
A Case for Using MPI's Derived Datatypes toImprove I/O Performance�Rajeev Thakur William Gropp Ewing LuskMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, USAfthakur, gropp, luskg@mcs.anl.govPreprint ANL/MCS-P717-0598, May 1998Submitted as an extended abstract toSC98: High Performance Networking and ComputingAbstractMPI-IO, the I/O part of the MPI-2 standard, is a promising new interface for parallel I/O. A keyfeature of MPI-IO is that it allows users to access several noncontiguous pieces of data from a �le with asingle I/O function call by de�ning �le views with derived datatypes. We explain how critical this featureis for high performance, why users must create and use derived datatypes whenever possible, and howit enables implementations to perform optimizations. In particular, we describe two optimizations ourMPI-IO implementation, ROMIO, performs: data sieving and collective I/O. We present performanceresults on �ve di�erent parallel machines: HP Exemplar, IBM SP, Intel Paragon, NEC SX-4, and SGIOrigin2000.
�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of theO�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; and by theScalable I/O Initiative, a multiagency project funded by the Defense Advanced Research Projects Agency (contract numberDABT63-94-C-0049), the Department of Energy, the National Aeronautics and Space Administration, and the National ScienceFoundation.

1 IntroductionI/O is a major bottleneck in many parallel applications. One of the main reasons for poor I/O performance isthat most parallel �le systems provide a Unix-like application program interface (API) for parallel I/O. TheUnix API allows a user to access only a single, contiguous chunk of data at a time from a �le.1 Such an APIcannot concisely express the I/O access patterns common in parallel programs, namely, a number of relativelysmall, noncontiguous accesses, and it also cannot express the notion of multiple processes making collectiverequests. Consequently, the I/O system is constrained in the optimizations it can perform. Furthermore,many parallel �le systems provide their own extensions to or variations of the traditional Unix API, whichmake programs nonportable.To overcome the performance and portability limitations of existing parallel I/O APIs, the MPI Forumde�ned an interface for parallel-I/O (which we call MPI-IO) as part of the MPI-2 standard [6]. MPI-IOis a rich API with many features designed speci�cally for performance and portability, such as support fornoncontiguous accesses, collective I/O, nonblocking I/O, and a standard data representation. We believethat MPI-IO has the potential to solve many of the problems users currently face with parallel I/O.One way to port a Unix-I/O program to MPI-IO is to replace all Unix-I/O functions with their MPI-IOequivalents. Such a port is easy but will very likely not improve performance. To get real performancebene�ts with MPI-IO, users must use some of MPI-IO's advanced features. In this paper, we focus on a keyfeature of MPI-IO: the ability to access noncontiguous data with a single I/O function call by de�ning �leviews with MPI's derived datatypes. We describe how derived datatypes allow users to express compactlyand portably the entire I/O access pattern in their application. We explain how critical it is that userscreate and use these derived datatypes and how such use enables an MPI-IO implementation to performoptimizations. In particular, we describe two optimizations our implementation, ROMIO [13], performs:data sieving and collective I/O. We use a distributed-array example and an unstructured code to illustratethe performance improvements these optimizations provide.2 Derived Datatypes and MPI-IOIn MPI-1, all message-passing functions have a datatype argument [5]. Datatypes in MPI are of two kinds:basic and derived. Basic datatypes are those that correspond to the basic datatypes in the host programminglanguage|integers, oating-point numbers, and so forth. In addition, MPI provides datatype-constructorfunctions to create derived datatypes consisting of multiple basic datatypes located either contiguously ornoncontiguously. The di�erent kinds of datatype constructors in MPI are as follows:� contiguous Creates a new datatype consisting of contiguous copies of an old one.� vector/hvector Creates a new datatype consisting of equally spaced copies of an old one.� indexed/hindexed/indexed block Allows replication of a datatype into a sequence of blocks, eachcontaining multiple copies of the old datatype; the blocks may be unequally spaced.� struct The most general datatype constructor, which allows each block to consist of replications ofdi�erent datatypes.� subarray Creates a datatype that corresponds to a subarray of a multidimensional array.� darray Creates a datatype that describes a process's local array obtained from a regular distributiona multidimensional global array.Of these datatype constructors, indexed block, subarray, and darray were added in MPI-2; the others werede�ned in MPI-1.The datatype created by a datatype constructor can be used as an input datatype to another datatypeconstructor. Therefore, any noncontiguous data layout can be represented in terms of a derived datatype.1Unix does have functions readv and writev, but they allow noncontiguity only in memory and not in the �le; POSIX hasa function lio listio that allows noncontiguity in the �le, but it is not supported on all �le systems and is not collective.1

