'+' — and then
setting ¢!t — ¢ + 8¢, If this is done often enough, then the computed solution will not drift
far from the constraint manifold {¢ | g(¢) =0 }.

{Va(g)|i=1,2,...,q}

If there are no unilateral contacts (i.e., the only constraints are equality constraints), then the
system can be regarded as a differential algebraic equation (DAE) of index three. Constrained me-
chanical systems have been often discussed from the point of view of differential algebraic equations
[5, 8,9, 14, 46, 48, 58]. If all constraints are equality constraints, and the constraint qualification
(16) holds, there can be no unbounded forces, and more conventional DAE techniques can be used.

3 General (Nonpolyhedral) Friction Cones

The polyhedral approximations

FC(q) = cone {n(q) + pdi(q) | i =1,2,...,p} (17)

give a versatile and general technique for dealing with a wide range of friction phenomena (e.g., “soft
finger” contact, anisotropic friction). However, these approximations have a number of drawbacks:

1. They are approximate for contact between three-dimensional bodies.
2. They tend to favor particular directions.

3. They tend to require a large number of variables (ﬁf»"’l, for ¢ = 1,2,...,p) to accurately
represent the friction force.



Recently, some new techniques of Pang and Stewart [45] allow the use of general convex friction
cones. Pang and Stewart [45] consider general convez friction cones of the form

FC(q) = {n(g)eq + nD(9)3 | dilear B,q) S 0, = 1,2,z (18)
where each function ¢;(c,, B ,q) satisfies the following conditions:
1. ¢i(cn,ﬁ, q) is convex in A.
2. ¢i(€n,0,u) <0 with equality holding if and only if ¢, = 0.
3. Cbi(o,@ u) < 0 implies 3=0

4. For all ¢ = 1,...,ny,., there exists a positive scalar ¥ > 1 such that for all u, ¢;(¢,,0,u) is
positively homogeneous of degree v for ¢, > 0; that is, for ¢, > 0,

¢i(Ten,0,u) = 77 ¢i(cp, 0,u), forall 7> 0.

Here we also require that qﬁi(cn,@ q) is homogeneous in B with exponent v in order that F'C(q)
is a true cone; that is, if 2 € FC(q), so is az € FC(q) for any @ > 0. Note that the formulation
(18) includes the polyhedral approximations to the friction cone (with v = 1). It also includes the
standard quadratic friction models for contact between three-dimensional bodies:

FC(q) = {n(g)en + nD()5 | |B]l2 < e} (19)

in which case ¢(c,,,3,q) = (pen)? — |83 R R
The maximal dissipation principle applied to the time-stepping formulation says that /7' = j
is chosen to maximize
~(")TD(¢)T B (20)
over all B satisfying ¢;(cp, B, q)<0fori=1,2,...,nf. This can be expressed in complementarity
form through the Kuhn—Tucker conditions, except for the case when ¢, = 0, B =0. At ¢, = 0,
B = 0 constraint qualifications fail. The simplest applicable constraint qualification in this case is
Slater’s which requires an interior point in the feasible set for convex constraint functions. For the
case ¢, = 0, though, this fails. To handle this, a Fritz John condition [27] is used with a Fritz John
parameter that is related to the value of ¢, and to the homogeneity constants ~:

nfc
Y Tl-|-1 =
(Cn) D( Z/\v (bz Cnvﬁv ) 07 7 = 1,2,---7nfc (21)
OSA“ z(bz(cnvﬁv )_0

The time-stepping scheme with this formulation of the Coulomb law for general friction cones
becomes the following: If f(¢' + hv') <0, then

Mgy (0 = of) = n(g)) & + D(¢)) B + R [k(q', 0!) — VV(gh)]

0 < n(g")To!*! 1 el >0
0<A L Blen,B,q) <0, (22)
nfc

(Cn)’yﬁ( Tyttt Z/\V (bz Cnvﬁ? )_0

10



While the original time-stepping scheme (7) is a linear complementarity problem (LCP) for
constant M(q), the new formulation is a highly nonlinear mixed complementarity problem.

3.1 Theoretical Issues

The nonlinearity of the mixed complementarity problem (22) means that linear complementarity
theory [11] cannot be applied. Instead, a homotopy argument is used in [45] to show that solutions
exist for problems of the same type as (22).

