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Newton’s Method for Large Bound-Constrained Optimization Problems

Chih-Jen Lin* and Jorge J. Moré!

Abstract

We analyze a trust region version of Newton’s method for bound-constrained prob-
lems. Our approach relies on the geometry of the feasible set, not on the particular repre-
sentation in terms of constraints. The convergence theory holds for linearly-constrained
problems, and yields global and superlinear convergence without assuming neither strict
complementarity nor linear independence of the active constraints. We also show that
the convergence theory leads to an efficient implementation for large bound-constrained
problems.

1 Introduction
We analyze a trust region version of Newton’s method for the optimization problem
min {f(z) : x € Q}, (1.1)
where f:R" — R is a continuously differentiable mapping on the bound-constrained set
Q={zeR": 1<z <u}. (1.2)

Our analysis relies on the geometry of €2 and applies, without change, to the case where Q2

is the linearly-constrained set

Q

{xER”:li§<ci,x>§ui, iEI}. (1.3)

The convergence theory yields results that are independent of the representation of €2 in
terms of constraints; in particular, we assume neither strict complementarity (nonzero mul-
tipliers) nor linear independence of the active constraints.

Our main interest is in algorithms for large optimization problems so the convergence
theory that we develop emphasizes algorithms that use iterative techniques to solve the trust
region subproblem, while retaining superlinear convergence of the trust region method. We
show, in particular, how the convergence theory leads to an efficient implementation of

Newton’s method when the feasible set € is the bound-constrained set (1.2).
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Our development of a convergence theory for Newton’s method yields three main results.
We first establish global convergence to a stationary point; that is, if {23} is the sequence
generated by the trust region method, then every limit point of the sequence is a stationary
point for problem (1.1). We then establish the identification properties of the algorithm by
showing that if {z;} converges to some 2™, then there is an integer ko such that zj lands
in the face exposed by —V f(z*) for all k > ko. Finally, we establish the local convergence
properties of the algorithm. The main result shows that if a strong second-order sufficiency
condition holds at a limit point 2* of the trust region iterates, then the whole sequence {x}
converges to z* at a superlinear rate.

Global and superlinear convergence for linearly-constrained problems has been estab-
lished, in almost all cases, under the assumption of strict complementarity. Moreover, the
algorithms that have been analyzed usually require the exact solution of systems of linear
equations. See, for example, [2, 22, 33, 18] for algorithms that use e-active constraints,
[23, 20] for active set methods, [13, 25, 12, 21] for trust region methods, and [9, 16, 11, 10]
for interior-point methods. In recent work Heinkenschloss, Ulbrich, and Ulbrich [24] ana-
lyzed an interior-point method without assuming strict complementarity, but proved only
local convergence.

Lescrenier [25] and Facchinei and Lucidi [19] analyze algorithms for bound-constrained
problems that are shown to be superlinearly convergent without assuming strict comple-
mentarity. Lescrenier analyses the trust region method of Conn, Gould, and Toint [13].
Facchinei and Lucidi analyze a line search algorithm based on a differentiable exact penalty
function that, unlike the algorithms for bound-constrained problems that we have reviewed,
generates iterates that need not be feasible.

We analyze a trust region method for the linearly-constrained optimization problem
(1.3) based on the convergence theory of Moré [27] and Burke, Moré, and Toraldo [7].
The analysis relies on the geometric approach of Burke and Moré [6] for general linearly-
constrained problems. We use projected searches [30] during the subspace minimization
phase, and thus we are able to add many constraints during this phase. We show that
global and superlinear convergence holds even if strict complementarity fails for the general
linearly-constrained optimization problem (1.3).

The convergence theory for trust region methods presented in Section 2 depends on
the definition of the Cauchy step sg. The main result in this section shows that global
convergence to a stationary point is guaranteed if the step s in the trust region method
achieves a fraction of the reduction achieved by the Cauchy step.

The standard development of identification properties for optimization algorithm shows
that the active set settles down if the iterates converge to a stationary point z*. This
approach is not possible if strict complementarity does not hold at z*. In Section 3 we show

that the sequence generated by the trust region method is trapped by the face exposed by



—V f(z*); Section 3 provides a precise definition of the face of a convex set exposed by a
vector. If strict complementarity holds at z*, this result implies that the active set settles
down.

In Section 3 we also explore the concept of strict complementarity and its relationship
to the concept of an exposed face. In this paper we use the term nondegenerate stationary
point x* if strict complementarity holds at z* or, equivalently, if 2* is in the relative interior
of the face exposed by —V f(a*).

Section 4 defines the projected searches that are used to explore the current face of the
feasible set. Projected searches are an important ingredient of the optimization algorithm
because they allow wider latitude in the choice of the next iterate. In particular, the active
constraints are allowed to change arbitrarily, while requiring only the approximate solution
of a linear system.

Section 5 contains the major convergence results for the trust region Newton’s method.
We show that if a strong second-order sufficiency condition holds at a limit point z* of
the trust region iterates, then the whole sequence {x;} converges to 2*. Previous results
assumed strict complementarity, and that the problem was bound-constrained. We also
show that if the sequence {x} converges to z*, then the rate of convergence is at least
superlinear.

Section 6 briefly outlines the implementation of TRON (version 1.0), a trust region New-
ton method for bound-constrained problems. Interesting features of this implementation
include the use of projected searches and a preconditioned conjugate gradient method to
determine the minor iterates, and the use of a limited-memory preconditioner. We use the
incomplete Cholesky factorization icfs of Lin and Moré [26] as a preconditioner since this
factorization does not require the choice of a drop tolerance, and the amount of storage can
be specified in advance.

Section 7 presents the results of a comparison between TRON and the LANCELOT [14]
and L-BFGS-B [36] codes. These results show that on the problems described in this section,
TRON is generally more efficient, in terms of computing time, than LANCELOT and L-BFGS-B.
Caution must be exercized in drawing conclusion from these results since, as noted in
Section 7, there are many differences between TRON and LANCELOT.

2 Trust Region Methods

In this section we present a trust region method for the solution of optimization problems
subject to linear constraints, but we emphasize the case where Q is the bound-constrained
set (1.2). The algorithm that we present was proposed by Moré [27] as a modification of
the algorithm of Toint [35]. The development in this section follows Moré [27] and Burke,
Moré, and Toraldo [7].

At each iteration of a trust region method there is an approximation xj € Q to the



solution, a bound Ay, and a model ¢, : R™ — R of the possible reduction f(zr+w)— f(zx)
for |Jw|| < Ag. We assume that the model 9, is the quadratic

br(w) = (Vf(xr), w) + 3(w, Byw)

for some symmetric matrix Bg. The matrix By is arbitrary for many of the results, but
the rate of convergence results usually requires that By be the Hessian matrix V2 f(zy). Of
course, it is possible to choose By = 0, and then the model is linear.

The description of the algorithm in terms of the quadratic v is appropriate when we

are interested in the step sp. However, we also use the quadratic
g (2) = bp(z — a) = (Vf(ag), = ap) + 5(e — xx, By(e — 23))

to describe the algorithm in terms of the iterates zy.
The iterate x; and the bound Ay are updated according to rules that are standard in
trust region methods for unconstrained minimization. Given a step si such that xx+s; € Q

and ¥, (sk) < 0, these rules depend on the ratio

flee + sx) — fzr)
Vr(sk)

of the actual reduction in the function to the predicted reduction in the model. Since the

pp = (2.1)

step sk is chosen so that 1y (sr) < 0, a step with pi > 0 yields a reduction in the function.
Given 19 > 0, the iterate zj is updated by setting

i+ sk i pr > o

= . 2.2

Thtt { ok it pr < 1o (22)

Any step si with pr > o is successful; otherwise the step in unsuccessful. Under suitable
conditions, all steps (iterations) are eventually successful.

Updating rules for Ay depend on positive constants 17 and 7y such that 5y < 1y < 1,

while the rate at which Ay is updated depends on positive constants o1, 02, and o3 such

that o1 < 02 < 1 < 3. The trust region bound Ay is updated by setting

Apy1 € [01 miH{HSkH7Ak}702Ak] it pr<m
Apt1 € [UlAk,UgAk] if pr € (771,772) (2.3)
Apyr € [Ag, 03A] it pr > 2.

Similar rules are used in most modern trust region methods.
We choose a step s that gives as much reduction in the model 1 as the Cauchy step
sg generated by the gradient projection method applied to the subproblem

min {Yg(w) : 2 +w € Q, J|w|| < Ag}.



