
A Microkernel Design for Component-based ParallelNumerical Software Systems �Satish Balay, Bill Gropp, Lois Curfman McInnes, and Barry Smith yAbstractWhat is the minimal software infrastructure and what type of conventions areneeded to simplify development of sophisticated parallel numerical application codesusing a variety of software components that are not necessarily available as sourcecode? We propose an opaque object-based model where the objects are dynamicallyloadable from the �le system or network. The microkernel required to manage such asystem needs to include, at most� a few basic services, namely,{ a mechanism for loading objects at run time via dynamic link libraries, and{ consistent schemes for error handling and memory management; and� selected methods that all objects share, to deal with{ object life (destruction, reference counting, relationships), and{ object observation (viewing, pro�ling, tracing).We are experimenting with these ideas in the context of extensible numerical softwarewithin the ALICE (Advanced Large-scale Integrated Computational Environment)project, where we are building the microkernel to manage the interoperability amongvarious tools for large-scale scienti�c simulations. This paper presents some preliminaryobservations and conclusions from our work with microkernel design.1 IntroductionThe complexity of large-scale scienti�c simulations, often collaborative e�orts amongscientists and engineers, necessitates the combined use of multiple software packagesdeveloped by di�erent groups. For example, several projects that motivate our currentwork are the modeling of microstructural evolution in sintering [31, 32, 33], astrophysicalthermonuclear simulations [27], and multi-model aerodynamic computations [23, 16,22]. These investigations involve a range of computational areas such as discretization,partitioning, load balancing, adaptive mesh manipulations, scalable algebraic solvers,optimization, parallel input/output, performance diagnostics, computational steering, andvisualization; moreover, the state-of-the-art within each of these areas is constantlyevolving, necessitating frequent software updates within the lifetime of a given application.�The authors were supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of Energy, underContract W-31-109-Eng-38.ybalay@mcs.anl.gov, gropp@mcs.anl.gov, curfman@mcs.anl.gov, bsmith@mcs.anl.gov, Mathematics andComputer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4844.

2A pressing question now facing the computational science community is how toe�ectively leverage the varying expertise of all team participants in such multidisciplinaryprojects. The limitations of the current generation of software tools and infrastructure, eventhose that employ modern software design techniques, cause us to fall short of where wemust move in order to have a hope of exploiting forthcoming teraop-scale computationalresources for meaningful scienti�c gains. The high-performance computational softwarecommunity is thus faced with the charge of developing more e�ective ways for multiplegroups with di�erent areas of expertise to encapsulate their knowledge within extensible,reusable, interoperable software tools, and thereby to raise the levels of abstraction usedby application scientists.The mainstream computing community has developed interoperability mechanisms(e.g., distributed object technology such as the COM family and CORBA, and portablelanguages such as Java) to address similar levels of complexity within their applications.Our approach is to leverage parts of this work when appropriate, recognizing that thefeatures of large-scale scienti�c computation present di�erent challenges and thus demanddi�erent solutions. One challenge is the need for e�cient and scalable performance onever evolving distributed-memory architectures such as symmetric multi-processor andworkstation clusters. Also, the culture of research computing di�ers from that of thebusiness world; scientists need to be able to explore their ideas without requiring legions ofprogrammers to translate from scienti�c abstractions to actual code, and without becomingoverwhelmed with a myriad of details (e.g., security) that are not of primary interest. Theseissues are further discussed in Section 2.2.Many open research questions must be explored to determine good interoperable soft-ware management techniques for high-performance numerical simulations. These questionsinclude: What are appropriate performance-sensitive abstractions and operations? Whatare appropriate data exchange formats among particular components? How can we developbridges between data structures for performance optimization?To enable exploration of these issues, we are building infrastructure within a microkernelto manage tool coordination. Our approach focuses on a base object class coupled withdynamic loading of software components. The remainder of this paper motivates thesechoices and explains our design strategy. Section 2 de�nes in more detail the scope of theissues under consideration, briey surveys existing solution techniques, and discusses thelimits of our technical approach. Section 3 de�nes various terms used in the remainder ofthe discussion and introduces our solution strategy. Section 4 presents an overview of themicrokernel design, including the core infrastructure it provides and the base object model.Preliminary observations and directions of future work are discussed in Section 5.2 Interoperability IssuesAs we investigate techniques for dynamic component-based interactions in scienti�ccomputing, we must bear in mind our target customers [14]. The microkernel workpresented here forms part of a exible architecture within the Advanced Large-scaleIntegrated Computational Environment (ALICE) [1], under development at ArgonneNational Laboratory. We aim to provide low-overhead mechanisms to enable di�erentgroups to contribute and maintain their own libraries (as painlessly as possible) in adistributed fashion. The goal of ALICE is to leverage the strengths of di�erent high-performance toolkits, not to develop a single massive library into which everyone contributescode.

