
A Cost/Bene�t Analysis of Simplicial MeshImprovement Techniques as Measured by SolutionE�ciencyLori A. Freitag� and Carl Ollivier-Goochy1 IntroductionThe quality of �nite element and �nite volumemeshes has long been known to a�ect both thee�ciency and the accuracy of the numerical solution of application problems (e.g., see [6]and [14]). To improve the quality of these meshes, several researchers have devised newalgorithms based on local reconnection schemes, node smoothing, and adaptive re�nementor coarsening (e.g. [2, 10, 18, 19, 29, 30]). In each case, the edges, vertices, or elements ofthe mesh are individually evaluated to determine whether performing the local operationimproves the mesh. Therefore, these methods typically incur an O(N) computational cost,where N is the number of vertices in the mesh. This is a signi�cant cost as N increases,and often only anecdotal evidence is given to demonstrate the bene�t of these techniques interms of solution e�ciency for a particular application or solver.In this paper, we provide a deeper analysis of the tradeo�s associated with the cost ofmesh improvement in terms of solution e�ciency. We consider both �nite element and �nitevolume discretization techniques, a number of di�erent solvers, and a variety of applicationproblems. The issue of solution accuracy will be addressed in a later paper.We focus initially on problems discretized using the �nite elementmethod. Such discretiza-tions lead to large, sparse linear systems, which are often solved by using either conjugategradient (CG) [16] or GMRES [31] iterative techniques. Several theoretical results that re-late the convergence behavior of these algorithms to matrix characteristics such as conditionnumber and spectral distribution. In turn, for simple applications such as Poisson's equa-tion, these matrix characteristics can be theoretically related to the size and quality of theunderlying �nite element mesh.Theoretical results are not available for more complicated applications. To obtain insightinto the convergence rates of CG and GMRES, we must empirically establish the relationshipbetween mesh size and quality to convergence behavior. We do so by performing a series ofexperiments in which the parameters of mesh size and quality are varied both individually�Assistant Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Ar-gonne, IL 60439. freitag@mcs.anl.gov.yAssistant Professor, Department of Mechanical Engineering, The University of British Columbia, Van-couver, BC, V6T 1Z4 Canada. cfog@mech.ubc.ca.



and together for a number of application problems. So that we can compare our experimentalresults with theoretical results, we choose Laplace's equation as our simplest test case. Oncethe relationship between the mesh and the iterative solver convergence rate is established,we perform a cost/bene�t analysis of mesh improvement techniques for both simple andcomplex applications.The remainder of the paper is organized as follows. In Section 2, we review theoreticalresults on the convergence of conjugate gradient and GMRES for general matrices and formatrices arising from a speci�c �nite element application. In Section 3 we brie
y reviewthe local reconnection and optimization-based smoothing techniques [12, 13] that are usedin this paper for mesh improvement. In Sections 4 and 5 we perform a cost/bene�t analysisof mesh improvement techniques for both simple and complex applications. We show thatthe bene�ts of applying di�erent mesh improvement techniques are cumulative and can beseen even when starting with a fairly good mesh.2 The Convergence of CG and GMRESFinite element discretization techniques reduce the problem of solving a partial di�erentialequation to the problem of solving a large, sparse system of linear algebraic equations,traditionally written as Ax = b. Because of their size and sparsity, direct methods aregenerally very ine�cient for solving these linear systems, and iterative methods such asconjugate gradient and GMRES are used instead. Several theoretical results relate theconvergence of these iterative solvers to the characteristics of the matrix, A, particularlyits condition number and spectral distribution. For simple applications these quantities canthen be related to the quality and size of the �nite element mesh.Let the eigenvalues of the N �N matrix A be given by �1 � �2 � ::: � �N�1 � �N : Ax-elsson [3] showed that, if the eigenvalues are uniformly distributed, the number of iterationsrequired for CG to reduce the error in the energy norm by a factor of � is bounded byI� � 6664s�N�1 ln2�7775+ 1; (1)where the ratio �N�1 is the condition number of the linear system. For symmetric �nite elementapproximations, �1 is bounded below by�1 � c1�minmint2T At; (2)where c1 is a mesh independent constant, �min is the minimum vertex degree in the mesh,T is the set of elements in the mesh, and At is the area of element t. The value of �N isbounded above by �N � c2�max(maxt2T At +max�2� ; 1sin � ) (3)where c2 is a mesh independent constant, �max is the maximum vertex degree in the mesh,and � is the set of all element angles in the mesh. Axelsson and Barker provide a morecomplete description of these bounds [4, pp. 232{238]. Two results of interest for this papernaturally follow from these bounds. 2