The Cauchy step sg is of the form si(ay), where the function s : R — R” is defined by
spla) = Plag — oV f(ag)] — @k,

where P : R"™ — () is the projection into the feasible set Q. If € is the bound-constrained

set (1.2), then the projection can be computed with at most 2n comparisons by
P(z) =mid ([, z,u),

where mid(-) is the componentwise median (middle) of the three vectors in the argument.
The trust region method that we describe can be implemented efficiently if there is an
efficient algorithm for computing the projection P.

The scalar ay that determines the Cauchy step sg is chosen so that si(ay) produces a

sufficient reduction. We require that

br(se(ar)) < po (VI (zr)selar)),  llsklar)ll < p g, (2.4)

for positive constants pg and pq such that pg < % We also require that there are positive

constants vy, v2, and s such that

ap € [v1,73] or ay € [yaag, v,

where o > 0 satisfies

Cr(sk(ar)) > (1= po) (Vf(2r), se(ar)) or [lsp(ap)|l > padg.

The requirements on the Cauchy step sg can be satisfied [27, 7] with a finite number of
evaluations of ;. For additional details, see Section 6.
We have described the requirements on the Cauchy step sg in terms of the quadratic

1, but we could also use ¢;. In particular,

e (v + 57) < ae(2r) + po (Va(zk), Sg>

is the sufficient reduction condition (2.4).

Given the Cauchy step sg, we require that the step sy satisfy

Gr(sk) < potr(sy),  llsell < mAr,  ax+ sk € Q. (2.5)

This requirement is quite natural and can always be satisfied by choosing s = sg. However,
this choice is likely to lead to slow convergence, because the method would then reduce to
a version of steepest descent. In the next section we explore other choices that lead to
superlinear and quadratic convergence.

Algorithm 2.1 summarizes the computations required to implement the trust region
method. We assume that f : R"™ — R is continuously differentiable on € and that a Ay > 0

has been specified.



For k=0,...,
Compute the model 1.
Compute the Cauchy step sg.
Compute a step sj, that satisfies (2.5).
Compute the ratio p; and update z; by (2.2).
Update Ay according to (2.3).

Algorithm 2.1: Major computational steps in a trust region method.

Burke, Moré, and Toraldo [7] analyzed the trust region method of Algorithm 2.1 in
terms of the Cauchy point

e = Plag + . V(ap)] = op + 5.

Convergence results depend on a bound on the predicted decrease for the quadratic .

This bound is based on the inequality

(V)59 > ko [M] min {Ak, ’ ! [ng - x’“”] } (2.6)

ay | B || ay

where kg is a positive constant. This bound was obtained by Moré [27]. Other bounds
obtained for problems with bound constraints and, more generally, convex constraints [13,
35, 12] do not yield the same information because they are not expressed in terms of the
Cauchy point.

The choice of sg is an important ingredient in the trust region method. Our choice of
sg is simple and can be implemented efficiently provided there is an efficient algorithm for
computing the projection P. For other choices, see [13, 35, 12].

Many of the convergence results in Burke, Moré, and Toraldo [7] are expressed in terms

of the projected gradient

Vaf(e) = Pr@)[=V/f(2)] = argmin{|lv+ Vf(z)] : v € T(2)},

where the tangent cone T'(z) is the closure of the cone of all feasible directions at 2 € €2, and
Q is a general convex set. The term projected gradient is not entirely appropriate. Indeed,
since

min {(Vf(z), v) v € T(z),[]v] < 1} = =[[Vaf(2)]; (2.7)

it might be more appropriate to call Vg f(x) the projected steepest descent direction. The
optimality property (2.7) follows from the properties of the projection on convex cones;
Calamai and Moré [8] provide a direct proof of (2.7).

The projected gradient should not be confused with the reduced gradient. When €2 is

the bound-constrained set (1.2), the reduced gradient is the vector with components 0; f(z)



if l; < z; < w;, while for the projected gradient

9i f(x) if 2 € (I uy)
—[Vaf(z)]; =< min{d;f(z),0} ifz;=1; (2.8)
max{0; f(x),0} if z; = w,

if {; < u;, with [V f(z)]; = 0 in the exceptional case where [; = u;. The appearance of the
minus sign in this expression for the projected gradient is only a minor nuisance because in
our work we need only an expression for ||V f(2)]|.

The projected gradient Vg f can be used to characterize stationary points because if €2
is a convex set, then & € Q is a stationary point of problem (1.1) if and only if Vo f(z) = 0.
In general, Vg f is discontinuous, but as proved by Calamai and Moré [8], if f: R"” — R is
continuously differentiable on €, then the mapping « — ||V f(2)]| is lower semicontinuous
on Q. This property implies that if {z;} is a sequence in Q that converges to z*, and if
{Vaf(zk)} converges to zero, then z* is a stationary point of problem (1.1). In Section 3
we show that the continuity properties of the projected gradient are closely associated with

the behavior of the optimization algorithm.

Theorem 2.1 Let f : R" — R be continuously differentiable on a closed, convexr set €,
and let {x}} be the sequence generated by the trust region method. Assume that {By} is
uniformly bounded. If z* is a limit point of {xy} then there is a subsequence {xy, } of

successful steps that converges to x* with
: C
lim |[Vaf(zg)|| = 0. (2.9)
T—> 00
Moreover, {wg} also converges to x*, and thus z* is a stationary point for problem (1.1).

This result is due to Burke, Moré, and Toraldo [7, Theorem 5.5]. Similar convergence
results for bound-constrained and linearly-constrained optimization algorithms assert that
every limit point of the algorithm is stationary, but do not yield any information on the
projected gradient; in Sections 3 and 5 we show that (2.9) in Theorem 2.1 plays an important
role in the convergence analysis. For a sampling of recent convergence results, see [12, 18,
9, 16, 20, 33].

3 Exposing Constraints

Identification properties are an important component of the convergence analysis of an
algorithm for linearly-constrained problems. We show that if 2™ is a stationary point and
Q2 is the polyhedral set (1.3), then the iterates {xj} generated by the trust region method
tend to lie in the face exposed by the direction —V f(2*).



The notion of an exposed face arises in convex analysis, where the face of a convex set

Q exposed by the vector d € R” is
F[d] = argmax{z € Q: (d,z)}.

A short computation shows that when gQ = [/, u] is the bound-constrained set (1.2) and
d= -V f(z*), then

E[-Vf(z*)]= {96 €ll,u]:a; =1 if 0;f(2™) > 0 and z; = w; if 9;f(a™) < 0}

is the face of (1.2) exposed by the direction —V f(2*). A similar expression holds if  is
the polyhedral set defined by (1.3). If 2* is a stationary point of the optimization problem
(1.1), then there are Lagrange multipliers such that

ieA(z*)
where AT is unrestricted in sign if /; = u;, but
AF >0 if (¢,2™) =1, AT <0 if (e, 2™) = uy,

and A(z) is the set of active constraints at = € Q defined by

Alz) = {z €1 :{ci,2) € {li,ui}}.

This definition of the active set does not distinguish between lower and upper bounds, and

thus we need to interpret the inclusion A(z) C A(y) to mean
Ai(z) C Aily),  Aul) C Auly),

where
Ai(z) = {Z €L :{cx)= lz}7 Ay () = {Z €L :{cx)= uZ}
With this interpretation, if (¢;, z) = [; and A(xz) C A(y), then {(¢;, y) = l;. For most results
we only need to know that (¢;, ) € {l;, u;}, and then the first definition of the active set is
suitable.
The face exposed by —V f(2*) is determined by the nonzero multipliers. Indeed, a

computation based on the definition of a face shows that
E[-V )] = {r € Q: ea) =116 A7 > 0 and (es,0) = u if AT < 0} (3.1)

Note that this expression for £ [-V f(2*)] is valid for any choice of Lagrange multipliers.
Burke and Moré [6] provide additional information on exposed faces. In particular, they
note that for Q convex, z* is a stationary point for the optimization problem (1.1) if and

only if 2* € E[-V f(z¥)].



Figure 3.1: The exposed face F' [V f(z*)] for a degenerate problem.

Dunn [17] defines z* to be a nondegenerate stationary point if —V f(z*) lies in the

relative interior of the normal cone
N@E ) ={ueR": (u,y—2") <0, y € Q}.

Burke and Moré [6] relate nondegeneracy to the geometry of £/ [V f(2*)] by proving that z*
is nondegenerate if and only if 2* lies in the relative interior of the face E[—V f(2*)]. These
two definitions rely only on the geometry of Q. If Q is expressed in terms of constraints,
then nondegeneracy can be shown [5] to be equivalent to the existence of a set of nonzero
Lagrange multipliers. Thus, a stationary point z* is nondegenerate as defined by Dunn [17]

if and only if strict complementarity holds at 2*. We can also show [6, Theorem 5.3] that
x € F[-Vf(z¥)] = A(z™) C A(z) (3.2)

whenever z* is nondegenerate. Thus, for nondegenerate problems, landing in the face
E[—V f(2*)] can be described in terms of active sets.

