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Newton's Method for Large Bound-Constrained Optimization ProblemsChih-Jen Lin� and Jorge J. Mor�eyAbstractWe analyze a trust region version of Newton's method for bound-constrained prob-lems. Our approach relies on the geometry of the feasible set, not on the particular repre-sentation in terms of constraints. The convergence theory holds for linearly-constrainedproblems, and yields global and superlinear convergence without assuming neither strictcomplementarity nor linear independence of the active constraints. We also show thatthe convergence theory leads to an e�cient implementation for large bound-constrainedproblems.1 IntroductionWe analyze a trust region version of Newton's method for the optimization problemmin ff(x) : x 2 
g ; (1.1)where f : Rn ! R is a continuously di�erentiable mapping on the bound-constrained set
 = fx 2 Rn : l � x � ug: (1.2)Our analysis relies on the geometry of 
 and applies, without change, to the case where 
is the linearly-constrained set
 = nx 2 Rn : li � hci; xi � ui; i 2 Io: (1.3)The convergence theory yields results that are independent of the representation of 
 interms of constraints; in particular, we assume neither strict complementarity (nonzero mul-tipliers) nor linear independence of the active constraints.Our main interest is in algorithms for large optimization problems so the convergencetheory that we develop emphasizes algorithms that use iterative techniques to solve the trustregion subproblem, while retaining superlinear convergence of the trust region method. Weshow, in particular, how the convergence theory leads to an e�cient implementation ofNewton's method when the feasible set 
 is the bound-constrained set (1.2).This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.�Department of Computer Science and Information Engineering, National Taiwan University, Taipei,Taiwan (cjlin@csie.ntu.edu.tw). Work supported by in part by the National Science Council of Taiwangrant NSC-88-2213-E-002-097 and the National Science Foundation grant CCR-9321550.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439 (more@mcs.anl.gov). 1



Our development of a convergence theory for Newton's method yields three main results.We �rst establish global convergence to a stationary point; that is, if fxkg is the sequencegenerated by the trust region method, then every limit point of the sequence is a stationarypoint for problem (1.1). We then establish the identi�cation properties of the algorithm byshowing that if fxkg converges to some x�, then there is an integer k0 such that xk landsin the face exposed by �rf(x�) for all k � k0. Finally, we establish the local convergenceproperties of the algorithm. The main result shows that if a strong second-order su�ciencycondition holds at a limit point x� of the trust region iterates, then the whole sequence fxkgconverges to x� at a superlinear rate.Global and superlinear convergence for linearly-constrained problems has been estab-lished, in almost all cases, under the assumption of strict complementarity. Moreover, thealgorithms that have been analyzed usually require the exact solution of systems of linearequations. See, for example, [2, 22, 33, 18] for algorithms that use �-active constraints,[23, 20] for active set methods, [13, 25, 12, 21] for trust region methods, and [9, 16, 11, 10]for interior-point methods. In recent work Heinkenschloss, Ulbrich, and Ulbrich [24] ana-lyzed an interior-point method without assuming strict complementarity, but proved onlylocal convergence.Lescrenier [25] and Facchinei and Lucidi [19] analyze algorithms for bound-constrainedproblems that are shown to be superlinearly convergent without assuming strict comple-mentarity. Lescrenier analyses the trust region method of Conn, Gould, and Toint [13].Facchinei and Lucidi analyze a line search algorithm based on a di�erentiable exact penaltyfunction that, unlike the algorithms for bound-constrained problems that we have reviewed,generates iterates that need not be feasible.We analyze a trust region method for the linearly-constrained optimization problem(1.3) based on the convergence theory of Mor�e [27] and Burke, Mor�e, and Toraldo [7].The analysis relies on the geometric approach of Burke and Mor�e [6] for general linearly-constrained problems. We use projected searches [30] during the subspace minimizationphase, and thus we are able to add many constraints during this phase. We show thatglobal and superlinear convergence holds even if strict complementarity fails for the generallinearly-constrained optimization problem (1.3).The convergence theory for trust region methods presented in Section 2 depends onthe de�nition of the Cauchy step sCk . The main result in this section shows that globalconvergence to a stationary point is guaranteed if the step sk in the trust region methodachieves a fraction of the reduction achieved by the Cauchy step.The standard development of identi�cation properties for optimization algorithm showsthat the active set settles down if the iterates converge to a stationary point x�. Thisapproach is not possible if strict complementarity does not hold at x�. In Section 3 we showthat the sequence generated by the trust region method is trapped by the face exposed by2



�rf(x�); Section 3 provides a precise de�nition of the face of a convex set exposed by avector. If strict complementarity holds at x�, this result implies that the active set settlesdown.In Section 3 we also explore the concept of strict complementarity and its relationshipto the concept of an exposed face. In this paper we use the term nondegenerate stationarypoint x� if strict complementarity holds at x� or, equivalently, if x� is in the relative interiorof the face exposed by �rf(x�).Section 4 de�nes the projected searches that are used to explore the current face of thefeasible set. Projected searches are an important ingredient of the optimization algorithmbecause they allow wider latitude in the choice of the next iterate. In particular, the activeconstraints are allowed to change arbitrarily, while requiring only the approximate solutionof a linear system.Section 5 contains the major convergence results for the trust region Newton's method.We show that if a strong second-order su�ciency condition holds at a limit point x� ofthe trust region iterates, then the whole sequence fxkg converges to x�. Previous resultsassumed strict complementarity, and that the problem was bound-constrained. We alsoshow that if the sequence fxkg converges to x�, then the rate of convergence is at leastsuperlinear.Section 6 briey outlines the implementation of TRON (version 1.0), a trust region New-ton method for bound-constrained problems. Interesting features of this implementationinclude the use of projected searches and a preconditioned conjugate gradient method todetermine the minor iterates, and the use of a limited-memory preconditioner. We use theincomplete Cholesky factorization icfs of Lin and Mor�e [26] as a preconditioner since thisfactorization does not require the choice of a drop tolerance, and the amount of storage canbe speci�ed in advance.Section 7 presents the results of a comparison between TRON and the LANCELOT [14]and L-BFGS-B [36] codes. These results show that on the problems described in this section,TRON is generally more e�cient, in terms of computing time, than LANCELOT and L-BFGS-B.Caution must be exercized in drawing conclusion from these results since, as noted inSection 7, there are many di�erences between TRON and LANCELOT.2 Trust Region MethodsIn this section we present a trust region method for the solution of optimization problemssubject to linear constraints, but we emphasize the case where 
 is the bound-constrainedset (1.2). The algorithm that we present was proposed by Mor�e [27] as a modi�cation ofthe algorithm of Toint [35]. The development in this section follows Mor�e [27] and Burke,Mor�e, and Toraldo [7].At each iteration of a trust region method there is an approximation xk 2 
 to the3



solution, a bound �k, and a model  k : Rn ! R of the possible reduction f(xk+w)�f(xk)for kwk � �k. We assume that the model  k is the quadratic k(w) = hrf(xk); wi+ 12hw;Bkwifor some symmetric matrix Bk. The matrix Bk is arbitrary for many of the results, butthe rate of convergence results usually requires that Bk be the Hessian matrix r2f(xk). Ofcourse, it is possible to choose Bk = 0, and then the model is linear.The description of the algorithm in terms of the quadratic  k is appropriate when weare interested in the step sk. However, we also use the quadraticqk(x) =  k(x� xk) = hrf(xk); x� xki+ 12hx� xk; Bk(x� xk)ito describe the algorithm in terms of the iterates xk.The iterate xk and the bound �k are updated according to rules that are standard intrust region methods for unconstrained minimization. Given a step sk such that xk+sk 2 
and  k(sk) < 0, these rules depend on the ratio�k = f(xk + sk)� f(xk) k(sk) (2.1)of the actual reduction in the function to the predicted reduction in the model. Since thestep sk is chosen so that  k(sk) < 0, a step with �k > 0 yields a reduction in the function.Given �0 > 0, the iterate xk is updated by settingxk+1 = � xk + sk if �k > �0xk if �k � �0: (2.2)Any step sk with �k > �0 is successful ; otherwise the step in unsuccessful. Under suitableconditions, all steps (iterations) are eventually successful.Updating rules for �k depend on positive constants �1 and �2 such that �1 < �2 < 1,while the rate at which �k is updated depends on positive constants �1; �2, and �3 suchthat �1 < �2 < 1 < �3. The trust region bound �k is updated by setting�k+1 2 [�1minfkskk;�kg; �2�k] if �k � �1�k+1 2 [�1�k; �3�k] if �k 2 (�1; �2)�k+1 2 [�k; �3�k] if �k � �2: (2.3)Similar rules are used in most modern trust region methods.We choose a step sk that gives as much reduction in the model  k as the Cauchy stepsCk generated by the gradient projection method applied to the subproblemmin f k(w) : xk + w 2 
; kwk � �kg :4