1. As the size of the �nite element mesh increases, mint2T At decreases, and �1 can de-crease proportionally, causing the condition number and number of iterations to in-crease. For example, Axelsson and Barker showed that for Poisson's equation dis-cretized with the �nite element method, the condition number of the sti�ness matrixis O(N) regardless of the vertex ordering or the degree of the polynomial basis func-tions [4].2. As the quality of the mesh degrades and small angles are introduced, the bounds onboth �1 and �N are adversely a�ected and the condition number increases proportion-ally.The condition number of a matrix A is not the sole factor that determines the convergenceof the CG algorithm; the spectral distribution also plays a critical role. If the spectrum ofA is not uniformly distributed|that is, if there are isolated eigenvalues at either end ofthe spectrum|Equation 1 overestimates the iteration count, and improved bounds can beobtained in both exact arithmetic (e.g., [5]) and in the presence of rounding error (e.g. [24,17, 33]). Let the eigenvalues of such a system be denoted by �1; �2; :::; �p; [a; b]; �q; :::; �N,where [a; b] represents the continuous part of the spectrum and the remaining eigenvaluesare isolated values at either end of the spectrum. The components of error associated withthe isolated eigenvalues are eliminated in a few additional steps, and then CG convergesas though bounded by the smaller condition number b=a. For small isolated eigenvalues,the number of additional iterations necessary for convergence is proportional to the numberof isolated eigenvalues in the spectrum and the value of ln(Ppi=1 a=�i). For large isolatedeigenvalues, the number of additional steps is proportional to rounding errors, the ratios of�jb�a , and the quantities ln �j�i , where i; j = q; :::; N .The convergence behavior of GMRES is also determined by the spectrum or pseudospectraof A, depending on whether A is normal, close to normal, or arbitrary [31, 23, 15]. Theseresults use exact arithmetic and do not include the complicating factors of preconditioningor the common practice of restarting GMRES to reduce the computational complexity of thealgorithm. Joubert analyzes the impact of the restart parameter on convergence and gives atheoretical analysis for certain classes of matrices [21]. We are unaware of theoretical resultsfor convergence for restarted GMRES applied to arbitrary matrices.3 Mesh Improvement TechniquesThe theoretical results presented in the preceding section clearly show that the underlyingmesh quality can signi�cantly a�ect the convergence of iterative solvers. Mesh quality canbe improved by using a variety of techniques, including point insertion/deletion to re�neor coarsen a mesh [28, 30, 20], local reconnection to change mesh topology for a givenset of vertices [18, 19], and mesh smoothing to relocate grid points without changing meshtopology [2, 10, 29]. Our approach is based on combining local reconnection schemes andoptimization-based mesh smoothing techniques to improve simplicial mesh quality. We nowbrie
y review these procedures; more detailed descriptions can be found in [12, 13].3



3.1 Local Mesh Recon�guration TechniquesThe most commonly used local reconnection technique is face swapping. In both two andthree dimensions, this technique can be used to change the topological connections amongthe vertices making up the simplices incident on a single face. Lawson [22] showed that thereat most two legal connectivities for these vertices, thereby making the task of choosing thebest con�guration straightforward. In two dimensions, a face is bounded by two triangles;face swapping chooses the best diagonal for the quadrilateral that is the union of thesetriangles. In three dimensions, a face is bounded by two tetrahedra, but the �ve verticesin these tetrahedra may form either two or three tetrahedra. Many possible con�gurationsexist, but the only two that can be legally reconnected are shown in Figure 1. One ofthese con�gurations switches between two and three tetrahedra; the other, between twotwo-tetrahedron con�gurations. The latter is applicable only along mesh boundaries.
Figure 1: Swappable con�gurations of �ve points in three dimensionsA more advanced technique in three dimensions is the recon�guration of all tetrahedraincident on a single edge. This technique is known as edge swapping or edge removal. Ourapproach, described in detail in [13], operates by viewing the edge to be swapped end-onand choosing the \triangulation" of the vertices not on that edge that maximizes some meshquality measure. This recon�guration technique replaces N tetrahedra by 2N�4 tetrahedra,and the number of possible \triangulations" to be checked grows rapidly with N . At thesame time, the fraction of recon�gurations that are successful decreases, in part because ofan upper bound on the angle produced as N increases. Consequently, we do not apply thistechnique for N > 7. We employ edge swapping both as a remedy when our face swappingroutine is stalled by certain nonconvex con�gurations of �ve vertices and as an independentmesh improvement technique to selectively eliminate tetrahedra with bad angles from themesh. 4



