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1 Introduction

The quality of finite element and finite volume meshes has long been known to affect both the
efficiency and the accuracy of the numerical solution of application problems (e.g., see [6]
and [14]). To improve the quality of these meshes, several researchers have devised new
algorithms based on local reconnection schemes, node smoothing, and adaptive refinement
or coarsening (e.g. [2, 10, 18, 19, 29, 30]). In each case, the edges, vertices, or elements of
the mesh are individually evaluated to determine whether performing the local operation
improves the mesh. Therefore, these methods typically incur an O(N) computational cost,
where N is the number of vertices in the mesh. This is a significant cost as N increases,
and often only anecdotal evidence is given to demonstrate the benefit of these techniques in
terms of solution efficiency for a particular application or solver.

In this paper, we provide a deeper analysis of the tradeoffs associated with the cost of
mesh improvement in terms of solution efficiency. We consider both finite element and finite
volume discretization techniques, a number of different solvers, and a variety of application
problems. The issue of solution accuracy will be addressed in a later paper.

We focus initially on problems discretized using the finite element method. Such discretiza-
tions lead to large, sparse linear systems, which are often solved by using either conjugate
gradient (CG) [16] or GMRES [31] iterative techniques. Several theoretical results that re-
late the convergence behavior of these algorithms to matrix characteristics such as condition
number and spectral distribution. In turn, for simple applications such as Poisson’s equa-
tion, these matrix characteristics can be theoretically related to the size and quality of the
underlying finite element mesh.

Theoretical results are not available for more complicated applications. To obtain insight
into the convergence rates of CG and GMRES, we must empirically establish the relationship
between mesh size and quality to convergence behavior. We do so by performing a series of
experiments in which the parameters of mesh size and quality are varied both individually
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and together for a number of application problems. So that we can compare our experimental
results with theoretical results, we choose Laplace’s equation as our simplest test case. Once
the relationship between the mesh and the iterative solver convergence rate is established,
we perform a cost/benefit analysis of mesh improvement techniques for both simple and
complex applications.

The remainder of the paper is organized as follows. In Section 2, we review theoretical
results on the convergence of conjugate gradient and GMRES for general matrices and for
matrices arising from a specific finite element application. In Section 3 we briefly review
the local reconnection and optimization-based smoothing techniques [12, 13] that are used
in this paper for mesh improvement. In Sections 4 and 5 we perform a cost/benefit analysis
of mesh improvement techniques for both simple and complex applications. We show that
the benefits of applying different mesh improvement techniques are cumulative and can be
seen even when starting with a fairly good mesh.

2 The Convergence of CG and GMRES

Finite element discretization techniques reduce the problem of solving a partial differential
equation to the problem of solving a large, sparse system of linear algebraic equations,
traditionally written as Ax = b. Because of their size and sparsity, direct methods are
generally very inefficient for solving these linear systems, and iterative methods such as
conjugate gradient and GMRES are used instead. Several theoretical results relate the
convergence of these iterative solvers to the characteristics of the matrix, A, particularly
its condition number and spectral distribution. For simple applications these quantities can
then be related to the quality and size of the finite element mesh.

Let the eigenvalues of the N x N matrix A be given by Ay < Ay < ... < Ay < Ay, Ax-
elsson [3] showed that, if the eigenvalues are uniformly distributed, the number of iterations
required for CG to reduce the error in the energy norm by a factor of € is bounded by
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where the ratio AA—JI is the condition number of the linear system. For symmetric finite element

approximations, A; is bounded below by
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where ¢; is a mesh independent constant, Ay, is the minimum vertex degree in the mesh,
T is the set of elements in the mesh, and A, is the area of element ¢. The value of Ay is
bounded above by
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where ¢; is a mesh independent constant, A, is the maximum vertex degree in the mesh,
and O is the set of all element angles in the mesh. Axelsson and Barker provide a more
complete description of these bounds [4, pp. 232-238]. Two results of interest for this paper
naturally follow from these bounds.



1. As the size of the finite element mesh increases, minscp A; decreases, and A\ can de-
crease proportionally, causing the condition number and number of iterations to in-
crease. For example, Axelsson and Barker showed that for Poisson’s equation dis-
cretized with the finite element method, the condition number of the stiffness matrix
is O(N) regardless of the vertex ordering or the degree of the polynomial basis func-
tions [4].

2. As the quality of the mesh degrades and small angles are introduced, the bounds on
both Ay and Ay are adversely affected and the condition number increases proportion-
ally.

The condition number of a matrix A is not the sole factor that determines the convergence
of the CG algorithm; the spectral distribution also plays a critical role. If the spectrum of
A is not uniformly distributed—that is, if there are isolated eigenvalues at either end of
the spectrum-—Equation 1 overestimates the iteration count, and improved bounds can be
obtained in both exact arithmetic (e.g., [5]) and in the presence of rounding error (e.g. [24,
17, 33]). Let the eigenvalues of such a system be denoted by Ay, Ag, ..., Ay, @, b], Mgy ooy A,
where [a, b] represents the continuous part of the spectrum and the remaining eigenvalues
are isolated values at either end of the spectrum. The components of error associated with
the isolated eigenvalues are eliminated in a few additional steps, and then CG converges
as though bounded by the smaller condition number b/a. For small isolated eigenvalues,
the number of additional iterations necessary for convergence is proportional to the number
of isolated eigenvalues in the spectrum and the value of In(3>i_; a/)\;). For large isolated
eigenvalues, the number of additional steps is proportional to rounding errors, the ratios of
bA_—Ja, and the quantities In i—ﬂi, where 2,7 = ¢, ..., N.