MPI-IO uses MPI datatypes for two purposes: to describe the data layout in the user's bu�er in memoryand to de�ne the data layout in a �le. The former is the same as in MPI message-passing functions and canbe used, for example, when the user's bu�er represents a local array with a \ghost area" that is not to bewritten to the �le. The latter, a new feature in MPI-IO, is the mechanism a process uses to describe theportion of a �le it wants to access, also called a �le view. The �le view can be de�ned by using any MPI basicor derived datatype; therefore, any general, noncontiguous access pattern can be compactly represented.Several studies have shown that, in many parallel applications, each process needs to access a number ofrelatively small, noncontiguous portions of a �le [7, 2, 12, 1, 9]. From a performance perspective, it is criticalthat the I/O API can express such an access pattern, as it enables the implementation to optimize the I/Orequest. The optimizations typically allow the physical I/O to take place in large, contiguous chunks, eventhough the user's request may be noncontiguous. MPI-IO's �le views, therefore, are critical for performance.Users must ensure that they describe noncontiguous access patterns in terms of a �le view and then call asingle I/O function; they must not try to access each contiguous portion separately as in Unix I/O.3 A Classi�cation of I/O Request StructuresAny application has a particular \I/O access pattern" based on its I/O needs. The same I/O access pat-tern, however, can be presented to the I/O system in di�erent ways, depending on what I/O functions theapplication uses and how. We classify the di�erent ways of expressing I/O access patterns in MPI-IO intofour \levels," named level 0{level 3. We explain this classi�cation with the help of an example, accessing adistributed array from a �le, which is a common access pattern in parallel applications.Consider a two-dimensional array distributed among 16 processes in a (block, block) fashion as shown inFigure 1. The array is stored in a �le corresponding to the global array in row-major order, and each processneeds to read its local array from the �le. The data distribution among processes and the array storageorder in the �le are such that the �le contains the �rst row of the local array of process 0, followed by the�rst row of the local array of process 1, the �rst row of the local array of process 2, the �rst row of the localarray of process 3, then the second row of the local array of process 0, the second row of the local array ofprocess 1, and so on. In other words, the local array of each process is located noncontiguously in the �le.Figure 2 shows four ways in which a user can express this access pattern in MPI-IO, which we namelevel 0{level 3. In level 0, each process does Unix-style accesses|one independent read request for each rowin the local array. Level 1 is similar to level 0 except that it uses collective-I/O functions, which indicate tothe implementation that all processes that together opened the �le will call this function, each with its ownaccess information. Independent-I/O functions, on the other hand, convey no information about what otherprocesses will do. In level 2, each process creates a derived datatype to describe the noncontiguous accesspattern, de�nes a �le view, and calls independent-I/O functions. Level 3 is similar to level 2 except that ituses collective-I/O functions.The four levels also represent increasing amounts of data per request, as illustrated in Figure 3.2 It iswell known that larger the size of an I/O request, higher is the performance. Therefore, users must strive toexpress their I/O requests as level 3 rather than level 0. How good the performance is at each level dependson how well the implementation takes advantage of the extra access information at each level.If an application needs to access only large, contiguous pieces of data, level 0 is equivalent to level 2, andlevel 1 is equivalent to level 3. Users need not create derived datatypes in such cases. Many real, parallelapplications, however, do not fall under this category [7, 2, 12, 1, 9].4 OptimizationsWe describe some of the optimizations an MPI-IO implementation can perform when the user uses deriveddatatypes to specify noncontiguous accesses. The �rst two optimizations, data sieving and collective I/O,are already implemented in ROMIO [13].2In this �gure, levels 1 and 2 represent the same amount of data per request, but, in general, when the number of noncon-tiguous accesses per process is greater than the number of processes, level 2 represents more data than level 1.2

