
Mesh Component Design and Software Integration withinSUMAA3d �Lori Freitagy Mark Jonesz Paul PlassmannxAbstractThe requirements of distributed-memory applications that use mesh managementsoftware tools are diverse, and building software that meets these requirementsrepresents a considerable challenge. In this paper we discuss design requirements for ageneral, component approach for mesh management for use within the context of solvingPDE applications on parallel computers. We describe recent e�orts with the SUMAA3dpackage motivated by a component-based approach and show how these e�orts haveconsiderably improved both the 
exibility and the usability of this software.1 IntroductionNumerical solution of a PDE-based application typically requires that the computationaldomain be discretized into a collection of vertices, edges, faces, and/or cells. Thisdiscretization can take a number of di�erent forms ranging from logically rectangular andmultiblock structured grids to unstructured meshes consisting of simple geometric entitiessuch as triangles or tetrahedra. Each approach has its respective strengths and weaknesses.For example, logically rectangular grids are highly e�cient in terms of computationaland memory requirements, often have long-tested and trusted discretization techniquesavailable, but are not necessarily suited for representing complex geometries. On the otherhand, unstructured meshes are 
exible and can represent a large number of geometries, butare more computationally and memory intensive than their structured counterparts.A signi�cant amount of research and development has been done to create robustsoftware tools for the fundamental tasks associated with mesh management on distributedmemory computers. These tasks range from the initial discretization of the computationaldomain to adaptive mesh re�nement and coarsening to improvement operations such asnode point smoothing and edge or face 
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2of mesh is supported, and the application interface varies dramatically among thepackages. Therefore, experimentation with di�erent discretization schemes, mesh types,and re�nement/coarsening schemes is often di�cult and, in many cases, requires signi�cantrevision of an application code.One solution for facilitating this kind of experimentation is the design of a component-based framework for the solution of PDE applications. Such frameworks allow theapplication scientist to interact with a variety of software tools that are frameworkcompliant without changing the basic interface to the application code. Active researchprojects which support the solution of PDEs using a framework approach include PAWS[6], POET [3], PSEware [2] and ALICE [1]. Recent e�orts to coordinate this work havebeen initiated through the Common Components Architecture design group.A critical aspect of this e�ort is the appropriate de�nition of a component that focuseson mesh computations and interactions. This component must accommodate a diverserange of interactions because many of the fundamental tasks associated with PDE solutionrely on the mesh in some manner. The de�nition of this component is further complicated bythe need for dynamic operations performed on the mesh itself, including adaptive re�nementand coarsening and operations that improve mesh quality. Finally, the component de�nitionmust be general enough to handle the wide variety of mesh types desired by applicationscientists. In x2 we describe general design requirements for a mesh component that istargeted for use on distributed-memory parallel computers.Much of our knowledge pertaining to mesh component design stems from our softwaredevelopment e�ort within the the SUMAA3d (Scalable Unstructured Mesh Algorithmsand Applications in 3d) project. The SUMAA3d software library is an MPI-basedimplementation of a collection of scalable, parallel algorithms for the fundamental tasksof unstructured mesh computation [9]. These tasks include mesh generation [7], adaptivemesh re�nement [13], mesh optimization [10], and mesh partitioning. In recent e�orts, wehave started to address the need for component-style interactions within SUMAA3d. Inthis article, we describe the interfaces between SUMAA3d and solver packages such as thePortable Extensible Toolkit for Scienti�c Computing (PETSc) [4] and between SUMAA3dand interactive visualization tools. For e�ciency reasons, these e�orts focus on one-to-oneinteractions between SUMAA3d and other software systems, but the lessons learns fromthese tasks form the basis for our design of a general mesh component. The interface detailsare given in x3. Finally, we conclude in x4 with a discussion of our future plans in this area.2 Mesh Management as a Framework ComponentThe design of a framework component that can e�ciently represent many di�erent meshstyles and allow application specialists and other components general access to meshinformation is quite challenging. We start by formally de�ning a mesh and a componentand follow with a discussion of the requirements a mesh component must meet to supporta framework targeting the parallel solution of PDE-based applications.We de�ne a mesh as follows.Definition 2.1. A mesh is a discrete representation of a spatial domain consistingof a collection of basic physical entities: vertices, edges, faces, and cells, each of whichcan be uniquely identi�ed and whose relationship to each other is given by hierarchical andconnectivity information.



