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Abstract

The requirements of distributed-memory applications that use mesh management
software tools are diverse, and building software that meets these requirements
represents a considerable challenge. In this paper we discuss design requirements for a
general, component approach for mesh management for use within the context of solving
PDE applications on parallel computers. We describe recent efforts with the SUMAA3d
package motivated by a component-based approach and show how these efforts have
considerably improved both the flexibility and the usability of this software.

1 Introduction

Numerical solution of a PDE-based application typically requires that the computational
domain be discretized into a collection of vertices, edges, faces, and/or cells. This
discretization can take a number of different forms ranging from logically rectangular and
multiblock structured grids to unstructured meshes consisting of simple geometric entities
such as triangles or tetrahedra. Each approach has its respective strengths and weaknesses.
For example, logically rectangular grids are highly efficient in terms of computational
and memory requirements, often have long-tested and trusted discretization techniques
available, but are not necessarily suited for representing complex geometries. On the other
hand, unstructured meshes are flexible and can represent a large number of geometries, but
are more computationally and memory intensive than their structured counterparts.

A significant amount of research and development has been done to create robust
software tools for the fundamental tasks associated with mesh management on distributed
memory computers. These tasks range from the initial discretization of the computational
domain to adaptive mesh refinement and coarsening to improvement operations such as
node point smoothing and edge or face flipping. FExisting tools targeted for use on
distributed memory computers include Trellis [5], DAGH [17], PME [16], SUMAA3d
[9], AMR++ [18], and SAMRAI [14]. In each of these cases, however, a single style
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of mesh is supported, and the application interface varies dramatically among the
packages. Therefore, experimentation with different discretization schemes, mesh types,
and refinement /coarsening schemes is often difficult and, in many cases, requires significant
revision of an application code.

One solution for facilitating this kind of experimentation is the design of a component-
based framework for the solution of PDE applications. Such frameworks allow the
application scientist to interact with a variety of software tools that are framework
compliant without changing the basic interface to the application code. Active research
projects which support the solution of PDEs using a framework approach include PAWS
[6], POET [3], PSEware [2] and ALICE [1]. Recent efforts to coordinate this work have
been initiated through the Common Components Architecture design group.

A critical aspect of this effort is the appropriate definition of a component that focuses
on mesh computations and interactions. This component must accommodate a diverse
range of interactions because many of the fundamental tasks associated with PDE solution
rely on the mesh in some manner. The definition of this component is further complicated by
the need for dynamic operations performed on the mesh itself, including adaptive refinement
and coarsening and operations that improve mesh quality. Finally, the component definition
must be general enough to handle the wide variety of mesh types desired by application
scientists. In §2 we describe general design requirements for a mesh component that is
targeted for use on distributed-memory parallel computers.

Much of our knowledge pertaining to mesh component design stems from our software
development effort within the the SUMAA3d (Scalable Unstructured Mesh Algorithms
and Applications in 3d) project. The SUMAA3d software library is an MPI-based
implementation of a collection of scalable, parallel algorithms for the fundamental tasks
of unstructured mesh computation [9]. These tasks include mesh generation [7], adaptive
mesh refinement [13], mesh optimization [10], and mesh partitioning. In recent efforts, we
have started to address the need for component-style interactions within SUMAA3d. In
this article, we describe the interfaces between SUMAA3d and solver packages such as the
Portable Extensible Toolkit for Scientific Computing (PETSc) [4] and between SUMAA3d
and interactive visualization tools. For efficiency reasons, these efforts focus on one-to-one
interactions between SUMAA3d and other software systems, but the lessons learns from
these tasks form the basis for our design of a general mesh component. The interface details
are given in §3. Finally, we conclude in §4 with a discussion of our future plans in this area.

2 Mesh Management as a Framework Component

The design of a framework component that can efficiently represent many different mesh
styles and allow application specialists and other components general access to mesh
information is quite challenging. We start by formally defining a mesh and a component
and follow with a discussion of the requirements a mesh component must meet to support
a framework targeting the parallel solution of PDE-based applications.

We define a mesh as follows.

DEFINITION 2.1. A mesh is a discrete representation of a spatial domain consisting
of a collection of basic physical entities: wvertices, edges, faces, and cells, each of which
can be uniquely identified and whose relationship to each other is given by hierarchical and
connectivity information.



