
BIFURCATING VORTEX SOLUTIONS OF THECOMPLEX GINZBURG-LANDAU EQUATIONHans G. Kaper1 and Peter Tak�a�c21 Mathematics and Computer Science Division, Argonne National Labo-ratory, Argonne, IL 60439, USA2 Fachbereich Mathematik, Universit�at Rostock, Universit�atsplatz 1, D-18055 Rostock, Germany
Abstract. It is shown that the complex Ginzburg-Landau (CGL) equation on thereal line admits nontrivial 2�-periodic vortex solutions that have 2n simple zeros(\vortices") per period. The vortex solutions bifurcate from the trivial solution andinherit their zeros from the solution of the linearized equation. This result rules outthe possibility that the vortices are determining nodes for vortex solutions of the CGLequation.Key words. Complex Ginzburg-Landau equation, bifurcation, vortex solutions,determining nodes1991 Mathematics Subject Classi�cation. Primary 35K55; secondary 35Q35,58F14Acknowledgments. The work of H.G.K. is supported by the Mathematical, Infor-mation, and Computational Sciences Division subprogram of the O�ce of Computa-tional and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. The work of P.T. is supported by the Deutsche Forschungsgemeinschaft(DFG), Germany. 1



Proposed running head: Vortex solutions of the CGL equation

Correspondence address:Dr. Hans G. KaperMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439 USAPhone (630) 252-7160Fax (630) 252-5986E-mail kaper@mcs.anl.gov
2



1 Vortex Solutions and Determining NodesIn this article we investigate the bifurcation of 2�-periodic vortex solutions of thecomplex Ginzburg-Landau (CGL) equation on the real line,ut = (1 + i�)uxx + (R� (1 + i�)juj2)u; x 2 R; t > 0: (1.1)The unknown function u is complex-valued; R, �, and � are given real constants.Vortex solutions are nontrivial solutions whose zero set consists of isolated points.(The term \vortex" for a zero of u, which is rather meaningless in the present context,is borrowed from the theory of the Ginzburg-Landau equations of superconductivityin two dimensions. There, a zero of the complex order parameter identi�es a vortexof magnetic ux.) The vortex solutions we are interested in are classical solutions ofthe following type: u(x; t) = U(nx)e�i!t; x 2 R; t > 0; (1.2)where ! is a suitable real constant that depends on R, �, and �, n is a �xed positiveinteger, and U is a 2�-periodic complex-valued C2-function that has two simple zerosper period. (Thus u, which is also 2�-periodic, has 2n simple zeros per period.)The investigation is motivated by the observation that the solution of a dissipa-tive partial di�erential equation such as the CGL equation is determined uniquely andcompletely by its nodal values|that is, by its values at a set of determining nodes.The concept of determining nodes was �rst introduced by Foias and Temam in thecontext of the Navier-Stokes equations for viscous incompressible uids [3]. Theseauthors showed that the solution of the two-dimensional Navier-Stokes equations isdetermined uniquely and completely by its values at a �nite set of isolated points (de-termining nodes). The existence of a set of determining nodes has since been shownfor various equations, including the CGL equation [6], the Kuramoto-Sivashinskyequation [2], and the Ginzburg-Landau equations of superconductivity [5]. Theseexistence results all require that, in some sense, the set of determining nodes be\su�ciently dense" in the domain, although the cardinality of the set is unknown.For the Navier-Stokes equation, an upper bound of the cardinality has been given interms of the physical parameters [4], but it has been conjectured on the basis of theTakens imbedding theorem [8] that, for dissipative partial di�erential equations, thecardinality is in fact independent of the parameters and determined entirely by thedimensionality of the spatial domain.By de�nition, if two solutions of the CGL equation coincide at the determiningnodes, they coincide everywhere in the domain. Since the CGL equation admitsthe trivial solution, and any vortex solution coincides with the trivial solution at the3