The convergence behavior of GMRES is also determined by the spectrum or pseudospectra
of A, depending on whether A is normal, close to normal, or arbitrary [31, 23, 15]. These
results use exact arithmetic and do not include the complicating factors of preconditioning
or the common practice of restarting GMRES to reduce the computational complexity of the
algorithm. Joubert analyzes the impact of the restart parameter on convergence and gives a
theoretical analysis for certain classes of matrices [21]. We are unaware of theoretical results
for convergence for restarted GMRES applied to arbitrary matrices.

3 Mesh Improvement Techniques

The theoretical results presented in the preceding section clearly show that the underlying
mesh quality can significantly affect the convergence of iterative solvers. Mesh quality can
be improved by using a variety of techniques, including point insertion/deletion to refine
or coarsen a mesh [28, 30, 20], local reconnection to change mesh topology for a given
set of vertices [18, 19], and mesh smoothing to relocate grid points without changing mesh
topology [2, 10, 29]. Our approach is based on combining local reconnection schemes and
optimization-based mesh smoothing techniques to improve simplicial mesh quality. We now
briefly review these procedures; more detailed descriptions can be found in [12, 13].



3.1 Local Mesh Reconfiguration Techniques

The most commonly used local reconnection technique is face swapping. In both two and
three dimensions, this technique can be used to change the topological connections among
the vertices making up the simplices incident on a single face. Lawson [22] showed that there
at most two legal connectivities for these vertices, thereby making the task of choosing the
best configuration straightforward. In two dimensions, a face is bounded by two triangles;
face swapping chooses the best diagonal for the quadrilateral that is the union of these
triangles. In three dimensions, a face is bounded by two tetrahedra, but the five vertices
in these tetrahedra may form either two or three tetrahedra. Many possible configurations
exist, but the only two that can be legally reconnected are shown in Figure 1. One of
these configurations switches between two and three tetrahedra; the other, between two
two-tetrahedron configurations. The latter is applicable only along mesh boundaries.
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Figure 1: Swappable configurations of five points in three dimensions

A more advanced technique in three dimensions is the reconfiguration of all tetrahedra
incident on a single edge. This technique is known as edge swapping or edge removal. Our
approach, described in detail in [13], operates by viewing the edge to be swapped end-on
and choosing the “triangulation” of the vertices not on that edge that maximizes some mesh
quality measure. This reconfiguration technique replaces N tetrahedra by 2NV —4 tetrahedra,
and the number of possible “triangulations” to be checked grows rapidly with N. At the
same time, the fraction of reconfigurations that are successful decreases, in part because of
an upper bound on the angle produced as N increases. Consequently, we do not apply this
technique for N > 7. We employ edge swapping both as a remedy when our face swapping
routine is stalled by certain nonconvex configurations of five vertices and as an independent
mesh improvement technique to selectively eliminate tetrahedra with bad angles from the
mesh.



3.2 Mesh Smoothing

The most frequently used approach for mesh smoothing is some variant on Laplacian smooth-
ing, which in its simplest form moves each vertex to the average of the locations of its
neighbors. This approach, while computationally inexpensive, has serious drawbacks in that
it does not provide any mechanisms that guarantee improvement in element quality. In
fact, the method can produce an invalid mesh containing elements that are inverted or have
negative volume.

Optimization-based smoothing techniques offer an alternative to Laplacian smoothing that
can be inexpensive, can guarantee valid elements in the final mesh, and can be effective
for a wide variety of mesh quality measures. In [12, 13], we described an efficient, local
smoothing algorithm based on optimization techniques for piecewise smooth, continuous
functions that move the grid points in a manner guaranteed to maintain or improve mesh
quality. The vertex is repositioned by using a generalized steepest descent method that
requires function and gradient information for a mesh quality measure. Any differentiable
mesh quality function can be used, including cell angles and aspect ratios. This technique
is robust and effective in improving mesh quality in both two and three dimensions. We
note that similar optimization-based smoothing methods have been proposed by a number
of researchers [1, 8, 32] for a variety of optimization procedures and mesh quality measures.

The optimization-based approach is quite effective, however its computational cost is high
compared with Laplacian smoothing. To address this problem, Freitag developed a family
of combined Laplacian and optimization-based smoothing techniques [11]. For each vertex,
these techniques apply a single step of a smart Laplacian operator—one that moves the vertex
only if the local submesh is improved. If the local submesh has a quality measure below a
user-definable threshold, the optimization-based smoother is invoked to further improve the
quality of the submesh. This technique was shown to be as effective in mesh improvement
as the strictly optimization-based approach, at a fraction of the computational cost.