By this definition, a mesh is a purely geometric entity, and no assumptions are made
about the discretizations and solution techniques used by the application scientist. To
ensure maximum flexibility, each of the basic mesh entities should accept a user-defined,
application-specific data structure.

Our definition of a software component is based on the definition given in the book
Component Software: Beyond Object-Oriented Programming [19]. We note that there are
many definitions for a software component which vary slightly in substance and form, but
for the purposes of the discussion in this paper, we use the following.

DEFINITION 2.2. A software component is a unit of independent deployment, separated
from its environment and other components, that provides services and information through
a set of well-defined interfaces whose prerequisites and results are clearly specified.

Thus, a component is defined by the information it provides, the interface or API through
which interactions with other components and software occur, and its expected behavior
during those interactions. To enable the independence of component developers and of
the framework from any particular component instantiation, component definition requires
both an abstracted view of the interactions and a set of formal rules, or contract, for each
interaction. That is, we must define the preconditions that are necessary for successful
interaction and provide a guarantee of the postconditions of the interaction, including any
actions that must be taken based on the result of the interaction.

Based on Definitions 2.1 and 2.2, we can define a mesh component by (1) examining
the steps in PDE solution process, (2) understanding and abstracting the role a mesh plays
in each, (3) defining the pre- and postconditions that must exist for each interaction to be
successful, and (4) creating the appropriate interfaces that allow the interactions to take
place.

To illustrate this process within a specific example, we present in Figure 1 an outline
for an adaptive mesh refinement algorithm to obtain a solution to a steady-state PDE that
satisfies a specified error tolerance. Actions that change the mesh are highlighted in bold;
actions that require interaction with the mesh but do not change it are italicized.

In this example the mesh must interact with components designed for the italicized tasks
and application-specific routines. For each of these components we give the prerequisites
(or input) required from the mesh and application, the action of the component (or output),
and the expected action, if any, required of the mesh component upon completion of the
interaction.

Partitioning Component:

1. Input: the graph to be partitioned consisting of the basic mesh entities and their
connectivity or the geometric location of the entities to be partitioned, the weighting
of those entities, machine-specific information such as number of processors, processor
speed, and bandwidth

2. Output: an assignment of entities to processors, most likely in the form of an array
of integers

3. Required Action: the mesh must distribute itself and any user data associated with
its basic entities as decreed



Initialize the mesh
Partition and distribute the initial mesh
Discretize the PDE
Assemble and solve the algebraic system
FEstimate the error in the solution
While the error is greater than some tolerance
Refine the mesh
Partition and distribute the refined mesh
Discretize the PDE
Assemble and solve the algebraic system
Estimate the error in the solution
EndWhile

Visualize the solution

Fia. 1. General solution procedure for steady-state, adaptive PDE solution showing the actions
that change the mesh highlighted in bold and the actions that require interaction with the mesh but

do not change 1t in italics

Discretization Component:

1. Input: basic mesh entities and associated user-defined data structures and mesh
entity connectivity; for example a finite element discretization would require mesh
cells and cell vertices. In addition, discretization depends heavily on the equations
being solved and may be computed by user software.

2. Output: a local approximation of the PDE and unknowns in array form. These
are derived from the user-defined data structures, and a mapping from the user data
structure to the local matrix form is necessary for distribution of the solution back
to the mesh. Other output includes the global ids of the mesh entities containing
unknowns as well as the connectivity between mesh entities.

3. Required Action: the mesh entity must create and store a local mapping between
the user’s data structures and the local discretization matrix

Solver Component:

1. Input: assembly of the algebraic system requires the local matrix output from the
discretization component and a mapping from the mesh entities’ global ids to the
corresponding components in the algebraic system

2. Output: typically a vector containing the approximate solution at this step

3. Required Action: the mesh must create a global mapping that relates the global
ids of the mesh entities to their location in the solution vector. The mesh must
perform a scatter of the solution vector back to user-defined data structures on mesh
entities using the global mapping defined by the solver and the mesh and the local
discretization mapping

Refinement Component:



1. Input: basic mesh entities, associated user data, and the user software necessary to
locally estimate the error in the solution at those entities

2. Output: an array of tags indicating which mesh entities should be refined or
coarsened

3. Required Action: the mesh should create and delete entities as specified
Visualization Component:

1. Input: scalar and vector fields derived from user data at a subset of mesh entities,
geometric information from the mesh regarding the location of that data, perhaps a
background coarsening function provided by the user to define point density in the
visualization

2. Output: reduced data sets such as isosurfaces and contour planes suitable for
visualization

3. Required Action: the mesh must be able to coarsen itself according to a background
function describing the desired distribution of point density for visualization. The
mesh should also be able to interpolate data to any point in the domain.