Each square represents
a subarray in the memory
of a single process

Access pattern in the file

Large array
distributed
among
16 processes

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

P15P14P13P12P15P14P13P12

P11P10P9P8P11P10P9P8

P7P6P5P4P7P6P5P4

P3P2P1P0P3P2P1P0

Figure 1: Distributed-array access
for (i=0; i<n_local_rows; i++) {

 MPI_File_read(fh, row[i], ...)

 MPI_File_seek(fh, ...)

}

MPI_File_close(&fh)

MPI_File_open(file, ..., &fh)

}

for (i=0; i<n_local_rows; i++) {

 MPI_File_seek(fh, ...)

MPI_File_close(&fh)

MPI_File_open(file, ..., &fh)

 MPI_File_read_all(fh, row[i], ...)

Level 0 Level 1
(many independent, contiguous requests) (many collective, contiguous requests)

MPI_Type_commit(&subarray)

MPI_File_set_view(fh, ..., subarray, ...)

MPI_File_read(fh, local_array, ...)

MPI_File_close(&fh)

MPI_File_open(file, ..., &fh)

MPI_Type_create_subarray(..., &subarray, ...)

MPI_Type_commit(&subarray)

MPI_File_set_view(fh, ..., subarray, ...)

MPI_File_close(&fh)

MPI_File_open(file, ..., &fh)

MPI_File_read_all(fh, local_array, ...)

Level 2 Level 3
(single collective, noncontiguous request)(single independent, noncontiguous request)

MPI_Type_create_subarray(.., &subarray, ...)

Figure 2: Pseudo-code that shows four ways of accessing the data in Figure 1 with MPI-IO3

File
Space

collective contiguous
requests (level 1)

0 1 2 3 Processes

request (level 0)
independent contiguous

independent, noncontiguous
request using a derived
datatype (level 2)

 collective, noncontiguous requests
 using derived datatypes (level 3)Figure 3: The four levels representing increasing amounts of data per request4.1 Data SievingTo reduce the e�ect of high I/O latency, it is critical to make as few requests to the �le system as possible.Data sieving [11] is a technique that enables an implementation to make a few large, contiguous requests tothe �le system even if the user's request consists of several small, noncontiguous accesses. The basic idea indata sieving is to make large I/O requests and extract, in memory, the data that is really needed. When theuser makes a read request for noncontiguous data, ROMIO reads large, contiguous chunks, starting from the�rst requested byte in the �le, into a temporary bu�er in memory and then copies the requested portionsinto the user's bu�er. More data is read than is actually needed, but the bene�t of reading large, contiguouschunks far outweighs the cost of reading unwanted data (see Section 5). The intermediate bu�ering requiresextra memory, but ROMIO uses only a constant amount of extra memory that does not increase with the sizeof the user's request. Furthermore, the user can control at run time the amount of extra memory ROMIOuses, via MPI-IO's hints mechanism.Noncontiguous write requests are handled similarly, except that ROMIO must perform a read-modify-write to avoid destroying the data in the gaps between the portions the user actually wants to write. In thecase of independent write requests, during the read-modify-write, ROMIO must also lock the correspondingportion of the �le, because other processes may independently try to access portions that are interleavedwith this access.4.2 Collective I/OThe collective-I/O functions in MPI-IO must be called by all processes that together opened the �le. Thisproperty enables the implementation to analyze and merge the requests of di�erent processes. In many cases,the merged request may be large and contiguous, although the individual requests were noncontiguous. Themerged request can, therefore, be serviced e�ciently [3, 10, 4, 8].ROMIO has an optimized implementation of collective I/O that uses a generalized version of the extendedtwo-phase method described in [10]. The basic idea is to perform I/O in two phases: an I/O phase and acommunication phase. In the I/O phase, processes perform I/O for the merged request. If the mergedrequest is not contiguous by itself, data sieving is used to obtain contiguous accesses. In the communicationphase, processes redistribute data among themselves to achieve the desired distribution. For reading, the �rstphase is the I/O phase, and the second phase is the communication phase. For writing, it is the reverse. Theadditional cost of the communication phase is negligible compared with the bene�t obtained by performingI/O contiguously. As in data sieving, ROMIO uses a constant amount of additional memory for performing4