Figure 3.1 illustrates some of the properties of exposed faces. In this case z* is in the
relative boundary of the face, so this problem is degenerate. Note that in this case (3.2) fails
because A(2*) may not be a subset of A(z) for € E'[-V f(z*)]. Finally, note that 2 — y
is orthogonal to V f(2*) whenever z and y are in £/[—V f(z*)]. This last observation holds
for any convex set Q because the mapping z — (V f(2*), z) is constant on I [—V f(2*)].

For nondegenerate problems we can show that eventually all iterates land in the relative
interior of F'[—V f(2*)]. For degenerate problems this is not possible, but we can show that
eventually all iterates land in E'[-V f(2*)]. We first prove a technical result that shows that
if {1} is any sequence that converges to a stationary point 2, and zj lands in F [-V f(z2*)],
then z¢ remains in F [~V f(2*)]. We need the following result (Theorem 4.2) of Burke and
Moré [6].



Theorem 3.1 Let f: R™ = R be continuously differentiable on the polyhedral set 2, and

let {x} be any sequence in Q that converges to a stationary point x*. Then

lim ||V f(ex)]| =0

k—+o0

if and only if there is an index ko with xy € E[=V f(2*)] for k > ko.

Theorem 3.1 is of interest because it provides a means to show that iterates land in the
exposed face E/[—V f(2)]. Note that in this result {z} can be any sequence in Q2. We now
show that if zj, lands in E[-V f(2*)], then 2§ remains in E[-V f(z*)].

Theorem 3.2 Let f: R” — R be continuously differentiable on the polyhedral set Q, and
let {x} be any sequence that converges to a stationary point x*. If x, € E'[-V f(x*)] for
k > kg, then

P [xk - oeka(xk)] S E[—Vf(x*)]

for k sufficiently large.

Proof. The proof relies on Theorem 3.1 of Burke and Moré [6], which shows that for any
sequence {dj} in R” that converges to d*

E[dy] C E[d"] (3.3)

for all k sufficiently large. If N(z) is the normal cone at z € €, the definition of the

projection operator implies that
zp — apV f(ag) — Pl — apVf(ag)] € N(P[wk — oeka(xk)]).
The definition of the exposed face shows that @ € E[d] if and only if d € N(z), and thus
Pley, — apVf(zy)] € B|—apV f(zs) + 25 — Pleg — akw(xk)ﬂ — E[dy), (3.4)

where we have defined the sequence {d;} by

n xp — Plag — oeka(ack)]'

dy = =V f(xr)
g
We now claim that Pl Y )]
T — O X — T
| A== 2 < 35

If we accept this claim, we can complete the proof by noting that, since {x;} converges to
* and 2 € E[-V f(2*)], Theorem 3.1 and inequality (3.5) show that the sequence {dj}
converges to —V f(z*). Hence, (3.3) and (3.4) imply that Pz — oV f(2y)] belongs to
E[-V f(2*)] for all k sufficiently large.
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The proof of (3.5) requires two inequalities. First note that the optimality property
(2.7) of the projected gradient Vg f implies that

—(Vf(x),0) < [IVaf()|l o],

for any feasible direction v at z. In particular,

—(Vf(x), s(e)) < IVaf(@) [ls(a)l],

where we have defined s(a) = Pz — aV f(2)] — «. Next, note that the definition of the
projection operator, (P(z) — z,y — P(z)) > 0 for any y € §, implies that

Js(@)ll®

[a%

—(Vf(z),s(a)) >
The last two displayed inequalities imply (3.5) as desired. W

We want to show that all iterates eventually stay in the exposed face F[-V f(z*)].
Theorems 2.1 and 3.1 show that if the sequence {x;} converges to z*, then xkc lands in
E [V f(2*)] for some subsequence of successful iterates. We now restrict the step s so
that the next iterate does not leave £/[—V f(2*)]. The following result makes use of the

observation that
e B[-Vf@r)], Alx) CAly) = yeB[=Vf()]
This observation follows directly from the expression (3.1) for £/[—V f(z*)].

Theorem 3.3 Let f: R" — R be continuously differentiable on the polyhedral set Q2, and let
{x} be the sequence generated by the trust region method. Assume that {By} is uniformly
bounded and that the step sy satisfies

A(zf) C A(zg + s1), k> 0. (3.6)
If {x1} converges to x*, then there is an index ko such that
zp € F[=Vf(z")], ar+sp€ F[-Vf(z")], k> ko.

Proof. Theorem 2.1 shows that there is a sequence K of successful iterates such that if
k € K, then {z§} converges to 2* and {Vqf(2¥)} converges to zero. Hence, Theorem 3.1
shows that

e € B[-Vf(z¥)), ke K.

Since every iterate in K is successful, assumption (3.6) implies that z341 = 2% + s belongs
to E[-V f(z*)]. In particular, there is an index kg such that xy, belongs to E'[-V f(z*)].
We now show that z; belongs to E'[-V f(2*)] for all £ > ko.

11



Assume that zp belongs to E/[—V f(z*)] for some k > ko. Theorem 3.2 shows that
2 € B[~V f(2*)]. Hence, assumption (3.6) on the step yields that zj, +s; € F' [~V f(2*)].
If 2441 = x, then x4 clearly belongs to E[—V f(2*)], while if 2441 = 2 + sk, then we
also have zy41 in E[-V f(2*)]. Hence, in all cases xy41 belongs to F[-V f(z*)].

We have shown that z; belongs to F [V f(z*)] for all k¥ > ko. Hence, Theorem 3.2
shows that 2§ € E[-V f(2*)], and thus assumption (3.6) on the step yields that z + sy is
in E[-Vf(z*)]. &

4 Projected Searches

The convergence theory of the trust region Newton method depends on generating the step
sy so that conditions (2.5) and (3.6) are satisfied. We determine s; by computing m + 1

minor iterates Ty 1,..., Tk m+1, Where zp 1 = xkc We require that
pi €9, A@f) CA(ery), ek — 2l < mAy, (4.1)
and that the decrease condition

@ (@r 1) < qrler ), 1<j<m, (4.2)

be satisfied. If the step is defined by s; = 2§ m41 — 2%, then (2.5) and (3.6) are satisfied.
Also note that there is no loss in generality in fixing m independent of the iteration; this only
imposes an upper bound on the number of minor iterates because we can set zj ;41 = 2y ;.

We can compute minor iterates that satisfy (4.1) and (4.2) by computing a descent

direction for the subproblem
min {gy (25, +w) : (¢;,w) =0, i € A(zg;)}- (4.3)

Given a descent direction direction wy, ; with (¢;, wy ;) = 0 for ¢ € A(zy,;), we examine g in
the ray zy ; + Bwy, ;, with 3 > 0, and use a line search to choose 3, ; so that ¢ is minimized.
The minor iterate zy ;41 = @, ; + Bk jwk,; may not be acceptable either because zy, ;41 is not
feasible or because ;41 does not satisfy the trust region constraint ||zy ;41 — 24| < Ay.
Thus, if necessary, we modify 3 ; so that both constraints are satisfied.

Instead of using a line search to determine z ;41 we can use a projected search along
the path defined by Plzy ; + Swg, ;]. The advantage of this approach is that we would be
able to add several constraints at once. For a line search we normally require a decrease
of g on the line segment [z} ;, 2k j4+1], but for a projected search we need only require a

decrease at x ;41 with respect to the base point z ;. We require that

Gk (Tr41) < qr(Tr) + pomin {(Var(wr,;), Trjy1 — Tr,), 0}, 1<j<m. (4.4)

12



Lk,2 2

.
s
A
AN
o)
/S
’
’
’
’
.

Tk,1

Figure 4.1: The minor iterates for a projected search.

In most cases we require only (4.2), but for rate of convergence results we need (4.4). For
additional details on projected searches, see Moré and Toraldo [30, Section 4].

Figure 4.1 illustrates the projected search when € is the bound-constrained set (1.2).
In this figure the iterate zj 2 has been computed and the direction wy 9 is determined that
is orthogonal to the active constraint normals. If a line search is used, the search would be
restricted to points in the ray zj 2 4+ Swy 2 that lie in the feasible region. With a projected
search, the search would continue along the piecewise linear path Plzy o+ Swy2]. In either
case, we require only that zj 3 satisfy the decrease condition (4.4).

