
Data Sieving and Collective I/O in ROMIO�Rajeev Thakur William Gropp Ewing LuskMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439, USAfthakur, gropp, luskg@mcs.anl.govPreprint ANL/MCS-P723-0898August 1998AbstractThe I/O access patterns of parallel programs often consist of accesses to a largenumber of small, noncontiguous pieces of data. If an application's I/O needs are metby making many small, distinct I/O requests, however, the I/O performance degradesdrastically. To avoid this problem, MPI-IO allows users to access a noncontiguous dataset with a single I/O function call. This feature provides MPI-IO implementations anopportunity to optimize data access.We describe how our MPI-IO implementation, ROMIO, delivers high performancein the presence of noncontiguous requests. We explain in detail the two key optimiza-tions ROMIO performs: data sieving for noncontiguous requests from one process andcollective I/O for noncontiguous requests from multiple processes. We describe how onecan implement these optimizations portably on multiple machines and �le systems, con-trol their memory requirements, and also achieve high performance. We demonstratethe performance and portability with performance results for three applications|anastrophysics-application template (DIST3D), the NAS BTIO benchmark, and an un-structured code (UNSTRUC)|on �ve di�erent parallel machines: HP Exemplar, IBMSP, Intel Paragon, NEC SX-4, and SGI Origin2000.�This work was supported by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Computational and Technology Research, U.S. Department of Energy, under Con-tract W-31-109-Eng-38; and by the Scalable I/O Initiative, a multiagency project funded by the DefenseAdvanced Research Projects Agency (contract number DABT63-94-C-0049), the Department of Energy, theNational Aeronautics and Space Administration, and the National Science Foundation.

1 IntroductionNumerous studies of the I/O characteristics of parallel applications have shown that manyapplications need to access a large number of small, noncontiguous pieces of data from a�le [1, 3, 9, 11, 12, 16]. For good I/O performance, however, the size of an I/O requestmust be large (on the order of megabytes). The I/O performance su�ers considerably, onthe other hand, if applications access data by making many small I/O requests. Such is thecase when applications perform I/O by using the Unix read and write functions, which canaccess only a single contiguous chunk of data at a time.MPI-IO, the I/O part of the MPI-2 standard [8], is a new interface designed speci�callyfor portable, high-performance parallel I/O. To avoid the above-mentioned problem of manydistinct, small I/O requests, MPI-IO allows users to specify the entire noncontiguous accesspattern and read or write all the data with a single I/O function call. MPI-IO also allowsusers to specify collectively the I/O requests of a group of processes, thereby providing theimplementation with even greater access information and greater scope for optimization.In this paper we describe how our MPI-IO implementation, ROMIO, delivers high per-formance in the presence of noncontiguous I/O requests. ROMIO is a portable MPI-IOimplementation that works on many di�erent machines and �le systems. We explain in de-tail the two key optimizations ROMIO performs: data sieving for noncontiguous requestsfrom one process and collective I/O for noncontiguous requests from multiple processes. Wedescribe how one can implement these optimizations portably on multiple machines and �lesystems, control their memory requirements, and also achieve high performance. We demon-strate the performance and portability with performance results for three applications on�ve di�erent parallel machines: HP Exemplar, IBM SP, Intel Paragon, NEC SX-4, and SGIOrigin2000. The three applications we used are the following:1. DIST3D, a template representing the I/O access pattern in an astrophysics application,ASTRO3D [16], from the University of Chicago;2. the NAS BTIO benchmark [5]; and3. an unstructured code (which we call UNSTRUC) written by Larry Schoof and WilburJohnson of Sandia National Laboratories.We note that ROMIO can perform the optimizations described in this paper only if usersprovide complete access information in a single function call. In [17], we explained how userscan do so by using MPI's derived datatypes to create �le views and by using the collective-I/O functions whenever possible. In this paper, we describe the optimizations in detail andprovide extensive performance results.The rest of this paper is organized as follows. Section 2 gives a brief overview of ROMIO.Data sieving is described in Section 3 and collective I/O in Section 4. Performance resultsare presented in Section 5, followed by conclusions in Section 6.1