32.1 A Motivating SimulationAs a motivating example, we consider simulations of microstructural evolution in sinteringvia the method of lines, under investigation by W. Zhang and J. Schneibel [31, 32, 33].At the heart of these simulations is the solution of a set of coupled ordinary di�erentialequations (ODEs), which requires the solution of nonlinear systems, which in turncan be addressed by preconditioned Newton-Krylov methods. For large-scale parallelsimulations, we have incorporated the complementary capabilities of (1) mathematicalsintering models of Zhang and Schneibel; (2) ODE solvers within the PVODE [17] softwareof Hindmarsh et al. of Lawrence Livermore National Laboratory, and (3) preconditioningtechniques, matrix coloring tools for �nite di�erencing Jacobian approximation, and parallelproblem decomposition infrastructure within the PETSc software [4, 5]. PVODE andPETSc complement each other well because PVODE provides higher-order, adaptive ODEschemes and robust nonlinear solvers tailored for ODE solution, but does not focus onparallel preconditioners and coloring tools; likewise, PETSc does not provide higher-orderODE integrators. Due to data-structure-neutral design [28] with well-de�ned applicationprogramming interfaces (APIs), this interoperability required no changes to the source codeof either PVODE or PETSc.Although the bilateral PVODE/PETSc interfacing has been a good step forward inbridging the gap between what scienti�c simulations need and what numerical librariesprovide, it raises questions about broader interoperability issues. What we really needis the dynamic combined use of various packages, including multiple tools that provideidentical functionality as well as those with di�erent capabilities. For example, the sinteringsimulations could potentially bene�t from algorithmic alternatives for preconditioning andODE solution provided by di�erent software packages as well as complementary capabilitiessuch as derivative-enhanced sensitivity analysis [18], visualization, and steering.One-to-one interfacing is excessively burdensome, and the current generation ofinfrastructure is inadequate, even for software packages that individually have been builtusing object-oriented design. To enable more dynamic component-based interactions,we must consider issues such as mechanisms for specifying software APIs (input/outputparameters) and behavior (services that a toolkit provides as well as those it requires),approaches for establishing dynamic connections among tools, \standard" interfaces forparticular functionalities (see, e.g., [9] for linear algebra interface work), and languageinteroperability (see, e.g., [10],[21]). Such issues are under consideration by a variety ofresearchers, including [2, 20, 26, 25, 30, 3].2.2 Comparison of ApproachesThere are two main alternatives to the component model that we propose in this paper.One is a more library-oriented approach, with a long and successful history in numericalcomputing. The other is a commercial component or distributed object solution, whichhas been successful in mainstream computing. To understand why we propose dynamicallyloaded components, it is important to remember the problem that we are trying to solve:managing the growing complexity of numerical libraries, particularly collections of libraries,each representing the unique expertise of a research or product group, while maintainingthe performance that scienti�c/engineering application developers expect and require.One common approach to developing software within the numerical computing commu-nity is the unsatisfactory \attening" of all code within a single application; this approachfails because of the inherent lack of scalability in terms of development group size. In addi-