When € is the bound-constrained set (1.2), Lescrenier [25] determines the step s; by
computing minor iterates, but he requires that the line segment azy ;41 + (1 — @)z ; be
feasible for o € [0, 1] and that

Gk (k1) < qrlawg i + (1 — a)ag ), w € [0,1]. (4.5)

This requirement can be satisfied if a line search is used to choose the minor iterates, but it
rules out the projected searches that we have proposed. Also note that assumption (4.5) on
the minor iterates is stronger than (4.2). This observation can be verified by proving that
if ¢ : R +— R is a quadratic on [0, 1] with ¢'(0) < 0, and ¢(1) < ¢(«) for « in [0, 1], then

(1) < ¢(0) + 3¢'(0) < ¢(0) + ¢'(0),
for any p € [0,3].
5 Convergence Results

We have been analyzing the trust region method under the assumption that {By} is uni-
formly bounded. We now consider a trust region version of Newton’s method so that By

is the Hessian matrix VZf(x)). The assumption that {B} is uniformly bounded is then
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satisfied if © is bounded or, more generally, if V2 f is bounded on the level set

L(zg) ={x € Q: f(z) < flzo)}.

We also assume that € is the polyhedral set (1.3).

The local convergence analysis for the trust region version of Newton’s method requires
that we assume that some subsequence of the iterates {z;} generated by the trust region
method converges to a stationary point ™ that satisfies a regularity condition. We assume

that the Hessian matrix V2 f(z*) is positive definite on the subspace
S(z*) = aff{ E[-V f(2*)] — 2™}, (5.1)

where aff{S} denotes the affine hull of the set S. Thus, we require that the Hessian matrix be
positive definite on the smallest subspace that contains ' [—V f(z*)]—2*. In the convergence

analysis we use this regularity condition in the equivalent form
(v, V2f(2")v) > &|v||?, v e S(x), k> 0. (5.2)

The strong second-order sufficiency condition (5.2) is equivalent to the standard second-
order sufficiency condition if z* is nondegenerate, but is stronger than the standard second-
order sufficiency condition for degenerate problems.

The strong second-order condition (5.2) is satisfied if V2 f(2*) is positive definite on the
subspace

{veR":(c;;v)=0, je€B(z")}, (5.3)

where B(z*) is the set of strictly binding constraints
B(z*) = {Z EL: A >0if (¢;,2") =1 and AT < 0if (¢;,27) = uZ}

Gay [23], Lescrenier [25], and Robinson [32] use this condition in their work. A disadvantage
of working with (5.3) is that B(2*) depends on the representation of € and the choice of
multipliers. On the other hand, (5.2) depends only on the geometry of 2.

Burke and Moré [6] provide additional information on the regularity condition (5.2). In
particular, they present an example where (5.2) holds but the Hessian matrix is not positive
definite on (5.3).

The strong second-order sufficiency condition simplifies considerably when €2 is the
bound-constrained set (1.2). In this case (5.2) requires that VZf(z*) be positive definite on
the subspace

S(x*) = {w ER" :w; =0, 2 € B($*)},

of vectors orthogonal to the strictly binding constraints
B(a*) = {ie A(x*) : 0; f(«™) # 0} .
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Theorem 5.1 Let f:R” — R be twice continuously differentiable on the polyhedral set €2,
and let {xp} be the sequence generated by the trust region Newton method. Assume that
V2f is bounded on the level set L(xo) and that the step sy satisfies (3.6). If {zy} has a
limit point x* that satisfies the strong second-order sufficiency condition (5.2), then {x}}

converges to x™.

Proof. We first claim that (5.2) implies that 2* is an isolated limit point of {z}}. This
claim follows by noting that (5.2) implies that 2* is an isolated stationary point, and that
every limit point of {z} is stationary.

The proof is by contradiction. If we assume that {z;} does not converge to z*, then
Lemma 4.10 of Moré and Sorensen [29] shows that when z* is an isolated limit point of

{1}, there is a subsequence K such that {x;} converges to z* for k € K, and an € > 0 with
lwktr — @kl > € kek.

In particular, ||sg|| > € for k € K. We now prove that if the sequence {wy} is defined by

kek,

then any limit point w* is a feasible direction at z*. Note that ||s;|| > € implies that
xp + 7wy belongs to Q for 7 in [0, €], and hence 2* 4 7w* also belongs to Q. This shows that
w* is a feasible direction at z*.

We now show that (V f(z*), w*) = 0. Note that requirements (2.4), (2.5), and (2.6) on

si show that if the iteration is successful, then

e —axll] 1 g, — a4l
f(zg) = f(@ra1) > Mopioko [kT] min {Am INEIED] [ kak ] } . (5.4)

Our assumptions guarantee that the Hessian matrices V2 f(z;) are bounded, and since

Iskl| < p1Ag, and |[sg]| > € for k € K, the trust region bounds Ay are bounded away from
zero. Hence, inequality (5.4) implies that

¢ _
e =l _,

lim
kel k=00 ay

Moreover, since {az} is bounded above, {||z§ — 24|} also converges to zero for k € K.

Hence, Lemma 5.1 in Burke, Moré, and Toraldo [7] implies that

li \v AN = o.
ot [IVesG]

Theorem 3.1 now shows that ¢ is in E[-V f(z*)] for k € K, and thus assumption (3.6) on
the step s implies that x + s belongs to E'[-V f(2*)] for k € K. In particular,

(Vf(@™), (zr+ sk —27)) =0, keKk.
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A computation using ||sx|| > ¢ now shows that (V f(z*), w*) = 0.
We have shown that w* is a feasible direction at z* with (V f(2*), w*) = 0. Thus, w*
belongs to S(z*), and <w*7 VQf(ac*)w*> > 0. On the other hand, ¥ (sx) < 0 implies that

Ylsell (wr, V2 fap)wr) < — (V (@), wr) -

Since {z} converges to z*, {wy} converges to w*, and ||sk|| > € for k € K, this inequality
implies that
0 < Se{w*, V2f(2")w*) < —(Vf(2*),w™) = 0.

This contradiction proves the result. B

Theorems 5.1 improves on previous convergence results for linearly-constrained opti-
mization algorithms because it does not assume strict complementarity. For recent conver-
gence results, see [19, 12, 18, 9, 16, 20, 33].

Rate of convergence results depend on showing that eventually the trust region bound
is not active. These results require additional assumptions on the step si. We assume
that the minor iterates satisfy (4.1) and the decrease condition (4.4). We now estimate the
decrease of the quadratic g if the minor iterates satisfy (4.4). The following result appears

in Moré [28], but for completeness we provide the proof.

Lemma 5.2 Assume that ¢ : R — R is twice differentiable on [0,1] and that ¢"(«) > £ on
[0,1] for some ¢ > 0. If

¢(1) < ¢(0) + e’ (0) (5.5)
for some p € (0,1), then

Proof. The mean value theorem shows that

9(1) = 9(0) + #'(0) + 59" ()
for some 6 € (0,1), and thus (5.5) implies that £¢”(6) < (1 — p)(—¢'(0)). Hence,

8(0) = () 2 W(=F'(0) 2 55758"0) 2 555

as desired. W

If we assume that the sequence {z} converges to 2*, then Theorem 3.3 guarantees that
all iterates belong to E'[—V f(2*)], and hence (4.1) shows that all the minor iterates also
belong to E[-V f(2*)]. Now define

() = g (axp jp1 + (1 — a)ag ),
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and note that the decrease condition (4.4) guarantees that

@k (@ 1) < qr(rg) + 1o(Var(@ri)s Thjr1 — Thj),

and thus (5.5) holds. Hence, if we assume that the strong second-order condition (5.2)
holds, then Lemma 5.2 implies that there is a kg > 0 such that

G (rs) = qr(Thje1) > Follwrjer — zrll. (5.6)

We need this estimate for our next result.

Theorem 5.3 Let f:R” — R be twice continuously differentiable on the polyhedral set €2,
and let {xp} be the sequence generated by the trust region Newton method. Assume that
{z1} converges to a solution z* of (1.1) that satisfies the regularity condition (5.2). If the
minor iterates satisfy (4.1) and (4.4), then there is an index ko such that all steps s with

k > ko are successful and the trust region bound Ay is bounded away from zero.