3.3 Recommendations

We now summarize our recommendations for two-dimensional mesh improvement based on
geometric quality measures [13].

e Local reconnection should be followed with mesh smoothing to improve mesh qual-
ity. Three to four passes of a combined Laplacian/optimization-based smoother with
a floating threshold is the most efficient smoothing technique. To prevent conflict be-
tween the behavior of reconnection and smoothing, the same quality criterion should

be used for both.

o Element quality criteria designed to eliminate small angles from the mesh are generally
more effective in improving overall mesh quality than measures designed to eliminate
large angles. We recommend maximizing the minimum sine of element angle (dihedral
angle in three dimensions) as a good general-purpose criterion.

o In three dimensions, edge swapping is beneficial and should be used. Also, the use of
advanced techniques such as BATR [13] is highly beneficial in improving tetrahedral
meshes.



4 Effect of Mesh Quality on Convergence

We begin our cost/benefit analysis of mesh improvement techniques in terms of solution
efficiency by considering two model problems on the unit square. The first is Laplace’s
equation (diffusion) with a mix of Dirichlet and Neumann boundary conditions:

Vi¢=0 € (0,1) x(0,1)

9¢(x,0)  9g(x.1)
dy Oy

Initial, high-quality triangular meshes are created by using GRUMMP [25], and in all cases
Omin > 20°, Omax < 135°, and 0., = 50°. We discretize the system with linear, triangular
finite elements and solve the resulting symmetric linear system with the PETSc [7] implemen-
tation of the conjugate gradient (CG) method with both Jacobi (CG/Jac) and incomplete
Cholesky (CG/IC) preconditioners.

The second test case we consider is advection diffusion on the unit square with the same

6(0,y) =0; o(L,y) =1; = 0.

set, of test meshes:

V¢ +Veo=0 € (0,1) x (0,1)

o . 0¢(x,0)  94(x,1)
6(0,y) =0; o(L,y) =1; o = oy =0

In this case, the resulting nonsymmetric linear systems are solved by using the PETSc
implementation of GMRES with both Jacobi (GMRES/Jac) and ILU (GMRES/ILU) pre-
conditioners. All GMRES solves are restarted by using the PETSc default value of 30
iterations.

In all test cases we use a convergence test of 107'2 on the relative tolerance of the residual.
The spectrum of each linear system is computed exactly by using the LAPACK routine

dgeev ().

We seek to quantify the behavior of these two test problems as the quality and size of
the finite element mesh changes and then to perform a simple cost/benefit analysis for mesh
smoothing. To accomplish this goal, we perform four experiments.

o Fxperiment 1: We obtain the baseline number of iterations required to solve the prob-
lem on a good quality mesh as the mesh size increases. The relationship between mesh
size and work to solve these test cases is established.

o Fxperiment 2: We insert one new point into the mesh to create two elements of ex-
tremely poor quality. We analyze the spectrum of the resulting linear system and the
number of iterations required for convergence.

o Fxperiment 3: We increase the number of poor-quality elements in the mesh and repeat
the analysis of the second experiment.

o Fxperiment /: We analyze the costs and benefits associated with mesh smoothing for
the simple test cases. In particular, we compare the time required to solve the problem
on a poor-quality mesh with the time required to improve the mesh and solve the
problem on the high-quality mesh.



We find that benefits of mesh improvement techniques exceed the costs as mesh size
increases or mesh quality degrades. A cost/benefit analysis for more complex examples
will be discussed in the next section.

Experiment 1: Convergence of CG and GMRES as N increases

From the results presented in Section 2, we expect the number of iterations required by CG
to converge for Laplace’s equation to be (’)(N%). In this experiment we empirically establish
the multiplicative factor for each of the CG techniques and the relationship between the
number of iterations required for convergence and N for each of the GMRES solvers.

So that we can also examine the spectrum of each linear system, we begin by solving our
test cases on small meshes of size N ~ 100, 200, 300, 400, and 500. The minimum and
maximum eigenvalue of the spectrum, A; and Ay, and the number of iterations required for
convergence, [, are given in Table 1. In all cases the spectral distribution is fairly uniform.
As predicted theoretically in Equations 2 and 3, Ay stays roughly constant and A\; decreases
with increasing N; the condition number and iteration count increase correspondingly. The
scaling performed by the Jacobi preconditioner decreases both Ay and Ay by roughly a
factor of two and does not affect the spectral distribution. It is not surprising, then, that
the number of iterations is only slightly reduced for CG/Jac and GMRES/Jac compared
with CG and GMRES. The IC and ILU preconditioners compact the spectral distribution
at both ends and, as expected, are the most effective.

Table 1: Minimum and maximum eigenvalues of the linear systems and the number of
iterations required to converge for the diffusion and advection diffusion test cases as N
increases

Diffusion

CG CG/Jac CG/IC

N M AN | M AN | M AN |
100 || .0517 | 3.26 | 49 || .0311 | 1.73 | 47 || .1411 | 1.38 | 21
200 || .0248 | 3.24 | 73 || .0146 | 1.76 | 66 || .0681 | 1.42 | 29
300 || .0171 | 3.09 | 84 || .0199 | 1.70 | 79 || .0501 | 1.35 | 33
400 || .0131 | 3.30 | 99 || .0074 | 1.69 | 94 || .0360 | 1.35 | 39
500 || .0100 | 3.22 | 110 || .0056 | 1.74 | 106 || .0271 | 1.42 | 44