vortices, the existence of vortex solutions would rule out the possibility that a solutionof the CGL equation is determined uniquely and completely by its vortices. Indeed,an example of such a solution satisfying the Neumann boundary conditions on theinterval (0; 1) was constructed by Tak�a�c [7, Corollary 3.2]. In the present work, theboundary conditions are replaced by a condition �xing the vortices.If u is to be a vortex solution of the type (1.2) with 2n vortices per period, thenU must satisfy the nonlinear di�erential equation�U 00 � U = �(r � jU j2)U; x 2 R; (1.3)where the complex constants � and r are de�ned in terms of R, �, �, and n,� = 1 + i�(1 + i�)n2 ; r = R + i! � (1 + i�)n21 + i� : (1.4)The problem is thus de�ned as a bifurcation problem, where � is the bifurcationparameter, and we are interested in solutions of Eq. (1.3) that bifurcate from thetrivial solution (r; U) = (0; 0).We show the following results. First, there exist vortex solutions of the CGLequation that have 2n simple zeros per period and bifurcate from the trivial solution.This result rules out the possibility that the vortices are determining nodes for vortexsolutions of the CGL equation. Second, the bifurcating vortex solutions inherit theirzeros from the solution of the linearized equation. The vortices that are introduced atbifurcation are pinned as the bifurcation parameter increases. Moreover, numericalcomputations indicate that no other zeros arise after a bifurcation.The �rst result may seem to contradict a result of Kukavica [6], who showedthat the solution of the CGL equation is completely determined by the values at twonodes, provided these nodes are su�ciently close. After all, by choosing n su�cientlylarge, we can bring the zeros of the bifurcating solution arbitrarily close together.However, there is no contradiction because the upper bound on the distance betweenthe two determining nodes depends on the parameters and decreases as n increases.The linearized problem is analyzed in Section 2, the bifurcation analysis is givenin Section 3, and numerical results are presented in Section 4.
4



2 Linearized ProblemIf Eq. (1.3) is linearized about the trivial solution, it reduces to�U 00 � U = 0; x 2 R: (2.1)This equation admits 2�-periodic solutions that have two simple zeros per period.The zeros are uniformly distributed and separated by a distance �.Now consider the inhomogeneous equation�U 00 � U = f; x 2 R; (2.2)where f : R ! C is continuous. We claim that, under suitable conditions on f ,this equation admits solutions whose zeros coincide with the zeros of the solution ofthe homogeneous equation. We make this claim precise in the following lemma forthe case where the zeros of the two solutions coincide with the zeros of the cosinefunction. Other cases are treated similarly.Lemma 2.1 Equation (2.2) admits a classical solution that has simple zeros at allodd multiples of 12� if and only ifZ (k+ 12 )�(k� 12 )� f(y) cos y dy = 0; k 2 Z: (2.3)If f satis�es the condition (2.3), thenU(x) = v(x) cos x; x 2 R; (2.4)where v 2 C2(R) is given locally on each interval [(k � 12)�; (k + 12)�], k 2 Z, by theexpression v(x) = v((k � 12)�) + Z (k+ 12 )�(k� 12 )� f(y)g(x; y)cos x dy: (2.5)The kernel g is independent of k,g(x; y) = ( cos x sin y if y � x;sinx cos y if y � x: (2.6)Proof. Let f : R! C be a given continuous function. If we look for a solution U ofEq. (2.2) of the form (2.4), then v must satisfy the degenerate di�erential equation�v00 cos x+ 2v0 sinx = f (2.7)5