3By this de�nition, a mesh is a purely geometric entity, and no assumptions are madeabout the discretizations and solution techniques used by the application scientist. Toensure maximum 
exibility, each of the basic mesh entities should accept a user-de�ned,application-speci�c data structure.Our de�nition of a software component is based on the de�nition given in the bookComponent Software: Beyond Object-Oriented Programming [19]. We note that there aremany de�nitions for a software component which vary slightly in substance and form, butfor the purposes of the discussion in this paper, we use the following.Definition 2.2. A software component is a unit of independent deployment, separatedfrom its environment and other components, that provides services and information througha set of well-de�ned interfaces whose prerequisites and results are clearly speci�ed.Thus, a component is de�ned by the information it provides, the interface or API throughwhich interactions with other components and software occur, and its expected behaviorduring those interactions. To enable the independence of component developers and ofthe framework from any particular component instantiation, component de�nition requiresboth an abstracted view of the interactions and a set of formal rules, or contract, for eachinteraction. That is, we must de�ne the preconditions that are necessary for successfulinteraction and provide a guarantee of the postconditions of the interaction, including anyactions that must be taken based on the result of the interaction.Based on De�nitions 2.1 and 2.2, we can de�ne a mesh component by (1) examiningthe steps in PDE solution process, (2) understanding and abstracting the role a mesh playsin each, (3) de�ning the pre- and postconditions that must exist for each interaction to besuccessful, and (4) creating the appropriate interfaces that allow the interactions to takeplace.To illustrate this process within a speci�c example, we present in Figure 1 an outlinefor an adaptive mesh re�nement algorithm to obtain a solution to a steady-state PDE thatsatis�es a speci�ed error tolerance. Actions that change the mesh are highlighted in bold;actions that require interaction with the mesh but do not change it are italicized.In this example the mesh must interact with components designed for the italicized tasksand application-speci�c routines. For each of these components we give the prerequisites(or input) required from the mesh and application, the action of the component (or output),and the expected action, if any, required of the mesh component upon completion of theinteraction.Partitioning Component:1. Input: the graph to be partitioned consisting of the basic mesh entities and theirconnectivity or the geometric location of the entities to be partitioned, the weightingof those entities, machine-speci�c information such as number of processors, processorspeed, and bandwidth2. Output: an assignment of entities to processors, most likely in the form of an arrayof integers3. Required Action: the mesh must distribute itself and any user data associated withits basic entities as decreed



4Initialize the meshPartition and distribute the initial meshDiscretize the PDEAssemble and solve the algebraic systemEstimate the error in the solutionWhile the error is greater than some toleranceRe�ne the meshPartition and distribute the re�ned meshDiscretize the PDEAssemble and solve the algebraic systemEstimate the error in the solutionEndWhileVisualize the solutionFig. 1. General solution procedure for steady-state, adaptive PDE solution showing the actionsthat change the mesh highlighted in bold and the actions that require interaction with the mesh butdo not change it in italicsDiscretization Component:1. Input: basic mesh entities and associated user-de�ned data structures and meshentity connectivity; for example a �nite element discretization would require meshcells and cell vertices. In addition, discretization depends heavily on the equationsbeing solved and may be computed by user software.2. Output: a local approximation of the PDE and unknowns in array form. Theseare derived from the user-de�ned data structures, and a mapping from the user datastructure to the local matrix form is necessary for distribution of the solution backto the mesh. Other output includes the global ids of the mesh entities containingunknowns as well as the connectivity between mesh entities.3. Required Action: the mesh entity must create and store a local mapping betweenthe user's data structures and the local discretization matrixSolver Component:1. Input: assembly of the algebraic system requires the local matrix output from thediscretization component and a mapping from the mesh entities' global ids to thecorresponding components in the algebraic system2. Output: typically a vector containing the approximate solution at this step3. Required Action: the mesh must create a global mapping that relates the globalids of the mesh entities to their location in the solution vector. The mesh mustperform a scatter of the solution vector back to user-de�ned data structures on meshentities using the global mapping de�ned by the solver and the mesh and the localdiscretization mappingRe�nement Component:



51. Input: basic mesh entities, associated user data, and the user software necessary tolocally estimate the error in the solution at those entities2. Output: an array of tags indicating which mesh entities should be re�ned orcoarsened3. Required Action: the mesh should create and delete entities as speci�edVisualization Component:1. Input: scalar and vector �elds derived from user data at a subset of mesh entities,geometric information from the mesh regarding the location of that data, perhaps abackground coarsening function provided by the user to de�ne point density in thevisualization2. Output: reduced data sets such as isosurfaces and contour planes suitable forvisualization3. Required Action: the mesh must be able to coarsen itself according to a backgroundfunction describing the desired distribution of point density for visualization. Themesh should also be able to interpolate data to any point in the domain.Thus, to satisfy the contracts given in this framework example, a mesh component mustmeet the following design requirements.� The mesh must be able to provide lists of the basic mesh entities, geometricinformation about each entity, connectivity information between entities, and thehierarchical relationship between mesh entities.� Each basic mesh entity must be able to accept a user-de�ned, application-speci�cdata structure, a processor assignment generated by a partitioning component, andre�nement/coarsening tags for adaptive solution procedures.� The mesh must be able to distribute itself and the user data associated with its basicentities to processors of a distributed-memory machine. This capability implies thatit can pack messages with geometric information about itself and accept and use afunction for packing the user-de�ned data associated with mesh entities. The meshmust have some method for handling re�nement of mesh entities, including techniquesfor handling propagation of re�nement on distributed-memory architectures. Themesh must be able to create and store mappings from the user de�ned mesh entitiesto local discretization matrices and from the global ids of mesh entities to thecorresponding location in the solution matrix and vector. The mesh must be ableto accept a coarsening function as input from the visualization routine and providedata to the user as requested.Note that these design requirements make no assumptions about what geometricinformation in the mesh is explicitly stored. For example, a logically regular or Cartesiangrid need explicitly store only a list of vertices; the other basic entities and the relationshipbetween them can be easily derived by the ordering of the vertex storage. On the other hand,unstructured meshes have no such implicit ordering; and complete hierarchical informationthat relates vertices to edges, edges to faces, and faces to cell, as well as connectivityinformation such as neighboring element information, must be explicitly stored in the mesh



6represtation. Thus, each instantiation of a mesh can e�ciently use computer resources bystoring only the necessary information to de�ne (or derive) the complete list of basic entitiesand relational information.Performance of a general mesh component that is capable of supporting all of thedi�erent mesh styles is likely to be low. An intermediate approach that focuses on the mostcommonly used styles of mesh and the corresponding discretizations is likely to obtain betterperformance and also to satisfy most application user needs. In particular, one approachwould be to provide two sets of mesh component interfaces; one that targets logically regulargrids using �nite di�erence discretization schemes and another that targets unstructuredmeshes using �nite element and �nite volume schemes.3 Component Implementation within SUMAA3dThe SUMAA3d software currently handles tasks associated with instantiations of themesh, discretization, and partitioning components described in the preceding section. Inthis section we describe the interface design between SUMAA3d and application-speci�ccode and also between SUMAA3d and the remaining two components, the solver and thevisualization components. Our work to date has focused on developing particular interfacesbetween SUMAA3d and other software systems. In particular, subsection 3.1.1 discussesthe interface between SUMAA3d and two packages for solving simultaneous systems ofequations, BlockSolve95 and PETSc and subsection 3.1.2 describes the interaction betweenSUMAA3d and interactive visualization/computational steering software. Although notas general as the component approach described in the preceding section, this approachprovides the best performance for application scientists. Future work at Argonne includesthe development of the interface routines for both the general mesh case and theintermediate approach described in the preceding section.3.1 The SUMAA3d User InterfaceThe interaction between a user and the SUMAA3d programming environment is based onthe speci�cation of a number of key properties of the application. These properties usuallyinclude the underlying governing equations, typically a (local) PDE, the problem domain,its geometry and topology, boundary conditions, and a discretization scheme for the PDE(for example, a �rst-order �nite-element method with particular choices for element