4tion, because the necessary skills cannot reside in any one group, additional problems canarise in managing a distributed development e�ort.More successful has been the use of full-scale class libraries, which require all usersand software developers to write code to these class libraries (e.g., the standard templatelibraries in C++). However, this approach still does not work well for scienti�c computingbecause of the wide variety of needs within meaningful applications.Templates [6] (algorithmic, not C++ templates) have been proposed as a methodfor providing advanced numerical methods to applications writers without dictating aparticular choice of data structure or even interface. This approach su�ers from the fact thatthere is no executable code; the user is still faced with all of the issues of implementationand testing. With today's high-performance parallel machines, these issues are just asdi�cult as the mathematical and algorithmic development.These considerations have led us to explore a model for numerical software componentsthat draws on the success of the component model in commercial information processing.However, there are a number of di�erences between the needs of scienti�c and commercialapplications. Primarily, many of the commercial component solutions (e.g., CORBA andthe COM family) are targeted at the very di�cult problem of managing distributed objectson a wide-area network. While these approaches have proven revolutionary in domainswhere interoperability is paramount (e.g., client-server interactions), they have not beendesigned to address the complexity of interactions and performance issues for large-scale,distributed-memory numerical applications. We cannot simply use COM or CORBA toconnect these components because we must address performance problems, e.g., by allowingsome objects to access the memory of others. In addition, some component systems arebased on an event-driven model that, while natural and e�ective in commercial applications,is not appropriate for many scienti�c applications.Perhaps most fundamental, our microkernel work focuses on the design of the baseobjects themselves, along with a minimal infrastructure that allows experimentationwith di�erent lightweight approaches for accessing components in an environment wheresecurity is not an issue (i.e., security is handled separately, as it is within a single high-performance computer). As other component infrastructures begin to address the issueof high performance, we can move our object design to those platforms. For example, animplementation in Java using something like InfoBus [19] to communicate data and Java'smechanisms for managing components (or remote method invocation for more distributedapplications) would still need to provide the component operations that we describe here.3 Scope of SolutionWe specify two design requirements for this work: basic functionality should be as e�cientas standard procedural code (Fortran/C/C++), and no \run-time" system (e.g., threads)should be needed. Bearing these in mind, we propose a model for object interactionthat consists of two orthogonal submodels: (1) a synchronous function call-based model(e.g., in C++ calling methods on objects) for numerical algorithm implementation and(2) an asynchronous remote function call-based model for accessing remote (or local)objects for such tasks as monitoring, steering, and visualization. Model 1 meets our basicperformance requirement, while model 2 provides additional functionality, especially forremote operations.We begin by stating some de�nitions for use in the remainder of this discussion.� object - encapsulated data and methods that operate on that data.