2 Overview of ROMIOROMIO is a freely available, high-performance, portable implementation of MPI-IO. Thecurrent version of ROMIO, 1.0.1, runs on the following machines: IBM SP; Intel Paragon;HP Exemplar; SGI Origin2000; NEC SX-4; other symmetric multiprocessors from HP, SGI,Sun, DEC, and IBM; and networks of workstations (Sun, SGI, HP, IBM, DEC, Linux, andFreeBSD). Supported �le systems are IBM PIOFS, Intel PFS, HP HFS, SGI XFS, NECSFS, NFS, and any Unix �le system (UFS). ROMIO 1.0.1 includes everything de�ned inthe MPI-2 I/O chapter except shared-�le-pointer functions, split-collective-I/O functions,support for �le interoperability, I/O error handling, and I/O error classes. ROMIO has beendesigned to be used with any MPI-1 implementation|both portable and vendor-speci�cimplementations. It is currently included as part of two MPI implementations: MPICH andHP MPI.A key component of ROMIO that enables such a portable MPI-IO implementation is aninternal layer called ADIO [15]. ADIO, an abstract-device interface for I/O, is a mechanismfor implementing multiple parallel-I/O APIs (application programming interfaces) portablyon multiple �le systems. We developed ADIO before MPI-IO became a standard, as a meansto implement and experiment with various parallel-I/O APIs that existed at the time. Wethought that such experimentation would help in the de�nition of a standard API.ADIO consists of a small set of basic functions for parallel I/O. Any parallel-I/O API canbe implemented portably on top of ADIO, and ADIO itself must be implemented separatelyon each di�erent �le system. ADIO thus separates the machine-dependent and machine-independent aspects involved in implementing an API. We used ADIO to implement Intel'sPFS API and subsets of IBM's PIOFS and the original MPI-IO proposal [18] on PFS, PIOFS,Unix, and NFS �le systems. By following such an approach, we achieved portability withvery low overhead [15]. Now that MPI-IO has emerged as the standard, we use ADIO as amechanism for implementing MPI-IO, as illustrated in Figure 1.A similar abstract-device interface is used in MPICH [6] for implementing MPI portably.3 Data SievingTo reduce the e�ect of high I/O latency, it is critical to make as few requests to the �lesystem as possible. Data sieving [14] is a technique that enables an implementation to makea few large, contiguous requests to the �le system even if the user's request consists of severalsmall, noncontiguous accesses.Figure 2 illustrates the basic idea of data sieving. Assume that the user has made a singleread request for �ve noncontiguous pieces of data. Instead of reading each noncontiguouspiece separately, the implementation reads a single contiguous chunk of data starting fromthe �rst requested byte up to the last requested byte into a temporary bu�er in memory.It then extracts the requested portions from the temporary bu�er and places them in theuser's bu�er. The user's bu�er happens to be contiguous in this example, but it could wellbe noncontiguous.A potential problem with this simple algorithm is its memory requirement. The tempo-rary bu�er into which data is �rst read must be as large as the extent of the user's request,2

ADIOADIO

MPI-IO

Unix
NFS NEC

SFSHPSGI
XFSPIOFS

IBMIntel
PFS HFS

Portable Implementation

network

remote site

Implementations
File-system-specificFigure 1: ROMIO Architecture: MPI-IO is implemented portably on top of an abstract-device interface called ADIO, and ADIO is optimized separately for di�erent �le systems.

read a contiguous chunk

user’s request for noncontiguous

into memory

into user’s buffer
copy requested portions

data from a file

Figure 2: Data sieving3

where extent is de�ned as the total number of bytes between the �rst and last byte requested(including holes). The extent can potentially be very large|much larger than the amountof memory available for the temporary bu�er|because the holes (unwanted data) betweenthe requested data segments could be very large. The basic algorithm must therefore bemodi�ed to make its memory requirement independent of the extent of the user's request.ROMIO uses a user-controllable parameter that de�nes the maximumamount of contigu-ous data that ROMIO can read at a time during data sieving. This value also represents themaximum size of the temporary bu�er. By default, ROMIO sets the value of this parameterto 4 Mbytes, but the user can change it at run time via MPI-IO's hints mechanism. If theextent of the user's request is larger than the value of this parameter, ROMIO performs datasieving in parts, reading only as much data at a time as de�ned by the parameter.The advantage of data sieving is that data is always accessed in large chunks, althoughat the cost of reading more data than needed. For many common access patterns, theholes between useful data are not unduly large, and the advantage of accessing large chunksfar outweighs the cost of reading extra data. In some access patterns, however, the holesare so large that the cost of reading the extra data outweighs the cost of accessing largechunks. The BTIO benchmark (see Section 5), for example, has such an access pattern. An\intelligent" data-sieving algorithm can handle such cases as well. The algorithm can analyzethe user's request and calculate the sizes of holes in it. Based on empirically determinedprior knowledge of how large holes can get before data sieving is no longer bene�cial, thealgorithm can decide whether to perform data sieving or access each contiguous data segmentseparately. We plan to add this feature to ROMIO's data-sieving implementation.Data sieving can similarly be used for writing data. A read-modify-write must, however,be performed to avoid destroying the data already present in the holes between contiguousdata segments. For writing with data sieving, ROMIO �rst reads a contiguous chunk ofdata from the �le into a temporary bu�er in memory, copies data from the user's bu�er intoappropriate locations in the temporary bu�er, and then writes the temporary bu�er back tothe �le. The portion of the �le being accessed must be locked during the read-modify-writeto prevent concurrent updates by other processes.ROMIO also uses another user-controllable parameter that de�nes the maximum amountof contiguous data that ROMIO can write at a time during data sieving. This parametermay have a smaller value than the one used for reading, because writing involves lockingthe region of the �le being accessed. If the region being locked is too large, many processesremain idle waiting for the lock to be released. Consequently, parallelism in I/O is lost andperformance decreases. On the other hand, if the region being locked is too small, thereis greater parallelism, but the size of each I/O access also decreases, and performance isagain adversely a�ected. In other words, there is a compromise between allowing greaterconcurrency and having large access sizes. We determined experimentally that a write sizeof 512 Kbytes provides a good trade-o� between the two con
icting goals and gives goodperformance. ROMIO therefore sets the default value of the maximumbu�er size for writingto 512 Kbytes. The user can, of course, change this value at run time.4