types,quadrature rules, and error estimation schemes).A key observation is that for most applications, such as �nite-element approaches,the user can specify a problem with a routine to evaluate an element (given the elementdata), an error estimation routine (using the data from an element and perhaps someneighborhood), and a compact representation of the computational domain (possibly acoarse surface triangulation and explicit or implicit functions to generate new surface pointsduring mesh re�nement). These operations are local and require information only from aparticular element and its neighborhood. Thus, the only software required from the usershould be routines for these local operations, that is element routines, error estimationroutines, and surface interpolation routines.The programming interface presented by SUMAA3d is independent of underlyingdistributed data structures, enabling users to concentrate solely on numerical aspects ofmodeling. In Figure 2 we schematically show the interaction between the user and theessential components within the programming environment. The dotted line at the top ofthe �gure denotes the user interface to the SUMAA3d programming environment. Note that
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Interactive VisualizationFig. 2. A schematic of the interaction between the essential tasks required in the programmingenvironment. This schematic illustrates how the user-supplied code (the routines represented by theovals above the dotted line) is independent of the distributed data structures inherent to the parallelprogramming environment. The distributed data structures are used in parallel computations doneby the essential tasks (represented by boxes below the dotted line).the user-supplied code is independent of the underlying distributed data structures inherentin the parallel system. However, a user can access information from the distributed datastructures as required to integrate other software systems. This interface not only simpli�eswork for the user, but also enables us to more easily interface to PETSc (as discussed inthe following section), ALICE, and other related projects.3.1.1 Interaction between Solver Packages and SUMAA3d The �rst solverpackage interfaced to SUMAA3d was BlockSolve95 [11] [12], software for solving systems oflinear equations arising from discretizations of PDEs on structured or unstructured grids.SUMAA3d makes extensive use of features and data structures speci�c to BlockSolve95 toallow for e�cient matrix assembly as well as a low-overhead interface between the solverand the SUMAA3d. One such feature is BlockSolve95's tolerance of a noncontiguous globalnumbering of unknowns [12]; this feature allows for unknowns to be assigned a permanentglobal number that does not change when mesh vertices are added and deleted. Theinterface between SUMAA3d and BlockSolve95 is extremely e�cient, but the tight couplingof data structures and features speci�c to BlockSolve95 does not satisfy the de�nition of acomponent-based approach given in x2.The second solver package interfaced to SUMAA3d was PETSc, a 
exible packagefor solving linear and nonlinear systems of equations with the capability of solving time-dependent problems [4]. PETSc is a much more comprehensive, general package thanBlockSolve95; it does not have some of the features that were taken advantage of in theinterface of SUMAA3d to BlockSolve95. The interface points between the two packages arethe PETSc matrix and vector objects,Mat and Vec, respectively. A high-level descriptionof the actions required by the two packages is given in Figure 3. One direction is fairlystraightforward: SUMAA3d must assemble matrices and vectors into the Mat and Vecobjects using the assembly routines provided by PETSc. The user calls a SUMAA3d



8subroutine to initiate matrix or vector assembly; the user must indicate which set ofunknowns is to be used in the assembly. Given this information, SUMAA3d creates andstores a mapping of the mesh unknowns to the unknowns represented in the matrix andsolution vector. SUMAA3d uses this mapping to scatter the data in a PETSc Vec objectonto the mesh so that the unknowns in the Vec object are mapped to the correct unknownsat the mesh vertices. Such a scattering is likely to take place, for example, after a set oflinear systems are solved, and the results need to be mapped onto the mesh for furthercalculations.The mapping created by SUMAA3d is not used in PETSc and is not explicitly expressedto PETSc. We do, however, take advantage of the PETSc \container" software constructthat allows non-PETSc data be attached to PETSc objects. We place a pointer to themapping object in the container, and associate this container with either a PETSc Vec ora PETSc Mat object. PETSc ignores this container, but whenever SUMAA3d examinesa PETSc Vec or Mat object, it looks in this container for the mapping data associatedwith that object. This approach allowed for the implementation of an interface betweenSUMAA3d and PETSc to be written without altering a single line of code of either package.Further, only a few hundred lines of new code were needed for the interface with the majorityof this code associated with matrix assembly and altering matrices to enforce boundaryconditions.