Advection Diffusion
GMRES GMRES/Jac GMRES/ILU
N M AN | M AN | M AN |
100 || .0606 | 3.41 | 67 || .0351 | 1.71 | 63 154 | 1.46 | 22
200 || .0286 | 3.33 | 114 || .0164 | 1.75 | 101 || .0733 | 1.45 | 29
300 || .0196 | 3.14 | 149 || .0112 | 1.70 | 139 || .0527 | 1.46 | 38
400 || .0149 | 3.35 | 173 || .0083 | 1.68 | 164 || .0373 | 1.53 | 52
500 || .0114 | 3.27 | 217 || .0063 | 1.74 | 207 || .0284 | 1.57 | 61

The computational cost of iteratively solving linear systems is a product of the work per
iteration and the number of iterations. For the solvers considered here, each iteration is
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Figure 2: Number of iterations required to converge for the diffusion and advection diffusion
test cases as N increases

dominated by a matrix-vector multiplication that is O(N) operations for the sparse linear
systems generated by the finite element technique. To obtain a good estimate the number of
iterations required for convergence for our test cases on high-quality meshes, we expanded
the test suite to include problems with N = 1,000, 2,000, 4,000, 8,000, 10,000, and 12,000
grid points in the mesh. The number of iterations required for convergence as a function of
the size of the mesh is shown in Figure 2 as a log-log plot. The slopes of the lines give the
order of convergence, s, for each technique. The results indicate that the number of iterations
grows as O(N*). Therefore, the total work required to solve the system is O(N**!) for each
of the iterative techniques. To find the value of s, we used linear least-squares analysis and
obtained the following relationships between [ and N for each solver.

Iog = 3.5TNA% Tavrps = 2.83N 639
]CG/Jac = 3.2TN 503 ]GMRES/Jac — 9 6]\ 638
leayic = LT9N Ievres/iu = 1.12N %%,

As predicted by Equation 1, the order of convergence for the CG techniques applied to the
diffusion equation is .5; the order of convergence for GMRES applied to the advection diffu-
sion equation is approximately .64.

Experiment 2: Effect of One Perturbed Element on Convergence

Using the results of Experiment 1 as a baseline, we now show the effect of a small number of
poor-quality elements on the number of iterations required for convergence. To control the
quality of the meshes, we start with the high-quality meshes used in the first experiment and
insert a single point to create two new poor-quality elements. The new point is inserted a
distance € along the bisector of one of the three angles in a randomly chosen element, where
€ is set to produce the desired minimum angle. An example of this point insertion technique
is shown in Figure 3. Using this technique, we created a series of five meshes for each original
mesh whose smallest angles are .25°, .5°, 1°, 2.5°, and 5°. For the series of meshes for each
N, the same element is perturbed.
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Figure 3: Example of the point insertion technique used to create poor-quality elements

We show typical results for Ay and Ay and the number of iterations, I, required to reach
an accuracy comparable to that obtained on the original 200-grid-point mesh in Table 2.
The results for N = 100, 300, 400 and 500 are qualitatively the same. The theoretical
bounds for A; and Ay given in Equations 2 and 3 for Laplace’s equation indicate that both
can be adversely affected by poor-quality elements. However, our experiments show that A
is unaffected and that Ay grows as 1/sinfy,. This result reflects the fact that the small
angles in the mesh enable the discrete solution to capture, at least partially, higher-frequency
eigenmodes of the continuous solution of Laplace’s equation. For Jacobi preconditioning, Ay
is unaffected by the decreasing angle size and A\; decreases as In(fpyin). For the CG/IC and
GMRES/ILU methods, the condition number and spectrum of the preconditioned system
are not significantly changed by the addition of two poor-quality elements.

In most cases, however, the number of iterations required for convergence is only slightly
increased compared with the baseline results presented in Experiment 1. For these test
cases, the spectrum contains one isolated eigenvalue, and the size of the discontinuity is
given in the columns labeled Ay /An_; and Ay/)A; for no preconditioning and Jacobi pre-
conditioning, respectively. For CG, the size of the discontinuity becomes quite pronounced
as Omin decreases, causing the number of iterations to increase by as much as 15 percent.
On the other hand, GMRES is unaffected by the increase in size of the discontinuity, and
the number of iterations required for convergence is constant. The Jacobi preconditioner
is effective at eliminating the isolated eigenvalue in the spectrum, but the ellipticity of the
system is increased. The CG/Jac solver is not significantly affected by this increase, and the
number of iterations increases by 10 percent. In contrast, GMRES/Jac is quite sensitive to
this increase in ellipticity and shows a 100 percent increase in the number of iterations for
Omin = .25°. The convergence of the CG/IC and GMRES/ILU methods is not affected by
the poor-quality elements. We conclude that, except for GMRES/Jac, a small number of
poor-quality elements do not significantly affect the work required to solve the system.