Thus, to satisfy the contracts given in this framework example, a mesh component must
meet the following design requirements.

e The mesh must be able to provide lists of the basic mesh entities, geometric
information about each entity, connectivity information between entities, and the
hierarchical relationship between mesh entities.

e Fach basic mesh entity must be able to accept a user-defined, application-specific
data structure, a processor assignment generated by a partitioning component, and
refinement /coarsening tags for adaptive solution procedures.

e The mesh must be able to distribute itself and the user data associated with its basic
entities to processors of a distributed-memory machine. This capability implies that
it can pack messages with geometric information about itself and accept and use a
function for packing the user-defined data associated with mesh entities. The mesh
must have some method for handling refinement of mesh entities, including techniques
for handling propagation of refinement on distributed-memory architectures. The
mesh must be able to create and store mappings from the user defined mesh entities
to local discretization matrices and from the global ids of mesh entities to the
corresponding location in the solution matrix and vector. The mesh must be able
to accept a coarsening function as input from the visualization routine and provide
data to the user as requested.

Note that these design requirements make no assumptions about what geometric
information in the mesh is explicitly stored. For example, a logically regular or Cartesian
grid need explicitly store only a list of vertices; the other basic entities and the relationship
between them can be easily derived by the ordering of the vertex storage. On the other hand,
unstructured meshes have no such implicit ordering; and complete hierarchical information
that relates vertices to edges, edges to faces, and faces to cell, as well as connectivity
information such as neighboring element information, must be explicitly stored in the mesh



represtation. Thus, each instantiation of a mesh can efficiently use computer resources by
storing only the necessary information to define (or derive) the complete list of basic entities
and relational information.

Performance of a general mesh component that is capable of supporting all of the
different mesh styles is likely to be low. An intermediate approach that focuses on the most
commonly used styles of mesh and the corresponding discretizations is likely to obtain better
performance and also to satisfy most application user needs. In particular, one approach
would be to provide two sets of mesh component interfaces; one that targets logically regular
grids using finite difference discretization schemes and another that targets unstructured
meshes using finite element and finite volume schemes.

3 Component Implementation within SUMAA3d

The SUMAA3d software currently handles tasks associated with instantiations of the
mesh, discretization, and partitioning components described in the preceding section. In
this section we describe the interface design between SUMAA3d and application-specific
code and also between SUMAA3d and the remaining two components, the solver and the
visualization components. Our work to date has focused on developing particular interfaces
between SUMAA3d and other software systems. In particular, subsection 3.1.1 discusses
the interface between SUMAA3d and two packages for solving simultaneous systems of
equations, BlockSolve95 and PETSc and subsection 3.1.2 describes the interaction between
SUMAA3d and interactive visualization/computational steering software. Although not
as general as the component approach described in the preceding section, this approach
provides the best performance for application scientists. Future work at Argonne includes
the development of the interface routines for both the general mesh case and the
intermediate approach described in the preceding section.

3.1 The SUMAA3d User Interface

The interaction between a user and the SUMAA3d programming environment is based on
the specification of a number of key properties of the application. These properties usually
include the underlying governing equations, typically a (local) PDE, the problem domain,
its geometry and topology, boundary conditions, and a discretization scheme for the PDE
(for example, a first-order finite-element method with particular choices for element types,
quadrature rules, and error estimation schemes).

A key observation is that for most applications, such as finite-element approaches,
the user can specify a problem with a routine to evaluate an element (given the element
data), an error estimation routine (using the data from an element and perhaps some
neighborhood), and a compact representation of the computational domain (possibly a
coarse surface triangulation and explicit or implicit functions to generate new surface points
during mesh refinement). These operations are local and require information only from a
particular element and its neighborhood. Thus, the only software required from the user
should be routines for these local operations, that is element routines, error estimation
routines, and surface interpolation routines.