Proof. In the proof we bound |p; — 1|, where pj is defined by (2.1), and show that the
bounds converge to zero; the rules for updating Ay then show that all steps s; are ultimately

successful, and that Ay is bounded away from zero. We begin by noting that

S @+ sk) = f2r) = ¥rlse)
i (Sk)

The denominator of (5.7) is estimated by noting that (5.6) implies that the decrease gener-

pr— 1= . (5.7)

ated by sp satisfies

m
—¥r(sk) = qr (k) — qr(@k + sk) > Ko z; 2k, 41 — 2ryll* > Ko onax {ek g1 — 2rll? } -
]:
On the other hand,
m
l|skll < z; |2k j41 — gl < (m+ 1) Oglfg{“fk,ﬁl — x|}
]:

Hence, —1y.(sg) > k1|[sk]|? for k1 = ko/(m + 1)%.. We estimate the numerator of (5.7) by

noting that the mean value theorem implies that
|f(ar+sk) = fan) = nlsi)] < onllsell®, o = sup V2 F(en + Osk) = V2 a1}
0<6<1

These estimates show that |pgr — 1| < 0% /Ko, so that the our result will be established if we
show that {o}} converges to zero.

Since {x} converges to z*, the sequence {0} converges to zero if {sy} converges to
zero. Theorem 3.3 shows that z; and zx+s; belong to £/ [—V f(2*)], and thus the definition
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(5.1) implies that s; € S(2*). In particular, sy = Ps» Sk, where Ps(» is the orthogonal
projection onto S(z*). Since ¥(sg) < 0,

s, V2 f(ap)sk) < = (Vf(xr), s8)

and thus sy = Ps.,* s, and the regularity condition (5.2) imply that there is a v > 0 with
skl < vol| Psr) V f ()]

The gradient V f(z*) is orthogonal to S(z*) because (V f(z*),z) = (V f(2*), 2*) whenever
v is in B[V f(2*)], and since {1} converges to z*, this implies that {Ps,«V f(zr)}
converges to zero. Thus, the previous estimate shows that {s;p} converges to zero, as
desired. W

Lescrenier [25] proved an analogous result, but he assumed that the feasible set was
bound-constrained, that the quadratic was decreasing on the line segment [z, ;, x4 ;41], and
that the minor iterates satisfied (4.5). In particular, his result did not cover projected
searches. Qur assumptions in Theorem 5.3 are considerably weaker.

When the iterate xy is far away from the solution, the step s; is usually determined
because the trust region bound ||z ; —2|| < p1Ag is encountered during the computation of
Ty ;+1. However, as we converge, Theorem 5.3 shows that the trust region does not interfere
with the computation of the step, so that we are free to reduce ¢ further by searching the
feasible set.

We propose to compute the step s, by computing minor iterates zy ; that satisfy (4.1)
and the decrease condition (4.4). For each minor iterate z ; let the columns of Z ; form

an orthonormal basis for the subspace
Vij={weR": (¢, w)=0, i € A(zy;)}.

Given zy ;, we find an approximate minimizer of g, on xy ; + Vi ;. We require that if 2,41
is the final iterate generated according to (4.1) and (4.4), then the step sy = Zpm41 — %

satisfies
125V ) + VS (ee)sil|| < & |25,V )|, oe+ s € Q. (5.8)
We motivate these requirements by noting that if Wy, (v) = gk (25,m + Zg,mv), then
VU (0) = 2LV f(2x) + V2 (20) (@hm = 2+ Zrmo)];

where we have set 2y o = 2. Thus, the first condition in (5.8) is equivalent to finding vy ,,
such that
IV (v )| < &k (| 2,V F )|
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and setting s = Tpm — Tk + ZimVkm. In particular, Ty 41 = Tim + ZimVkm 1S @
minimizer of ¢ on xy ,, + Vi if we choose & = 0.

At first sight it is not clear that we can always find a step that satisfies (5.8) since
satisfying the first condition in (5.8) may violate the second condition. The simplest method
of generating minor iterates zj ; that guarantees (5.8) is to set xj ;41 to the minimizer of
qr on zy ; + Vi ;. With this choice s = 2y ;41 — 2y satisfies the first condition in (5.8). If
zj + si, lies in € for this choice of xj ;41, then we are done. Otherwise, we can set zj ;41
to any point in € that satisfies (4.4) and such that A(zy ;41) has at least one more active
variable. This choice guarantees that, after computing at most n minor iterates, we reach
a minor iterate with all variables active, and then (5.8) is trivially satisfied.

The procedure that we have outlined generates iterates zj ; that satisfy (4.1) and (4.4)
with A(zr ;) C A(2g,j41). The step sp = 2 41 — 2 satisfies (5.8), where Z, ,,, is defined
by #j . Geometrically this procedure searches for an approximate minimizer in the face
defined by the active set A(zy, ;), terminating if the approximate minimizer is on the relative
interior of this face; otherwise, the search continues on the lower dimensional face defined
by A($k7]‘+1).

We have already noted that the step sj is usually determined because the trust region
bound ||z ; — 2x|| < p1Ag is encountered during the computation of zy ;41. Thus, we need
only assume that the step sy satisfies (5.8) if ||sg|| < peAg for some p, < py.

Rate of convergence results when strict complementarity holds depend on the result that
A(zy) = A(z) for all k sufficiently large. This result fails without strict complementarity.

In this case the proof relies on showing that
V(x) = {w ER": {c;,w) =0, i € A(x)} C S(x*), x€E[-Vf). (5.9)

The subspace V(z) is the largest subspace contained in the tangent cone T'(z).

For the rate of convergence results we assume that the sequence {x;} generated by the
trust region Newton method converges to z*. Theorems 3.2 and 3.3 show that z; and
z¢ eventually land in E [~V f(2*)] for all & > ko. Since (4.1) guarantees that A(2%) is a
subset of A(zy, ;) for any minor iterate x ;, we also have z; ; € E/[—V f(2*)]. In particular,
Thm € I[—=V f(2*)]. We shall need this result in the proof.

Theorem 5.4 Let f:R" — R be twice continuously differentiable on the polyhedral set €2,
and let {xp} be the sequence generated by the trust region Newton method. Assume that
{z1} converges to a solution z* of (1.1) that satisfies the strong second-order sufficiency
condition (5.2). If the step sy is calculated by the algorithm outlined above, and (5.8) holds
whenever ||sk|| < pAy for some p,. < p1, then {xy} converges Q-linearly to x* when & is
sufficiently small, where

&* = limsup &.

k—+o0
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The rate of convergence is ()-superlinear when £* = 0.

Proof. We first prove that (5.9) holds. The proof begins by noting that expression (3.1)
for E[-V f(z*)] shows that if A¥ are Lagrange multipliers, then

{i:AI£0}C A(2), z€E[-Vf()].

Hence, if w € V() then (Vf(2*),w) = 0. Since any w € V(z) is a feasible direction, we
also have that 4+ aw for all « sufficiently small. Hence, (V f(2*),w) = 0 implies that
z + aw belongs to E'[—V f(z*)]. Moreover, since 2 € F/[-V f(2*)] and S(z*) is a subspace,

aw = ([w +aw — 2" — [z — x*]) € S(z%).

Hence, w € S(z*) as desired, and thus (5.9) holds.
We proved (5.9) for any z € I[—V f(2*)] because this result sheds light on the geometry

behind the rate of convergence results but for this proof we only need to show that
Vie,m C S(ac*) (5.10)

Since have already noted that 2y, € I/[—V f(2*)], (5.9) implies that (5.10) holds.

We analyze the convergence rate in terms of the projection P, = kaZT

&.m onto the

subspace Vi . Note, in particular, that since Vj ., is a subspace and Vi, C S(z¥), an

orthogonal basis for V} ,, can be extended to a basis for S(z*), and thus
IRl < | Poyell, e R, (5.11)
The main estimate needed for the rate of convergence result is obtained by noting that
1PeV f(@rg)|] < || PelV f(zrg1) = V() = V2f () sel|| + | PV f(zr) + V2 (20)s2]]|
assumption (5.8) on the step, and standard bounds yield that
1EeV f(zra) || < exllskll + &k 1BV fp)] (5.12)

for some sequence {1} converging to zero. Also note that the argument at the end of

Theorem 5.3 shows that there is a constant vy with
skl < vol| Psqr) V f ()] (5.13)

If we make use of this estimate and (5.11) in (5.12) we obtain that

lim sup EAPACTERY] < lim sup &. (5.14)
ktoo [[Pseny V@I T kotoo
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We complete the proof by estimating ||PrV f(2r41)|| and ||Pses)V f(2r)||. We first show
that

1BeV f(zrgn)|l 2 (11 = ep) lops — 27 (5.15)

for some sequence {e;} converging to zero.