Experiment 3: Effect of Many Perturbed Elements on Convergence

We now analyze the spectrum and convergence of the iterative solvers for an increasing
percentage of poor-quality elements in the mesh. In Table 3 we show Apin, Amax, and the



Table 2: Minimum and maximum eigenvalues of the linear systems and the number of
iterations required to converge for the diffusion and advection diffusion test cases with 200
grid points and two poor quality elements

Diffusion
CG CG/Jac CG/IC

6 M AN AN/AN-1 | M AN | A/ | M AN |
Original || .024 | 3.24 1.03 73 014 | 1.76 | 1.97 66 066 | 1.42 | 29
5° .024 | 11.3 3.48 77 || 0137 | 1.96 | 2.21 69 .065 | 1.42 | 29
2.5° 024 | 215 6.64 79 || 0126 | 1.96 | 2.12 70 .065 | 1.42 | 29
1° .024 | 52.4 16.17 80 || .0093 | 1.98 | 2.53 71 066 | 1.42 | 29
.5° .024 | 104.1 32.12 82 || .0060 | 1.99 | 3.60 72 066 | 1.43 | 29
.25° .024 | 219.4 67.59 84 || .0032 | 1.99 | 6.25 73 066 | 1.43 | 29

Advection Diffusion

GMRES GMRES/Jac GMRES/ILU

0 N | Ay | An/Avi | T SV EPYCRN ISVS VIR I N |1
Original || .028 | 3.41 1.03 | 114 || .0165 | 1.75 | 1.83 | 101 || .0733 | 1.45 | 29
59 028 | 11.34 | 340 | 116 || .0154 | 1.92 | 1.91 | 111 || .0704 | 1.46 | 30
25° || .028 | 21.57 | 647 | 116 || .0147 | 1.96 | 1.99 | 119 || .0704 | 1.45 | 30
1° 028 | 5251 | 15.76 | 116 || .0104 | 1.98 | 2.42 | 144 || .0704 | 1.46 | 30
50 028 | 104.1 | 31.23 | 116 || .0065 | 1.99 | 3.53 | 173 || .0704 | 1.46 | 30
25° || .028 | 2194 | 65.90 | 116 || .0035 | 1.99 | 6.39 | 204 | .0704 | 1.46 | 30

percentage increase in the number of iterations required for p = 2, 5, 10, and 20 percent
perturbed elements. The percentage increase in iterations is computed as follows:

I,— Iy

Pr=

x 100,

where [, is the number of iterations required for convergence on the poor-quality mesh and Iy
is the number of iterations needed to converge on a good-quality mesh of size N. Because we
use a point insertion technique to create the poor-quality meshes, the increasing percentage
of poor quality elements also increases mesh size. In particular, for the results presented in
Table 3, our base mesh has N = 217 grid points; the perturbed meshes have N = 224, 235,
253, and 290 grid points for p = 2, 5, 10, and 20, respectively. From Experiment 1 results,
we know that this increase in IV contributes to an increase in the iteration count; to account
for this, we compute Iy by ¢N? where ¢ and s were determined in Experiment 1.

For the nonpreconditioned systems, an increasing number of perturbed elements resulted
in an increasing value of Ay and a one-to-one increase in the subspace size associated with
the extremal eigenvalues. As in Experiment 2, the Jacobi and IC/ILU preconditioners are
effective in eliminating the extremal eigenvalue subspaces. For the Jacobi preconditioning, as
the number of perturbed elements increases, the condition number of the system increases:
A1 decreases by as much as a factor of seven and Ay is unchanged. For the IC and ILU
preconditioned systems, both Ay and Ay are adversely affected by an increase in the number
of perturbed elements. The results in the columns labeled P; show that as we increase the

10



number of bad elements in the mesh and worsen their quality, the number of additional
iterations required to converge increases. The GMRES techniques are more sensitive to
large numbers of perturbed elements in the mesh than their CG counterparts. For the
GMRES/ILU solver, the work estimate obtained in Experiment 1 is not accurate for small
mesh sizes and overestimates the number of iterations, yielding negative percentage increases
for p = 2 and p = 5. For a good quality mesh, the number of iterations required for
GMRES/ILU on the 200 grid point mesh is 29. For p = 2 and p = 5, the number of
iterations is 34, 33, 33 and 53, 51, 48 for 6,,;, = .5, 1, and 2.5, respectively.

To show general trends as /N increases and p remains fixed, we plot the number of itera-
tions required for convergence for each of the solvers under consideration for meshes of size
N = 2,000, 4,000, 8,000 and 12,000 and fixed percentage p = 10. We again consider increas-
ingly poor-quality elements whose minimum angles range from .25° to 17°. In a number of
advection diffusion cases, the GMRES and GMRES/Jac algorithms fail to converge prior to
reaching the maximum allowed number of iterations (10,000). For 0, < 2.5°, the poor qual-
ity of the mesh significantly affects the number of iterations required for convergence and the
curve is exponential in nature. However, for #,;, > 2.5° the number of iterations remains
roughly constant and is determined primarily by the number of grid points in the mesh.
The curves shown in Figure 4 are typical results; as the percentage of poor-quality elements
decreases, the general trends remain the same, but the number of iterations decreases.