5� standardized object - object that supports a set of prede�ned methods.� object toolkit - software package that provides code (source or binary) for one or more(generally related) types of objects, including constructors to generate the objectinstantiations. For example, PETSc [4] provides a variety of C objects, while ISIS++[8] provides a variety of C++ objects.� standardized object toolkit - object toolkit that supports some standardized objects.X-windows and MPI [24] are examples of standards for object toolkits, while MPICH[15] and LAM [7] are examples of standardized object toolkits that implement theMPI standard.� component - an encapsulated software object that provides a certain set of function-alities or services and can be used in conjunction with other components to buildapplications. A component consists of an API and one or more component imple-mentations, and conforms to a prescribed behavior within the context of a givenframework.This is our working de�nition of the term component; however, since this term isso overloaded with partial meanings (see, e.g., [29]), and since the remainder ofthis discussion focuses on functionality within encapsulated software objects that inpart comprise components, the remainder of this discussion will not employ the termcomponent.Traditional large-scale numerical simulations are almost always implemented in aprocedural style, where subroutines are called in a well-de�ned order to implement adeterministic numerical algorithm. When object-oriented techniques are used in numericalcomputing, the standard approach (used in, for example, PETSc and ISIS++) is toencapsulate the data structures in objects, while still allowing the application programmerto write procedural code; that is, he or she calls a sequence of functions that operate onthe objects to perform the desired calculations. This programming style is used for thenumerical computations within the sintering model discussed in Section 2.1.On the other hand, the programming of graphical user interfaces and transactionprocessing systems has moved away from the expression of a computation as a linear listof functions that are called. Rather, (possibly distributed) objects are viewed as makingrequests of and serving requests of other objects.We propose to recognize the di�erences between these two models and adopt di�erentmechanisms to handle the two types of interactions:1. synchronous, local-address-space function calls, intended for implementing numericalalgorithms; and2. asynchronous, possibly remote, transactions such as accessing an array of variablesfor visualization. (Here we use the term asynchronous to mean that the object mayserve a request while simultaneously performing a numerical calculation.)Model 1 can be implemented with no run-time environment. Handling the requirementsof model 2 requires a relatively large run-time infrastructure to support marshaling ofarguments, communicating among remote processes, locking and unlocking data structuresto allow access from multiple threads, and so forth. The remainder of this paper explainsmodel 1 in more depth and presents ideas about the design of a microkernel to support it.

6Infrastructure for model 2 and the integration of the two submodels are currently underinvestigation but are beyond the scope of this paper.In the procedural object model, the user writes code to create objects and then callsmethods on those objects in (more or less) a linear fashion. It is assumed that the callerand the callee share the same memory address space. Multiple threads may be used bothwithin an object (transparently as it handles a member function call) and explicitly outsidethe objects by the user; however, the objects can handle only one member function requestat a time. For example, a matrix object would not be able to insert new matrix entrieswhile it is performing a matrix-vector product.Data in the object can be accessed only through arguments to member functions,either by explicitly passing data into or out of the member function or by passing memoryreferences by address. The latter is frowned upon if it exposes any of the underlying objectdata structures to the caller.Member functions may be multistaged; the object developer selects which operations re-quire a split-phase implementation and simply provides the corresponding multiple memberfunction interface. For example, in PETSc we perform vector scatters with the two-stageroutines VecScatterBegin(VecScatter,Vec,Vec), which begins the parallel communica-tion involved in performing the scatter, and VecScatterEnd(VecScatter,Vec,Vec), whichcompletes the operation [5]. This approach allows e�cient overlapping of communicationand computation without requiring threads or application-speci�c coding.Standardized objects can be developed in C++ by de�ning standardized abstract baseclasses and inheriting from them to create a standardized object toolkit. Likewise, in Cstandardized objects can be implemented by de�ning a standard format for function tablesfor each type of object. Cross-language portability can be obtained by creating objectwrappers that convert method calls in one language (e.g., a class member function call inC++) to another (e.g., a function table lookup in C).4 Microkernel DesignThis section presents a microkernel design for the synchronous function call-based modeldiscussed in Section 3. We propose an opaque object-based model where the objectsare dynamically loadable from the �le system or network. That is, the executable codethat creates an object and �lls its member functions can be loaded into memory by theapplication as it runs. To limit complexity and overhead, the software for managing sucha system should be lightweight; we thus propose a microkernel that includes, at most� a few basic services, namely,{ a mechanism for loading new objects at run time via dynamic link libraries, and{ consistent schemes for error handling and memory management; and� selected methods that all objects share, to deal with{ object life (destruction, reference counting, relationships), and{ object observation (viewing, pro�ling, tracing).We have chosen these areas of functionality based on our experiences in PDE softwaredevelopment. While some of these mechanisms, namely the variants of object observation,might seem of secondary importance on initial consideration, they have proven invaluablein practice for debugging, analysis, and performance optimization.