for all x 6= (k + 12)�; moreover, v must remain bounded near the points (k + 12)�, forall k 2 Z.Equation (2.7) can be integrated locally on any interval ((k � 12)�; (k + 12)�). Infact, after multiplying both sides of the equation by cos x, we have�(v0 cos2 x)0 = f(x) cos x: (2.8)If vk is the local representation of v on ((k� 12)�; (k+ 12)�), then the integration yieldsv0k(x) cos2 x = v0k(k�)� Z xk� f(y) cos y dy; (k � 12)� < x < (k + 12)�:For v0k to remain bounded near the endpoints (k � 12)�, it is necessary and su�cientthat v0k(k�) = Z (k� 12 )�k� f(y) cos y dy;so f must satisfy the solvability condition (2.3).If f satis�es the condition (2.3), thenv0k(x) = � 1cos2 x Z x(k� 12 )� f(y) cos y dy; (k � 12)� < x < (k + 12)�;and v0k((k � 12)�) = �12 f((k� 12)�). The expression (2.5) follows upon integration.While Eq. (2.5) gives a local representation of v on each interval [(k � 12)�; (k +12)�], there also exists a global representation that is valid on the entire real line.First, observe thatv((k + 12)�) = v((k � 12)�) + Z (k+ 12 )�(k� 12 )� f(y) siny dy; k 2 Z: (2.9)Repeated application of this recurrence relation yields an expression for v((k � 12)�)in terms of v(�12�),v((k � 12)�) = v(�12�) + Z (k� 12 )�� 12� f(y) sin y dy; k 2 Z:Furthermore, because f satis�es (2.3),Z (k+ 12 )�x f(y) cos y dy = Z 12�x f(y) cos y dy; k 2 Z:Thus, v is represented globally by the expressionv(x) = v(�12�) + Z x� 12� f(y) siny dy + sinxcos x Z 12�x f(y) cos y dy; x 2 R: (2.10)6



3 Bifurcation AnalysisWe now proceed to the bifurcation analysis. We recall that we wish to �nd solutionsof Eq. (1.3) that are 2�-periodic and have two simple zeros per period. In fact, wewill try to �nd solutions whose zeros coincide with the zeros of cos x|the solution ofthe linearized equation.We use the results of the preceding section, substituting for f the expression inthe right member of Eq. (1.3). Taking U to be of the form (cf. [7, Eq. (3.19)])U(x) = v(x) cos x; x 2 R; (3.1)we replace the original problem by a bifurcation problem for (r; v) in a neighborhoodof (r; v) = (0; 0) 2 C� C2(R).We infer from Lemma 2.1 that the bifurcation analysis can be performed locallyon any of the intervals [(k � 12)�; (k + 12)�], k 2 Z. Hence, it su�ces to consider thefunction v on the interval [�12�; 12�], which we denote by J from now on. Accordingto Eq. (2.5), v must satisfy the following integral equation on J :v(x) = v(�12�) + ZJ f(y)g(x; y)cos x dy; x 2 J; (3.2)where g is de�ned in Eq. (2.6) and f is given in terms of v,f(x) = �(r � jvj2 cos2 x)v cos x; v � v(x); x 2 J: (3.3)The function f must satisfy the condition (2.3) for k = 0. With f given by Eq. (3.3),the latter translates into a relation between r and v,r ZJ v(y) cos2 y dy = ZJ jv(y)j2v(y) cos4 y dy: (3.4)If we take this as the de�nition of r, then we have reduced the bifurcation problemto a problem for v in the neighborhood of v = 0 2 C(J).We employ the Lyapunov-Schmidt reduction method in much the same way asin [7, Proof of Theorem 3.1]. Let the projection P : C(J)! C(J) be de�ned byPu(x) = 2� ZJ u(y) cos2 y dy; u 2 C(J); x 2 J; (3.5)and its complement P 0 : C(J) ! C(J) by P 0 = I � P . (I is the identity operatorin C(J).) The pair (P; P 0) decomposes the space C(J). Note that Pu is a complex7