3.2 Mesh SmoothingThe most frequently used approach for mesh smoothing is some variant on Laplacian smooth-ing, which in its simplest form moves each vertex to the average of the locations of itsneighbors. This approach, while computationally inexpensive, has serious drawbacks in thatit does not provide any mechanisms that guarantee improvement in element quality. Infact, the method can produce an invalid mesh containing elements that are inverted or havenegative volume.Optimization-based smoothing techniques o�er an alternative to Laplacian smoothing thatcan be inexpensive, can guarantee valid elements in the �nal mesh, and can be e�ectivefor a wide variety of mesh quality measures. In [12, 13], we described an e�cient, localsmoothing algorithm based on optimization techniques for piecewise smooth, continuousfunctions that move the grid points in a manner guaranteed to maintain or improve meshquality. The vertex is repositioned by using a generalized steepest descent method thatrequires function and gradient information for a mesh quality measure. Any di�erentiablemesh quality function can be used, including cell angles and aspect ratios. This techniqueis robust and e�ective in improving mesh quality in both two and three dimensions. Wenote that similar optimization-based smoothing methods have been proposed by a numberof researchers [1, 8, 32] for a variety of optimization procedures and mesh quality measures.The optimization-based approach is quite e�ective, however its computational cost is highcompared with Laplacian smoothing. To address this problem, Freitag developed a familyof combined Laplacian and optimization-based smoothing techniques [11]. For each vertex,these techniques apply a single step of a smart Laplacian operator|one that moves the vertexonly if the local submesh is improved. If the local submesh has a quality measure below auser-de�nable threshold, the optimization-based smoother is invoked to further improve thequality of the submesh. This technique was shown to be as e�ective in mesh improvementas the strictly optimization-based approach, at a fraction of the computational cost.3.3 RecommendationsWe now summarize our recommendations for two-dimensional mesh improvement based ongeometric quality measures [13].� Local reconnection should be followed with mesh smoothing to improve mesh qual-ity. Three to four passes of a combined Laplacian/optimization-based smoother witha 
oating threshold is the most e�cient smoothing technique. To prevent con
ict be-tween the behavior of reconnection and smoothing, the same quality criterion shouldbe used for both.� Element quality criteria designed to eliminate small angles from the mesh are generallymore e�ective in improving overall mesh quality than measures designed to eliminatelarge angles. We recommend maximizing the minimum sine of element angle (dihedralangle in three dimensions) as a good general-purpose criterion.� In three dimensions, edge swapping is bene�cial and should be used. Also, the use ofadvanced techniques such as BATR [13] is highly bene�cial in improving tetrahedralmeshes. 5



4 E�ect of Mesh Quality on ConvergenceWe begin our cost/bene�t analysis of mesh improvement techniques in terms of solutione�ciency by considering two model problems on the unit square. The �rst is Laplace'sequation (di�usion) with a mix of Dirichlet and Neumann boundary conditions:r2� = 0 2 (0; 1)� (0; 1)�(0; y) = 0; �(1; y) = 1; @�(x; 0)@y = @�(x; 1)@y = 0:Initial, high-quality triangular meshes are created by using GRUMMP [25], and in all cases�min > 20o, �max < 135o, and �avg � 50o. We discretize the system with linear, triangular�nite elements and solve the resulting symmetric linear system with the PETSc [7] implemen-tation of the conjugate gradient (CG) method with both Jacobi (CG/Jac) and incompleteCholesky (CG/IC) preconditioners.The second test case we consider is advection di�usion on the unit square with the sameset of test meshes: r2�+r� = 0 2 (0; 1) � (0; 1)�(0; y) = 0; �(1; y) = 1; @�(x; 0)@y = @�(x; 1)@y = 0:In this case, the resulting nonsymmetric linear systems are solved by using the PETScimplementation of GMRES with both Jacobi (GMRES/Jac) and ILU (GMRES/ILU) pre-conditioners. All GMRES solves are restarted by using the PETSc default value of 30iterations.In all test cases we use a convergence test of 10�12 on the relative tolerance of the residual.The spectrum of each linear system is computed exactly by using the LAPACK routinedgeev().We seek to quantify the behavior of these two test problems as the quality and size ofthe �nite element mesh changes and then to perform a simple cost/bene�t analysis for meshsmoothing. To accomplish this goal, we perform four experiments.� Experiment 1: We obtain the baseline number of iterations required to solve the prob-lem on a good quality mesh as the mesh size increases. The relationship between meshsize and work to solve these test cases is established.� Experiment 2: We insert one new point into the mesh to create two elements of ex-tremely poor quality. We analyze the spectrum of the resulting linear system and thenumber of iterations required for convergence.� Experiment 3: We increase the number of poor-quality elements in the mesh and repeatthe analysis of the second experiment.� Experiment 4: We analyze the costs and bene�ts associated with mesh smoothing forthe simple test cases. In particular, we compare the time required to solve the problemon a poor-quality mesh with the time required to improve the mesh and solve theproblem on the high-quality mesh. 6