74.1 Basic Microkernel ServicesFor di�erent software toolkits to interoperate smoothly, they must employ consistentschemes for error handling and memory management. These basic services, as well asdynamic linking capabilities, should be supported within the microkernel as objects so thatvarious implementations can be introduced as needed. Details of these APIs and our baseimplementations are beyond the scope of this paper, but will be presented elsewhere.Support for dynamic linking is one of the key features needed to achieve true separationof implementations from mathematical abstractions. By enforcing programming disciplineso that we can verify appropriate interface de�nitions for particular functionalities, dynamiclinking enables us to avoid the web of interdependent complexity that arises in traditionalclass hierarchies. By separating software binding time from an application's compilation, weno longer care when particular toolkit implementations are written, as they can be importedat any time. Hence, dynamic linking capabilities provide an e�ective means to test propermodularity. This feature enables new software injection without maintenance intervention,and thereby makes it possible for applications to exploit new advances in algorithmsand architecture-speci�c performance optimizations, since these may be introduced at runtime without requiring code recompilation. For example, within the sintering simulationdiscussed in Section 2.1, new adaptive ODE techniques and cache-sensitive matrix datastructures provided by di�erent toolkits compliant with the basic object model speci�edabove could be seamlessly introduced. In addition, dynamic linking ensures name spaceseparation, which is not resolved in C and Fortran, although it is somewhat resolved inC++ and Java.4.2 Common Object FunctionalityHow can a software component e�ciently interact with another that it did not know aboutat compilation time? The answer is to choose a universal object memory layout that de�nesthe representation in memory of object methods. Within C they are represented as groupsof structures, while within C++ they are represented as abstract base classes. Two issuesmust be considered here: methods common to all objects, and the details of memory layout.Common Object Header. The following presents the memory layout within acommon header for all objects that are implemented using C; C++ classes could alsobe used. struct _Object {int cookie;BaseOps *bops;ClassOps *cops;}Here all objects are pointers to a particular structure, which contains a cookie to indicateobject type; a pointer to a basic set of operations, BaseOps; and a pointer to object-speci�coperations, ClassOps.Common Object Functions. We use a common function table to specify datamanipulations within the basic object, BaseOps. These core methods deal with twocategories of activity: object life (destruction, reference counting, relationships) and objectobservation (viewing, pro�ling, tracing). The following �gure presents an implementationusing C; other language implementations could employ corresponding language features,for example, virtual functions in C++.

8typedef struct {int (*getcomm)(Object,MPI_Comm*); - get MPI communicator from objectint (*view)(Object,Viewer); - visualize, serializeint (*reference)(Object); - increase reference count by oneint (*destroy)(Object); - decrease reference count by oneint (*attach)(Object,char*,Object); - attach another object (interface)int (*query)(Object,char*,Object*); - get an attached object (interface)int (*attachfunction)(Object,char*,char*,void*); - attach a method to an objectint (*queryfunction)(Object,char*, void**); - get a method from an objectint (*querylanguage(Object,Language,void**); - get a representation of an object(interface) in another language} BaseOps;We now provide slightly more information on some of the basic methods.� attach(Object,char *name,Object) - attaches the second object to the �rst objectand increases the reference count of the second object. This mechanism allows onetoolkit to carry references to another toolkit's objects; these references are transparentto the carrying toolkit (and invisible to the end user). For example, a vector objectmay carry a reference to a related grid object, and a Jacobian object may carry areference to a discretization object that computes Jacobian entries. This capabilityhas enabled interfacing between the unstructured meshing tools of SUMAA3d [13]and the algebraic solvers of PETSc, without introducing a single change to eithersoftware package [12].� query(Object,char *name,Object *) - retrieves an object that has been attachedto the �rst object via attach().� attachfunction(Object,char *name,char *fname) - attaches a function pointerto an object. The string fname is the character string name of the function;it may include the path name or URL of the dynamic library where the func-tion is located. For example, fname may be libpetscsles:PCCreate LU orhttp://www.mcs.anl.gov/petsc/libpetscsles:PCCreate LU. The argument nameis a \short" name of the function to be used with the queryfunction() call. Thisprovides a mechanism for specifying object methods at run time. For example, auser can, at run time, select a particular preconditioner, say, a drop tolerance ILUtechnique; then all methods controlling the factorization are dynamically added atthat time.� queryfunction(Object,char *name,void **func) - retrieves a function pointerthat has been associated with the object via attachfunction(). If dynamic librariesare used, the function is loaded into memory at this time (if it has not been previouslyloaded), not when the attachfunction() routine was called. This mechanism enablesaccess to an object's dynamic methods.� querylanguage(Object obj,Language lang,void **interface) - requests an in-terface to an object's data from a language other than the one in which it is imple-mented, (e.g., a C++ class representation of a C object for use in the C++ portionof a multilanguage application).