4 Collective I/OThe preceding section explained how data sieving can be used to optimize I/O when theentire (noncontiguous) access information of a single process is known. Further optimizationis possible if the implementation is given the entire access information of a group of processes.Such optimization is broadly referred to as collective I/O.In many parallel applications, although each process may need to access several noncon-tiguous portions of a �le, the requests of di�erent processes are often interleaved and maytogether span large contiguous portions of the �le. I/O performance can therefore be im-proved signi�cantly by merging the requests of di�erent processes and servicing the mergedrequest, that is, by performing collective I/O.Collective I/O can be performed in di�erent ways and has been studied by many re-searchers in recent years. It can be done at the disk level (disk-directed I/O [7]), at theserver level (server-directed I/O [10]), or at the client level (two-phase I/O [4]). Eachmethod has its merits and demerits. Since ROMIO is a portable, user-level library with noseparate I/O servers, it performs collective I/O at the client level. For this purpose, it usesa generalized version of the extended two-phase method described in [13].4.1 Two-Phase I/OTwo-phase I/O was �rst proposed in [4] in the context of accessing distributed arrays from�les. Consider the example of reading a two-dimensional array from a �le into a (block,block)distribution in memory, as shown in Figure 3. Assume that the array is stored in the �lein row-major order. As a result of the distribution in memory and the storage order inthe �le, the local array of each process is located noncontiguously in the �le|each row ofthe local array of a process is separated by rows from the local arrays of other processes.If each process tries to read each row of its local array individually, the performance willbe poor due to the large number of relatively small I/O requests. Note, however, that allprocesses together need to read the entire �le, and two-phase I/O uses this fact to improveperformance.If the entire I/O access pattern of all processes is known to the implementation, thedata can be accessed e�ciently by splitting the access into two phases. In the �rst phase,processes access data assuming a distribution in memory that results in each process makinga single, large, contiguous access. In this example, such a distribution is a row-block or(block,*) distribution. In the second phase, processes redistribute data among themselvesto the desired distribution. The advantage of this method is that by making all �le accesseslarge and contiguous, the I/O time is reduced signi�cantly. The added cost of interprocesscommunication for redistribution is small compared with the savings in I/O time.The basic two-phase method was extended in [13] to access sections of out-of-core arrays.Since MPI-IO is a general parallel-I/O interface, I/O requests in MPI-IO can represent anyaccess pattern, not just arrays. The two-phase method in [4] must therefore be generalizedto handle any noncontiguous I/O request. Such a generalized implementation of two-phaseI/O, explained below, is used in ROMIO.Two-phase I/O does increase the memory requirements of a program. For reading a5

P0

P1

P2

P3

P0 P1

P2 P3

Read contiguous

Read contiguous

Read contiguous

Read contiguous

Redistribute

Redistribute

Redistribute

Redistribute

File

user’s buffer
(block, block) distribution

 temporary buffer
(block, *) distributionFigure 3: Reading a distributed array by using two-phase I/Odistributed array, for example, the amount of extra memory needed on each process (to storethe data read in the �rst phase) is equal to the size of the local array itself. Since this amountof memorymay not be available, the basic two-phase algorithmmust be modi�ed to read andcommunicate smaller parts of the array at a time. Similarly, on machines in which the I/Operformance does not scale with the number of processes making simultaneous �le accesses,it may be bene�cial to have only a subset of processes perform I/O, with the remainingprocesses participating only in the redistribution phase. All these generalizations|any accesspattern, �xed memory requirement, and variable number of processes performing I/O|areincorporated in ROMIO's collective-I/O implementation.Figure 4 shows a simple example that illustrates how ROMIO performs a collective read.In this example, all processes perform I/O, and each process is assumed to have as muchmemory as needed for the temporary bu�er.4.2 Generalized Two-Phase I/O in ROMIOROMIO uses two user-controllable parameters for collective I/O: the number of processesthat should directly access the �le and the maximum size on each process of the temporarybu�er needed for two-phase I/O. By default, ROMIO sets the number of processes that candirectly access the �le to the number of processes involved in the collective-I/O operation.The user can lower this number via MPI-IO's hints mechanism, but cannot increase it. Themaximumbu�er size is set to 4 Mbytes by default, and the user can change it to any number.In MPI-IO, the collective-I/O function called by a process speci�es the access informationof that process only. If an MPI-IO implementation needs the access information of all pro-cesses participating in a collective-I/O operation, it must gather the information from thoseprocesses during the execution of the collective-I/O function. Note also that �le accesses inthis case refer to accesses from multiple processes to a common �le.We �rst explain the algorithm ROMIO uses for collective reads and then describe howthe algorithm di�ers for collective writes. 6