The proof of (5.15) requires some preliminary results. We first show that zp4; — 2~
is in Vi, for all k sufficiently large. This follows from the definition of Vj ,, because
A(zgm) C A(zgy1) and A(zg,,) C A(z*). We also need to show that P,V f(2*) = 0. This
result follows because, as noted at the end of Theorem 5.3, V f(2*) is orthogonal to S(z*),
and since Vi, is a subspace of S(2*), we must also have V f(2*) orthogonal to Vj ,,,. In
particular, P,V f(z*) = 0. The last result that we need for the proof of (5.15) is that

|PV2f(2™) Peol] > k||oll, v € Vi- (5.16)

To prove this result, note that if v € Vj ,, then Pyv = v, and in view of (5.10), Pyv is in
E[—V f(2*)]. Hence, the regularity assumption (5.2) shows that (5.16) holds.
We now have all the ingredients to prove (5.15). Since P,V f(z*) =0,

PpV f(zhtr) = BV f (@) (@ — 27) + PelV [ (2541) = V(@) = V2 f(2%) (241 = 27)],
and thus estimates of the last term to show that
|PeV2 1) s — o) < NPV S )|+ 2ilrne — o7,

where {e} converges to zero. Since x4 — 2™ is in Vi, for all k sufficiently large, (5.16)
shows that
1PV f (™) Pr(pgr = 29| > allopgn — 27,

The last two inequalities show that (5.15) holds with vy = k.
We estimate || Ps,+)V f(x1)|| by proving that

[ Ps) VI (wp)ll < (va 4 ep)lJer — 27| (5.17)
for some sequence {1} converging to zero. Since Ps,«V f(2*) =0,
Py V[ (2r) = Pos) V2 (27) (0 = 27) + Po) [V [ (21) = V[ (27) = V2[ (@) (2 = 7)),
and thus standard estimates of the last term show that
1Psn) VI @)l < || Peary V2F (@) (@ = 27)|| + ekl — 27,
where {e} converges to zero. Since Pg» (2 — 2™) = 2, — 2™, we obtain that

[Psny V@)l < vallew — 2™l +exlloe — 2™l va = [[Paen) VAF(27) Py,
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where {1} converges to zero. This proves (5.17).
Linear and superlinear convergence rates are obtained by noting that (5.14), together
with estimates (5.15) and (5.17), show that

lim sup M < (1/_2) lim sup &, = (1/_2) £,

kotoo ||TE — %] V1) k—stoo 12

Linear convergence takes place if 15£* < vy, and superlinear convergence holds if £ = 0. B

A modification of the proof of Theorem 5.4 shows linear convergence for any £ < 1
if the vectors x; — 2* lie in a fixed subspace V of S(z*) for all k sufficiently large. This
result holds when z* is non-degenerate (strict complementarity holds at 2*) since in this
case z — 2™ belongs to V (zy) = S(z*) for all k sufficiently large.

There are several interesting variations on Theorem 5.4. Note, in particular, that the
minor iterate xy ., enters into the proof via the subspace V}, ,, and that the proof holds if P
is a projection into any subspace of S(2*) that contains ;41 — 2*. Thus we could have set
Py to the projection into V (2;41) and eliminated zj ,, from the analysis. We did not make
this simplification because with our choice of P, the minor iterate xy ., is an approximate
minimizer of q; on xy m + Vi m.

Lescrenier [25] and Facchinei and Lucidi [19] proved rate of convergence results with-
out assuming strict complementarity, but the analysis was restricted to bound-constrained
problems. Other convergence results for bound-constrained and linearly-constrained op-
timization algorithms require strict complementarity. For recent convergence results, see
[12, 18, 9, 16, 20, 33].

We can also show that quadratic convergence holds in Theorem 5.4 if we assume that

V2 f satisfies a Lipschitz condition at z*, and if
& < ko [PV (@), k>0,

for a positive constant kg. With these assumptions we can follow the proof of Theorem 5.4.

The main difference is that the inequality (5.12) can be replaced by
1PV f (@ra) | < Kllsell? + & 1PV £ ()]
where & is the Lipschitz constant, and thus (5.11) and (5.13) yield that

gAY
lim sup 1F f(96k+1)H2 < kg + Fo.
k—+oco HPs(m*)Vf(wk)H

The result now follows from estimates (5.15) and (5.17).
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6 Implementation Issues

We now provide a brief outline of the implementation issues for a trust region Newton
method for bound-constrained problems. We concentrate on discussing our choices for the
trust region bound Ay, the Cauchy step, and the subspace step.

For the initial Ay we used ||V f(z)||. This choice is appropriate in many cases, but
more sophisticated choices are possible. We update the trust region bound Ay as outlined
in Section 2. We choose 19 = 107 in the algorithm (2.2) to update the current iterate,
m = 0.25, 9, = 0.75 as the constants that determine when to increase or decrease the trust
region Ay, and o1 = 0.25, 63 = 0.5, and o3 = 4.0 as the constants that govern the update
of Ay in (2.3).

Given a step sy, we attempt to choose Apyy as af||sg||, where of is the minimum of a
quadratic that interpolates the function o — f(zy + asg). In other words, we consider the
quadratic ¢ such that

¢(0) = flzx),  ¢'(0)=(Vf(zx),sk),  o(1) = flarr),

and determine o} as the minimum of this quadratic. If ¢ does not have a minimum, we set
aj = +oo. We choose Ay as afl|sg|| if it falls in the desired interval; otherwise we set
Ap41 to the closest endpoint.

The Cauchy step sg is chosen by an iterative scheme that is guaranteed to terminate in
a finite number of steps. Recall that the Cauchy step sg is of the form si(ay), where the
function s : R — R" is defined by

sp(a) = Plag — oV f(ag)] — 2,
(0)

and oy satisfies the conditions specified in Section 2. The simplest scheme is to set a;

to a constant and then generate a sequence {oeg)} of trial values by decreasing the trial

values by a constant factor until the sufficient decrease condition (2.4) is satisfied. We use
(0)

a more sophisticated scheme. Given o), we generate a sequence {oeg)} of trial values. The

sequence can be either increasing or decreasing, but in all cases we require that
+1 l l
0‘2 ) € [ﬁlag)vﬁQO‘;)L

where 31 < 5 < 1 for a decreasing sequence, and 1 < 31 < 5 for an increasing sequence.
The decision to generate an increasing sequence or a decreasing sequence depends of the
initial 0420). If the initial 0420) fails to satisfy the sufficient decrease condition (2.4), we
decrease the trial values until (2.4) fails, and set ay to the last trial value that satisfies
(2.4). If the initial 0420) satisfies (2.4), we increase the trial values until (2.4) fails, and set
ay to the last trial value that satisfies (2.4).

(0)

We use a” = 1 on the first iteration, but on all other iterations we use agx_;. We use

o = 107% and gy = 1.0 in the sufficient decrease condition (2.4).
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The minor iterates generated in the trust region method are required to satisfy conditions
(4.1) and (4.4). We generate the step between the minor iterates along the lines specified
in Section 4, but specialized to the case of bound constraints. Specifically, we compute the

step from the trust region subproblem
min {q(z + w) :wi = 0, i € A(z), |Dwl < A},

where D is a scaling matrix. If ¢1,...,,, are the indices of the free variables, and the matrix
Z is defined as the matrix in R™*™ whose kth column is the ixth column of the identity

matrix in R™*", then this subproblem is equivalent to
min{gr(0) : [|DZ0]] < A},
where ¢ is the quadratic in the free variables defined by
4r(v) = q(x + Zv) — q(z) = 3T Av +rTo.

The matrix A and the vector r are, respectively, the reduced Hessian matrix of ¢ and
reduced gradient of ¢, at & with respect to the free variables.

Given a descent direction w for this subproblem, a projected line search guarantees that
we can determine 5 > 0 such that the next iterate x4 = P[z + fw] satisfies conditions (4.1)
and (4.4). The conditions in (4.1) are satisfied for any § > 0 provided D has a condition
number that is bounded independent of the iterate. We use ug = 1072 in the sufficient
decrease condition (4.4).

We generate the descent direction w with a preconditioned conjugate gradient method
as suggested by Steihaug [34]. The conjugate gradient iterates are generated until the trust
region is violated, a negative curvature direction is generated, or the convergence condition
(5.8) is satisfied. As noted in Section 5, this condition can be satisfied by choosing the
minor iterates so that A(zy ;) C A(xg ;41). For additional details, see the discussion in Lin
and Moré [26].

In our algorithms we choose D from an incomplete Cholesky factorization. From a the-
oretical viewpoint, the choice of D is not important, but the numerical results are strongly
dependent on the choice of D. We use the incomplete Cholesky factorization icfs of Lin
and Moré [26]. The icfs incomplete Cholesky factorization does not require the choice of a
drop tolerance. Moreover, the amount of storage used by the factorization can be specified
in advance as p - n, where p is set by the user, and n is the number of variables. In our

numerical results we use p = 5.