The Cauchy step sCk is of the form sk(�k), where the function sk : R 7! Rn is de�ned bysk(�) = P [xk � �rf(xk)]� xk ;where P : Rn 7! 
 is the projection into the feasible set 
. If 
 is the bound-constrainedset (1.2), then the projection can be computed with at most 2n comparisons byP (x) = mid (l; x; u) ;where mid(�) is the componentwise median (middle) of the three vectors in the argument.The trust region method that we describe can be implemented e�ciently if there is ane�cient algorithm for computing the projection P .The scalar �k that determines the Cauchy step sCk is chosen so that sk(�k) produces asu�cient reduction. We require that k(sk(�k)) � �0 hrf(xk); sk(�k)i ; ksk(�k)k � �1�k; (2.4)for positive constants �0 and �1 such that �0 < 12 . We also require that there are positiveconstants 1, 2, and 3 such that�k 2 [1; 3] or �k 2 [2e�k; 3];where e�k > 0 satis�es k(sk(e�k)) � (1� �0) hrf(xk); sk(e�k)i or ksk(e�k)k � �1�k :The requirements on the Cauchy step sCk can be satis�ed [27, 7] with a �nite number ofevaluations of  k. For additional details, see Section 6.We have described the requirements on the Cauchy step sCk in terms of the quadratic k, but we could also use qk . In particular,qk(xk + sCk ) � qk(xk) + �0 
rqk(xk); sCk �is the su�cient reduction condition (2.4).Given the Cauchy step sCk , we require that the step sk satisfy k(sk) � �0 k(sCk ); kskk � �1�k ; xk + sk 2 
: (2.5)This requirement is quite natural and can always be satis�ed by choosing sk = sCk . However,this choice is likely to lead to slow convergence, because the method would then reduce toa version of steepest descent. In the next section we explore other choices that lead tosuperlinear and quadratic convergence.Algorithm 2.1 summarizes the computations required to implement the trust regionmethod. We assume that f : Rn 7! R is continuously di�erentiable on 
 and that a �0 > 0has been speci�ed. 5



For k = 0; : : : ;Compute the model  k.Compute the Cauchy step sCk .Compute a step sk that satis�es (2.5).Compute the ratio �k and update xk by (2.2).Update �k according to (2.3).Algorithm 2.1: Major computational steps in a trust region method.Burke, Mor�e, and Toraldo [7] analyzed the trust region method of Algorithm 2.1 interms of the Cauchy point xCk � P [xk + �krf(xk)] = xk + sCk :Convergence results depend on a bound on the predicted decrease for the quadratic  k.This bound is based on the inequality� 
rf(xk); sCk � � �0 �kxCk � xkk�k �min��k ; 1kBkk �kxCk � xkk�k � ;� (2.6)where �0 is a positive constant. This bound was obtained by Mor�e [27]. Other boundsobtained for problems with bound constraints and, more generally, convex constraints [13,35, 12] do not yield the same information because they are not expressed in terms of theCauchy point.The choice of sCk is an important ingredient in the trust region method. Our choice ofsCk is simple and can be implemented e�ciently provided there is an e�cient algorithm forcomputing the projection P . For other choices, see [13, 35, 12].Many of the convergence results in Burke, Mor�e, and Toraldo [7] are expressed in termsof the projected gradientr
f (x) � PT (x) [�rf(x)] = argminfkv +rf(x)k : v 2 T (x)g;where the tangent cone T (x) is the closure of the cone of all feasible directions at x 2 
, and
 is a general convex set. The term projected gradient is not entirely appropriate. Indeed,since min fhrf(x); vi : v 2 T (x); kvk � 1g = �kr
f (x)k; (2.7)it might be more appropriate to call r
f(x) the projected steepest descent direction. Theoptimality property (2.7) follows from the properties of the projection on convex cones;Calamai and Mor�e [8] provide a direct proof of (2.7).The projected gradient should not be confused with the reduced gradient. When 
 isthe bound-constrained set (1.2), the reduced gradient is the vector with components @if(x)6



if li < xi < ui, while for the projected gradient�[r
f(x)]i = 8<: @if(x) if xi 2 (li; ui)minf@if(x); 0g if xi = limaxf@if(x); 0g if xi = ui (2.8)if li < ui, with [r
f(x)]i = 0 in the exceptional case where li = ui. The appearance of theminus sign in this expression for the projected gradient is only a minor nuisance because inour work we need only an expression for kr
f(x)k.The projected gradient r
f can be used to characterize stationary points because if 
is a convex set, then x 2 
 is a stationary point of problem (1.1) if and only if r
f(x) = 0.In general, r
f is discontinuous, but as proved by Calamai and Mor�e [8], if f : Rn ! R iscontinuously di�erentiable on 
, then the mapping x 7! kr
f (x)k is lower semicontinuouson 
. This property implies that if fxkg is a sequence in 
 that converges to x�, and iffr
f(xk)g converges to zero, then x� is a stationary point of problem (1.1). In Section 3we show that the continuity properties of the projected gradient are closely associated withthe behavior of the optimization algorithm.Theorem 2.1 Let f : Rn 7! R be continuously di�erentiable on a closed, convex set 
,and let fxkg be the sequence generated by the trust region method. Assume that fBkg isuniformly bounded. If x� is a limit point of fxkg then there is a subsequence fxkig ofsuccessful steps that converges to x� withlimi!1 kr
f(xCki)k = 0: (2.9)Moreover, fxCkig also converges to x�, and thus x� is a stationary point for problem (1.1).This result is due to Burke, Mor�e, and Toraldo [7, Theorem 5.5]. Similar convergenceresults for bound-constrained and linearly-constrained optimization algorithms assert thatevery limit point of the algorithm is stationary, but do not yield any information on theprojected gradient; in Sections 3 and 5 we show that (2.9) in Theorem 2.1 plays an importantrole in the convergence analysis. For a sampling of recent convergence results, see [12, 18,9, 16, 20, 33].3 Exposing ConstraintsIdenti�cation properties are an important component of the convergence analysis of analgorithm for linearly-constrained problems. We show that if x� is a stationary point and
 is the polyhedral set (1.3), then the iterates fxkg generated by the trust region methodtend to lie in the face exposed by the direction �rf(x�).7



The notion of an exposed face arises in convex analysis, where the face of a convex set
 exposed by the vector d 2 Rn isE[d] � argmaxfx 2 
 : hd; xig :A short computation shows that when g
 = [l; u] is the bound-constrained set (1.2) andd = �rf(x�), thenE [�rf(x�)] = nx 2 [l; u] : xi = li if @if(x�) > 0 and xi = ui if @if(x�) < 0ois the face of (1.2) exposed by the direction �rf(x�). A similar expression holds if 
 isthe polyhedral set de�ned by (1.3). If x� is a stationary point of the optimization problem(1.1), then there are Lagrange multipliers such thatrf(x�) = Xi2A(x�)��i ci;where ��i is unrestricted in sign if li = ui, but��i � 0 if hci; x�i = li; ��i � 0 if hci; x�i = ui;and A(x) is the set of active constraints at x 2 
 de�ned byA(x) = ni 2 I : hci; xi 2 fli; uigo:This de�nition of the active set does not distinguish between lower and upper bounds, andthus we need to interpret the inclusion A(x) � A(y) to meanAl(x) � Al(y); Au(x) � Au(y);where Al(x) = ni 2 I : hci; xi = lio; Au(x) = ni 2 I : hci; xi = uio:With this interpretation, if hci; xi = li and A(x) � A(y), then hci; yi = li. For most resultswe only need to know that hci; xi 2 fli; uig, and then the �rst de�nition of the active set issuitable.The face exposed by �rf(x�) is determined by the nonzero multipliers. Indeed, acomputation based on the de�nition of a face shows thatE [�rf(x�)] = nx 2 
 : hci; xi = li if ��i > 0 and hci; xi = ui if ��i < 0o: (3.1)Note that this expression for E [�rf(x�)] is valid for any choice of Lagrange multipliers.Burke and Mor�e [6] provide additional information on exposed faces. In particular, theynote that for 
 convex, x� is a stationary point for the optimization problem (1.1) if andonly if x� 2 E [�rf(x�)]. 8



