
Filtering Techniques for Complex Geometry Fluid FlowsJulie S. Mullen1 and Paul F. Fischer2AbstractWe develop a class of �lters based upon the numerical solution of high-order elliptic problemsin lRd that allow for independent determination of order and cut-o� wave number and thatdefault to classical Fourier-based �lters in homogeneous domains. However, because theyare based on the solution of a PDE, the present �lters are not restricted to applicationsin tensor-product-based geometries as is generally the case for Fourier-based �lters. Thediscrete representation of the �ltered output is constructed from a Krylov space generatedin solving a well-conditioned system arising from a low-order PDE.1 IntroductionThe need for low-pass �lters arises in the numerical solution of partial di�erential equations(PDE's) in many areas of science and engineering. The ability to control high-frequencycontent is an essential ingredient for many applications in computational 
uid dynamics[1, 7, 10]. In particular, recently developed dynamic subgrid scale models for large eddysimulations (LES) require a two-level �lter to extrapolate the leading-order e�ects of unre-solved scales of motion [5, 8, 12]. For over two decades, the majority of LES calculationshave employed Fourier spectral discretizations in one or more of the spatial directions andhave generally �ltered the solution in the Fourier directions only. The literature concerning�ltering in the nonhomogeneous direction is almost nonexistent. As computing hardwareand algorithms have reached the level of e�ciency where we can now consider employingLES in complex three-dimensional geometries that lack homogeneity in any direction, theneed for more general �ltering techniques arises.In the present work we are considering spectral element discretizations for primitivevariable formulations of the Navier-Stokes equations (e.g., [4, 9]). Spectral elements area natural extension of spectral methods in which Nth-order (polynomial) bases are usedto represent the velocity and pressure within each of K subdomains or elements. Inter-element continuity requirements vary with the particular implementation, but for second-order PDE's, C0 continuity is generally su�cient to retain spectral accuracy. It is tempt-ing to �lter such approximations in a fashion analogous to global spectral methods, thatis, through truncation of high-modes within each subdomain. However, the interelementcontinuity constraint implies that such a local approach can potentially lead to global con-tamination of low-wave number modes, even in the one-dimensional case and is therefore1Division of Applied Mathematics, Brown University, Providence, RI 029122Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 604391



unsuitable as a low-pass �lter.An alternative to the purely local �ltering process of truncating modes within eachsubdomain is to solve a global Helmholtz problem of the form�r2�u + ��u = �u in 
 (1)�u = u on @
 ;where u(x) is the input function and �u(x) is the desired �ltered output. Note that if wetake G(x;x0) to be the Green's function associated with (1), then solving for �u correspondsto the usual notion of �ltering via convolution with the kernel G and characteristic lengthscale � � 1=p�, �u(x) = F (u(x)) = Z
 G(x;x0) u(x0)dx0 :The e�ect of such a �lter on the input is clear if we consider the one-dimensional case with
 = [0; 1] and u(0) = u(1) = 0. For su�ciently smooth u(x), we can express u via a sineexpansion, u(x) = Pk ûk sin(k�x), resulting in�u(x) = Xk �� + �2k2 ûk sin(k�x) : (2)De�ning the cut-o� wave number, kc, as the point where the transfer function is diminishedby a factor of two (3dB-down point) leads to the choice of � = �2k2c . It is clear that the�ltered modes corresponding to k � kc are largely damped out, while those for k� kc areless a�ected.In higher space dimensions, the above �lter can be implemented by discretizing (1) inlRd and solving the resultant linear system using routines readily available in most CFDcodes. For general three-dimensional geometries the resultant (well-conditioned) system isbest solved iteratively, for example, via conjugate gradient iteration if the discretizationleads to a symmetric positive de�nite (SPD) matrix.Unfortunately, as illustrated by the transfer function shown in Fig. 1, the second-order �lter (2) does not have a very sharp decay. While there has been some study ofthe potential of second-order �lters in LES (e.g., [12]), most LES calculations to date haveemployed sharp cut-o� �lters. These are readily implementable in simple geometries thatadmit the use of Fourier bases. For general geometries, one might try to sharpen thetransfer function through m repeated applications of the �lter (1), requiring a sequence ofm Helmholtz solves, each with scaling factor � = �2k2c=(2 1m � 1) to maintain the 3dB-downpoint at k = kc in the �nal output. The ultimate limit of such a process as m �! 1 is aGaussian �lter with transfer function e� ln 2 (k=kc)2;. While this �lter does provide more rapiddecay for the high wave number components, it does little to sharpen the transfer functionfor k < kc, as seen in Fig. 1. Clearly, the family of rational polynomials obtained throughrepeated Helmholtz solves of the type (1) is not rich enough to capture the behavior of thesharp cut-o� �lter, and the potential of such a straightforward approach is limited.2
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m=1 (2nd order)2345Figure 1: Transfer function vs. wave number, commonly used �lters (left) and higher-order�lters (right).A simple class of rational polynomials in k that does converge to the sharp cut-o� �lteris given by h1 + ( kkc )2mi�1: The corresponding PDE has the form�r2m�u + ��u = �u in 
 ; (3)and the resultant transfer functions for various m are shown in Fig. 1 (right). It is quiteclear that for higher values of m, the �lter has diminished impact on the amplitude of thelow modes, k < kc, as desired.While (3) is not readily solvable with standard techniques, we demonstrate in theremaining sections that it is possible to construct a good approximation through numericalsolution of a much simpler problem, namely, the Poisson equation�r2v = u in 
 (4)v = 0 on @
 :Consequently, one can generate high-order �lters by employing solver technology that al-ready exists in most three-dimensional general geometry Navier-Stokes codes.2 Filtering for the Discrete ProblemAs our point of departure, we assume that the discretization of (4) leads to a linear systemof the form Av = u (5)where underscore denotes vectors of basis coe�cients and A 2 lRn�n is the SPD discreteLaplacian as would be obtained, for example, using second-order �nite di�erences. For3