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Scatter Xnew onto meshFig. 3. SUMAA3d is responsible for creating the PETSc objects of type Vec and type Matthat will be used by SUMAA3d. These objects use the container feature of PETSc objects to retaininformation describing the mapping between mesh unknowns and matrix/vector unknowns. In thisexample, SUMAA3d creates vectors Xold and Xnew as well as matrix A; Xold and A are assembled.PETSc solves for Xdelta, which is a PETSc Vec object that is not used by SUMAA3d, and thencomputes Xnew. Finally Xnew is scattered back onto the mesh by SUMAA3d using the mappinginformation contained in the Vec object.3.1.2 Interactive Visualization Tools and SUMAA3d The interface between theequation solvers and SUMAA3d was fairly straightforward in large part because there is aconsensus about what algebraic operations and objects are in equations solvers, particularlyfor linear equation solvers. Unfortunately, the nature of the operations and implementationsfor interactive visualization and computational steering on unstructured meshes is still aresearch topic; no strong consensus exists.An important focus area is the reduction of data sent to the visualization engine.



9Because SUMAA3d is targeted to large-scale parallel machines, the meshes are expectedto have millions of unknowns and perhaps thousands of time steps. It is neither practicalnor desirable to send this amount of data to a visualization engine for two reasons: (1) thecomputation load on the visualization engine is too high, and (2) the user does not want toand cannot look at that amount of information. E�cient operation dictates a reduction inthe amount of information sent to the visualization engine. The approach advocated in thispaper is the use of mesh coarsening techniques to reduce the data in space and splines toreduce the data in time. Both of these mesh functions can signi�cantly reduce the amountof data to a manageable level in a controlled fashion.Mesh coarsening is typically used to construct a coarse mesh for a multilevel solveralgorithm [8] where the goal is simply to construct a mesh that meets certainly qualitybounds and mesh size requirements. For interactive visualization, di�erent goals are setfor the coarse mesh. For example, a user may want to see only a section of the mesh, acoarse view of the entire mesh, or details in some sections of the mesh and coarse views inother sections. The visualization software would give a background function to SUMAA3ddescribing the desired distribution of point density in the coarse mesh as well the desirednumber of points in the coarse mesh; SUMAA3d would return a coarse mesh satisfying thedistribution function and number of points.Splines and related functions can be used to construct compact representations of aset of points. They can be particularly e�ective in reducing the amount of data requiredto represent a function while still retaining reasonable accuracy. This is especially truewhen the function is not changing rapidly. Such a technique is not particularly useful forunstructured meshes in the spatial domain because these meshes are typically constructedsuch that the estimated error is equal on each element of the mesh. However, there issigni�cant potential for compression in the time domain because there are typically areasof the mesh where the function changes slowly in time and areas of the mesh where thefunction changes rapidly. The proposed approach uses spline-like functions to compress theunknown information at each vertex in the time domain. The visualization software willconvey an acceptable error level or a desired reduction in data (both are single numbers) toSUMAA3d, and the spline-like functions will be chosen at each vertex to achieve this goal.Both techniques are computationally demanding and complex, particularly in a parallelenvironment. A suitable algorithm of guaranteed quality exists for mesh coarsening [15].A task in SUMAA3d is the construction of a parallel mesh coarsening algorithm usingthis technique. Similarly, many strong contenders exists for the time domain compressionfunctions. The interaction of these functions with mesh coarsening as well as measurementsof their compression capability is a task in SUMAA3d.4 ConclusionOur recent e�orts within SUMAA3d to develop interfaces among solver packages andinteractive visualization tools have considerably improved both the 
exibility and theusability of this software. Our experience with software interaction between particularpackages has led us to develop a preliminary design for a general mesh component foruse in scienti�c computing applications. Our eventual goal is to support interoperabilitythrough the componentware approach championed by the Advanced Large-Scale IntegratedComputational Environment (ALICE) e�ort at Argonne [1].Our future work in this area will center around creating appropriate interfaces forthe mesh component described in x2. This work will not be done in isolation, but
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