�rf(x�)
Figure 3.1: The exposed face E [�rf(x�)] for a degenerate problem.Dunn [17] de�nes x� to be a nondegenerate stationary point if �rf(x�) lies in therelative interior of the normal coneN(x�) = fu 2 Rn : hu; y � x�i � 0; y 2 
g :Burke and Mor�e [6] relate nondegeneracy to the geometry of E [�rf(x�)] by proving that x�is nondegenerate if and only if x� lies in the relative interior of the face E [�rf(x�)]. Thesetwo de�nitions rely only on the geometry of 
. If 
 is expressed in terms of constraints,then nondegeneracy can be shown [5] to be equivalent to the existence of a set of nonzeroLagrange multipliers. Thus, a stationary point x� is nondegenerate as de�ned by Dunn [17]if and only if strict complementarity holds at x�. We can also show [6, Theorem 5.3] thatx 2 E [�rf(x�)] () A(x�) � A(x) (3.2)whenever x� is nondegenerate. Thus, for nondegenerate problems, landing in the faceE [�rf(x�)] can be described in terms of active sets.Figure 3.1 illustrates some of the properties of exposed faces. In this case x� is in therelative boundary of the face, so this problem is degenerate. Note that in this case (3.2) failsbecause A(x�) may not be a subset of A(x) for x 2 E [�rf(x�)]. Finally, note that x � yis orthogonal to rf(x�) whenever x and y are in E [�rf(x�)]. This last observation holdsfor any convex set 
 because the mapping x 7! hrf(x�); xi is constant on E [�rf(x�)].For nondegenerate problems we can show that eventually all iterates land in the relativeinterior of E [�rf(x�)]. For degenerate problems this is not possible, but we can show thateventually all iterates land in E [�rf(x�)]. We �rst prove a technical result that shows thatif fxkg is any sequence that converges to a stationary point x�, and xk lands in E [�rf(x�)],then xCk remains in E [�rf(x�)]. We need the following result (Theorem 4.2) of Burke andMor�e [6]. 9



Theorem 3.1 Let f : Rn 7! R be continuously di�erentiable on the polyhedral set 
, andlet fxkg be any sequence in 
 that converges to a stationary point x�. Thenlimk!+1 kr
f(xk)k = 0if and only if there is an index k0 with xk 2 E [�rf(x�)] for k � k0.Theorem 3.1 is of interest because it provides a means to show that iterates land in theexposed face E [�rf(x�)]. Note that in this result fxkg can be any sequence in 
. We nowshow that if xk lands in E [�rf(x�)], then xCk remains in E [�rf(x�)].Theorem 3.2 Let f : Rn 7! R be continuously di�erentiable on the polyhedral set 
, andlet fxkg be any sequence that converges to a stationary point x�. If xk 2 E [�rf(x�)] fork � k0, then P [xk � �krf(xk)] 2 E [�rf(x�)]for k su�ciently large.Proof. The proof relies on Theorem 3.1 of Burke and Mor�e [6], which shows that for anysequence fdkg in Rn that converges to d�E[dk] � E[d�] (3.3)for all k su�ciently large. If N(x) is the normal cone at x 2 
, the de�nition of theprojection operator implies thatxk � �krf(xk)� P [xk � �krf(xk)] 2 N�P [xk � �krf(xk)]�:The de�nition of the exposed face shows that x 2 E[d] if and only if d 2 N(x), and thusP [xk � �krf(xk)] 2 Eh��krf(xk) + xk � P [xk � �krf(xk)]i = E[dk]; (3.4)where we have de�ned the sequence fdkg bydk = �rf(xk) + xk � P [xk � �krf(xk)]�k :We now claim that P [xk � �krf(xk)]� xk�k  � kr
f(xk)k: (3.5)If we accept this claim, we can complete the proof by noting that, since fxkg converges tox� and xk 2 E [�rf(x�)], Theorem 3.1 and inequality (3.5) show that the sequence fdkgconverges to �rf(x�). Hence, (3.3) and (3.4) imply that P [xk � �krf(xk)] belongs toE [�rf(x�)] for all k su�ciently large. 10



The proof of (3.5) requires two inequalities. First note that the optimality property(2.7) of the projected gradient r
f implies that�hrf(x); vi � kr
f(x)k kvk;for any feasible direction v at x. In particular,�hrf(x); s(�)i � kr
f(x)k ks(�)k;where we have de�ned s(�) = P [x � �rf(x)] � x. Next, note that the de�nition of theprojection operator, hP (x)� x; y � P (x)i � 0 for any y 2 
, implies that�hrf(x); s(�)i � ks(�)k2� :The last two displayed inequalities imply (3.5) as desired. �We want to show that all iterates eventually stay in the exposed face E [�rf(x�)].Theorems 2.1 and 3.1 show that if the sequence fxkg converges to x�, then xCk lands inE [�rf(x�)] for some subsequence of successful iterates. We now restrict the step sk sothat the next iterate does not leave E [�rf(x�)]. The following result makes use of theobservation thatx 2 E [�rf(x�)]; A(x) � A(y) =) y 2 E [�rf(x�)]:This observation follows directly from the expression (3.1) for E [�rf(x�)].Theorem 3.3 Let f : Rn 7! R be continuously di�erentiable on the polyhedral set 
, and letfxkg be the sequence generated by the trust region method. Assume that fBkg is uniformlybounded and that the step sk satis�esA(xCk ) � A(xk + sk); k � 0: (3.6)If fxkg converges to x�, then there is an index k0 such thatxk 2 E [�rf(x�)]; xk + sk 2 E [�rf(x�)]; k � k0:Proof. Theorem 2.1 shows that there is a sequence K of successful iterates such that ifk 2 K, then fxCk g converges to x� and fr
f(xCk )g converges to zero. Hence, Theorem 3.1shows that xCk 2 E [�rf(x�)]; k 2 K:Since every iterate in K is successful, assumption (3.6) implies that xk+1 = xk + sk belongsto E [�rf(x�)]. In particular, there is an index k0 such that xk0 belongs to E [�rf(x�)].We now show that xk belongs to E [�rf(x�)] for all k � k0.11



Assume that xk belongs to E [�rf(x�)] for some k � k0. Theorem 3.2 shows thatxCk 2 E [�rf(x�)]. Hence, assumption (3.6) on the step yields that xk+ sk 2 E [�rf(x�)].If xk+1 = xk , then xk+1 clearly belongs to E [�rf(x�)], while if xk+1 = xk + sk , then wealso have xk+1 in E [�rf(x�)]. Hence, in all cases xk+1 belongs to E [�rf(x�)].We have shown that xk belongs to E [�rf(x�)] for all k � k0. Hence, Theorem 3.2shows that xCk 2 E [�rf(x�)], and thus assumption (3.6) on the step yields that xk + sk isin E [�rf(x�)]. �4 Projected SearchesThe convergence theory of the trust region Newton method depends on generating the stepsk so that conditions (2.5) and (3.6) are satis�ed. We determine sk by computing m + 1minor iterates xk;1; : : : ; xk;m+1, where xk;1 = xCk . We require thatxk;j 2 
; A(xCk ) � A(xk;j); kxk;j � xkk � �1�k; (4.1)and that the decrease conditionqk(xk;j+1) � qk(xk;j); 1 � j � m; (4.2)be satis�ed. If the step is de�ned by sk = xk;m+1 � xk , then (2.5) and (3.6) are satis�ed.Also note that there is no loss in generality in �xingm independent of the iteration; this onlyimposes an upper bound on the number of minor iterates because we can set xk;j+1 = xk;j .We can compute minor iterates that satisfy (4.1) and (4.2) by computing a descentdirection for the subproblemmin fqk(xk;j + w) : hci; wi = 0; i 2 A(xk;j)g : (4.3)Given a descent direction direction wk;j with hci; wk;ji = 0 for i 2 A(xk;j), we examine qk inthe ray xk;j+�wk;j , with � � 0, and use a line search to choose �k;j so that qk is minimized.The minor iterate xk;j+1 = xk;j+�k;jwk;j may not be acceptable either because xk;j+1 is notfeasible or because xk;j+1 does not satisfy the trust region constraint kxk;j+1 � xkk � �k.Thus, if necessary, we modify �k;j so that both constraints are satis�ed.Instead of using a line search to determine xk;j+1 we can use a projected search alongthe path de�ned by P [xk;j + �wk;j ]. The advantage of this approach is that we would beable to add several constraints at once. For a line search we normally require a decreaseof qk on the line segment [xk;j ; xk;j+1], but for a projected search we need only require adecrease at xk;j+1 with respect to the base point xk;j . We require thatqk(xk;j+1) � qk(xk;j) + �0min fhrqk(xk;j); xk;j+1 � xk;ji; 0g ; 1 � j � m: (4.4)12