collective I/O, which can be controlled by the user at run time. The user can also control the number ofprocesses that perform I/O in the I/O phase, which is useful on systems where the I/O performance doesnot scale with the number of processes making concurrent requests. To enable maximum amount of mergingand larger accesses, the user's collective request must be a level-3 request rather than a level-1 request.4.3 Improved Prefetching and CachingWhen the user speci�es complete access information in a single I/O function call, the MPI-IO implementationor �le system does not need to guess what the future accesses will be. It can, therefore, perform betterprefetching and caching. (This optimization is not yet implemented in ROMIO.)5 Performance ResultsWe used two applications to measure the e�ect of using derived datatypes on performance: the distributedarray example of Figure 1 and an unstructured code we obtained from Larry Schoof and Wilbur Johnsonof Sandia National Laboratories. (Details of the unstructured code will be provided in the �nal version ofthe paper.) We modi�ed the I/O portions of these applications to correspond to each of the four levels ofrequests and ran the programs on �ve di�erent parallel machines|HP Exemplar, IBM SP, Intel Paragon,NEC SX-4, and SGI Origin2000|using ROMIO as the MPI-IO implementation.If the requests of processes that call a collective-I/O function are not interleaved in the �le, ROMIO'scollective-I/O implementation just calls the corresponding independent-I/O function on each process. Forthe distributed-array example, therefore, level-1 requests perform the same as level-0 requests. However,if the accesses in a level-1 request are interleaved or overlapping (e.g., in a read-broadcast type of accesspattern), ROMIO implements the level-1 request collectively, and the performance is better than with alevel-0 request.For level-2 requests, ROMIO performs data sieving. Depending on the machine, we observed an im-provement ranging from 13.2% (IBM SP) to 45,252% (NEC SX-4) for the distributed-array example (seeTable 1). In the unstructured code, the I/O access pattern is irregular, and the granularity of each access isvery small. Level-0 requests are not feasible for this kind of application, as they take an inordinate amountof time. Therefore, we do not present level-0/1 results for the unstructured code. Level-2 requests performedreasonably well for the unstructured code, but not as well as level-3 requests (see Table 2).ROMIO performs collective I/O in the case of level-3 requests. Within the collective-I/O implementa-tion, ROMIO also performs data sieving when there are holes in the merged request. In these two examples,however, the merged request had no holes. Collective I/O improved the performance of level-3 requestssigni�cantly. For the distributed-array example, the improvement was as high as 79,196% over level-0/1requests (NEC SX-4) and as high as 1,289% over level-2 requests (Intel Paragon). Similarly, for the un-structured code, the improvement was as high as 5,681% over level-2 requests (Intel Paragon). An unusualresult was observed on the NEC SX-4 for the unstructured code: Level 2 performed better than level 3. Weattribute it to the high read bandwidth of NEC's Supercomputing File System (SFS), due to which datasieving by itself outperformed the extra communication required to merge requests in collective I/O.Detailed performance and scalability results, including write bandwidths, will be provided in the �nalversion of the paper.6 ConclusionsMPI-IO has the potential to help users achieve better I/O performance in parallel applications. On their part,users must use some of the special features of MPI-IO. In particular, when accesses are noncontiguous, usersmust strive to create derived datatypes and de�ne �le views. Our results show that performance improvesby orders of magnitude when the users create derived datatypes and use the collective-I/O functions.We note that the MPI-IO standard does not require an implementation to perform any of these optimiza-tions. However, even if an implementation does not perform any optimization and instead translates level-35