One of us (Anitescu) proposed an alternative to this approach using a infinite, but continuously
indexed, family of direction vectors d(s,q) for s € [—1,+1] with d(s,q) = —d(s+ 1,q) for —1 <
s < 0, instead of a finite matrix D(q) = [di(q), d2(q), ..., dy(q)]. For example, one could take
d(s,q) = cos(rs)dy(q) + sin(rs)dz(q) to describe two-dimensional isotropic friction. Take finite
approximations

Dn(q) =[d(s1,9), d(s2,9), ..., d(s2n,q) ]

for sequences 0 < 51 < 53 < --- < san < 1, where 5,18 = s; + 1 so that dixn(q) = —di(q). Then
previous existence theory can be applied (see Stewart [52, Lemma 2], or Stewart and Trinkle [56,
§3.2] for the linear complementarity formulation). Index the finite sequences s; < s < -+ < syn by
N, and let ¢(N)it+1,(N)il+1 C%N);Hl and V)1 be the solutions for D(q) = Dn(q)in (7). Then by
compactness, there are subsequences N where ¢(N)ilt1 — g1 (N)i+1 41 and AN i+t
for N — oo in A'. While the s0V)#+1 cannot converge as N — oo, the limit Dy(g")gN)il+1 — pi+t
can be found. In fact, the limit 84! of the measures g(Vi+1(s) = Y2 Z(N);H_lé(s — ;) is a
solution of the complementarity problem

Mg ) (o1 = o) =l 51 4 iy e 5) 5141

+hlk(q',v') = VV(q')]
0 < n(g")To!*! 1 >0 (23)
0 < A 4 d(s, ¢h)TolH! 1 BH(s) >0 for all s
0 et = [ B (ds) L A 20

where 3! is understood to be a measure on [—1,+1]. Note that the middle complementarity
condition should be understood as saying that A" +d(s, ¢')Tv!*! > 0 for all s; that 8! > 0 as a
measure; and that f[_L_'_l](/\H'l +d(s,¢")yTo!*t) gi*(ds) = 0.

Another issue can arise with nonpolyhedral friction cones in the context of multiple contacts.
In generalized coordinates, each contact has an associated friction cone FC';(¢). The combined
friction cone when all contact are considered is F'C(q) = FC1(q) + FCq(q) + -+ -+ FC,, (q), where
ne is the number of contacts. Theoretical difficulties can arise because the total friction cone FC(q)
is not necessarily closed. If each of the FC;(q) is polyhedral, however, the total friction cone is also
polyhedral and closed. This is not so for more general closed, convex cones.

Although having an open reaction cone is unlikely, it is possibile, as proved by the following
three-dimensional example. The example consists of a particle in a 90-degree wedge, as shown in
Figure 1. The friction coefficients on both sides of the wedge are 1, which generate two 45-degree
angle cones on each side of the particle. The particle is assumed to have radius 0; therefore no
torque and inertia appear. Let Ky, K9 be the cone with normal ny; and nq, respectively.
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Figure 1: A configuration with a friction cone that is not closed.

Then (0,—n,0)T € Ky, for any n € N. But also (1,n,5-)" € K, since

[0,1,1][1,n,1/20)7  n+(1/2n) 1 (24)

V2T 11 (1A% V2l t (1202 V2

which implies that the angle between [0,1,1]" and [1,7,1/2n]" is exactly 45 degrees. This means
that

[1,7,1/20)T +10,—n,0/T = [1,0,1/2n) € K, + Ky, ¥n € N. (25)
But, [1,0,0]7 & K + K. Since

1
lim [1,0,—1" =1 T 2
1m[,0,2n] [1,0,0] (26)

n—oo

and the entire sequence from the left side is in Ky + K5, it follows that the sum cone is not closed.
This problem can be avoided if the closure of the sum of the cones is pointed; that is,

(K1 + Kq) (|- (K1 + Ky) = {0}.

It should be noted that pointedness of the friction cone F'C(q) is an essential part of the convergence
proof in [52, Lemma 6]. Note that F'C(q) needs to be pointed as well as closed to prove that weak™*
limits of solutions of a measure differential inclusions are also solutions [54], which is also used in
the convergence proof in [52].

The main lesson that should be drawn is that a number of theoretical issues become problematic
if the closure of the friction cone F'C(q) fails to be pointed. There are two main issues here: (1) the
variation of the computed velocities may not remain bounded, because of the numerical velocity
trajectories “chattering” — rapidly jumping between several different values; and (2) attempting
to find an approximate cone containing F'C(g) for any ¢ sufficiently close to ¢ will fail. To see why
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a useful outer approximation doesn’t exist, suppose 0 # z € FC(q) N —FC(q). A suitable outer
approximation cone K should contain a neighborhood of +z and —z. Since zero lies on the line
between +z and —z, K would also contain a neighborhood of zero, which implies that the cone K
contains the entire space R".