xk;1 xk;2 wk;2Figure 4.1: The minor iterates for a projected search.In most cases we require only (4.2), but for rate of convergence results we need (4.4). Foradditional details on projected searches, see Mor�e and Toraldo [30, Section 4].Figure 4.1 illustrates the projected search when 
 is the bound-constrained set (1.2).In this �gure the iterate xk;2 has been computed and the direction wk;2 is determined thatis orthogonal to the active constraint normals. If a line search is used, the search would berestricted to points in the ray xk;2 + �wk;2 that lie in the feasible region. With a projectedsearch, the search would continue along the piecewise linear path P [xk;2+ �wk;2]. In eithercase, we require only that xk;3 satisfy the decrease condition (4.4).When 
 is the bound-constrained set (1.2), Lescrenier [25] determines the step sk bycomputing minor iterates, but he requires that the line segment �xk;j+1 + (1 � �)xk;j befeasible for � 2 [0; 1] and thatqk(xk;j+1) � qk(�xk;j+1 + (1� �)xk;j); � 2 [0; 1]: (4.5)This requirement can be satis�ed if a line search is used to choose the minor iterates, but itrules out the projected searches that we have proposed. Also note that assumption (4.5) onthe minor iterates is stronger than (4.2). This observation can be veri�ed by proving thatif � : R 7! R is a quadratic on [0; 1] with �0(0) < 0, and �(1) � �(�) for � in [0; 1], then�(1) � �(0) + 12�0(0) � �(0) + ��0(0);for any � 2 [0; 12 ].5 Convergence ResultsWe have been analyzing the trust region method under the assumption that fBkg is uni-formly bounded. We now consider a trust region version of Newton's method so that Bkis the Hessian matrix r2f(xk). The assumption that fBkg is uniformly bounded is then13



satis�ed if 
 is bounded or, more generally, if r2f is bounded on the level setL(x0) � fx 2 
 : f(x) � f(x0)g :We also assume that 
 is the polyhedral set (1.3).The local convergence analysis for the trust region version of Newton's method requiresthat we assume that some subsequence of the iterates fxkg generated by the trust regionmethod converges to a stationary point x� that satis�es a regularity condition. We assumethat the Hessian matrix r2f(x�) is positive de�nite on the subspaceS(x�) = a�fE [�rf(x�)]� x�g; (5.1)where a�fSg denotes the a�ne hull of the set S. Thus, we require that the Hessian matrix bepositive de�nite on the smallest subspace that contains E [�rf(x�)]�x�. In the convergenceanalysis we use this regularity condition in the equivalent form
v;r2f(x�)v� � �kvk2; v 2 S(x�); � > 0: (5.2)The strong second-order su�ciency condition (5.2) is equivalent to the standard second-order su�ciency condition if x� is nondegenerate, but is stronger than the standard second-order su�ciency condition for degenerate problems.The strong second-order condition (5.2) is satis�ed if r2f(x�) is positive de�nite on thesubspace fv 2 Rn : hcj; vi = 0; j 2 B(x�)g ; (5.3)where B(x�) is the set of strictly binding constraintsB(x�) = ni 2 I : ��i > 0 if hci; x�i = li and ��i < 0 if hci; x�i = uio:Gay [23], Lescrenier [25], and Robinson [32] use this condition in their work. A disadvantageof working with (5.3) is that B(x�) depends on the representation of 
 and the choice ofmultipliers. On the other hand, (5.2) depends only on the geometry of 
.Burke and Mor�e [6] provide additional information on the regularity condition (5.2). Inparticular, they present an example where (5.2) holds but the Hessian matrix is not positivede�nite on (5.3).The strong second-order su�ciency condition simpli�es considerably when 
 is thebound-constrained set (1.2). In this case (5.2) requires that r2f(x�) be positive de�nite onthe subspace S(x�) = fw 2 Rn : wi = 0; i 2 B(x�)g ;of vectors orthogonal to the strictly binding constraintsB(x�) = fi 2 A(x�) : @if(x�) 6= 0g :14



Theorem 5.1 Let f : Rn 7! R be twice continuously di�erentiable on the polyhedral set 
,and let fxkg be the sequence generated by the trust region Newton method. Assume thatr2f is bounded on the level set L(x0) and that the step sk satis�es (3.6). If fxkg has alimit point x� that satis�es the strong second-order su�ciency condition (5.2), then fxkgconverges to x�.Proof. We �rst claim that (5.2) implies that x� is an isolated limit point of fxkg. Thisclaim follows by noting that (5.2) implies that x� is an isolated stationary point, and thatevery limit point of fxkg is stationary.The proof is by contradiction. If we assume that fxkg does not converge to x�, thenLemma 4.10 of Mor�e and Sorensen [29] shows that when x� is an isolated limit point offxkg, there is a subsequence K such that fxkg converges to x� for k 2 K, and an � > 0 withkxk+1 � xkk � �; k 2 K:In particular, kskk � � for k 2 K. We now prove that if the sequence fwkg is de�ned bywk = skkskk ; k 2 K;then any limit point w� is a feasible direction at x�. Note that kskk � � implies thatxk+�wk belongs to 
 for � in [0; �], and hence x�+�w� also belongs to 
. This shows thatw� is a feasible direction at x�.We now show that hrf(x�); w�i = 0. Note that requirements (2.4), (2.5), and (2.6) onsk show that if the iteration is successful, thenf(xk)� f(xk+1) � �0�0�0 �kxCk � xkk�k �min��k; 1kr2f(xk)k �kxCk � xkk�k �� : (5.4)Our assumptions guarantee that the Hessian matrices r2f(xk) are bounded, and sincekskk � �1�k, and kskk � � for k 2 K, the trust region bounds �k are bounded away fromzero. Hence, inequality (5.4) implies thatlimk2K;k!1 kxCk � xkk�k = 0:Moreover, since f�kg is bounded above, fkxCk � xkkg also converges to zero for k 2 K.Hence, Lemma 5.1 in Burke, Mor�e, and Toraldo [7] implies thatlimk2K;k!1 r
f(xCk ) = 0:Theorem 3.1 now shows that xCk is in E [�rf(x�)] for k 2 K, and thus assumption (3.6) onthe step sk implies that xk + sk belongs to E [�rf(x�)] for k 2 K. In particular,hrf(x�); (xk + sk � x�)i = 0; k 2 K:15



A computation using kskk � � now shows that hrf(x�); w�i = 0.We have shown that w� is a feasible direction at x� with hrf(x�); w�i = 0. Thus, w�belongs to S(x�), and 
w�;r2f(x�)w�� > 0. On the other hand,  k(sk) � 0 implies that12kskk 
wk;r2f(xk)wk� � � hrf(xk); wki :Since fxkg converges to x�, fwkg converges to w�, and kskk � � for k 2 K, this inequalityimplies that 0 < 12� 
w�;r2f(x�)w�� � � hrf(x�); w�i = 0:This contradiction proves the result. �Theorems 5.1 improves on previous convergence results for linearly-constrained opti-mization algorithms because it does not assume strict complementarity. For recent conver-gence results, see [19, 12, 18, 9, 16, 20, 33].Rate of convergence results depend on showing that eventually the trust region boundis not active. These results require additional assumptions on the step sk. We assumethat the minor iterates satisfy (4.1) and the decrease condition (4.4). We now estimate thedecrease of the quadratic qk if the minor iterates satisfy (4.4). The following result appearsin Mor�e [28], but for completeness we provide the proof.Lemma 5.2 Assume that � : R 7! R is twice di�erentiable on [0; 1] and that �00(�) � " on[0; 1] for some " > 0. If �(1) � �(0) + ��0(0) (5.5)for some � 2 (0; 1), then �(0)� �(1) � �2(1� �)":Proof. The mean value theorem shows that�(1) = �(0) + �0(0) + 12�00(�)for some � 2 (0; 1), and thus (5.5) implies that 12�00(�) � (1� �)(��0(0)). Hence,�(0)� �(1) � �(��0(0)) � �2(1� �)�00(�) � �2(1� �)";as desired. �If we assume that the sequence fxkg converges to x�, then Theorem 3.3 guarantees thatall iterates belong to E [�rf(x�)], and hence (4.1) shows that all the minor iterates alsobelong to E [�rf(x�)]. Now de�ne�(�) = qk (�xk;j+1 + (1� �)xk;j) ;16



and note that the decrease condition (4.4) guarantees thatqk(xk;j+1) � qk(xk;j) + �0hrqk(xk;j); xk;j+1 � xk;ji;and thus (5.5) holds. Hence, if we assume that the strong second-order condition (5.2)holds, then Lemma 5.2 implies that there is a �0 > 0 such thatqk(xk;j)� qk(xk;j+1) � �0kxk;j+1 � xk;jk2: (5.6)We need this estimate for our next result.Theorem 5.3 Let f : Rn 7! R be twice continuously di�erentiable on the polyhedral set 
,and let fxkg be the sequence generated by the trust region Newton method. Assume thatfxkg converges to a solution x� of (1.1) that satis�es the regularity condition (5.2). If theminor iterates satisfy (4.1) and (4.4), then there is an index k0 such that all steps sk withk � k0 are successful and the trust region bound �k is bounded away from zero.Proof. In the proof we bound j�k � 1j, where �k is de�ned by (2.1), and show that thebounds converge to zero; the rules for updating �k then show that all steps sk are ultimatelysuccessful, and that �k is bounded away from zero. We begin by noting that�k � 1 = f(xk + sk)� f(xk)�  k(sk) k(sk) : (5.7)The denominator of (5.7) is estimated by noting that (5.6) implies that the decrease gener-ated by sk satis�es� k(sk) = qk(xk)� qk(xk + sk) � �0 mXj=0 kxk;j+1 � xk;jk2 � �0 max0�j�m �kxk;j+1 � xk;jk2	 :On the other hand,kskk � mXj=0 kxk;j+1 � xk;jk � (m+ 1) max0�j�m fkxk;j+1 � xk;jkg :Hence, � k(sk) � �1kskk2 for �1 = �0=(m + 1)2. We estimate the numerator of (5.7) bynoting that the mean value theorem implies thatjf(xk + sk)� f(xk)�  k(sk)j � �kkskk2; �k = sup0���1�kr2f(xk + �sk)�r2f(xk)k	 :These estimates show that j�k � 1j � �k=�0, so that the our result will be established if weshow that f�kg converges to zero.Since fxkg converges to x�, the sequence f�kg converges to zero if fskg converges tozero. Theorem 3.3 shows that xk and xk+sk belong to E [�rf(x�)], and thus the de�nition17