We �nd that bene�ts of mesh improvement techniques exceed the costs as mesh sizeincreases or mesh quality degrades. A cost/bene�t analysis for more complex exampleswill be discussed in the next section.Experiment 1: Convergence of CG and GMRES as N increasesFrom the results presented in Section 2, we expect the number of iterations required by CGto converge for Laplace's equation to be O(N 12 ). In this experiment we empirically establishthe multiplicative factor for each of the CG techniques and the relationship between thenumber of iterations required for convergence and N for each of the GMRES solvers.So that we can also examine the spectrum of each linear system, we begin by solving ourtest cases on small meshes of size N � 100, 200, 300, 400, and 500. The minimum andmaximum eigenvalue of the spectrum, �1 and �N , and the number of iterations required forconvergence, I, are given in Table 1. In all cases the spectral distribution is fairly uniform.As predicted theoretically in Equations 2 and 3, �N stays roughly constant and �1 decreaseswith increasing N ; the condition number and iteration count increase correspondingly. Thescaling performed by the Jacobi preconditioner decreases both �1 and �N by roughly afactor of two and does not a�ect the spectral distribution. It is not surprising, then, thatthe number of iterations is only slightly reduced for CG/Jac and GMRES/Jac comparedwith CG and GMRES. The IC and ILU preconditioners compact the spectral distributionat both ends and, as expected, are the most e�ective.Table 1: Minimum and maximum eigenvalues of the linear systems and the number ofiterations required to converge for the di�usion and advection di�usion test cases as Nincreases Di�usionCG CG/Jac CG/ICN �1 �N I �1 �N I �1 �N I100 .0517 3.26 49 .0311 1.73 47 .1411 1.38 21200 .0248 3.24 73 .0146 1.76 66 .0681 1.42 29300 .0171 3.09 84 .0199 1.70 79 .0501 1.35 33400 .0131 3.30 99 .0074 1.69 94 .0360 1.35 39500 .0100 3.22 110 .0056 1.74 106 .0271 1.42 44Advection Di�usionGMRES GMRES/Jac GMRES/ILUN �1 �N I �1 �N I �1 �N I100 .0606 3.41 67 .0351 1.71 63 .154 1.46 22200 .0286 3.33 114 .0164 1.75 101 .0733 1.45 29300 .0196 3.14 149 .0112 1.70 139 .0527 1.46 38400 .0149 3.35 173 .0083 1.68 164 .0373 1.53 52500 .0114 3.27 217 .0063 1.74 207 .0284 1.57 61The computational cost of iteratively solving linear systems is a product of the work periteration and the number of iterations. For the solvers considered here, each iteration is7
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Figure 2: Number of iterations required to converge for the di�usion and advection di�usiontest cases as N increasesdominated by a matrix-vector multiplication that is O(N) operations for the sparse linearsystems generated by the �nite element technique. To obtain a good estimate the number ofiterations required for convergence for our test cases on high-quality meshes, we expandedthe test suite to include problems with N = 1,000, 2,000, 4,000, 8,000, 10,000, and 12,000grid points in the mesh. The number of iterations required for convergence as a function ofthe size of the mesh is shown in Figure 2 as a log-log plot. The slopes of the lines give theorder of convergence, s, for each technique. The results indicate that the number of iterationsgrows as O(N s). Therefore, the total work required to solve the system is O(N s+1) for eachof the iterative techniques. To �nd the value of s, we used linear least-squares analysis andobtained the following relationships between I and N for each solver.ICG = 3:57N :493 IGMRES = 2:83N :639ICG=Jac = 3:27N :503 IGMRES=Jac = 2:68N :638ICG=IC = 1:79N :489 IGMRES=ILU = 1:12N :642:As predicted by Equation 1, the order of convergence for the CG techniques applied to thedi�usion equation is .5; the order of convergence for GMRES applied to the advection di�u-sion equation is approximately .64.Experiment 2: E�ect of One Perturbed Element on ConvergenceUsing the results of Experiment 1 as a baseline, we now show the e�ect of a small number ofpoor-quality elements on the number of iterations required for convergence. To control thequality of the meshes, we start with the high-quality meshes used in the �rst experiment andinsert a single point to create two new poor-quality elements. The new point is inserted adistance � along the bisector of one of the three angles in a randomly chosen element, where� is set to produce the desired minimum angle. An example of this point insertion techniqueis shown in Figure 3. Using this technique, we created a series of �ve meshes for each originalmesh whose smallest angles are :25o; :5o; 1o; 2:5o; and 5o. For the series of meshes for eachN , the same element is perturbed. 8
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E3Figure 3: Example of the point insertion technique used to create poor-quality elementsWe show typical results for �1 and �N and the number of iterations, I, required to reachan accuracy comparable to that obtained on the original 200-grid-point mesh in Table 2.The results for N = 100; 300; 400 and 500 are qualitatively the same. The theoreticalbounds for �1 and �N given in Equations 2 and 3 for Laplace's equation indicate that bothcan be adversely a�ected by poor-quality elements. However, our experiments show that �1is una�ected and that �N grows as 1=sin�min. This result re