3.2 Computational Issues
The Pang and Stewart formulation (22) has some immediate computational implications:

e Linear Complementarity Problem solvers are no longer appropriate for finding solutions be-
cause of the highly nonlinear complementarity conditions.

e On the other hand, many fewer variables need to be solved for.

Solving highly nonlinear complementarity problems can be difficult. Complementarity problems
can be reformulated as systems of equations that are, however, nonlinear and nonsmooth. There has
also been a great deal of recent work on Newton-type methods for nonsmooth systems of equations
[21, 26, 42, 43, 44, 49, 50, 51].

While Newton-type methods have fast local convergence, they may fail to converge when started
far from the solution. Fortunately for rigid body simulations, the solution from the previous step
will often give a suitable (close) starting point. However, if there is a change in the contact state (due
to a collision, for example), the complementarity problem to be solved will be radically different,
at least for the bodies in contact with the colliding bodies. In order to ensure that the nonlinear
complementarity problem is solved, global equation solving methods such as homotopy methods
need to be used (see, for example, [1, 2, 29, 57]). Care will be needed near the nonsmooth points
on the homotopy path. Care will also be needed to deal with the degenerate cases that inevitably
occur in simulations of rigid body dynamics, such as the case of a wheel rolling without slip where
are no friction force and no sliding velocity.

4 Partly Elastic Contact

The foundation for our partly elastic contact model is the Poisson hypothesis. Under this hypoth-
esis, the impact has two phases. In the first phase, compression, interpenetration is prevented by
normal compression contact impulses. In the second phase, decompression, a fraction €y of each
normal compression contact impulse is restituted to the system (Poisson hypothesis, [47]). The
quantity ey is called (normal) restitution coefficient and may be different for any contact active
during a certain collision, if multiple contacts are involved. FEach of these phases is considered
instantaneous, and only the velocity of the system but not its position, can change during the
collision. Since (7) is formulated in impulses and velocities, it can be used to model both the
compression and decompression. In each phase, there will be no impulse due to the external forces
(h = 0), only intrinsic initial velocity and restitution impulses. Formally, hk(q',v') will be changed
with the appropriate external impulse for each phase.

Let ¢ be the position at which the collision occurs, v=, v°, and vt be, respectively, the initial,

C

postcompression and postcollision velocities of the system. The superscripts ¢ and ¢ refer to data
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from the compression and decompression phases, respectively. For one contact (resulted from a
collision), the compression phase can be set up as

M(q) (v = v7) = n(q) e, + D(q') 5
0 < n(q)tve 1 e, >0
0 < Xe+ D(q)Tve 1 Bc>0
0 < pes, — eTﬁc L AS > 0.

o

(27)

If the collision is proper (n(q)Tv~ < 0, [16]), then v~ will not be a solution of (27) and v° # v~
will be determined. As a result, ¢§, # 0.

Based on the Poisson hypothesis, in the decompression phase there will be an external restitution
impulse I, acting on the system. The postcollision velocity vT is a solution of the following mixed
linear complementarity problem:

M(q) (v* = v°) = n(q) e + D(q) 57 + I,

0 < n(q)Tovt 1 cd >0 (28)
0 < Me + D(q)Tv? 1 Bt >0
Og,ucffb—eTﬁd L >0

With our assumptions, I, = eyc’. A more sophisticated model could assume that the tangen-
tial impulse is partly reversible [47] and the restituted impulse is I, = encS 4 erD(q) 3¢, where
e is the tangential restitution coefficient. However, reversibility of the tangential impulse is usu-
ally insignificant, unless the materials involved are highly elastic (as is the case for the so-called
superballs, [47]).

Solvability of the mixed linear complementarity problems is guaranteed for (27) and (28) [4,
55]. Therefore, a v+ will be available at the end of the collision resolution. However, simple
examples show that the model (27-28) will not necessarily produce the right energy balance when
several contacts are involved. The fact that the kinetic energy will not increase after the collision,
%v"’M(q)v"’ < %?J_M?J_, can be proven only for very special cases [4, 47]. In particular, if friction
is present, then the kinetic energy has been proved to be nonincreasing only if e = e, which
is a very unlikely particular case. Nevertheless, an interesting common denominator for all these
particular cases is that v* = (14 ex)v° — eyv~. Under the assumption that the collision is exactly
detected when multiple contacts are involved it can be proved that (1 4+ ex)v® — exyv™ is a part of
a feasible point of (28) that satisfies the energy balance [4]. Therefore, for an expedient collision
resolution, one could solve only (28) and choose vt = (1 + ex)v° — exv™.