(5.1) implies that sk 2 S(x�). In particular, sk = PS(x�)sk , where PS(x�) is the orthogonalprojection onto S(x�). Since  k(sk) � 0,12 
sk;r2f(xk)sk� � � hrf(xk); ski ;and thus sk = PS(x�)sk and the regularity condition (5.2) imply that there is a �0 > 0 withkskk � �0kPS(x�)rf(xk)k:The gradient rf(x�) is orthogonal to S(x�) because hrf(x�); xi = hrf(x�); x�i wheneverx is in E [�rf(x�)], and since fxkg converges to x�, this implies that fPS(x�)rf(xk)gconverges to zero. Thus, the previous estimate shows that fskg converges to zero, asdesired. �Lescrenier [25] proved an analogous result, but he assumed that the feasible set wasbound-constrained, that the quadratic was decreasing on the line segment [xk;j ; xk;j+1], andthat the minor iterates satis�ed (4.5). In particular, his result did not cover projectedsearches. Our assumptions in Theorem 5.3 are considerably weaker.When the iterate xk is far away from the solution, the step sk is usually determinedbecause the trust region bound kxk;j�xkk � �1�k is encountered during the computation ofxk;j+1. However, as we converge, Theorem 5.3 shows that the trust region does not interferewith the computation of the step, so that we are free to reduce qk further by searching thefeasible set.We propose to compute the step sk by computing minor iterates xk;j that satisfy (4.1)and the decrease condition (4.4). For each minor iterate xk;j let the columns of Zk;j forman orthonormal basis for the subspaceVk;j = fw 2 Rn : hci; wi = 0; i 2 A(xk;j)g :Given xk;j , we �nd an approximate minimizer of qk on xk;j+Vk;j . We require that if xk;m+1is the �nal iterate generated according to (4.1) and (4.4), then the step sk = xk;m+1 � xksatis�es ZTk;m[rf(xk) +r2f(xk)sk ] � �k ZTk;mrf(xk) ; xk + sk 2 
: (5.8)We motivate these requirements by noting that if 	k;m(v) = qk (xk;m + Zk;mv), thenr	k;m(v) = ZTk;m[rf(xk) +r2f(xk)(xk;m � xk + Zk;mv)];where we have set xk;0 = xk. Thus, the �rst condition in (5.8) is equivalent to �nding vk;msuch that kr	k;m(vk;m)k � �k ZTk;mrf(xk) ;18



and setting sk = xk;m � xk + Zk;mvk;m. In particular, xk;m+1 = xk;m + Zk;mvk;m is aminimizer of qk on xk;m + Vk;m if we choose �k = 0.At �rst sight it is not clear that we can always �nd a step that satis�es (5.8) sincesatisfying the �rst condition in (5.8) may violate the second condition. The simplest methodof generating minor iterates xk;j that guarantees (5.8) is to set xk;j+1 to the minimizer ofqk on xk;j + Vk;j . With this choice sk = xk;j+1 � xk satis�es the �rst condition in (5.8). Ifxk + sk lies in 
 for this choice of xk;j+1, then we are done. Otherwise, we can set xk;j+1to any point in 
 that satis�es (4.4) and such that A(xk;j+1) has at least one more activevariable. This choice guarantees that, after computing at most n minor iterates, we reacha minor iterate with all variables active, and then (5.8) is trivially satis�ed.The procedure that we have outlined generates iterates xk;j that satisfy (4.1) and (4.4)with A(xk;j) � A(xk;j+1). The step sk = xk;m+1 � xk satis�es (5.8), where Zk;m is de�nedby xk;m. Geometrically this procedure searches for an approximate minimizer in the facede�ned by the active set A(xk;j), terminating if the approximate minimizer is on the relativeinterior of this face; otherwise, the search continues on the lower dimensional face de�nedby A(xk;j+1).We have already noted that the step sk is usually determined because the trust regionbound kxk;j �xkk � �1�k is encountered during the computation of xk;j+1. Thus, we needonly assume that the step sk satis�es (5.8) if kskk � ���k for some �� < �1.Rate of convergence results when strict complementarity holds depend on the result thatA(xk) = A(x�) for all k su�ciently large. This result fails without strict complementarity.In this case the proof relies on showing thatV (x) � nw 2 Rn : hci; wi = 0; i 2 A(x)o � S(x�); x 2 E [�rf(x�)]: (5.9)The subspace V (x) is the largest subspace contained in the tangent cone T (x).For the rate of convergence results we assume that the sequence fxkg generated by thetrust region Newton method converges to x�. Theorems 3.2 and 3.3 show that xk andxCk eventually land in E [�rf(x�)] for all k � k0. Since (4.1) guarantees that A(xCk ) is asubset of A(xk;j) for any minor iterate xk;j , we also have xk;j 2 E [�rf(x�)]. In particular,xk;m 2 E [�rf(x�)]. We shall need this result in the proof.Theorem 5.4 Let f : Rn 7! R be twice continuously di�erentiable on the polyhedral set 
,and let fxkg be the sequence generated by the trust region Newton method. Assume thatfxkg converges to a solution x� of (1.1) that satis�es the strong second-order su�ciencycondition (5.2). If the step sk is calculated by the algorithm outlined above, and (5.8) holdswhenever kskk � ���k for some �� < �1, then fxkg converges Q-linearly to x� when �� issu�ciently small, where �� = lim supk!+1 �k:19



The rate of convergence is Q-superlinear when �� = 0.Proof. We �rst prove that (5.9) holds. The proof begins by noting that expression (3.1)for E [�rf(x�)] shows that if ��i are Lagrange multipliers, thenfi : ��i 6= 0g � A(x); x 2 E [�rf(x�)]:Hence, if w 2 V (x) then hrf(x�); wi = 0. Since any w 2 V (x) is a feasible direction, wealso have that x + �w for all � su�ciently small. Hence, hrf(x�); wi = 0 implies thatx+�w belongs to E [�rf(x�)]. Moreover, since x 2 E [�rf(x�)] and S(x�) is a subspace,�w = �[x+ �w � x�]� [x� x�]� 2 S(x�):Hence, w 2 S(x�) as desired, and thus (5.9) holds.We proved (5.9) for any x 2 E [�rf(x�)] because this result sheds light on the geometrybehind the rate of convergence results but for this proof we only need to show thatVk;m � S(x�): (5.10)Since have already noted that xk;m 2 E [�rf(x�)], (5.9) implies that (5.10) holds.We analyze the convergence rate in terms of the projection Pk = Zk;mZTk;m onto thesubspace Vk;m. Note, in particular, that since Vk;m is a subspace and Vk;m � S(x�), anorthogonal basis for Vk;m can be extended to a basis for S(x�), and thuskPkwk � kPS(x�)wk; w 2 Rn: (5.11)The main estimate needed for the rate of convergence result is obtained by noting thatkPkrf(xk+1)k � Pk[rf(xk+1)�rf(xk)� r2f(xk)sk ]+ Pk [rf(xk) +r2f(xk)sk ] ;assumption (5.8) on the step, and standard bounds yield thatkPkrf(xk+1)k � "kkskk+ �k kPkrf(xk)k ; (5.12)for some sequence f"kg converging to zero. Also note that the argument at the end ofTheorem 5.3 shows that there is a constant �0 withkskk � �0kPS(x�)rf(xk)k: (5.13)If we make use of this estimate and (5.11) in (5.12) we obtain thatlim supk!+1 kPkrf(xk+1)kkPS(x�)rf(xk)k � lim supk!+1 �k: (5.14)20