95 Preliminary Observations and ConclusionsTo support scienti�c computing components, we have presented ideas for minimal infra-structure in the form of basic microkernel services and a common object memory layout.Key features include support for runtime binding of di�erent toolkits, dynamic addition ofmethods, and object attachment through a dynamically loaded library approach. A baseimplementation of the microkernel, recently introduced into PETSc, has greatly increasedsoftware extensibility by facilitating the use of new external components.We are currently experimenting with the microkernel as part of a exible multilevelALICE architecture that supports interoperability among a range of computationalsoftware. The microkernel coordinates interaction among tools with complementarycapabilities (e.g., ODE solvers within PVODE, unstructured mesh tools within SUMAA3d,and algebraic solvers within PETSc) and provides a foundation for investigating broaderissues in high-performance component design. For example, a great strength of thedynamically loaded component approach presented here is that it promotes well-designedinterfaces that are completely separate from implementations, so that various externaltoolkits can be introduced and the community can begin to work toward de�ning sets ofcanonical interfaces. Our experiences thus far are merely the �rst steps toward much largercomputing and component sharing.AcknowledgmentsWe thank Wen Zhang for working with us on the parallelization of her sintering simula-tions. For PVODE/PETSc interoperability we acknowledge support from the DOE2000Initiative [11] and the work of Liyang Xu. In addition, we thank Paul Hovland, BoyannaNorris, and our colleagues in the DOE Common Component Architecture (CCA) WorkingGroup [3] for stimulating discussions of issues in component design for high-performancescienti�c computing.References[1] ALICE Web page. http://www.mcs.anl.gov/alice, Mathematics and Computer Science Divi-sion, Argonne National Laboratory.[2] R. Armstrong and A. Cheung, POET (Parallel Object-oriented Environment and Toolkit)and frameworks for scienti�c distributed computing, in Proceedings of HICSS97, 1997.[3] R. Armstrong et al., Common Component Architecture Working Group Web page.http://z.ca.sandia.gov/~cca-forum.[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, PETSc Web page.http://www.mcs.anl.gov/petsc.[5] , E�cient management of parallelism in object oriented numerical software libraries, inModern Software Tools in Scienti�c Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen,eds., Birkhauser Press, 1997, pp. 163{202.[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution ofLinear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.[7] G. Burns, R. Daoud, and J. Vaigl, LAM: An open cluster environment for MPI, inProceedings of Supercomputing Symposium '94, J. W. Ross, ed., University of Toronto, 1994,pp. 379{386.[8] R. L. Clay, K. Mish, and A. B. Williams, ISIS++ Web page. http://ca.sandia.gov/isis.[9] R. Clay et al., Equation Solver Interface Working Group Web page.http://z.ca.sandia.gov/esi.