ects the fact that the smallangles in the mesh enable the discrete solution to capture, at least partially, higher-frequencyeigenmodes of the continuous solution of Laplace's equation. For Jacobi preconditioning, �Nis una�ected by the decreasing angle size and �1 decreases as ln(�min). For the CG/IC andGMRES/ILU methods, the condition number and spectrum of the preconditioned systemare not signi�cantly changed by the addition of two poor-quality elements.In most cases, however, the number of iterations required for convergence is only slightlyincreased compared with the baseline results presented in Experiment 1. For these testcases, the spectrum contains one isolated eigenvalue, and the size of the discontinuity isgiven in the columns labeled �N=�N�1 and �2=�1 for no preconditioning and Jacobi pre-conditioning, respectively. For CG, the size of the discontinuity becomes quite pronouncedas �min decreases, causing the number of iterations to increase by as much as 15 percent.On the other hand, GMRES is una�ected by the increase in size of the discontinuity, andthe number of iterations required for convergence is constant. The Jacobi preconditioneris e�ective at eliminating the isolated eigenvalue in the spectrum, but the ellipticity of thesystem is increased. The CG/Jac solver is not signi�cantly a�ected by this increase, and thenumber of iterations increases by 10 percent. In contrast, GMRES/Jac is quite sensitive tothis increase in ellipticity and shows a 100 percent increase in the number of iterations for�min = :25o. The convergence of the CG/IC and GMRES/ILU methods is not a�ected bythe poor-quality elements. We conclude that, except for GMRES/Jac, a small number ofpoor-quality elements do not signi�cantly a�ect the work required to solve the system.Experiment 3: E�ect of Many Perturbed Elements on ConvergenceWe now analyze the spectrum and convergence of the iterative solvers for an increasingpercentage of poor-quality elements in the mesh. In Table 3 we show �min, �max, and the9



Table 2: Minimum and maximum eigenvalues of the linear systems and the number ofiterations required to converge for the di�usion and advection di�usion test cases with 200grid points and two poor quality elementsDi�usionCG CG/Jac CG/IC� �1 �N �N=�N�1 I �1 �N �2=�1 I �1 �N IOriginal .024 3.24 1.03 73 .014 1.76 1.97 66 .066 1.42 295o .024 11.3 3.48 77 .0137 1.96 2.21 69 .065 1.42 292.5o .024 21.5 6.64 79 .0126 1.96 2.12 70 .065 1.42 291o .024 52.4 16.17 80 .0093 1.98 2.53 71 .066 1.42 29.5o .024 104.1 32.12 82 .0060 1.99 3.60 72 .066 1.43 29.25o .024 219.4 67.59 84 .0032 1.99 6.25 73 .066 1.43 29Advection Di�usionGMRES GMRES/Jac GMRES/ILU� �1 �N �N=�N�1 I �1 �N �2=�1 I �1 �N IOriginal .028 3.41 1.03 114 .0165 1.75 1.83 101 .0733 1.45 295o .028 11.34 3.40 116 .0154 1.92 1.91 111 .0704 1.46 302.5o .028 21.57 6.47 116 .0147 1.96 1.99 119 .0704 1.45 301o .028 52.51 15.76 116 .0104 1.98 2.42 144 .0704 1.46 30.5o .028 104.1 31.23 116 .0065 1.99 3.53 173 .0704 1.46 30.25o .028 219.4 65.90 116 .0035 1.99 6.39 204 .0704 1.46 30percentage increase in the number of iterations required for p = 2, 5, 10, and 20 percentperturbed elements. The percentage increase in iterations is computed as follows:PI = Ip � ININ � 100;where Ip is the number of iterations required for convergence on the poor-quality mesh and INis the number of iterations needed to converge on a good-quality mesh of size N . Because weuse a point insertion technique to create the poor-quality meshes, the increasing percentageof poor quality elements also increases mesh size. In particular, for the results presented inTable 3, our base mesh has N = 217 grid points; the perturbed meshes have N = 224, 235,253, and 290 grid points for p = 2; 5; 10; and 20, respectively. From Experiment 1 results,we know that this increase in N contributes to an increase in the iteration count; to accountfor this, we compute IN by cN s where c and s were determined in Experiment 1.For the nonpreconditioned systems, an increasing number of perturbed elements resultedin an increasing value of �N and a one-to-one increase in the subspace size associated withthe extremal eigenvalues. As in Experiment 2, the Jacobi and IC/ILU preconditioners aree�ective in eliminating the extremal eigenvalue subspaces. For the Jacobi preconditioning, asthe number of perturbed elements increases, the condition number of the system increases:�1 decreases by as much as a factor of seven and �N is unchanged. For the IC and ILUpreconditioned systems, both �1 and �N are adversely a�ected by an increase in the numberof perturbed elements. The results in the columns labeled PI show that as we increase the10



number of bad elements in the mesh and worsen their quality, the number of additionaliterations required to converge increases. The GMRES techniques are more sensitive tolarge numbers of perturbed elements in the mesh than their CG counterparts. For theGMRES/ILU solver, the work estimate obtained in Experiment 1 is not accurate for smallmesh sizes and overestimates the number of iterations, yielding negative percentage increasesfor p = 2 and p = 5. For a good quality mesh, the number of iterations required forGMRES/ILU on the 200 grid point mesh is 29. For p = 2 and p = 5, the number ofiterations is 34, 33, 33 and 53, 51, 48 for �min = :5; 1; and 2.5, respectively.To show general trends as N increases and p remains �xed, we plot the number of itera-tions required for convergence for each of the solvers under consideration for meshes of sizeN = 2,000, 4,000, 8,000 and 12,000 and �xed percentage p = 10. We again consider increas-ingly poor-quality elements whose minimum angles range from :25o to 17o. In a number ofadvection di�usion cases, the GMRES and GMRES/Jac algorithms fail to converge prior toreaching the maximumallowed number of iterations (10,000). For �min < 2:5o, the poor qual-ity of the mesh signi�cantly a�ects the number of iterations required for convergence and thecurve is exponential in nature. However, for �min > 2:5o the number of iterations remainsroughly constant and is determined primarily by the number of grid points in the mesh.The curves shown in Figure 4 are typical results; as the percentage of poor-quality elementsdecreases, the general trends remain the same, but the number of iterations decreases.We now summarize the results of the �rst three experiments presented in this section.