File domain of process 0 File domain of process 1 File domain of process 2

process 0’s request

process 1’s request

process 2’s request

F I L E

temporary buffer on process 0 temporary buffer on process 1 temporary buffer on process 2

Read ReadRead

user’s buffer on process 0 user’s buffer on process 1 user’s buffer on process 2

Communication CommunicationFigure 4: A simple example illustrating how ROMIO performs a collective read4.2.1 Collective ReadsEach process �rst analyzes its own I/O request and creates a list of o�sets and a list oflengths, where length[i] gives the number of bytes that the process needs from locationoffset[i] in the �le. Each process also calculates the location of the �rst byte (start o�set)and the location of the last byte (end o�set) it needs from the �le and then broadcasts thesetwo o�sets to other processes. As a result, each process has the start and end o�sets of allprocesses.In the next step, ROMIO tries to determine whether this particular access pattern canbene�t from collective I/O. It checks whether the accesses of any processes are interleavedin the �le; that is, for any two processes i and j, is the following expression true?(start-o�seti < end-o�setj) AND (end-o�seti > end-o�setj)If the accesses of any two processes are not interleaved, ROMIO concludes that collectiveI/O will not improve performance for this particular access pattern, since the requests ofprocesses cannot be merged. In such cases, ROMIO just calls the corresponding independent-I/O function on each process; the independent-I/O function uses data sieving to optimizenoncontiguous requests.If the accesses of di�erent processes are interleaved in the �le, ROMIO proceeds toperform collective I/O. It assigns portions of the �le to each process such that in the I/Ophase of the two-phase operation, a process will access data only from the portion of the�le assigned to it. This portion of the �le assigned to a process is called the process's �ledomain. If a process needs data located in another process's �le domain, it will receive the7

data from the other process during the communication phase of the two-phase operation.Similarly, if this process's �le domain contains data needed by other processes, it must sendthis data to those processes during the communication phase.ROMIO assigns �le domains as follows. It calculates the minimum of the start o�sets andthe maximum of the end o�sets of all processes. The di�erence between these two o�setsgives the total extent of the combined request of all processes. The �le domain of eachprocess is obtained by dividing this extent equally among the processes. For example, if thecombined request of all processes spans from o�set 100 to o�set 399 in the �le, and there arethree processes, the �le domain of process 0 will be from o�set 100 to 199; the �le domainof process 1 will be from o�set 200 to 299; and the �le domain of process 2 will be fromo�set 300 to 399.When �le domains are selected in this manner, the �le domain of a process may notcontain data needed by any process (e.g., if the access pattern has large holes). In such acase, the process will not perform any I/O and will participate only in communication. Amore intelligent selection of �le domains, based on analyzing the access pattern, can be usedto ensure an even balance of the I/O workload among processes. We plan to implement sucha scheme in ROMIO.After the �le domains are determined, each process calculates in which other process's�le domain its own I/O request (or a portion of it) is located. For each such process, itcreates a data structure containing a list of o�sets and lengths that specify the data neededfrom the �le domain of that process. It then sends this access information to the processesfrom which it expects to receive data. Similarly, other processes that need data from the �ledomain of this process send the corresponding access information to this process. After thisexchange has taken place, each process knows what portions of its �le domain are neededby other processes and by itself. It also knows which other processes are going to send thedata that it needs.The next step is to read and communicate the data. This step consumes the majorityof the time, because all the I/O and data communication takes place here. Note that thecommunication in earlier steps involved only access information. The access information isusually much smaller than actual data, unless the access pattern is so irregular that an indexis needed to represent the location of every basic datatype needed from the �le.As mentioned above, ROMIO performs the read-and-communicate step in several parts toreduce its memory requirement. Each process �rst calculates the o�sets corresponding to the�rst and last bytes needed (by any process) from its �le domain. It then divides the di�erencebetween these o�sets by the maximum size allowed for the temporary bu�er. The result isthe number of times (ntimes) it needs to perform I/O. All processes then perform a global-maximum operation on ntimes to determine the maximum number of times (max ntimes)any process needs to perform I/O. Even if a process has completed all the I/O needed fromits own �le domain, it may need to participate in communication operations thereafter toreceive data from other processes. Each process must therefore be ready to participate inthe communication phase max ntimes number of times.For each of the ntimes I/O operations, a process does the following operations: It checksif the current portion of its �le domain (no larger than the maximum bu�er size) has datathat any process needs, including itself. If it does not have such data, the process does not8