constant-valued function, so we may identify PC(J) with the complex plane. Notealso that P1 = 1.Let C0(J) denote the closed subspace of C(J) consisting of all elements f 2 C(J)that satisfy the condition (2.3) for k = 0. For any f 2 C0(I), we de�ne v 2 C(I) bythe relation (3.2); its projection Pv isPv(x) = v(�12�) + ZJ � 2� ZJ g(z; y) cos z dz� f(y) dy; x 2 J: (3.6)We set Pv = " and scale P 0v by ", putting P 0v = "w. Thus,v = "(1 + w); " 2 C; w 2 P 0C(J): (3.7)The mapping f 7! "w de�nes a linear operator L from C0(J) into P 0C(J),Lf = "w; f 2 C0(J): (3.8)Since "w = v � Pv, the expression for Lf is readily found from Eqs. (3.2) and (3.6),(Lf)(x) = ZJ  g(x; y)cos x � 2� ZJ g(z; y) cos z dz! f(y) dy; x 2 J: (3.9)Lemma 3.1 The linear operator L : C0(J)! C(J) de�ned in Eq. (3.8) is bounded,kLfk1 � 3�kfk1; f 2 C0(I): (3.10)Proof. Since jg(x; y)j � 1, it is certainly true that����ZJ 2� ZJ g(z; y) cos z dz f(y) dy���� � 2� jJ j2kfk1 = 2�kfk1; x 2 J: (3.11)To estimate the remaining integral in Eq. (3.9), we distinguish between x � 0 andx � 0.Suppose x � 0. ThenZJ g(x; y)cos x f(y) dy = Z x� 12� f(y) siny dy + sinx Z 12�x f(y)cos ycosx dy:The �rst term is estimated trivially; its modulus is less than or equal to (x+ 12�)kfk1.In the second term, we use the fact that 0 � cos y= cosx � 1 for all 0 � x < y � 12�;8



the modulus of this term is less than (12� � x)kfk1. Together, these two inequalitiesgive the estimate �����ZJ g(x; y)cos x f(y) dy����� � �kfk1; x 2 J; x � 0: (3.12)Now suppose x � 0. Then we start from the expressionZJ g(x; y)cos x f(y) dy = Z x� 12� f(y) sin y dy + sinx Z x� 12� f(y)cos ycosx dyand �nd, similarly, �����ZJ g(x; y)cos x f(y) dy����� � �kfk1; x 2 J; x � 0: (3.13)Together, the inequalities (3.12) and (3.13) give the estimate�����ZJ g(x; y)cos x f(y) dy����� � �kfk1; x 2 J: (3.14)The statement of the lemma follows from Eqs. (3.9), (3.11), and (3.14).The integral in the left member of Eq. (3.4) is equal to 12�Pv, where Pv = ", sothe condition (3.4), which we use to de�ne r in terms of v, reduces tor = 2"� ZJ jv(y)j2v(y) cos4 y dy: (3.15)When we insert this expression into Eq. (3.3) and make the substitution v = "(1+w),we obtain a relation between f and w,f = "j"j2F (w); w 2 P 0C(J); (3.16)where F : P 0C(J)! C0(J) is the following nonlinear map:[F (w)](x) = �� 2� ZJ j1 + w(y)j2(1 + w(y)) cos4 y dy � j1 + w(x)j2 cos2 x��(1 + w(x)) cosx; x 2 J; w 2 P 0C(J): (3.17)Combining Eqs. (3.8) and (3.16), we obtain an equation for w in P 0C(J),w = T"(w) = j"j2L(F (w)): (3.18)9