� The number of iterations required to converge increases as N increases, and the workto solve the linear system grows as O (N s+1), where s is approximately .5 for the CGtechniques and .63 for the GMRES techniques.� In most cases, the number of iterations required for convergence is not signi�cantlya�ected by a small number of poor-quality elements. In the case of no preconditioning,the iteration count is not a�ected because the resulting spectrum contains isolatedeigenvalues. The preconditioners considered are e�ective at eliminating the isolatedeigenvalue at the cost of a slight increase in the ellipticity of the linear system.� As the percentage of poor-quality elements increases, the subspace size associated withthe extremal eigenvalues increases proportionally, and the number of iterations requiredfor convergence increases. The preconditioners are e�ective at eliminating the subspaceassociated with extremal eigenvalues, but the condition number of the linear system isadversely a�ected.� For N=200, p=10 percent, and �min > 2:5o, the number of iterations required forconvergence is primarily determined by the size of the mesh. As �min decreases, theadditional iterations associated with the poor-quality elements start to dominate con-vergence.In light of these observations, the following question naturally arises:For what values of N , minimum angle, and percentage of poor-quality elements in the meshis the total cost of improving the mesh and solving the problem on the improved mesh lessthan the cost of obtaining an accurate solution on a poor-quality mesh?11



Table 3: Minimum and maximum eigenvalues of the preconditioned linear system and thenumber of iterations required to converge using various iterative solvers for the two test caseswith 200 grid points and an increasing number of perturbed elementsDi�usion2 Percent 5 Percent 10 Percent 20 Percent� �1 �N PI �1 �N PI �1 �N PI �1 �N PINo PreconditioningIN = 52 IN = 53 IN = 55 IN = 59.5o .024 104 90.3 .023 131 128 .021 151 293 .017 153 3661o .024 52 82.7 .023 65 115 .021 75 249 .017 76 3132.5o .024 21.5 71.1 .023 26 94.3 .021 30 187 .017 31 238Jacobi PreconditioningIN = 50 IN = 51 IN = 53 IN = 57.5o .0036 2.01 68.0 .0017 2.01 102 .0012 2.02 270 .0006 2.03 3191o .0061 2.03 62.0 .0032 2.03 92.1 .0022 2.04 219 .0011 2.06 2652.5o .0098 2.05 54.0 .0063 2.05 78.4 .0045 2.07 164 .0025 2.11 200IC PreconditioningIN = 26 IN = 26 IN = 27 IN = 29.5o .064 1.48 11.5 .015 1.96 38.4 .009 2.44 70.3 .009 2.33 93.11o .064 1.47 11.5 .025 1.93 38.4 .017 2.29 66.6 .017 2.28 86.22.5o .064 1.46 11.5 .041 1.83 34.6 .035 1.99 51.2 .028 2.01 72.3Advection Di�usion2 Percent 5 Percent 10 Percent 20 Percent� �1 �N PI �1 �N PI �1 �N PI �1 �N PINo PreconditioningIN = 90 IN = 93 IN = 98 IN = 106.5o .027 104.1 52.2 .026 131 91.4 .024 150 580 .020 153.9 8811o .027 52.5 52.2 .026 65.3 89.2 .024 75.3 423 .020 76.9 7892.5o .027 21.57 51.1 .026 25.9 83.9 .024 30.3 306 .020 30.7 461Jacobi PreconditioningIN = 85 IN = 88 IN = 92 IN = 100.5o .0040 2.01 164 .0019 2.01 198 .0013 2.02 471 .00065 2.02 5401o .0068 2.02 83.5 .0036 2.02 123 .0025 2.04 304 .00127 2.05 3902.5o .0111 2.05 65.9 .0072 2.05 80.7 .0052 2.07 130 .00288 2.11 244ILU PreconditioningIN = 37 IN = 38 IN = 40 IN = 43.5o .067 1.53 -16 .016 1.96 -10 .0097 1.99 32.5 .0051 2.01 4321o .067 1.53 -16 .027 1.93 -10 .018 1.97 27.5 .0094 2.02 2742.5o .067 1.51 -16 .045 1.83 -10 .034 1.92 20.0 .017 2.01 17412
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Figure 4: E�ect of decreasing the minimum angle on the convergence rate of the iterativesolvers for the di�usion and advection di�usion test case when 10 percent of the elementsare perturbed and as N increases
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Experiment 4: Cost/Bene�t Analysis for Mesh Improvement TechniquesTo quantify the bene�ts of the mesh improvement algorithms in terms of solution e�ciency,we compare the di�erence in solution times on the poor-quality mesh and on an improvedmesh (including the time to improve the mesh). From our �rst experiment, we know thatthe work required to solve the problem grows as O(N s+1) for a good-quality mesh. For poor-quality meshes, we showed in Experiment 3 that this amount of work increases proportionallywith the number of and \badness" of the poor-quality elements. In all cases, the workrequired to improve the mesh isO(N), and we therefore expect that the bene�ts of smoothingwill be more pronounced as N increases and quality of the mesh degrades.We present results for poor-quality meshes similar to those used in Experiment 3 for whichthe number of perturbed elements was 10 percent. In each case we improve the poor-qualitymesh with three passes of the combined smoothing approach described in Section 2. Elementquality typically improves to greater than 15o for the minimum angles and to less than 140ofor the maximum angle. The amount of time required for mesh smoothing is approximately3.7, 6.6, 14.3, and 21.6 seconds for N = 2000, 4000, 8000, and 12000, respectively.In Figure 5, we plot the di�erence in the time required to reach convergence on a poor-quality mesh and the total time to reach convergence on an improvedmesh including the timefor mesh smoothing. The horizontal line in each plot is zero and represents the breakevenpoint between the increased