need to perform I/O in this step; it then checks whether it needs to receive data from otherprocesses, as explained below. If it does have such data, it reads with a single I/O functioncall all the data from the �rst o�set to the last o�set needed from this portion of the �ledomain into a temporary bu�er in memory. The process e�ectively performs data sieving,as the data read may include some unwanted data. Now the process must send portions ofthe data read to processes that need them.Since the one-sided communication de�ned in MPI-2 is not yet commonly supported byMPI implementations, we use the two-sided communication functions from MPI-1. Eachprocess �rst informs other processes how much data it is going to send to each of them. Theprocesses then exchange data by �rst posting all the receives as nonblocking operations, thenposting all the nonblocking sends, and �nally waiting for all the nonblocking communicationto complete. MPI derived datatypes are used to send noncontiguous data directly from thetemporary bu�er to the destination process. On the receive side, if the user has asked fordata to be placed contiguously in the user-supplied bu�er, the data is received directly intothe user's bu�er. If data is to be placed noncontiguously, the process �rst receives data intoa temporary bu�er and then copies it into the user's bu�er. (Since data is received in partsover multiple communication operations from di�erent processes, we found this approacheasier than creating derived datatypes on the receive side.)Each process performs I/O and communication ntimes number of times and then partic-ipates only in the communication phase for the remaining (max ntimes - ntimes) numberof times. In some of these remaining communication steps, a process may not receive anydata; nevertheless, it needs to check whether it will receive data in a particular step.4.2.2 Collective WritesThe algorithm for collective writes is similar to the one for collective reads, except that the�rst phase of the two-phase operation is communication and the second phase is I/O. In theI/O phase, each process checks to see whether there are any holes in the data it currentlyneeds to write. If there are holes, it performs a read-modify-write; otherwise it performsonly a write. During the read-modify-write, a process need not lock the region of the �lebeing accessed (unlike in independent I/O), because the process is assured that no otherprocess involved in the collective-I/O operation will directly try to access the data located inthis process's �le domain. The process is also assured that concurrent writes from processesnot involved in this collective-I/O operation will not occur, because MPI-IO's consistencysemantics [8] do not automatically guarantee consistency for such writes. (In such cases,users must use MPI File sync and ensure that the operations are not concurrent.)4.2.3 Performance IssuesEven if I/O is performed in large contiguous chunks, the performance of the collective-I/Oimplementation can be signi�cantly a�ected by the amount of bu�er copying and communi-cation. We were able to improve ROMIO's collective-I/O performance by as much as 50%on some machines by tuning the implementation to1. minimize bu�er copying and 9

2. minimize the number of communication calls and use the right set of MPI communi-cation primitives.Initially, in each of the communication steps, we always received data into a temporarybu�er and then copied it into the user's bu�er. We realized later that this copy is neededonly when the user's bu�er is to be �lled noncontiguously. In the contiguous case, datacan be received directly into the appropriate location in the user's bu�er. We similarlyexperimented with di�erent ways of communicating data in MPI and measured the e�ecton overall collective-I/O performance with di�erent MPI implementations and on di�erentmachines. We selected nonblocking communication with the receives posted �rst and thenthe sends, which performs the best on most systems. It may be possible, however, to tunethe communication further on some machines by posting the sends before the receives or byusing MPI's persistent requests.We believe that MPI-2's one-sided communication can be used e�ectively for the com-munication involved in collective I/O, and we plan to use it when it is available in MPIimplementations.4.2.4 Portability IssuesWe were able to implement these optimizations portably and without sacri�cing performanceby 1. using ADIO as a portability layer for I/O (see Section 2) and2. using MPI for communication.Data sieving and collective I/O are implemented as ADIO functions [15]: Data sieving isused in the ADIO functions that read/write noncontiguous data, and collective I/O is used inADIO's collective-I/O functions. Both these optimizations ultimately make contiguous I/Orequests to the underlying �le system, which are implemented by using ADIO's contiguous-I/O functions. The contiguous-I/O functions, in turn, are implemented using the appropriate�le-system call for each di�erent �le system. (For example, on �le systems that support 64-bit �le sizes, we use the functions needed for �les of 64-bit size. On SGI's XFS �le systemand on the HP Exemplar's HFS �le system, we use the recommended functions pread64 andpwrite64 that also take the �le o�set as an argument; that is, no seeks are needed.)5 Performance MeasurementsWe �rst brie
y describe the three applications used in the performance experiments, themachines on which we ran the applications, and the set of experiments performed. We thenpresent the performance results.5.1 ApplicationsThe �rst application we used is DIST3D, a template representing the I/O access pattern inan astrophysics application, ASTRO3D [16], from the University of Chicago. It measures the10