We complete the proof by estimating kPkrf(xk+1)k and kPS(x�)rf(xk)k. We �rst showthat kPkrf(xk+1)k � (�1 � "k)kxk+1 � x�k (5.15)for some sequence f"kg converging to zero.The proof of (5.15) requires some preliminary results. We �rst show that xk+1 � x�is in Vk;m for all k su�ciently large. This follows from the de�nition of Vk;m becauseA(xk;m) � A(xk+1) and A(xk;m) � A(x�). We also need to show that Pkrf(x�) = 0. Thisresult follows because, as noted at the end of Theorem 5.3, rf(x�) is orthogonal to S(x�),and since Vk;m is a subspace of S(x�), we must also have rf(x�) orthogonal to Vk;m. Inparticular, Pkrf(x�) = 0. The last result that we need for the proof of (5.15) is thatkPkr2f(x�)Pkvk � �kvk; v 2 Vk;m: (5.16)To prove this result, note that if v 2 Vk;m then Pkv = v, and in view of (5.10), Pkv is inE [�rf(x�)]. Hence, the regularity assumption (5.2) shows that (5.16) holds.We now have all the ingredients to prove (5.15). Since Pkrf(x�) = 0,Pkrf(xk+1) = Pkr2f(x�)(xk+1 � x�) + Pk [rf(xk+1)� rf(x�)�r2f(x�)(xk+1 � x�)];and thus estimates of the last term to show thatPkr2f(x�)(xk+1 � x�) � kPkrf(xk+1)k+ "kkxk+1 � x�k;where f"kg converges to zero. Since xk+1 � x� is in Vk;m for all k su�ciently large, (5.16)shows that kPkr2f(x�)Pk(xk+1 � x�)k � �kxk+1 � x�k:The last two inequalities show that (5.15) holds with �1 = �.We estimate kPS(x�)rf(xk)k by proving thatkPS(x�)rf(xk)k � (�2 + "k)kxk � x�k (5.17)for some sequence f"kg converging to zero. Since PS(x�)rf(x�) = 0,PS(x�)rf(xk) = PS(x�)r2f(x�)(xk � x�) + PS(x�)[rf(xk)�rf(x�)� r2f(x�)(xk � x�)];and thus standard estimates of the last term show thatkPS(x�)rf(xk)k � PS(x�)r2f(x�)(xk � x�)+ "kkxk � x�k;where f"kg converges to zero. Since PS(x�)(xk � x�) = xk � x�, we obtain thatkPS(x�)rf(xk)k � �2 kxk � x�k+ "k kxk � x�k ; �2 = kPS(x�)r2f(x�)PS(x�)k;21



where f"kg converges to zero. This proves (5.17).Linear and superlinear convergence rates are obtained by noting that (5.14), togetherwith estimates (5.15) and (5.17), show thatlim supk!+1 kxk+1 � x�kkxk � x�k � ��2�1� lim supk!+1 �k = ��2�1� ��:Linear convergence takes place if �2�� < �1, and superlinear convergence holds if �� = 0. �A modi�cation of the proof of Theorem 5.4 shows linear convergence for any �� < 1if the vectors xk � x� lie in a �xed subspace V of S(x�) for all k su�ciently large. Thisresult holds when x� is non-degenerate (strict complementarity holds at x�) since in thiscase xk � x� belongs to V (xk) = S(x�) for all k su�ciently large.There are several interesting variations on Theorem 5.4. Note, in particular, that theminor iterate xk;m enters into the proof via the subspace Vk;m and that the proof holds if Pkis a projection into any subspace of S(x�) that contains xk+1 � x�. Thus we could have setPk to the projection into V (xk+1) and eliminated xk;m from the analysis. We did not makethis simpli�cation because with our choice of Pk the minor iterate xk;m+1 is an approximateminimizer of qk on xk;m + Vk;m.Lescrenier [25] and Facchinei and Lucidi [19] proved rate of convergence results with-out assuming strict complementarity, but the analysis was restricted to bound-constrainedproblems. Other convergence results for bound-constrained and linearly-constrained op-timization algorithms require strict complementarity. For recent convergence results, see[12, 18, 9, 16, 20, 33].We can also show that quadratic convergence holds in Theorem 5.4 if we assume thatr2f satis�es a Lipschitz condition at x�, and if�k � �0 kPkrf(xk)k ; k � 0;for a positive constant �0. With these assumptions we can follow the proof of Theorem 5.4.The main di�erence is that the inequality (5.12) can be replaced bykPkrf(xk+1)k � �kskk2 + �k kPkrf(xk)k ;where � is the Lipschitz constant, and thus (5.11) and (5.13) yield thatlim supk!+1 kPkrf(xk+1)kkPS(x�)rf(xk)k2 � ��20 + �0:The result now follows from estimates (5.15) and (5.17).22



6 Implementation IssuesWe now provide a brief outline of the implementation issues for a trust region Newtonmethod for bound-constrained problems. We concentrate on discussing our choices for thetrust region bound �k, the Cauchy step, and the subspace step.For the initial �0 we used krf(x0)k. This choice is appropriate in many cases, butmore sophisticated choices are possible. We update the trust region bound �k as outlinedin Section 2. We choose �0 = 10�3 in the algorithm (2.2) to update the current iterate,�1 = 0:25, �2 = 0:75 as the constants that determine when to increase or decrease the trustregion �k, and �1 = 0:25, �2 = 0:5, and �3 = 4:0 as the constants that govern the updateof �k in (2.3).Given a step sk, we attempt to choose �k+1 as ��kkskk, where ��k is the minimum of aquadratic that interpolates the function � 7! f(xk + �sk). In other words, we consider thequadratic � such that�(0) = f(xk); �0(0) = hrf(xk); ski; �(1) = f(xk+1);and determine ��k as the minimum of this quadratic. If � does not have a minimum, we set��k = +1. We choose �k+1 as ��kkskk if it falls in the desired interval; otherwise we set�k+1 to the closest endpoint.The Cauchy step sCk is chosen by an iterative scheme that is guaranteed to terminate ina �nite number of steps. Recall that the Cauchy step sCk is of the form sk(�k), where thefunction sk : R 7! Rn is de�ned bysk(�) = P [xk � �rf(xk)]� xk ;and �k satis�es the conditions speci�ed in Section 2. The simplest scheme is to set �(0)kto a constant and then generate a sequence f�(l)k g of trial values by decreasing the trialvalues by a constant factor until the su�cient decrease condition (2.4) is satis�ed. We usea more sophisticated scheme. Given �(0)k , we generate a sequence f�(l)k g of trial values. Thesequence can be either increasing or decreasing, but in all cases we require that�(l+1)k 2 [�1�(l)k ; �2�(l)k ];where �1 � �2 < 1 for a decreasing sequence, and 1 < �1 � �2 for an increasing sequence.The decision to generate an increasing sequence or a decreasing sequence depends of theinitial �(0)k . If the initial �(0)k fails to satisfy the su�cient decrease condition (2.4), wedecrease the trial values until (2.4) fails, and set �k to the last trial value that satis�es(2.4). If the initial �(0)k satis�es (2.4), we increase the trial values until (2.4) fails, and set�k to the last trial value that satis�es (2.4).We use �(0)k = 1 on the �rst iteration, but on all other iterations we use �k�1. We use�0 = 10�2 and �1 = 1:0 in the su�cient decrease condition (2.4).23



The minor iterates generated in the trust region method are required to satisfy conditions(4.1) and (4.4). We generate the step between the minor iterates along the lines speci�edin Section 4, but specialized to the case of bound constraints. Speci�cally, we compute thestep from the trust region subproblemmin fq(x+ w) : wi = 0; i 2 A(x); kDwk � �g ;where D is a scaling matrix. If i1; : : : ; im are the indices of the free variables, and the matrixZ is de�ned as the matrix in Rn�m whose kth column is the ikth column of the identitymatrix in Rn�n , then this subproblem is equivalent tominfqF (v) : kDZvk � �g;where qF is the quadratic in the free variables de�ned byqF (v) � q(x+ Zv)� q(x) = 12vTAv + rT v:The matrix A and the vector r are, respectively, the reduced Hessian matrix of q andreduced gradient of qF at x with respect to the free variables.Given a descent direction w for this subproblem, a projected line search guarantees thatwe can determine � > 0 such that the next iterate x+ = P [x+�w] satis�es conditions (4.1)and (4.4). The conditions in (4.1) are satis�ed for any � > 0 provided D has a conditionnumber that is bounded independent of the iterate. We use �0 = 10�2 in the su�cientdecrease condition (4.4).We generate the descent direction w with a preconditioned conjugate gradient methodas suggested by Steihaug [34]. The conjugate gradient iterates are generated until the trustregion is violated, a negative curvature direction is generated, or the convergence condition(5.8) is satis�ed. As noted in Section 5, this condition can be satis�ed by choosing theminor iterates so that A(xk;j) � A(xk;j+1). For additional details, see the discussion in Linand Mor�e [26].In our algorithms we choose D from an incomplete Cholesky factorization. From a the-oretical viewpoint, the choice of D is not important, but the numerical results are stronglydependent on the choice of D. We use the incomplete Cholesky factorization icfs of Linand Mor�e [26]. The icfs incomplete Cholesky factorization does not require the choice of adrop tolerance. Moreover, the amount of storage used by the factorization can be speci�edin advance as p � n, where p is set by the user, and n is the number of variables. In ournumerical results we use p = 5.7 Computational ExperimentsWe now compare the performance of an implementation TRON (version 1.0) of the trustregion method outlined in Section 6 with the LANCELOT [14] and L-BFGS-B [36] codes. All24