cost of smoothing the mesh and the time required to solve theproblem on a poor-quality mesh. Therefore, data points located above the breakeven lineare cases in which a bene�t is obtained by using mesh smoothing; those below the breakevenline indicate that the total solution time was worsened by mesh smoothing.In all cases, as the minimum angle in the mesh decreases, the cost of solving the problemon the poor-quality mesh exceeds the cost of mesh improvement. For each iterative solveras N increases, the minimum angle for which there is a breakeven point increases. ForCG and GMRES and the largest mesh size, there is signi�cant advantage to smoothing themesh for all values of �min. For CG/Jac, and GMRES/Jac there are signi�cant bene�tsfor �min � 3o. Finally, for CG/IC and GMRES/ILU, and the values of N considered here,smoothing bene�ts are obtained only when �min < 1:5o.5 Cost/Bene�t Analysis for Complex ApplicationsFrom the experiments presented in the preceding section, one is tempted to conclude thatunless the mesh contains a large number of very poor quality elements, mesh improvementtechniques o�er little to no bene�t in terms of solution e�ciency. However, the test problemschosen in that analysis were exceptionally simple; they are useful in determining trends in�nite element applications and for obtaining comparisons with theoretical results, but donot adequately illustrate bene�ts of mesh improvement techniques.In this section we show that the e�ciency bene�ts of mesh improvement techniques such asswapping and smoothing are cumulative and e�ective for complex applications even when theinitial mesh is of reasonable quality. We focus on two applications in this section: a linearelasticity application solved using �nite elements and a compressible Euler 
ow problemsolved using the �nite volume method. 14
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Figure 5: Di�erence in time to solve the system on a poor quality mesh and the total timerequired to solve the system on the improved mesh, including the mesh improvement time,for the di�usion and advection di�usion test cases
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5.1 Linear ElasticityThe �rst problem that we consider is linear elasticity for the plane stress problem, which isgiven as @2u@x2 + @2u@y2 = 1 + �2  @2u@y2 + @2v@x@y! ;@2v@x2 + @2v@y2 = 1 + �2  @2v@y2 + @2u@x@y! ;where u and v are the x and y displacements, respectively. These equations are solved ona rectangular region with a central hole. One side of the region is constrained to have zerodisplacement, and a constant traction is applied to the opposite side. For this example theinitial mesh is created by recursively re�ning a coarse grid approximation to the domainusing bisection techniques and an analytic description of the boundary. The upper rightquadrant of an initial mesh for the elasticity problem is shown on the left of Figure 6; thebisection lines from the original coarse grid are clearly evident.
Figure 6: Upper right quadrant of a rectangular region with a circular hole. The �gure onthe left is the mesh resulting from bisection re�nement without smoothing. The �gure onthe right is the same mesh with smoothing incorporated.In Table 4 we give the minimum, maximum, and average angle measures for the originalelasticity mesh, the same mesh improved by swapping, and the same mesh improved byswapping and smoothing for three di�erent problem sizes. We also give the time requiredto perform the mesh improvement operation in seconds. The minimum angle in the originalmesh is typically about 6o, the maximum angle is 168o, and the average angle is 38:53o Faceswapping is e�ective in improving the average angle in the mesh, but does not a�ect theextremal angles. When mesh swapping and mesh smoothing are used together, �min and �maxare both signi�cantly improved over using swapping alone, and the average angle increasesslightly over swapping used alone. In the current implementation, face swapping and nodesmoothing incur approximately the same computational cost and are clearly linear functionsof N . 16



Table 4: Mesh characteristics and improvement times for three di�erent problem sizesOriginal Swapped Swapped and SmoothedN �min �max �avg �min �max �avg Timeswap �min �max �avg Timesmooth20976 6.11 167.7 38.25 6.11 167.7 45.22 2.03 22.81 134.3 47.22 2.3141216 6.09 167.7 36.28 6.11 167.7 41.59 4.93 16.23 146.51 42.43 3.9082192 5.90 168.14 38.52 5.90 168.14 45.56 8.50 20.54 138.8 46.7 8.26The elasticity equations are approximated with linear �nite elements, and the resultingsymmetric linear system is solved by using the CG/IC solver. The number of iterationsrequired for convergence of the relative residual to less than 10�9 and the total time to solvethe problem, including mesh improvement times when appropriate, are given in Table 5for the meshes described in Table 4. Swapping used alone improved the total solutiontime by a small amount for the two largest problem sizes, but actually increased the totaltime to solution for the smallest problem considered. Using a combination of swappingand smoothing improved the solution e�ciency in all three cases and, for the largest twoproblems, saved approximately 10 percent of the total solution time.In the columns labeled E, we give the global H1 error indicator values associated withthe discrete approximation of the linear elasticity equations on that particular mesh. As theresolution increases, the value of E decreases. In addition, better-quality meshes also resultin better accuracy; for the largest problem size the error indicator function was reduced anadditional 13 percent for the mesh improved by both swapping and smoothing. We intendto examine the e�ect of mesh quality on solution accuracy in greater depth in future work.Table 5: Mesh improvement results for the linear elasticity problemOriginal Swapped Swapped and SmoothedTotal Total Time Total TimeN I E Time I E Time Saved I E Time Saved20976 629 1.53E-4 39.3 639 1.49E-4 43.09 -3.79 532 1.39E-4 38.60 .6941216 904 7.71E-5 112.8 814 7.42E-5 110.5 2.3 734 7.83E-5 104.6 8.282192 1289 4.17E-5 321.0 1209 4.09E-5 317.8 3.16 1085 3.62E-5 278.57 25.625.2 Compressible Flow over a CylinderOur second case study examines the e�ect of mesh quality on convergence behavior for weaklycompressible 