We now summarize the results of the first three experiments presented in this section.

e The number of iterations required to converge increases as N increases, and the work
to solve the linear system grows as O (N*t!), where s is approximately .5 for the CG
techniques and .63 for the GMRES techniques.

e In most cases, the number of iterations required for convergence is not significantly
affected by a small number of poor-quality elements. In the case of no preconditioning,
the iteration count is not affected because the resulting spectrum contains isolated
eigenvalues. The preconditioners considered are effective at eliminating the isolated
eigenvalue at the cost of a slight increase in the ellipticity of the linear system.

o As the percentage of poor-quality elements increases, the subspace size associated with
the extremal eigenvalues increases proportionally, and the number of iterations required
for convergence increases. The preconditioners are effective at eliminating the subspace
associated with extremal eigenvalues, but the condition number of the linear system is
adversely affected.

o For N=200, p=10 percent, and #,;, > 2.5°, the number of iterations required for
convergence is primarily determined by the size of the mesh. As 6,,;, decreases, the
additional iterations associated with the poor-quality elements start to dominate con-
vergence.

In light of these observations, the following question naturally arises:

For what values of N, minimum angle, and percentage of poor-quality elements in the mesh
is the total cost of improving the mesh and solving the problem on the improved mesh less
than the cost of obtaining an accurate solution on a poor-quality mesh?
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Table 3: Minimum and maximum eigenvalues of the preconditioned linear system and the
number of iterations required to converge using various iterative solvers for the two test cases
with 200 grid points and an increasing number of perturbed elements

Diffusion

2 Percent 5 Percent 10 Percent 20 Percent

6 M A P M A [ Pr M A Pr MO A [P
No Preconditioning
In =52 In =53 IN =55 Iy =59

.5° .024 104 | 90.3 || .023 | 131 | 128 021 | 151 | 293 017 153 | 366
1° .024 52 82.7 || .023 65 | 115 021 75 | 249 017 76 313
2.5° | .024 | 21.5 | 7T1.1 || .023 26 | 94.3 || .021 30 | 187 017 31 238
Jacobi Preconditioning
In =50 Iy =51 In =53 Iy =57
5° || L0036 | 2.01 | 68.0 || .0017 | 2.01 | 102 | .0012 | 2.02 | 270 0006 | 2.03 | 319
1° 0061 | 2.03 | 62.0 || .0032 | 2.03 | 92.1 || .0022 | 2.04 | 219 0011 | 2.06 | 265
2.5% || .0098 | 2.05 | 54.0 || .0063 | 2.05 | 78.4 || .0045 | 2.07 | 164 0025 | 2.11 | 200
IC Preconditioning
In =26 In =26 Iy =27 INn =29
.5° 064 | 148 | 11.5 || .015 | 1.96 | 38.4 || .009 | 2.44 | 70.3 .009 2.33 | 93.1
1° 064 | 147 | 11.5 || .025 | 1.93 | 38.4 || .017 | 2.29 | 66.6 017 2.28 | 86.2
2.5° | .064 | 1.46 | 11.5 || .041 | 1.83 | 34.6 || .035 | 1.99 | 51.2 .028 2.01 | 72.3

Advection Diffusion

2 Percent 5 Percent 10 Percent 20 Percent

6 A | AN | Pr A | AN | Pr A | AN | Pr A | AN | Pr
No Preconditioning
In =90 In =93 Iy =98 Iy =106

.5° 027 | 104.1 | 52.2 || .026 | 131 | 91.4 || .024 | 150 | 580 020 | 153.9 | 881
1° 027 | 525 | 52.2 || .026 | 65.3 | 89.2 || .024 | 75.3 | 423 .020 76.9 | 789
2.5° | .027 | 21.57 | b1.1 || .026 | 25.9 | 83.9 || .024 | 30.3 | 306 .020 30.7 | 461
Jacobi Preconditioning
INn =85 Iy = 88 I =92 Iy =100
5° 11,0040 | 2.01 | 164 || .0019 | 2.01 | 198 || .0013 | 2.02 | 471 || .00065 | 2.02 | 540
1° .0068 | 2.02 | 83.5 || .0036 | 2.02 | 123 || .0025 | 2.04 | 304 || .00127 | 2.05 | 390
2.5° | .0111 | 2.05 | 65.9 || .0072 | 2.05 | 80.7 || .0052 | 2.07 | 130 | .00288 | 2.11 | 244
ILU Preconditioning
Iy =37 Iy =38 In =40 In =43
.5° 067 | 153 | -16 016 | 1.96 | -10 || .0097 | 1.99 | 32.5 || .0051 | 2.01 | 432
1° 067 | 153 | -16 027 | 1.93 | -10 018 | 1.97 | 27.5 || .0094 | 2.02 | 274
2.5° | .067 | 1.51 | -16 .045 | 1.83 | -10 034 | 1.92 | 20.0 017 2.01 | 174
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Figure 4: Effect of decreasing the minimum angle on the convergence rate of the iterative
solvers for the diffusion and advection diffusion test case when 10 percent of the elements
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Experiment 4: Cost/Benefit Analysis for Mesh Improvement Techniques

To quantify the benefits of the mesh improvement algorithms in terms of solution efficiency,
we compare the difference in solution times on the poor-quality mesh and on an improved
mesh (including the time to improve the mesh). From our first experiment, we know that
the work required to solve the problem grows as O( N*t!) for a good-quality mesh. For poor-
quality meshes, we showed in Experiment 3 that this amount of work increases proportionally
with the number of and “badness” of the poor-quality elements. In all cases, the work
required to improve the mesh is O(N), and we therefore expect that the benefits of smoothing
will be more pronounced as N increases and quality of the mesh degrades.