performance of reading/writing a three-dimensional array distributed in a (block,block,block)fashion among processes from/to a �le containing the global array in row-major order.The second application is the BTIO benchmark [5] from NASA Ames Research Center,which simulates the I/O required by a time-stepping
ow solver that periodically writes itssolution matrix. The benchmark only performs writes, but we modi�ed it to also performreads, in order to measure the read bandwidths. In BTIO, a three-dimensional array (actuallyfour-dimensional, but the �rst dimension has only �ve elements and is not distributed) isdistributed among processes by using a multipartition distribution [2]. In this distribution,each process is responsible for several disjoint sub-blocks of points (cells) of the grid. Thecells are arranged such that, for each direction of the solve phase, the cells belonging toa certain process will be evenly distributed along the direction of solution. (Note that thisdistribution is di�erent from the (block,block,block) distribution of the �rst application.) Thearray elements are stored in the �le in an order corresponding to a column-major orderingof the global array.The third application we used is an unstructured code (which we call UNSTRUC) writ-ten by Larry Schoof and Wilbur Johnson of Sandia National Laboratories. It is a syntheticbenchmark that emulates the I/O access pattern in unstructured-grid applications. It gen-erates a random irregular mapping from the local one-dimensional array of a process to aglobal array in a common �le shared by all processes. The mapping speci�es where eachelement of the local array is located in the global array. The size of each element can alsobe varied in the program.5.2 MachinesWe ran the code portably and measured the performance on �ve di�erent parallel machines:the HP Exemplar and SGI Origin2000 at the National Center for Supercomputing Appli-cations (NCSA), the IBM SP at Argonne National Laboratory, the Intel Paragon at Cal-ifornia Institute of Technology, and the NEC SX-4 at the National Aerospace Laboratory(NLR) in Holland. These machines cover almost the entire spectrum of state-of-the-art high-performance systems, and they represent distributed-memory, shared-memory, and parallelvector architectures. They also represent a wide variation in I/O architecture, from the \tra-ditional" parallel �le systems on distributed-memory machines like the SP and Paragon, tothe so-called high-performance �le systems on shared-memory machines like the Origin2000,Exemplar, and SX-4.We used the native �le systems on each machine: HFS on the Exemplar, XFS on theOrigin2000, PIOFS on the SP, PFS on the Paragon, and SFS on the SX-4. At the timewe performed the experiments, these �le systems were con�gured as follows: HFS on theExemplar was con�gured on twelve disks; XFS on the Origin2000 had two RAID unitswith SCSI-2 interfaces; the SP had four servers for PIOFS, and each server had four SSAdisks attached to it in one SSA loop; the Paragon had 64 I/O nodes for PFS, each with anindividual Seagate disk; and SFS on the NEC SX-4 was con�gured on a single RAID unitcomprising sixteen SCSI-2 data disks. 11

5.3 ExperimentsWe measured the I/O performance of these applications by using MPI-IO functions to per-form I/O in three di�erent ways as follows:Unix-style accesses Separate MPI-IO function calls to access each individual contiguouspiece of data.Data sieving Create a �le view to describe a noncontiguous access pattern and use a singleindependent MPI-IO function to access data.Collective I/O Create a �le view to describe a noncontiguous access pattern, and use asingle collective MPI-IO function to access data.The space of experimentation is very large, with many parameters that can be varied.While it would be interesting to see the e�ect of scaling the problem size and the numberof processors, we chose to limit the experiments to large problem sizes on a large numberof processors in order to limit the number of results to be gathered and presented. Theseexperiments also give us an idea of the maximum I/O bandwidth that can realistically beachieved on these machines|a fact we were interested in knowing.We measured the write performance without explicitly calling an MPI File sync to
ushall cached data to disk. Some of the performance results may therefore include cachingperformed by the �le system. We did not include MPI File sync in the measurementsbecause users most often do not perform a �le sync; they just open, read/write, and close.In all experiments, we used the default values of the sizes of the bu�ers ROMIO uses fordata sieving and collective I/O (see Sections 3 and 4). We also used the default values ofthe �le-striping parameters on all �le systems. On PFS and PIOFS the default striping unitwas 64 Kbytes. We note that ROMIO does not use the logical-views feature of PIOFS; thatis, a PIOFS �le is considered as a linear sequence of bytes.On each machine, we used as many processors as we could reasonably access. We alsotried to use the same number of processors on a given machine for each application but wereat times constrained by the application's requirements: BTIO requires that the number ofprocessors be a perfect square, whereas UNSTRUC requires that the number of processorsbe a power of two. On some machines, therefore, we could not use the same number ofprocessors for both BTIO and UNSTRUC; for example, on the NEC SX-4 we had to runBTIO on 9 processors and UNSTRUC on 8 processors. For UNSTRUC, we used a smallergrid size on the Origin2000 because of memory limitations.5.4 ResultsTables 1 and 2 show the read and write bandwidths for DIST3D. The performance of Unix-style accesses was, in general, very poor. By using data sieving instead, we observed animprovement ranging from 162% (HP Exemplar) to 45,252% (NEC SX-4) for reads. Theimprovement in write performance ranged from 0% (IBM SP) to 12,045% (NEC SX-4).No performance improvement was observed on the SP for writing, because ROMIO cannotperform data sieving for writing on the SP's PIOFS �le system, as PIOFS does not support12