7 Computational Experiments

We now compare the performance of an implementation TRON (version 1.0) of the trust
region method outlined in Section 6 with the LANCELOT [14] and L-BFGS-B [36] codes. All
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computational experiments were done with the -O optimization compiler option on a Sun
UltraSPARC2 workstation with 1024 MB RAM.

LANCELOT implements Newton’s method with a trust region strategy but differs from
TRON in significant issues. In particular, LANCELOT does not use projected searches, and the
default is a banded preconditioner. The L-BFGS-B code is a limited-memory variable metric
method. An advantage of L-BFGS-B is that only the gradient is required, while Newton codes
require an approximation to the Hessian matrix. On the other hand, for sparse problems
the Hessian matrix can usually be obtained efficiently with differences of gradients if the
sparsity pattern of the Hessian matrix is provided.

Our first set of computational results uses a set of bound-constrained problems from the
CUTE collection [3]. We used the select tool to choose problems representative of problems
that arise in applications and where the number of variables n could be changed. Since
we are interested in large problems, we refined this selection by only considering problems
where the number of variables was at least 5,000. These requirements lead to a list of nine
problems, with some of the problems having more than one version.

Table 7.1 presents the results of the first set of computational experiments. LANCELOT
and L-BFGS-B were used with the default options. For LANCELOT, exact second derivatives
and a preconditioned conjugate gradient method with a banded preconditioner were used;
all other default options are shown in Table 5 of [15]. In Table 7.1 we used the LANCELOT
termination test

|Ple = V()] - o]l < 107, (7.1)

where P is the projection into the feasible set (1.2).

The first column in Table 7.1 is the name of the test problem, and the second column
is the number of variables n. For TRON and LANCELOT we record the number of Hessian
evaluations nh, function evaluations nf, and conjugate gradient iterations ncg. For L-BFGS-B
we record only the number of function and gradient evaluations nfg because L-BFGS-B always
evaluates the function and gradient at the same time. The execution time (in seconds) is
reported in the time column. In these results, all three codes obtained the same optimal
function value at the final iterate.

A general observation on the results in Table 7.1 is that the number of function evalua-
tions for TRON and LANCELOT is at most one more than the number of Hessian evaluations.
Thus, for these problems all the iterations of the Newton codes are successful. We conclude
that these problems do not fully test TRON or LANCELOT.

In analyzing our computational results we do not discuss problems where L-BFGS-B re-
quires less than 50 function and gradient evaluations. In general, we feel that if a limited-
memory variable metric algorithm converges is less than 50 function and gradient evalua-
tions on a problem with 10, 000 variables, then the starting point is exceptionally good.

An important observation on the results in Table 7.1 is that on these problems TRON
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Table 7.1: Performance on the CUTE problems: Default options

TRON LANCELOT L-BFGS-B
Problem n nh nf ncg time | nh nf ncg time | nfg time
BDEXP 5000 | 11 11 10 1.43 | 10 11 12 1.19 15 0.60
CVXBQP1 10000 2 2 0 0.24 1 2 1 0.81 2 0.08

JNLBRNG1 15625 | 26 26 33 15.22 | 24 25 2029 165.42 | 999 | 198.75
JNLBRNG?2 15625 | 16 16 27 9.21 | 14 15 898 74.16 | 577 | 105.18
JNLBRNGA 15625 | 23 23 29 1246 | 21 22 1584 117.64 | 332 54.56
JNLBRNGB 15625 | 10 10 15 5.29 419 30.71 | 999 | 160.32
MCCORMCK | 10000 6 7 6 1.46 4 1.10 15 1.76
NCVXBQP1 10000 2 2 0 0.24 0 3.01 2 0.08
NCVXBQP2 10000 | 10 10 10 1.44 84 3.35 | 178 6.85
NCVXBQP3 10000 | 10 10 10 1.39 163 2.96 | 388 14.87
NOBNDTOR 14884 | 38 38 71 2203 | 36 37 138 123.66 | 213 36.38
NONSCOMP 10000 9 9 8 1.44 1.45 51 4.24
OBSTCLAE 15625 | 27 27 51  14.48 7452 821.46 | 660 | 116.18
OBSTCLAL 15625 | 25 25 39 12.64 | 24 25 604 43.64 | 156 24.51
OBSTCLBL 15625 | 20 20 42 12,81 | 18 19 2088 199.04 | 272 49.28
OBSTCLBM 15625 8 8 15 5.41 5 6 1378 152.87 | 146 25.90
OBSTCLBU 15625 | 21 21 33 11.85 | 19 20 621 56.68 | 194 33.94
TORSION1 14884 | 39 39 64 19.85 | 37 38 1148 86.08 | 224 35.36
TORSION2 14884 | 19 19 43 11.10 | 14 15 2063 173.28 | 521 91.56
TORSION3 14884 | 20 20 26 9.06 | 19 20 332 21.13 76 10.66
TORSION4 14884 | 18 18 27 898 | 14 15 653 34.99 | 417 65.78
TORSIONS5 14884 | 11 11 12 4.67 9 10 93 5.74 40 5.06
TORSION6 14884 | 15 15 18 7.07 8 9 151 8.54 | 362 53.99
TORSIONA 14884 | 39 39 64 21.45 | 37 38 1147 98.23 | 205 37.38
TORSIONB 14884 | 24 24 50 14.54 | 15 16 1982 186.69 | 371 70.13
TORSIONC 14884 | 20 20 26 9.80 | 19 20 332 24.65 89 13.97
TORSIOND 14884 | 18 18 26 9.70 | 14 15 634 39.70 | 409 69.59
TORSIONE 14884 | 11 11 12 5.06 9 10 93 6.55 38 5.44
TORSIONF 14884 | 15 15 19 7.71 7 8 154 9.36 | 341 56.83
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requires less time than L-BFGS-B. These results support the conclusion that TRON is prefer-
able to L-BFGS-B if the Hessian matrix can be obtained explicitly. We also expect TRON to
outperform L-BFGS-B for sparse problems if the sparsity pattern of the Hessian matrix is
provided because with this information the Hessian matrix can be obtained efficiently from
differences of gradients.

The results in Table 7.1 also show that on these problems TRON requires less time than
LANCELOT and significantly fewer conjugate gradient iterations than LANCELOT. Reducing
the number of conjugate gradient iterations is important because this number is likely to
increase as the number of variables increases. We note that since for these problems the
cost of the conjugate gradient iterations is significant, fewer conjugate gradient iterations
translates into smaller computing times.

Another observation that can be made on the results of Table 7.1 is that LANCELOT
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usually requires fewer major iterations than TRON. Differences in the number of major
iterations are due, in part, to the choice of Cauchy point and the use of projected searches.
These algorithmic choices in TRON tend to add many constraints, and on some of these
problems, they lead to a larger number of major iterations. We also note that a detailed
examination of the output shows that even when both codes require the same number of
iterations, the algorithms visit different faces of the feasible set.

As a minor point, note that TRON almost always requires the same number of function
and Hessian evaluations. This is an algorithmic decision since we always evaluate the
gradient and Hessian at successful iterates. On the other hand, if an iterate satisfies the
termination criteria (7.1), LANCELOT returns without evaluating the Hessian matrix at the
final iterate.

The number of conjugate gradient iterations in LANCELOT can usually be reduced by
using other preconditioners instead of the default banded preconditioner. Other precon-
ditioners, however, usually require more memory and more floating point operations per
conjugate gradient iteration.

In Table 7.2 we present the results of using LANCELOT with Munksgaard’s ma31 pre-
conditioner [31], which is an incomplete Cholesky factorization with a drop tolerance. A
disadvantage of using the ma31l preconditioner with LANCELOT is that the memory require-
ments are unpredictable. The user is asked to allocate a given amount of memory, and
if this amount is not sufficient, then an error message is issued. On the other hand, the
incomplete Cholesky factorization icfs used in TRON does not require the choice of a drop
tolerance, and the amount of storage can be specified in advance. For the results presented
in this section icfs uses 5n additional (double precision) words. For a comparison of ma3l
with icfs, see Lin and Moré [26].

Comparison of the LANCELOT results in Table 7.1 with those in Table 7.2 show that in all
cases the number of function evaluations and Hessian evaluations for both preconditioners
are identical, and that the main difference is the number of conjugate gradient iterations.
Also note that, with the exception of problems OBSTCLBL and OBSTCLBM, the number
of conjugate gradient iterations and the time required to solve the problems with LANCELOT
decreased when the ma3l preconditioner was used. Overall, these results show that for
these problems the ma31 preconditioner is preferable in LANCELOT.