10[10] A. Cleary, S. Kohn, S. Smith, and B. Smolinski, Language interoperability mechanismsfor high-performance scienti�c applications, in Proceedings of the SIAM Workshop on ObjectOriented Methods for Inter-operable Scienti�c and Engineering Computing, SIAM, Oct. 21{231998. (to appear).[11] DOE2000 Initiative Web page. http://www.mcs.anl.gov/DOE2000.[12] L. Frietag, M. Jones, and P. Plassmann, Component integration for unstructured meshalgorithms and software, in Proceedings of the SIAM Workshop on Object Oriented Methodsfor Inter-operable Scienti�c and Engineering Computing, SIAM, Oct. 21{23 1998. (to appear).[13] , The scalability of mesh improvement algorithms, in Algorithms for Parallel Processing,M. T. Heath, A. Ranade, and R. S. Schreiber, eds., vol. 105 of The IMA Volumes inMathematics and Its Applications, Springer-Verlag, 1998, pp. 185{212.[14] W. Gropp, Exploiting existing software in libraries: Successes, failures, and reasons why, inProceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable Scienti�cand Engineering Computing, SIAM, Oct. 21{23 1998. (to appear).[15] W. Gropp and E. Lusk, MPICH Web page. http://www.mcs.anl.gov/mpi/mpich.[16] W. D. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri, Globalized Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD, Tech. Rep. 98-24, ICASE,Aug. 1998.[17] A. Hindmarsh et al., PVODE Web page. http://www.llnl.gov/CASC/PVODE.[18] P. Hovland, B. Norris, and B. Smith, Developing a derivative-enhanced object-orientedtoolkit for scienti�c computations, in Proceedings of the SIAM Workshop on Object OrientedMethods for Inter-operable Scienti�c and Engineering Computing, SIAM, Oct. 21{23 1998. (toappear).[19] InfoBus Web page. http://www.java.sun.com/beans/infobus.[20] Infospheres Web page. http://www.infospheres.caltech.edu/.[21] B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi, Inter-Language Uni�cationreference manual. ftp://ftp.parc.xerox.com/ilu/ilu.html, Xerox Corporation.[22] D. Kaushik, D. Keyes, and B. Smith, On the interaction of architecture and algorithmin the domain based parallelism of an unstructured grid incompressible ow code, in DomainDecomposition Methods 10, AMS, 1998, pp. 287{295.[23] D. E. Keyes et al., Multi-Model Multi-Domain Computational Methods in Aerodynamicsand Acoustics Web page. http://www.cs.odu.edu/~keyes/nsf.[24] MPI: A message-passing interface standard, International J. Supercomputing Applications, 8(1994).[25] S. G. Parker, D. W. Weinstein, and C. R. Johnson, The SCIRun computational steeringsystem, in Modern Software Tools in Scienti�c Computing, E. Arge, A. M. Bruaset, and H. P.Langtangen, eds., Birkhauser Press, 1997.[26] PSEware Web page. http://www.extreme.indiana.edu/pseware/.[27] R. Rosner et al., University of Chicago Center on Astrophysical Thermonuclear FlashesWeb page. http://www.asci.uchicago.edu.[28] B. F. Smith and W. D. Gropp, The design of data-structure-neutral libraries for the iterativesolution of sparse linear systems, Scienti�c Programming, 5 (1996), pp. 329{336.[29] C. Szyperski, Component Software: Beyond Object-Oriented Programming, ACM Press, NewYork, 1997.[30] S. Weerawarana, E. N. Houstis, J. R. Rice, A. C. Catlin, C. Crabill, C. C.Chui, and S. Markus, PDELab: An object-oriented framework for building problemsolving environments for PDE based applications, Tech. Rep. CSD-TR-94-021, Departmentof Computer Sciences, Purdue University, 1994.[31] W. Zhang, Using MOL to solve a high order nonlinear PDE with a moving boundary in thesimulation of a sintering process, Appl. Numer. Math., 20 (1996), pp. 235{244.[32] W. Zhang and I. Gladwell, The sintering of two particles by surface and grain boundarydi�usion - a three-dimensional numerical study, Comp. Mater. Sci. (in press).[33] W. Zhang and J. H. Schneibel, Microstructural Evolution in Sintering - an Experimental,Mathematical and Numerical Study. http://www.oakland.edu/~w2zhang/sintering.htm.