ow over a cylinder at Mach 0.3. The computational domain is nine cylinderdiameters long and three diameters wide, with a symmetry condition imposed on the uppersurface. For this experiment, we generated three meshes each beginning with the samerandom point set with point density falling exponentially with distance from the surface.This distribution corresponds to a constant stretching ratio for structured meshes. Thepoint set contains 2500 interior points and 190 boundary points, which are evenly spaced17



Figure 7: From left to right: random mesh, smoothed mesh, and smoothed and swappedmeshon the cylinder, in
ow, out
ow, and upper symmetry plane and exponentially stretchedalong the lower symmetry plane. The �rst mesh (the left mesh in Figure 7) was generatedby simply inserting the random points into the mesh and swapping by using the Delaunaycriterion. The smallest angle in this mesh is 0:56o, the largest 178:86o. The middle meshin Figure 7 was obtained by performing �ve passes of optimization-based smoothing on thevertices of the �rst mesh; this procedure improves the extremal angles to 12:3o and 145:6o.The rightmost mesh in Figure 7 was obtained from the �rst mesh by performing �ve passesof smoothing alternating with passes of swapping by using the Delaunay criterion; this meshhas extremal angles of 23:2o and 131:9o. Figure 8 compares the overall angle distributionfor the three meshes. Clearly, smoothing alone improves the angle distribution, dramaticallyreducing the number of both small and large angles. When combined with swapping, theimprovement is even greater.Flow around the cylinder was computed by using an edge-based, vertex-centered �nitevolume solver. Second-order accuracy was attained by using least-squares reconstruction [9,26, 27]. Following reconstruction, 
uxes were computed by using Roe's 
ux formula andintegrated for each control volume. Time advance was performed using an explicit multistagescheme with multigrid convergence acceleration [28]. In each case, the same three coarsemeshes were used to eliminate the e�ects of coarse mesh convergence behavior on the results.Figure 8 also shows the convergence rates for each of the �ne meshes. The random mesh failsto converge, falling into a limit cycle with large variations in 
ow parameters. The smoothedmesh and the smoothed and swapped mesh cases both converge, with the asymptotic ratebeing about 25% faster for the latter case. In each case, the mesh optimization proceduresrequired less time than a single cycle of the multigrid solver, and the convergence rate islimited by behavior near the rear separation point on the cylinder, where the local time stepis limited by acoustic modes while the solution is changing because of convective modes witha propagation speed of M = 0.01 or less. 18
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ow around a cylinder6 SummaryIn this paper we have presented a series of results that quantify the e�ect of mesh quality onboth CG and GMRES iterative solvers, with and without preconditioning, for �nite elementand �nite volume discretizations. We summarize our results as follows.� In most cases, a few poor-quality elements do not signi�cantly a�ect the convergenceof the iterative solvers. The exception is GMRES with Jacobi preconditioning, whichis sensitive to an increase in the ellipticity of the linear system.� As the problem size or number of poor-quality elements increased, or as the elementquality in the mesh degraded, the work to solve the problem increases. As the precon-ditioning of the iterative solver improves, the e�ect of poor mesh quality on solutiontime is less pronounced.� For two very simple applications, a cost bene�t analysis shows that for all the iterativesolvers, the breakeven point in terms of mesh quality for which mesh smoothing wasbene�cial moves toward higher-quality meshes as N increases.� For more complex applications, the bene�ts of mesh improvement are pronounced withsavings of 10 percent or more in total solution time even when the initial meshes areof reasonable quality.Future work includes an analysis of the bene�ts of mesh improvement in terms of solutionaccuracy for both �nite element and �nite volume discretization techniques. Our goal is toquantify the relationship between solution error and local mesh quality. We intend to beginby examining the error in model problem solutions and use Green's function techniques todetermine the local discretization errors that induce the observed solution error.AcknowledgmentsThis work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Computational and Technology Research, U.S. Depart-ment of Energy, under Contract W-31-109-Eng-38.19
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