We wish to solve this equation using the Banach contraction principle [1, Theo-rem 7.1]. We already know that L is bounded from C0(J) into P 0C(J); the followinglemma gives the necessary estimates for F .Let B� denote the closed ball of radius � (� > 0) centered at the origin in P 0C(J),B� = fw 2 P 0C(J) : kwk1 � �g: (3.19)Lemma 3.2 The nonlinear map F : P 0C(J) ! C0(J) de�ned in Eq. (3.16) isbounded and Lipschitz continuous,kF (w)k1 � j�j(2 + �)(1 + �)3; w 2 B�; (3.20)kF (w1)� F (w2)k1 � 3j�j(2 + �)(1 + �)2kw1 � w2k1; w1; w2 2 B�: (3.21)Proof. If w 2 B�, thenj[F (w)](x)j � j�j� 2� (1 + �)3 ZJ cos4 y dy + (1 + �)2� (1 + �); x 2 J:Because (2=�) RJ cos4 y dy = 34 < 1, the estimate (3.20) follows.If w1; w2 2 B�, thenj[F (w1)](x)� [F (w2)](x)j � j�j js1(1 + w1(x))� s2(1 + w2(x))j+j�j jj1 + w1(x)j2(1 + w1(x))� j1 + w2(x)j2(1 + w2(x))j ;where we have used the abbreviationssj = 2� ZJ j1 + wj(y)j2(1 + wj(y)) cos4 y dy; j = 1; 2:Adding and subtracting terms, we see thatjj1 + w1j2(1 + w1)� j1 + w2j2(1 + w2)j= j(j1 + w1j2 + j1 + w2j2)(w1 � w2) + (1 + w1)(1 + w2)(w1 � w2)j� 3(1 + �)2kw1 � w2k1:Furthermore,js1(1 + w1)� s2(1 + w2)j = j(1 + w1)(s1 � s2) + s2(w1 � w2)j� (1 + �)js1 � s2j+ js2jjw1 � w2j:10



One readily veri�es thatjs1 � s2j � 6� (1 + �)2 �ZJ cos4 y dy� kw1 � w2k1 = 94(1 + �)2kw1 � w2k1and js2j � 2� (1 + �)3 �ZJ cos4 y dy� = 34(1 + �)3;so js1(1 + w1)� s2(1 + w2)j � 3(1 + �)3kw1 � w2k1:The inequality (3.21) follows.We are ready to prove the desired bifurcation result. Let the set � be de�ned by� = f(r; U) 2 C� C2(R) : (r; U) satis�es Eq. (1.3);U(x) = v(x) cos x; x 2 R; v 2 C(R) v boundedg (3.22)Theorem 3.1 The point (0; 0) 2 C � C2(R) is a bifurcation point for Eq. (1.3).There exists an open neighborhood O of (0; 0) in C� C2(R) and a positive constant� such that the set � \O coincides with the set of all (r; U) 2 C� C2(R) having thefollowing representation: r = 34 j"j2 �1 + j"j2'(j"j2� ; (3.23)U(x) = "(1 + j"j2�(j"j2; x)) cos x; x 2 R; (3.24)where " is an arbitrary complex parameter with 0 < j"j2 < �, and ' : [0; �)! C and� : [0; �)�R! C are continuous functions satisfying the following conditions:(i) (r; U) 2 �,(ii) �(s; �) 2 C2(R) for every s 2 (0; �) and RR�(s; x) cos2 x dx = 0, and(iii) the real and imaginary parts of ' and � are real-analytic functions of theirarguments.Proof. Following the steps outlined in the preceding analysis, we reduce the bifur-cation problem to a problem for w in the neighborhood of w = 0 2 P 0C(J). Thisfunction w must be a �xed point of the operator T" de�ned in Eq. (3.18). Once whas been found, we de�ne v in terms of w by means of Eq. (3.7) and (r; U) in termsof v by means of Eqs. (3.15) and (3.1). 11



From Lemmas 3.1 and 3.2 we obtainkL(F (w))k1 � 3�kF (w)k1 � 3�j�j(2 + �)(1 + �)3; w 2 B�;so T" = j"j2LF maps B� into itself wheneverj"j2 < �3�j�j(2 + �)(1 + �)3 :Furthermore,kT"(w1 � w2)k1 � 9�j"j2j�j(2 + �)(1 + �)2kw1 � w2k1; w1; w2 2 B�;so T" is a contraction if j"j2 < 19�j�j(2 + �)(1 + �)2 : (3.25)Hence, if we de�ne� � �(�) = 13�j�j(2 + �)(1 + �)2 min� �1 + � ; 13� ; (3.26)then T" is a contractive mapping of B� into itself for every " 2 C satisfying 0 < j"j2 <�. Consequently, T" has a unique �xed point in B�, which can be found by iteration.The lowest-order approximation w = 0, which corresponds to v = ", gives r = 34 j"j2and U(x) = " cosx.The statements of the theorem follow from the implicit function theorems [1,Theorems 15.1 and 15.3].Theorem 3.1 implies that the CGL equation admits 2�-periodic vortex solutionsu, which bifurcate from the trivial solution; these vortex solutions have 2n zeros(\vortices") per period; and the vortices are located at the zeros of the cosine function,which is the solution of the linearized equation in the neighborhood of the bifurcationpoint.The conditions (i){(iii), together with the representations (3.23) and (3.24), de-termine ", ', and � uniquely.The representations (3.23) and (3.24) show that we have a supercritical pitchforkbifurcation from (0; 0). Further terms in the representations (3.23) and (3.24) can becomputed in a standard manner,r = 34 j"j2 �1� 132�j"j2 +O(j"j4)� ; (3.27)12