computational experiments were done with the -O optimization compiler option on a SunUltraSPARC2 workstation with 1024 MB RAM.LANCELOT implements Newton's method with a trust region strategy but di�ers fromTRON in signi�cant issues. In particular, LANCELOT does not use projected searches, and thedefault is a banded preconditioner. The L-BFGS-B code is a limited-memory variable metricmethod. An advantage of L-BFGS-B is that only the gradient is required, while Newton codesrequire an approximation to the Hessian matrix. On the other hand, for sparse problemsthe Hessian matrix can usually be obtained e�ciently with di�erences of gradients if thesparsity pattern of the Hessian matrix is provided.Our �rst set of computational results uses a set of bound-constrained problems from theCUTE collection [3]. We used the select tool to choose problems representative of problemsthat arise in applications and where the number of variables n could be changed. Sincewe are interested in large problems, we re�ned this selection by only considering problemswhere the number of variables was at least 5; 000. These requirements lead to a list of nineproblems, with some of the problems having more than one version.Table 7.1 presents the results of the �rst set of computational experiments. LANCELOTand L-BFGS-B were used with the default options. For LANCELOT, exact second derivativesand a preconditioned conjugate gradient method with a banded preconditioner were used;all other default options are shown in Table 5 of [15]. In Table 7.1 we used the LANCELOTtermination test kP [x�rf(x)]� xk1 � 10�5; (7.1)where P is the projection into the feasible set (1.2).The �rst column in Table 7.1 is the name of the test problem, and the second columnis the number of variables n. For TRON and LANCELOT we record the number of Hessianevaluations nh, function evaluations nf, and conjugate gradient iterations ncg. For L-BFGS-Bwe record only the number of function and gradient evaluations nfg because L-BFGS-B alwaysevaluates the function and gradient at the same time. The execution time (in seconds) isreported in the time column. In these results, all three codes obtained the same optimalfunction value at the �nal iterate.A general observation on the results in Table 7.1 is that the number of function evalua-tions for TRON and LANCELOT is at most one more than the number of Hessian evaluations.Thus, for these problems all the iterations of the Newton codes are successful. We concludethat these problems do not fully test TRON or LANCELOT.In analyzing our computational results we do not discuss problems where L-BFGS-B re-quires less than 50 function and gradient evaluations. In general, we feel that if a limited-memory variable metric algorithm converges is less than 50 function and gradient evalua-tions on a problem with 10; 000 variables, then the starting point is exceptionally good.An important observation on the results in Table 7.1 is that on these problems TRON25



Table 7.1: Performance on the CUTE problems: Default optionsTRON LANCELOT L-BFGS-BProblem n nh nf ncg time nh nf ncg time nfg timeBDEXP 5000 11 11 10 1.43 10 11 12 1.19 15 0.60CVXBQP1 10000 2 2 0 0.24 1 2 1 0.81 2 0.08JNLBRNG1 15625 26 26 33 15.22 24 25 2029 165.42 999 198.75JNLBRNG2 15625 16 16 27 9.21 14 15 898 74.16 577 105.18JNLBRNGA 15625 23 23 29 12.46 21 22 1584 117.64 332 54.56JNLBRNGB 15625 10 10 15 5.29 8 9 419 30.71 999 160.32MCCORMCK 10000 6 7 6 1.46 4 5 4 1.10 15 1.76NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.01 2 0.08NCVXBQP2 10000 10 10 10 1.44 6 7 84 3.35 178 6.85NCVXBQP3 10000 10 10 10 1.39 6 7 163 2.96 388 14.87NOBNDTOR 14884 38 38 71 22.03 36 37 1386 123.66 213 36.38NONSCOMP 10000 9 9 8 1.44 8 9 8 1.45 51 4.24OBSTCLAE 15625 27 27 51 14.48 5 6 7452 821.46 660 116.18OBSTCLAL 15625 25 25 39 12.64 24 25 604 43.64 156 24.51OBSTCLBL 15625 20 20 42 12.81 18 19 2088 199.04 272 49.28OBSTCLBM 15625 8 8 15 5.41 5 6 1378 152.87 146 25.90OBSTCLBU 15625 21 21 33 11.85 19 20 621 56.68 194 33.94TORSION1 14884 39 39 64 19.85 37 38 1148 86.08 224 35.36TORSION2 14884 19 19 43 11.10 14 15 2063 173.28 521 91.56TORSION3 14884 20 20 26 9.06 19 20 332 21.13 76 10.66TORSION4 14884 18 18 27 8.98 14 15 653 34.99 417 65.78TORSION5 14884 11 11 12 4.67 9 10 93 5.74 40 5.06TORSION6 14884 15 15 18 7.07 8 9 151 8.54 362 53.99TORSIONA 14884 39 39 64 21.45 37 38 1147 98.23 205 37.38TORSIONB 14884 24 24 50 14.54 15 16 1982 186.69 371 70.13TORSIONC 14884 20 20 26 9.80 19 20 332 24.65 89 13.97TORSIOND 14884 18 18 26 9.70 14 15 634 39.70 409 69.59TORSIONE 14884 11 11 12 5.06 9 10 93 6.55 38 5.44TORSIONF 14884 15 15 19 7.71 7 8 154 9.36 341 56.83requires less time than L-BFGS-B. These results support the conclusion that TRON is prefer-able to L-BFGS-B if the Hessian matrix can be obtained explicitly. We also expect TRON tooutperform L-BFGS-B for sparse problems if the sparsity pattern of the Hessian matrix isprovided because with this information the Hessian matrix can be obtained e�ciently fromdi�erences of gradients.The results in Table 7.1 also show that on these problems TRON requires less time thanLANCELOT and signi�cantly fewer conjugate gradient iterations than LANCELOT. Reducingthe number of conjugate gradient iterations is important because this number is likely toincrease as the number of variables increases. We note that since for these problems thecost of the conjugate gradient iterations is signi�cant, fewer conjugate gradient iterationstranslates into smaller computing times.Another observation that can be made on the results of Table 7.1 is that LANCELOT26



usually requires fewer major iterations than TRON. Di�erences in the number of majoriterations are due, in part, to the choice of Cauchy point and the use of projected searches.These algorithmic choices in TRON tend to add many constraints, and on some of theseproblems, they lead to a larger number of major iterations. We also note that a detailedexamination of the output shows that even when both codes require the same number ofiterations, the algorithms visit di�erent faces of the feasible set.As a minor point, note that TRON almost always requires the same number of functionand Hessian evaluations. This is an algorithmic decision since we always evaluate thegradient and Hessian at successful iterates. On the other hand, if an iterate satis�es thetermination criteria (7.1), LANCELOT returns without evaluating the Hessian matrix at the�nal iterate.The number of conjugate gradient iterations in LANCELOT can usually be reduced byusing other preconditioners instead of the default banded preconditioner. Other precon-ditioners, however, usually require more memory and more oating point operations perconjugate gradient iteration.In Table 7.2 we present the results of using LANCELOT with Munksgaard's ma31 pre-conditioner [31], which is an incomplete Cholesky factorization with a drop tolerance. Adisadvantage of using the ma31 preconditioner with LANCELOT is that the memory require-ments are unpredictable. The user is asked to allocate a given amount of memory, andif this amount is not su�cient, then an error message is issued. On the other hand, theincomplete Cholesky factorization icfs used in TRON does not require the choice of a droptolerance, and the amount of storage can be speci�ed in advance. For the results presentedin this section icfs uses 5n additional (double precision) words. For a comparison of ma31with icfs, see Lin and Mor�e [26].Comparison of the LANCELOT results in Table 7.1 with those in Table 7.2 show that in allcases the number of function evaluations and Hessian evaluations for both preconditionersare identical, and that the main di�erence is the number of conjugate gradient iterations.Also note that, with the exception of problems OBSTCLBL and OBSTCLBM, the numberof conjugate gradient iterations and the time required to solve the problems with LANCELOTdecreased when the ma31 preconditioner was used. Overall, these results show that forthese problems the ma31 preconditioner is preferable in LANCELOT.The results in Table 7.2 show that TRON requires fewer conjugate gradient iterations,and on most problems, less time than LANCELOT with the ma31 preconditioner. Also notethat there were �ve problems (OBSTCLAE, OBSTCLBL, OBSTCLBM, TORSION2, andTORSIONB) where LANCELOT required more than 1000 conjugate gradient iterations, andthat on these problems the reductions in time over the default preconditioner were notsubstantial. For these problems the di�erences in conjugate gradient iterations are not dueto the use of di�erent preconditioners but to the methods used by TRON and LANCELOT27