Table 1: Read performance of DIST3D (array size 512 � 512 � 512 integers, �le size512 Mbytes) Bandwidth (Mbytes/s)Machine Processors Unix-style Data Sieving Collective I/OHP Exemplar 64 5.42 14.2 68.2IBM SP 64 2.13 11.9 90.2Intel Paragon 256 3.01 9.50 132NEC SX-4 8 0.71 322 563SGI Origin2000 32 14.0 118 175Table 2: Write performance of DIST3D (array size 512 � 512 � 512 integers, �le size512 Mbytes) Bandwidth (Mbytes/s)Machine Processors Unix-style Data Sieving Collective I/OHP Exemplar 64 0.54 1.25 50.7IBM SP 64 1.85 1.85 57.6Intel Paragon 256 1.12 3.33 183NEC SX-4 8 0.62 75.3 447SGI Origin2000 32 5.06 13.1 66.7�le locking. On PIOFS, ROMIO therefore translates noncontiguous, independent, writerequests into multiple Unix-style accesses.The performance improvement with collective I/O was much more signi�cant. The im-provement in read performance was as high as 79,196% over Unix-style accesses (NEC SX-4)and as high as 1,289% over data sieving (Intel Paragon). The improvement in write perfor-mance was as high as 71,997% over Unix-style accesses (NEC SX-4) and as high as 3,956%over data sieving (HP Exemplar).The BTIO benchmark comes in three problem sizes: Class A (643), Class B (1023), andClass C (1623). We present results for the largest case, Class C, in Tables 3 and 4. For BTIO,Unix-style accesses perform better than data sieving on three out of the �ve machines. Thereason is that the access pattern of BTIO is such that the holes between data segments neededby a process are large|more than �ve times the size of the data segment. As a result, a lotof unwanted data is accessed during data sieving, resulting in lower performance than withUnix-style accesses. As mentioned in Section 3, an intelligent data-sieving algorithm candetect such large holes and internally perform Unix-style accesses. ROMIO's data sievingalgorithm does not currently do this, however.Collective I/O performed extremely well on BTIO, as no unwanted data is accessed incollective I/O, and all accesses are large. The performance improvement was as high as13

Table 3: Read performance of BTIO (Class C, problem size 5 � 162 � 162 � 162 doubleprecision � 162 Mbytes) Bandwidth (Mbytes/s)Machine Processors Unix-style Data Sieving Collective I/OHP Exemplar 64 6.35 5.84 44.2IBM SP 64 2.73 1.66 80.6Intel Paragon 256 2.28 1.23 82.0NEC SX-4 9 1.26 116 645SGI Origin2000 36 12.1 37.0 107Table 4: Write performance of BTIO (Class C, problem size 5 � 162 � 162 � 162 doubleprecision � 162 Mbytes) Bandwidth (Mbytes/s)Machine Processors Unix-style Data Sieving Collective I/OHP Exemplar 64 0.86 0.50 29.7IBM SP 64 2.21 2.21 38.6Intel Paragon 256 1.37 0.45 98.8NEC SX-4 9 0.99 29.9 591SGI Origin2000 36 7.93 2.90 67.251,090% over Unix-style accesses for reading and 59,597% for writing, both on the NECSX-4.Tables 5 and 6 show the read and write bandwidths for UNSTRUC. In this application,the I/O access pattern is irregular, and the granularity of each access is very small (64 bytes).Unix-style accesses are not feasible for this kind of application, as they take an excessiveamount of time. We therefore do not present results for Unix-style accesses for UNSTRUC.Since data sieving cannot be performed for writing on PIOFS, we also do not present resultsfor level-2 writes on PIOFS. Collective I/O again performed much better than independentI/O with data sieving, the only exception being for reads on the NEC SX-4. In this case,because of the high read bandwidth of NEC's Supercomputing File System (SFS), datasieving by itself outperformed the extra communication required for collective I/O.6 ConclusionsFor parallel applications to achieve high I/O performance, it is critical that the parallel-I/Osystem be able to deliver high performance even for noncontiguous access patterns. Wehave described two optimizations that enable an MPI-IO implementation to deliver highperformance even if the user's request consists of many small, noncontiguous accesses.14