U(x) = " cos x0@1� �j"j232 cos 3xcos x +  �j"j232 !2 3 cos 3x+ cos 5xcos x +O(j"j6)1A : (3.28)Furthermore, R = n2 + 34 j"j2  1� 1� �2 + 2��32n2(1 + �2) j"j2 +O(j"j4)! ; (3.29)and ! = �n2 + 34 j"j2  �� �2� + 2�� �32n2(1 + �2) j"j2 +O(j"j4)! : (3.30)In particular, ! = �R + (� � �)n2 +O((R� n2)2).4 Numerical ResultsThe results of the preceding bifurcation analysis are supported by the results of nu-merical computations. (These computations were performed by Michael Levine, par-ticipant in the 1998 Energy Research Undergraduate Laboratory Fellowship programat Argonne National Laboratory.)Three numerical methods were applied. The �rst method was a �xed-pointiteration based on Eq. (3.18). (Observe that the only parameter in Eq. (3.18) is �j"j2;without loss of generality, we may take " = 1.) The method converged for � in therectangle [�3:5; 3:5]� [0; 1:5]. The bifurcating solutions were found to be very closeto the solutions of the linearized equation. Next, a shooting method was applied toEq. (1.3). The method yielded bifurcating solutions for � in discs centered at theorigin with radii up to 9. In a third method, a �nite-di�erence method was appliedto Eq. (1.3), and the resulting system of linear equations was solved directly. Thismethod gave results for � in discs centered at the origin with radii up to 200.None of the bifurcating solutions had any additional zeros. The bifurcatingsolutions were all symmetric with respect to the origin. For values of � close to theimaginary axis, additional asymmetric solutions were found that bifurcated from thesymmetric ones. These bifurcations occurred multiple times as j�j was increased alongrays emanating from the origin, and we conjecture that they occur in�nitely often.The properties of the bifurcating solutions are summarized in Figs. 1 and 2.
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Figure 1: Bifurcating solutions U of the CGL equation as a function of arg(�) for a�xed value of j�j.References[1] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.[2] C. Foias and I. Kukavica, Determining nodes for the Kuramoto-Sivashinsky equa-tion, J. Dynam. Di�. Eq. 7 (1995), 365{373.[3] C. Foias and R. Temam, Determination of the solutions of the Navier-Stokesequations by a set of nodal values, Math. Comp. 43 (1984), 117{133.[4] D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes,nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math.J. 42 (1993), 875{887. 14
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Figure 2: Bifurcating solutions U of the CGL equation as a function of j�j for a �xedvalue of arg(�).[5] H. G. Kaper, B. Wang, and S. Wang, Determining nodes for the Ginzburg-Landau equations of superconductivity, Discrete and Continuous Dynamical Sys-tems 4 (1998), 205{224.[6] I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equa-tion, Nonlinearity 5 (1992), 997{1006.[7] P. Tak�a�c, Invariant 2-tori in the time-dependent Ginzburg-Landau equation,Nonlinearity 5 (1992), 289{321.[8] F. Takens, Detecting strange attractors in turbulence. In: D. A. Raud and L.-S. Young (eds.), Lecture Notes in Math., Vol. 898, Springer-Verlag, New York,pp. 366{381. 15