The programming interface presented by SUMAA3d is independent of underlying
distributed data structures, enabling users to concentrate solely on numerical aspects of
modeling. In Figure 2 we schematically show the interaction between the user and the
essential components within the programming environment. The dotted line at the top of
the figure denotes the user interface to the SUMA A3d programming environment. Note that
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Fic. 2. A schematic of the interaction between the essential tasks required in the programming
environment. This schematic illustrates how the user-supplied code (the routines represented by the
ovals above the dotted line) is independent of the distributed data structures inherent to the parallel
programming environment. The distributed data structures are used in parallel computations done

by the essential tasks (represented by bozes below the dotted line).

the user-supplied code is independent of the underlying distributed data structures inherent
in the parallel system. However, a user can access information from the distributed data
structures as required to integrate other software systems. This interface not only simplifies
work for the user, but also enables us to more easily interface to PETSc (as discussed in
the following section), ALICE, and other related projects.

3.1.1 Interaction between Solver Packages and SUMAA3d The first solver
package interfaced to SUMAA3d was BlockSolve95 [11] [12], software for solving systems of
linear equations arising from discretizations of PDEs on structured or unstructured grids.
SUMA A3d makes extensive use of features and data structures specific to BlockSolve95 to
allow for efficient matrix assembly as well as a low-overhead interface between the solver
and the SUMAA3d. One such feature is BlockSolve95’s tolerance of a noncontiguous global
numbering of unknowns [12]; this feature allows for unknowns to be assigned a permanent
global number that does not change when mesh vertices are added and deleted. The
interface between SUMAA3d and BlockSolve95 is extremely efficient, but the tight coupling
of data structures and features specific to BlockSolve95 does not satisfy the definition of a
component-based approach given in §2.

The second solver package interfaced to SUMAA3d was PETSc, a flexible package
for solving linear and nonlinear systems of equations with the capability of solving time-
dependent problems [4]. PETSc is a much more comprehensive, general package than
BlockSolve95; it does not have some of the features that were taken advantage of in the
interface of SUMAA3d to BlockSolve95. The interface points between the two packages are
the PETSc matrix and vector objects, Mat and Vec, respectively. A high-level description
of the actions required by the two packages is given in Figure 3. One direction is fairly
straightforward: SUMAA3d must assemble matrices and vectors into the Mat and Vec
objects using the assembly routines provided by PETSc. The user calls a SUMAA3d



subroutine to initiate matrix or vector assembly; the user must indicate which set of
unknowns is to be used in the assembly. Given this information, SUMAA3d creates and
stores a mapping of the mesh unknowns to the unknowns represented in the matrix and
solution vector. SUMAA3d uses this mapping to scatter the data in a PETSc Vec object
onto the mesh so that the unknowns in the Vec object are mapped to the correct unknowns
at the mesh vertices. Such a scattering is likely to take place, for example, after a set of
linear systems are solved, and the results need to be mapped onto the mesh for further
calculations.

The mapping created by SUMAA3d is not used in PETSc and is not explicitly expressed
to PETSc. We do, however, take advantage of the PETSc “container” software construct
that allows non-PETSc data be attached to PETSc objects. We place a pointer to the
mapping object in the container, and associate this container with either a PETSc Vec or
a PETSc Mat object. PETSc ignores this container, but whenever SUMAA3d examines
a PETSc Vee or Mat object, it looks in this container for the mapping data associated
with that object. This approach allowed for the implementation of an interface between
SUMAA3d and PETSc to be written without altering a single line of code of either package.
Further, only a few hundred lines of new code were needed for the interface with the majority
of this code associated with matrix assembly and altering matrices to enforce boundary
conditions.

PETSc SUMAA3d

3 Creste vectors Xold
! and Xnew (type Vec)

Assemble Xold from mesh

Create matrix A (type Mat)

Xnew = Xdelta+Xold
\\ Assemble A from mesh
Scatter Xnew onto mesh

Fia. 3. SUMAAS3d is responsible for creating the PETSc objects of type Vec and type Mat
that will be used by SUMAA3d. These objects use the container feature of PETSc objects to retain
information describing the mapping belween mesh unknowns and matriz/vector unknowns. In this
ezample, SUMAAS3d creates vectors Xold and Xnew as well as matriz A; Xold and A are assembled.
PETSe solves for Xdelta, which is a PETSc Vec object that is not used by SUMAA3d, and then
computes Xnew. Finally Xnew s scattered back onto the mesh by SUMAAS3d using the mapping

wmformation contained in the Vec object.