We present results for poor-quality meshes similar to those used in Experiment 3 for which
the number of perturbed elements was 10 percent. In each case we improve the poor-quality
mesh with three passes of the combined smoothing approach described in Section 2. Element
quality typically improves to greater than 15° for the minimum angles and to less than 140°
for the maximum angle. The amount of time required for mesh smoothing is approximately
3.7, 6.6, 14.3, and 21.6 seconds for N = 2000, 4000, 8000, and 12000, respectively.

In Figure 5, we plot the difference in the time required to reach convergence on a poor-
quality mesh and the total time to reach convergence on an improved mesh including the time
for mesh smoothing. The horizontal line in each plot is zero and represents the breakeven
point between the increased cost of smoothing the mesh and the time required to solve the
problem on a poor-quality mesh. Therefore, data points located above the breakeven line
are cases in which a benefit is obtained by using mesh smoothing; those below the breakeven
line indicate that the total solution time was worsened by mesh smoothing.

In all cases, as the minimum angle in the mesh decreases, the cost of solving the problem
on the poor-quality mesh exceeds the cost of mesh improvement. For each iterative solver
as N increases, the minimum angle for which there is a breakeven point increases. For
CG and GMRES and the largest mesh size, there is significant advantage to smoothing the
mesh for all values of 6,,;,. For CG/Jac, and GMRES/Jac there are significant benefits
for Omin < 3°. Finally, for CG/IC and GMRES/ILU, and the values of N considered here,

smoothing benefits are obtained only when 6,,;, < 1.5°.

5 Cost/Benefit Analysis for Complex Applications

From the experiments presented in the preceding section, one is tempted to conclude that
unless the mesh contains a large number of very poor quality elements, mesh improvement
techniques offer little to no benefit in terms of solution efficiency. However, the test problems
chosen in that analysis were exceptionally simple; they are useful in determining trends in
finite element applications and for obtaining comparisons with theoretical results, but do
not adequately illustrate benefits of mesh improvement techniques.

In this section we show that the efficiency benefits of mesh improvement techniques such as
swapping and smoothing are cumulative and effective for complex applications even when the
initial mesh is of reasonable quality. We focus on two applications in this section: a linear
elasticity application solved using finite elements and a compressible Euler flow problem
solved using the finite volume method.
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Figure 5: Difference in time to solve the system on a poor quality mesh and the total time

required to solve the system on the improved mesh, including the mesh improvement time,
for the diffusion and advection diffusion test cases
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5.1 Linear Elasticity

The first problem that we consider is linear elasticity for the plane stress problem, which is
given as

62_u N 82_u 14w 0*u N 0*v
dz?  Oy? 2 oy?  Ozoy /)’
v 0% 14+v (0% 0*u
TS5t = = T ,
dx?  0y? 2 dy?  Odxdy

where u and v are the x and y displacements, respectively. These equations are solved on
a rectangular region with a central hole. One side of the region is constrained to have zero
displacement, and a constant traction is applied to the opposite side. For this example the
initial mesh is created by recursively refining a coarse grid approximation to the domain
using bisection techniques and an analytic description of the boundary. The upper right
quadrant of an initial mesh for the elasticity problem is shown on the left of Figure 6; the
bisection lines from the original coarse grid are clearly evident.

2
BN

Figure 6: Upper right quadrant of a rectangular region with a circular hole. The figure on
the left is the mesh resulting from bisection refinement without smoothing. The figure on
the right is the same mesh with smoothing incorporated.

In Table 4 we give the minimum, maximum, and average angle measures for the original
elasticity mesh, the same mesh improved by swapping, and the same mesh improved by
swapping and smoothing for three different problem sizes. We also give the time required
to perform the mesh improvement operation in seconds. The minimum angle in the original
mesh is typically about 6°, the maximum angle is 168°, and the average angle is 38.53° Face
swapping is effective in improving the average angle in the mesh, but does not affect the
extremal angles. When mesh swapping and mesh smoothing are used together, 8,,,;, and 8,,,,
are both significantly improved over using swapping alone, and the average angle increases
slightly over swapping used alone. In the current implementation, face swapping and node
smoothing incur approximately the same computational cost and are clearly linear functions

of N.
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Table 4: Mesh characteristics and improvement times for three different problem sizes

Original Swapped Swapped and Smoothed
N gmzn Hmax gavg gmzn Hmax gavg Timesw ap gmzn Hmax gavg Timesmooth
20976 || 6.11 | 167.7 | 38.25 || 6.11 | 167.7 | 45.22 2.03 22.81 | 134.3 | 47.22 2.31
41216 || 6.09 | 167.7 | 36.28 || 6.11 | 167.7 | 41.59 4.93 16.23 | 146.51 | 42.43 3.90
82192 || 5.90 | 168.14 | 38.52 || 5.90 | 168.14 | 45.56 8.50 20.54 | 138.8 | 46.7 8.26

The elasticity equations are approximated with linear finite elements, and the resulting
symmetric linear system is solved by using the CG/IC solver. The number of iterations
required for convergence of the relative residual to less than 107 and the total time to solve
the problem, including mesh improvement times when appropriate, are given in Table 5
for the meshes described in Table 4. Swapping used alone improved the total solution
time by a small amount for the two largest problem sizes, but actually increased the total
time to solution for the smallest problem considered. Using a combination of swapping
and smoothing improved the solution efficiency in all three cases and, for the largest two
problems, saved approximately 10 percent of the total solution time.