5 Differing Representations of ¢ and v

Often it is convenient to have different forms of representation for ¢ and v so that “dq/dt = v” is
no longer true. For example, if ¢ represents the orientation of an object and » the angular velocity,
then “dq/dt = v” cannot be true globally as ¢ represents the group of 3 x 3 orthogonal matrices
with determinant +1: SO(3). We can represent ¢ by directly by 3 x 3 orthogonal matrices, by
unit quaternions, by Euler angles, or by Rodrigues vectors (see, e.g., Angeles [3, §§2.3-2.4]). Note
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that while the angular velocity is a three-dimensional vector, there are nine parameters in a 3 x 3
matrix, four in a quaternion, and three for either Euler angles or Rodrigues vectors.
In any case, the general form relating ¢ and v is given by

% =G(q)v (29)

for some matrix function G(g). For the case of representation by a 3 x 3 matrix, the equation
relating ¢ = vec ) to v = w is

dQ) «
% =w Qv (30)
where
0 —ws Fw?2
W= 4+ws 0 —w

—W?2 —I—wl 0

This gives dq/dt = vec (w* Q) = G(q) v where G(q) is linear in ¢. Similar equations can be developed

for the other representations, except for Euler angles, which necessarily introduce singularities into

the representation. (Rodrigues vectors have a similar problem, but since there are two Rodrigues

vectors that represent any orientation except for the reference orientation, the singularity can be

avoided by switching from one representation to the other when the singularity is approached.)
We need the following assumption:

G/(q) 1is a full column rank matrix for all ¢. (31)

This is satisfied by all of the above orientation representation techniques excepting again the Fuler
angles at the singularity. This implies that the pseudo-inverse G/(¢)% is a continuous function of ¢,
and G(q)* G(q) = I for all q.

Several changes must be made in the formulation. One involves the Lagrangian equation. The

action is
5 = /L(q,v)dt:/ %UTM((])U— V(q)] dr. (32)
We can write v = G(¢)*(dg/dt). Then
5= [tana= [ [FE G ML - Vi) a (33)

The equations of motion without contact can then be derived as

d (0L aL .
7 (3(]2) T 0, for all «. (34)

If we write M(q) = (G(q)")T M(q)G(¢)T, we obtain

M(q) = = k(q,v) - VV(q) (35)
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where %(q, v) is quadratic in v and contains partial derivatives of ]T/f(q) After some algebra, this
can be reduced to an equation of the form

M(q)=, = k(q,v) - G(a)" VV(q) (36)

where k(q,v) is quadratic in v and contains derivatives of M(q) and G(q), as well as the values
M(q), G(q) and G(g)*.

Since the formulation (7) uses constraints written in terms of ¢, but is used to update v, some
additional modifications need to be made. Note that if f(¢(¢*)) = 0, then (d/dt)f(q(t))|t=¢= > 0 for
feasibilty of the trajectory. But (d/d1) f(g(t)) i — ¥ f(a(t")! (da/dt)(t) = ¥ Fla(t) Glal™)) v(t").
Instead of using the normal direction vector n(q) = V f(q), we should use 7(q) = G(¢)'V f(q) for
the contact condition.

To preserve the symmetry of the formulation, as well as the correct physics, we need to note that
the direction vector for the normal contact force in the velocity co-ordinates is 7(q) = G(q)TV f(q).
Thus, the formulation then becomes the following: If f(¢' + h G(q¢') ') <0, then

M) (041 = ol) = Alq)) et + Digh) g
+h k(g v') - G(d)TVV(d)]

0 < A(gh)To!*! 1 >0 (37)
0 < AH_I@ + D(ql)T?Jl+1 L ﬁl-l—l > 0
0 < pett — T pitt 1 AL >,

If we consider the situation where M(q) and G(q) are constant, and substitute for ¢'T!, v'*1 in
terms of ¢/t! and B+ we obtain a pure linear complementarity problem (LCP) for i1, g+ and
AFL . As for (7), the matrix of this LCP is copositive, and solutions can be found by using Lemke’s
algorithm [11, p. 176ff, p. 265ff].

The theoretical properties of this generalization follow those of (7). The only additional practical
considerations for using, for example, quaternions, to represent orientation is that drift may lead
to |q| significantly different from one. This can be remedied by projection and other techniques as
discussed in Section 2.5.
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