Table 5: Read performance of UNSTRUCBandwidth (Mbytes/s)Machine Processors Grid Points Data Sieving Collective I/OHP Exemplar 64 8 million 3.15 35.0IBM SP 64 8 million 1.63 73.3Intel Paragon 256 8 million 1.18 78.4NEC SX-4 8 8 million 152 101SGI Origin2000 32 4 million 30.0 80.8Table 6: Write performance of UNSTRUCBandwidth (Mbytes/s)Machine Processors Grid Points Data Sieving Collective I/OHP Exemplar 64 8 million 0.18 22.1IBM SP 64 8 million xx 37.8Intel Paragon 256 8 million 0.22 94.9NEC SX-4 8 8 million 16.8 81.5SGI Origin2000 32 4 million 1.33 59.2For the applications we considered, collective I/O performed signi�cantly better thanboth data sieving and Unix-style accesses. Data sieving performed much better than Unix-style accesses for DIST3D and UNSTRUC. For BTIO, on some machines, Unix-style accessesperformed better than data sieving, because of large holes between data segments accessedby each process in BTIO.The implementation of data sieving and collective I/O must be carefully tuned to min-imize the overhead of bu�er copying and interprocess communication. Otherwise, theseoverheads can impact performance signi�cantly.To carry out these optimizations, an MPI-IO implementation needs some amount of tem-porary bu�er space, which reduces the total amount of memory available to the application.The optimizations can, however, be performed with a constant amount of bu�er space thatdoes not increase with the size of the user's request. Our results demonstrate that by al-lowing the MPI-IO implementation to use as little as 4 Mbytes of bu�er space, which is asmall amount on today's high-performance machines, users can gain orders of magnitudeimprovement in I/O performance.We note that MPI-IO also de�nes split collective-I/O functions, which are a form ofnonblocking collective-I/O functions. The user can call a \begin" function to start thecollective-I/O operation and an \end" function to complete the operation. The implemen-tation is free to implement the collective-I/O operation either entirely during the beginfunction or entirely during the end function or in the \background," between the begin and15

end functions. We are currently investigating how to perform collective I/O in the back-ground by using threads, so as to successfully overlap collective I/O with other computationand communication going on in the user's program.AcknowledgmentsWe thank Larry Schoof and Wilbur Johnson for providing the unstructured code used inthis paper.References[1] S. Baylor and C. Wu. Parallel I/O Workload Characteristics Using Vesta. In R. Jain,J. Werth, and J. Browne, editors, Input/Output in Parallel and Distributed ComputerSystems, chapter 7, pages 167{185. Kluwer Academic Publishers, 1996.[2] J. Bruno and P. Cappello. Implementing the Beam and Warming Method on the Hy-percube. In Proceedings of the Third Conference on Hypercube Concurrent Computersand Applications, January 1988.[3] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output Characteristics of ScalableParallel Applications. In Proceedings of Supercomputing '95. ACM Press, December1995.[4] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a Two-Phase Run-time Access Strategy. In Proceedings of the Workshop on I/O in ParallelComputer Systems at IPPS '93, pages 56{70, April 1993. Also published in ComputerArchitecture News, 21(5):31{38, December 1993.[5] S. Fineberg, P. Wong, B. Nitzberg, and C. Kuszmaul. PMPIO|A Portable Implemen-tation of MPI-IO. In Proceedings of the Sixth Symposium on the Frontiers of MassivelyParallel Computation, pages 188{195. IEEE Computer Society Press, October 1996.[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Im-plementation of the MPI Message-Passing Interface Standard. Parallel Computing,22(6):789{828, September 1996.[7] D. Kotz. Disk-directed I/O for MIMDMultiprocessors. ACM Transactions on ComputerSystems, 15(1):41{74, February 1997.[8] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface.July 1997. On the World-Wide Web at http://www.mpi-forum.org/docs/docs.html.[9] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File-Access Character-istics of Parallel Scienti�c Workloads. IEEE Transactions on Parallel and DistributedSystems, 7(10):1075{1089, October 1996.16

[10] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M.Winslett. Server-Directed CollectiveI/O in Panda. In Proceedings of Supercomputing '95. ACM Press, December 1995.[11] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O Requirements of Scienti�c Applications:An Evolutionary View. In Proceedings of the Fifth IEEE International Symposium onHigh Performance Distributed Computing, pages 49{59. IEEE Computer Society Press,1996.[12] E. Smirni and D. Reed. Lessons from Characterizing the Input/Output Behavior ofParallel Scienti�c Applications. Performance Evaluation: An International Journal,33(1):27{44, June 1998.[13] R. Thakur and A. Choudhary. An Extended Two-Phase Method for Accessing Sectionsof Out-of-Core Arrays. Scienti�c Programming, 5(4):301{317, Winter 1996.[14] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion: Opti-mized I/O for Parallel Applications. Computer, 29(6):70{78, June 1996.[15] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device Interface for ImplementingPortable Parallel-I/O Interfaces. In Proceedings of the 6th Symposium on the Frontiersof Massively Parallel Computation, pages 180{187, October 1996.[16] R. Thakur, W. Gropp, and E. Lusk. An Experimental Evaluation of the Parallel I/O Sys-tems of the IBM SP and Intel Paragon Using a Production Application. In Proceedingsof the 3rd International Conference of the Austrian Center for Parallel Computation(ACPC) with Special Emphasis on Parallel Databases and Parallel I/O, pages 24{35.Lecture Notes in Computer Science 1127. Springer-Verlag., September 1996.[17] R. Thakur, W. Gropp, and E. Lusk. A Case for Using MPI's Derived Datatypes toImprove I/O Performance. In Proceedings of SC98: High Performance Networking andComputing, November 1998. To appear.[18] The MPI-IO Committee. MPI-IO: A Parallel File I/O Interface for MPI, Version 0.5.World-Wide Web http://lovelace.nas.nasa.gov/MPI-IO, April 1996.
17