In the columns labeled E, we give the global H; error indicator values associated with
the discrete approximation of the linear elasticity equations on that particular mesh. As the
resolution increases, the value of F decreases. In addition, better-quality meshes also result
in better accuracy; for the largest problem size the error indicator function was reduced an
additional 13 percent for the mesh improved by both swapping and smoothing. We intend
to examine the effect of mesh quality on solution accuracy in greater depth in future work.

Table 5: Mesh improvement results for the linear elasticity problem

Original Swapped Swapped and Smoothed
Total Total | Time Total | Time
N I F Time I F Time | Saved I F Time | Saved

20976 || 629 | 1.53E-4 | 39.3 639 | 1.49E-4 | 43.09 | -3.79 532 | 1.39E-4 | 38.60 .69
41216 || 904 | 7.71E-5 | 112.8 || 814 | 7.42E-5 | 110.5 2.3 734 | 7.83E-5 | 104.6 8.2
82192 || 1289 | 4.17E-5 | 321.0 || 1209 | 4.09E-5 | 317.8 | 3.16 1085 | 3.62E-5 | 278.57 | 25.62

5.2 Compressible Flow over a Cylinder

Our second case study examines the effect of mesh quality on convergence behavior for weakly
compressible flow over a cylinder at Mach 0.3. The computational domain is nine cylinder
diameters long and three diameters wide, with a symmetry condition imposed on the upper
surface. For this experiment, we generated three meshes each beginning with the same
random point set with point density falling exponentially with distance from the surface.
This distribution corresponds to a constant stretching ratio for structured meshes. The
point set contains 2500 interior points and 190 boundary points, which are evenly spaced
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Figure 7: From left to right: random mesh, smoothed mesh, and smoothed and swapped
mesh

on the cylinder, inflow, outflow, and upper symmetry plane and exponentially stretched
along the lower symmetry plane. The first mesh (the left mesh in Figure 7) was generated
by simply inserting the random points into the mesh and swapping by using the Delaunay
criterion. The smallest angle in this mesh is 0.56°, the largest 178.86°. The middle mesh
in Figure 7 was obtained by performing five passes of optimization-based smoothing on the
vertices of the first mesh; this procedure improves the extremal angles to 12.3° and 145.6°.
The rightmost mesh in Figure 7 was obtained from the first mesh by performing five passes
of smoothing alternating with passes of swapping by using the Delaunay criterion; this mesh
has extremal angles of 23.2° and 131.9°. Figure 8 compares the overall angle distribution
for the three meshes. Clearly, smoothing alone improves the angle distribution, dramatically
reducing the number of both small and large angles. When combined with swapping, the
improvement is even greater.

Flow around the cylinder was computed by using an edge-based, vertex-centered finite
volume solver. Second-order accuracy was attained by using least-squares reconstruction [9,
26, 27]. Following reconstruction, fluxes were computed by using Roe’s flux formula and
integrated for each control volume. Time advance was performed using an explicit multistage
scheme with multigrid convergence acceleration [28]. In each case, the same three coarse
meshes were used to eliminate the effects of coarse mesh convergence behavior on the results.
Figure 8 also shows the convergence rates for each of the fine meshes. The random mesh fails
to converge, falling into a limit cycle with large variations in flow parameters. The smoothed
mesh and the smoothed and swapped mesh cases both converge, with the asymptotic rate
being about 25% faster for the latter case. In each case, the mesh optimization procedures
required less time than a single cycle of the multigrid solver, and the convergence rate is
limited by behavior near the rear separation point on the cylinder, where the local time step
is limited by acoustic modes while the solution is changing because of convective modes with
a propagation speed of M = 0.01 or less.
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Figure 8: Angle distribution for cylinder meshes and the convergence histories for subsonic
flow around a cylinder

6 Summary

In this paper we have presented a series of results that quantify the effect of mesh quality on
both CG and GMRES iterative solvers, with and without preconditioning, for finite element
and finite volume discretizations. We summarize our results as follows.

e In most cases, a few poor-quality elements do not significantly affect the convergence
of the iterative solvers. The exception is GMRES with Jacobi preconditioning, which
is sensitive to an increase in the ellipticity of the linear system.

e As the problem size or number of poor-quality elements increased, or as the element
quality in the mesh degraded, the work to solve the problem increases. As the precon-
ditioning of the iterative solver improves, the effect of poor mesh quality on solution
time is less pronounced.

e For two very simple applications, a cost benefit analysis shows that for all the iterative
solvers, the breakeven point in terms of mesh quality for which mesh smoothing was
beneficial moves toward higher-quality meshes as NV increases.

e For more complex applications, the benefits of mesh improvement are pronounced with
savings of 10 percent or more in total solution time even when the initial meshes are
of reasonable quality.

Future work includes an analysis of the benefits of mesh improvement in terms of solution
accuracy for both finite element and finite volume discretization techniques. Our goal is to
quantify the relationship between solution error and local mesh quality. We intend to begin
by examining the error in model problem solutions and use Green’s function techniques to
determine the local discretization errors that induce the observed solution error.
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