The results in Table 7.2 show that TRON requires fewer conjugate gradient iterations,
and on most problems, less time than LANCELOT with the ma31 preconditioner. Also note
that there were five problems (OBSTCLAE, OBSTCLBL, OBSTCLBM, TORSION2, and
TORSIONB) where LANCELOT required more than 1000 conjugate gradient iterations, and
that on these problems the reductions in time over the default preconditioner were not
substantial. For these problems the differences in conjugate gradient iterations are not due
to the use of different preconditioners but to the methods used by TRON and LANCELOT
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Table 7.2: Performance on the CUTE problems: LANCELOT with ma31

TRON LANCELOT (ma31)
Problem n nh nf ncg time | nh nf ncg time
BDEXP 5000 | 11 11 10 1.43 | 10 11 10 1.32
CVXBQP1 10000 2 2 0 0.24 1 2 1 0.80

JNLBRNG1 15625 | 26 26 33 15.22 | 24 25 179 28.69
JNLBRNG?2 15625 | 16 16 27 9.21 | 14 15 70 13.09
JNLBRNGA 15625 | 23 23 29 1246 | 21 22 166 24.29

JNLBRNGB 15625 | 10 10 15 5.29 8 9 46 7.56
MCCORMCK | 10000 6 7 6 1.46 4 5 4 1.41
NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.03
NCVXBQP2 10000 | 10 10 10 1.44 7 8 93 3.34
NCVXBQP3 10000 | 10 10 10 1.39 6 7 124 2.61

NOBNDTOR 14884 | 38 38 71 2203 | 36 37 176 36.61
NONSCOMP 10000 9 9 8 1.44 1.66
OBSTCLAE 15625 | 27 27 51  14.48 7154  809.04
OBSTCLAL 15625 | 25 25 39 12.64 | 24 25 79 15.62
OBSTCLBL 15625 | 20 20 42 12.81 | 22 21 2346 307.67
OBSTCLBM 15625 8 8 15 5.41 5 6 1554 213.38
OBSTCLBU 15625 | 21 21 33 11.85 | 19 20 165 22.72
TORSION1 14884 | 39 39 64 19.85 | 37 38 159 27.97
TORSION2 14884 | 19 19 43 11.10 | 14 15 1592 143.66
TORSION3 14884 | 20 20 26 9.06 | 19 20 52 9.02
TORSION4 14884 | 18 18 27 898 | 14 15 438 2591
TORSIONS5 14884 | 11 11 12 4.67 9 10 14 2.99
TORSION6 14884 | 15 15 18 7.07 8 9 116 7.46
TORSIONA 14884 | 39 39 64 21.45 | 37 38 175 31.80
TORSIONB 14884 | 24 24 50 14.54 | 15 16 1606 153.55
TORSIONC 14884 | 20 20 26 9.80 | 19 20 52 9.76
TORSIOND 14884 | 18 18 26 9.70 | 14 15 445 29.13
TORSIONE 14884 | 11 11 12 5.06 9 10 13 3.27
TORSIONF 14884 | 15 15 19 7.71 7 8 107 7.46
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to compute the minor iterates. LANCELOT uses a line search, and thus only one constraint
is added at each minor iteration. As a result many minor iterates can be generated, and
determining a minor iterate almost certainly requires at least one conjugate gradient iter-
ation. For these five problems LANCELOT generated, respectively, 7155, 1710, 1184, 1533,
and 1541 minor iterates. TRON, on the other hand, uses a projected search and is thus able
to add many constraints at each minor iteration. For these problems TRON generated 27,
26, 10, 19, and 24 minor iterates.

These results support the conclusion that TRON tends to require significantly fewer minor
iterations than LANCELOT. Moreover, the use of projected searches is the major reason for
TRON requiring a small number of minor iterates.

General conclusions cannot be drawn from these results because, as already noted, this

problem set does not fully test these algorithms. Our numerical results are also affected
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by non-algorithmic differences between TRON and LANCELOT. We have already noted that
these codes differ in the amount of memory required, but TRON and LANCELOT differ in other
ways. For example, LANCELOT uses the partial separability structure, while TRON only uses

the sparsity structure.

Table 7.3: Parameters for the MINPACK-2 test problems.

Problem n Ne Ny A l U

EPT1 10000 200 50 1.0d0  default default
EPT2 10000 200 50 5.0d0  default default
EPT3 10000 200 50 10.0d0  default default

PJB1 10000 100 100 0.1d0  default 1.0d2
PJB2 10000 100 100 0.5d0  default 1.0d2
PJIB3 10000 100 100 0.9d0  default 1.0d2

MSA1 10000 200 50 0.0d0 -0.4d0 0.4d0
MSA2 10000 200 50 0.0d0 -0.2do 0.2d0
MSA3 10000 200 50 0.0d0 -0.1do 0.1do

SSC1 10000 100 100 5.0d0 1.0d-1 1.0d0
SSC2 10000 100 100 5.0d0 1.0d-2 1.0d0
SSC3 10000 100 100 5.0d0 1.0d-3 1.0d0
SSC4 10000 100 100 5.0d0 1.0d-4 1.0d0

DGL2 10000 50 50 2.0d0  -1.0d20  1.0d20

We also compared TRON with L-BFGS-B on a test set drawn from the MINPACK-2 collec-
tion of large-scale problems [1]. The MINPACK-2 problems defined by Table 7.3 are finite-
dimensional approximation of an infinite-dimensional variational problem defined over a
grid with n, and n, grid points in each coordinate direction. The column labeled A in
Table 7.3 defines the value of a parameter associated with the problem, while the last two
columns define the lower and upper bounds on the variables. For these results we used the

termination test
IVaf(@)ll2 <1077V f(xo)]l2, (7.2)
where Vg f is the projected gradient (2.8). This termination test is generally preferable to

(7.1) because (7.2) is invariant to changes in the scale of f.

The number of grid points n, and n, and the parameter A can be easily modified in the
MINPACK-2 problems, thereby providing a convenient means to generate difficult problems.
In general, the problems become more difficult as the ratio n,/n, deviates from unity. We
have restricted the testing to problems where this ratio lies in the interval [0.25, 1], which
leads to relatively easy problems. In some cases, the choice of A, and of lower and upper
bounds also affects the performance of optimization algorithms.

In the first two problems in Table 7.4 we examine the behavior of TRON and L-BFGS-B as
A changes. For problem EPT (elastic-plastic torsion) the parameter X is the force constant,
and for this problem the number of active constraints increases as A increases. The results in

Table 7.4 show that EPT becomes easier to solve as A increases. This finding is reasonable
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because the EPT problem tends to be increasingly linear as A increases. The results for
problem PJB (pressure in a journal bearing) show that this problem becomes increasingly
harder to solve as A approaches unity. For this problem A is the eccentricity of the journal

bearing, so this result is reasonable.

Table 7.4: Performance on the MINPACK-2 problems with n = 10, 000.
TRON L-BFGS-B

Problem | nh nf ncg  time nfg time
EPT1 30 30 96 9.38 466 35.17
EPT?2 31 31 61 7.69 445 27.81
EPT3 21 21 31 4.06 229 10.66

PJB1 22 22 42 5.92 717 49.25
PJB2 13 13 29 3.38 542 31.29
PJIB3 7 7 17 1.76 | 2765 150.91

MSA1 27 48 94 19.06 776 65.35
MSA2 16 22 65 10.47 613 50.50
MSA3 19 19 48 9.89 487 39.79

SSC1 5 5 23 3.28 347 36.32
SSC2 6 6 25 4.11 345 36.83
SSC3 6 6 26 3.96 377 40.26
SSC4 6 6 26 3.99 293 30.91
GL2 8 8 364 34.73 | 3521 372.89

In problems MSA and SSC we examine the behavior of TRON and L-BFGS-B as the lower
and upper bounds [ and u change. The results of this testing were somewhat disappointing
because for these problems there does not seem to be a strong correlation between the
choice of bounds and the number of iterations. The most dramatic change in performance
occurs for L-BFGS-B and the MSA problem. Note, on the other hand, that the performance
of TRON is relatively insensitive to the choice of bounds.

Problem GL2 is unconstrained but is included in these results because it is a hard
problem for algorithms that do not use second-order information. The reason seems to be
that the GL2 problem has a saddle point that attracts L-BFGS-B.

The most striking feature of the results in Table 7.4 is that TRON requires far fewer func-
tion and gradient evaluations than L-BFGS-B and that this translates into smaller computing
times. This advantage is likely to increase as the number of variables increases because
the number of iterations in a Newton method tends to grow slowly, while the number of
iterations in limited-memory variable metric methods tends to grow rapidly as the number

of variables increases. See, for example, the results of Bouaricha, Moré, and Wu [4].
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