Table 1: I/O performance for distributed-array access (array size 512� 512� 512 integers, �le size 512 MB)Number of Read Bandwidths (MB/s)Machine Processors Level 0/1 Level 2 Level 3HP Exemplar 64 5.42 14.2 68.2IBM SP 48 5.83 6.60 88.4Intel Paragon 256 3.01 9.50 132NEC SX-4 8 0.71 322 563SGI Origin2000 32 14.0 118 175Table 2: I/O performance of an unstructured codeNumber of Number of Read Bandwidths (MB/s)Machine Processors Grid Points Level 2 Level 3HP Exemplar 64 8 million 4.37 37.1IBM SP 64 8 million 1.64 74.1Intel Paragon 256 8 million 1.28 74.0NEC SX-4 8 8 million 97.3 56.0SGI Origin2000 32 4 million 43.8 123requests into several level-0 requests to the �le system, the performance would be no worse than if the usermade level-0 requests himself.In the �nal version of the paper, we will provide more details on the optimizations and more performanceand scalability results.References[1] S. Baylor and C. Wu. Parallel I/O Workload Characteristics Using Vesta. In R. Jain, J. Werth,and J. Browne, editors, Input/Output in Parallel and Distributed Computer Systems, chapter 7, pages167{185. Kluwer Academic Publishers, 1996.[2] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output Characteristics of Scalable Parallel Appli-cations. In Proceedings of Supercomputing '95. ACM Press, December 1995.[3] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a Two-Phase Run-timeAccess Strategy. In Proceedings of the Workshop on I/O in Parallel Computer Systems at IPPS '93,pages 56{70, April 1993. Also published in Computer Architecture News, 21(5):31{38, December 1993.[4] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. ACM Transactions on Computer Systems,15(1):41{74, February 1997.[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 1.1, June 1995.On the World-Wide Web at http://www.mpi-forum.org/docs/docs.html.[6] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. July 1997. Onthe World-Wide Web at http://www.mpi-forum.org/docs/docs.html.[7] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File-Access Characteristics of ParallelScienti�c Workloads. IEEE Transactions on Parallel and Distributed Systems, 7(10):1075{1089,October1996. 6

[8] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-Directed Collective I/O in Panda.In Proceedings of Supercomputing '95. ACM Press, December 1995.[9] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O Requirements of Scienti�c Applications: An Evolution-ary View. In Proceedings of the Fifth IEEE International Symposium on High Performance DistributedComputing, pages 49{59. IEEE Computer Society Press, 1996.[10] R. Thakur and A. Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-CoreArrays. Scienti�c Programming, 5(4):301{317, Winter 1996.[11] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion: Optimized I/O forParallel Applications. Computer, 29(6):70{78, June 1996.[12] R. Thakur, W. Gropp, and E. Lusk. An Experimental Evaluation of the Parallel I/O Systems of theIBM SP and Intel Paragon Using a Production Application. In Proceedings of the 3rd InternationalConference of the Austrian Center for Parallel Computation (ACPC) with Special Emphasis on ParallelDatabases and Parallel I/O, pages 24{35. Lecture Notes in Computer Science 1127. Springer-Verlag.,September 1996.[13] R. Thakur, E. Lusk, and W. Gropp. Users Guide for ROMIO: A High-Performance, Portable MPI-IOImplementation. Technical Report ANL/MCS-TM-234, Mathematics and Computer Science Division,Argonne National Laboratory, October 1997.

7