Table 7.2: Performance on the CUTE problems: LANCELOT with ma31TRON LANCELOT (ma31)Problem n nh nf ncg time nh nf ncg timeBDEXP 5000 11 11 10 1.43 10 11 10 1.32CVXBQP1 10000 2 2 0 0.24 1 2 1 0.80JNLBRNG1 15625 26 26 33 15.22 24 25 179 28.69JNLBRNG2 15625 16 16 27 9.21 14 15 70 13.09JNLBRNGA 15625 23 23 29 12.46 21 22 166 24.29JNLBRNGB 15625 10 10 15 5.29 8 9 46 7.56MCCORMCK 10000 6 7 6 1.46 4 5 4 1.41NCVXBQP1 10000 2 2 0 0.24 4 5 0 3.03NCVXBQP2 10000 10 10 10 1.44 7 8 93 3.34NCVXBQP3 10000 10 10 10 1.39 6 7 124 2.61NOBNDTOR 14884 38 38 71 22.03 36 37 176 36.61NONSCOMP 10000 9 9 8 1.44 8 9 8 1.66OBSTCLAE 15625 27 27 51 14.48 2 3 7154 809.04OBSTCLAL 15625 25 25 39 12.64 24 25 79 15.62OBSTCLBL 15625 20 20 42 12.81 22 21 2346 307.67OBSTCLBM 15625 8 8 15 5.41 5 6 1554 213.38OBSTCLBU 15625 21 21 33 11.85 19 20 165 22.72TORSION1 14884 39 39 64 19.85 37 38 159 27.97TORSION2 14884 19 19 43 11.10 14 15 1592 143.66TORSION3 14884 20 20 26 9.06 19 20 52 9.02TORSION4 14884 18 18 27 8.98 14 15 438 25.91TORSION5 14884 11 11 12 4.67 9 10 14 2.99TORSION6 14884 15 15 18 7.07 8 9 116 7.46TORSIONA 14884 39 39 64 21.45 37 38 175 31.80TORSIONB 14884 24 24 50 14.54 15 16 1606 153.55TORSIONC 14884 20 20 26 9.80 19 20 52 9.76TORSIOND 14884 18 18 26 9.70 14 15 445 29.13TORSIONE 14884 11 11 12 5.06 9 10 13 3.27TORSIONF 14884 15 15 19 7.71 7 8 107 7.46to compute the minor iterates. LANCELOT uses a line search, and thus only one constraintis added at each minor iteration. As a result many minor iterates can be generated, anddetermining a minor iterate almost certainly requires at least one conjugate gradient iter-ation. For these �ve problems LANCELOT generated, respectively, 7155, 1710, 1184, 1533,and 1541 minor iterates. TRON, on the other hand, uses a projected search and is thus ableto add many constraints at each minor iteration. For these problems TRON generated 27,26, 10, 19, and 24 minor iterates.These results support the conclusion that TRON tends to require signi�cantly fewer minoriterations than LANCELOT. Moreover, the use of projected searches is the major reason forTRON requiring a small number of minor iterates.General conclusions cannot be drawn from these results because, as already noted, thisproblem set does not fully test these algorithms. Our numerical results are also a�ected28



by non-algorithmic di�erences between TRON and LANCELOT. We have already noted thatthese codes di�er in the amount of memory required, but TRON and LANCELOT di�er in otherways. For example, LANCELOT uses the partial separability structure, while TRON only usesthe sparsity structure.Table 7.3: Parameters for the MINPACK-2 test problems.Problem n nx ny � l uEPT1 10000 200 50 1.0d0 default defaultEPT2 10000 200 50 5.0d0 default defaultEPT3 10000 200 50 10.0d0 default defaultPJB1 10000 100 100 0.1d0 default 1.0d2PJB2 10000 100 100 0.5d0 default 1.0d2PJB3 10000 100 100 0.9d0 default 1.0d2MSA1 10000 200 50 0.0d0 -0.4d0 0.4d0MSA2 10000 200 50 0.0d0 -0.2d0 0.2d0MSA3 10000 200 50 0.0d0 -0.1d0 0.1d0SSC1 10000 100 100 5.0d0 1.0d-1 1.0d0SSC2 10000 100 100 5.0d0 1.0d-2 1.0d0SSC3 10000 100 100 5.0d0 1.0d-3 1.0d0SSC4 10000 100 100 5.0d0 1.0d-4 1.0d0DGL2 10000 50 50 2.0d0 -1.0d20 1.0d20We also compared TRON with L-BFGS-B on a test set drawn from the MINPACK-2 collec-tion of large-scale problems [1]. The MINPACK-2 problems de�ned by Table 7.3 are �nite-dimensional approximation of an in�nite-dimensional variational problem de�ned over agrid with nx and ny grid points in each coordinate direction. The column labeled � inTable 7.3 de�nes the value of a parameter associated with the problem, while the last twocolumns de�ne the lower and upper bounds on the variables. For these results we used thetermination test kr
f(x)k2 � 10�5krf(x0)k2; (7.2)where r
f is the projected gradient (2.8). This termination test is generally preferable to(7.1) because (7.2) is invariant to changes in the scale of f .The number of grid points nx and ny and the parameter � can be easily modi�ed in theMINPACK-2 problems, thereby providing a convenient means to generate di�cult problems.In general, the problems become more di�cult as the ratio ny=nx deviates from unity. Wehave restricted the testing to problems where this ratio lies in the interval [0:25; 1], whichleads to relatively easy problems. In some cases, the choice of �, and of lower and upperbounds also a�ects the performance of optimization algorithms.In the �rst two problems in Table 7.4 we examine the behavior of TRON and L-BFGS-B as� changes. For problem EPT (elastic-plastic torsion) the parameter � is the force constant,and for this problem the number of active constraints increases as � increases. The results inTable 7.4 show that EPT becomes easier to solve as � increases. This �nding is reasonable29



because the EPT problem tends to be increasingly linear as � increases. The results forproblem PJB (pressure in a journal bearing) show that this problem becomes increasinglyharder to solve as � approaches unity. For this problem � is the eccentricity of the journalbearing, so this result is reasonable.Table 7.4: Performance on the MINPACK-2 problems with n = 10; 000.TRON L-BFGS-BProblem nh nf ncg time nfg timeEPT1 30 30 96 9.38 466 35.17EPT2 31 31 61 7.69 445 27.81EPT3 21 21 31 4.06 229 10.66PJB1 22 22 42 5.92 717 49.25PJB2 13 13 29 3.38 542 31.29PJB3 7 7 17 1.76 2765 150.91MSA1 27 48 94 19.06 776 65.35MSA2 16 22 65 10.47 613 50.50MSA3 19 19 48 9.89 487 39.79SSC1 5 5 23 3.28 347 36.32SSC2 6 6 25 4.11 345 36.83SSC3 6 6 26 3.96 377 40.26SSC4 6 6 26 3.99 293 30.91GL2 8 8 364 34.73 3521 372.89In problems MSA and SSC we examine the behavior of TRON and L-BFGS-B as the lowerand upper bounds l and u change. The results of this testing were somewhat disappointingbecause for these problems there does not seem to be a strong correlation between thechoice of bounds and the number of iterations. The most dramatic change in performanceoccurs for L-BFGS-B and the MSA problem. Note, on the other hand, that the performanceof TRON is relatively insensitive to the choice of bounds.Problem GL2 is unconstrained but is included in these results because it is a hardproblem for algorithms that do not use second-order information. The reason seems to bethat the GL2 problem has a saddle point that attracts L-BFGS-B.The most striking feature of the results in Table 7.4 is that TRON requires far fewer func-tion and gradient evaluations than L-BFGS-B and that this translates into smaller computingtimes. This advantage is likely to increase as the number of variables increases becausethe number of iterations in a Newton method tends to grow slowly, while the number ofiterations in limited-memory variable metric methods tends to grow rapidly as the numberof variables increases. See, for example, the results of Bouaricha, Mor�e, and Wu [4].AcknowledgmentsThe implementation of the Newton code bene�ted from the work of Ali Bouaricha andZhijun Wu on the unconstrained version of the code. We also thank Gail Pieper for her30
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