3.1.2 Interactive Visualization Tools and SUMAA3d The interface between the
equation solvers and SUMAA3d was fairly straightforward in large part because there is a
consensus about what algebraic operations and objects are in equations solvers, particularly
for linear equation solvers. Unfortunately, the nature of the operations and implementations
for interactive visualization and computational steering on unstructured meshes is still a
research topic; no strong consensus exists.

An important focus area is the reduction of data sent to the visualization engine.



Because SUMAA3d is targeted to large-scale parallel machines, the meshes are expected
to have millions of unknowns and perhaps thousands of time steps. It is neither practical
nor desirable to send this amount of data to a visualization engine for two reasons: (1) the
computation load on the visualization engine is too high, and (2) the user does not want to
and cannot look at that amount of information. Efficient operation dictates a reduction in
the amount of information sent to the visualization engine. The approach advocated in this
paper is the use of mesh coarsening techniques to reduce the data in space and splines to
reduce the data in time. Both of these mesh functions can significantly reduce the amount
of data to a manageable level in a controlled fashion.

Mesh coarsening is typically used to construct a coarse mesh for a multilevel solver
algorithm [8] where the goal is simply to construct a mesh that meets certainly quality
bounds and mesh size requirements. For interactive visualization, different goals are set
for the coarse mesh. For example, a user may want to see only a section of the mesh, a
coarse view of the entire mesh, or details in some sections of the mesh and coarse views in
other sections. The visualization software would give a background function to SUMAA3d
describing the desired distribution of point density in the coarse mesh as well the desired
number of points in the coarse mesh; SUMAA3d would return a coarse mesh satisfying the
distribution function and number of points.

Splines and related functions can be used to construct compact representations of a
set of points. They can be particularly effective in reducing the amount of data required
to represent a function while still retaining reasonable accuracy. This is especially true
when the function is not changing rapidly. Such a technique is not particularly useful for
unstructured meshes in the spatial domain because these meshes are typically constructed
such that the estimated error is equal on each element of the mesh. However, there is
significant potential for compression in the time domain because there are typically areas
of the mesh where the function changes slowly in time and areas of the mesh where the
function changes rapidly. The proposed approach uses spline-like functions to compress the
unknown information at each vertex in the time domain. The visualization software will
convey an acceptable error level or a desired reduction in data (both are single numbers) to
SUMAA3d, and the spline-like functions will be chosen at each vertex to achieve this goal.

Both techniques are computationally demanding and complex, particularly in a parallel
environment. A suitable algorithm of guaranteed quality exists for mesh coarsening [15].
A task in SUMAA3d is the construction of a parallel mesh coarsening algorithm using
this technique. Similarly, many strong contenders exists for the time domain compression
functions. The interaction of these functions with mesh coarsening as well as measurements
of their compression capability is a task in SUMAA3d.

4 Conclusion

Our recent efforts within SUMAA3d to develop interfaces among solver packages and
interactive visualization tools have considerably improved both the flexibility and the
usability of this software. Our experience with software interaction between particular
packages has led us to develop a preliminary design for a general mesh component for
use in scientific computing applications. Our eventual goal is to support interoperability
through the componentware approach championed by the Advanced Large-Scale Integrated
Computational Environment (ALICE) effort at Argonne [1].

Our future work in this area will center around creating appropriate interfaces for
the mesh component described in §2. This work will not be done in isolation, but
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rather motivated by a team of application scientists from ongoing collaborations, and in
conjunction with developers of other mesh management software and with the developers
of related components. Once these interfaces are in place for SUMAA3d we will explore
efficiency and generality tradeoffs in the context of a mesh component with four levels
of coupling: tight data structure-dependent coupling, as with BlockSolve95, one-to-one
interfaces such as that implemented with PETSc, and the two approaches to general mesh
components described at the end of §2.
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