general-geometry problems in three space dimensions, A is typically very sparse, and inthis case (5) is most e�ectively solved by iterative methods. The convergence rate of thesemethods is largely dependent upon the condition number of system, which for SPD matricesis the ratio of the maximum to minimum eigenvalues, �A = �n=�1.The system for the �ltered quantities is derived from the discrete analog of (3),[Am + � I ] �u = �u : (6)The conditioning of (6) is dependent upon the values of � and m. If we denote by Pm thepolynomial Pm(A) = 1�Am + I ; (7)then the corresponding condition number is �Pm = (�mn + �)=(�m1 + �). If � ' �mn , then�Pm ' 2. However, it is not clear a priori how �n will relate to a particular choice of � andm. In fact, it is clear that Pm will generally become very ill-conditioned with increasing m.This follows from the fact that, as m �! 1, P�1m is a projector onto the low wave numbermodes and Pm is consequently unde�ned in this limit. In practice, we have found Pm to beso ill-conditioned as to defy any attempt to solve (6) via standard iterative procedures thatrequire matrix-vector products in Pm. For even moderate values of m (e.g., m = 6), justone application of Pm to a vector can lead to unacceptable round-o� error.Fortunately, Pm and A share the same set of eigenvectors, and we can use this factto generate good approximate solutions to (6). In [11], van der Vorst proposed a methodfor approximating the solution to f(A)w = u using a conjugate gradient/Lanczos proce-dure based upon the solution of Av = u. Consider the following conjugate gradient (CG)algorithm preconditioned by the SPD matrix M [6]:v0 = 0; r0 = u; �0 = 0for i = 1; : : : ; jsolve Mzi�1 = ri�1�i�1 = zTi�1ri�1if (i > 1) �i�1 = �i�1�i�2pi = zi�1 + �i�1pi�1 
i = pTi Api�i = �i�1
i (8)vi = vi�1 + �ipiri = ri�1 � �iApiendFollowing van der Vorst, we begin by considering the unpreconditioned case where M � I .Let R = Rj = (~r0; ~r1; : : : ; ~rj�1) be the matrix containing the residual vectors generated bythe above algorithm, each normalized according to ~ri = 1p�i ri. The ~ris form an orthonor-mal basis for the Krylov subspace Kj(A; u) = Kj(A; r0) � spanfr0; Ar0; : : : ; Aj�1r0g, andvj is the projection of v onto this subspace; that is, the �nal residual rj � u � Avj is4



orthogonal to Kj(A; u). The tridiagonal matrixT = 2666666664 d1 e1e1 d2 e2e2 d3 . . . ej�1ej�1 dj 3777777775 (9)di = 1�i + �i�1�i�1 ; ei = p�i�i ;is the projection of A onto R given by T = RTAR, and the above CG method produces theapproximate solution, vj � v, given byvj = R (RTAR)�1RTu = RT�1RTu :The CG/Lanczos procedure (see, e.g., [6]) employs T and R to obtain estimates of theeigenpairs of A as follows. Let SQST = T be the similarity transformation for T . Thematrix Q = diag(qi) contains the eigenvalues of T that are taken as approximations to thej extremal eigenvalues of A. The matrix S contains the eigenvectors of T , and RS containsthe corresponding approximate eigenvectors of A. In [11], van der Vorst showed that theseapproximate eigenpairs could be used to compute an approximate solution, ŵ � w, toproblems of the form f(A)w = u by simply computingŵ � RS[f(Q)]�1STRTu : (10)The j� j matrix f(Q) = diag(f(qi)) is trivially inverted. As noted in [11], this approach isidentical to applying CG to f(A) in the case where f(A) = A+�I , since A and A+�I sharethe same Krylov space. However, in general, f(A) does not share the same Krylov spaceas A, nor is ŵ the projection of w onto R. Nonetheless, (10) provides a very inexpensivemeans to compute approximations to w, and one that might in fact be better (because ofconditioning considerations) than straightforward application of CG to f(A).The application of van der Vorst's method to the �ltering problem is straightforwardwhen the discretization of (3) yields a polynomial Pm(A) (7). One simply solves Av = u,computes S and Q from T , sets f(qi)�1 = 1=Pm(qi), and computes �u � ŵ using (10).If a Galerkin procedure is used to discretize the second-order �lter (1), one obtains[A + �B ] �u = �Bu :This is the case encountered in the �nite or spectral element formulation and di�ers fromthe �nite di�erence case by the presence of the SPD mass matrix, B. In this case thediscrete Laplacian is no longer A, but rather B�1A, and the analogous discrete form of thehigh-order �lter (3) is [ (B�1A)m + �I ] �u = �u : (11)5



It is therefore necessary to solve an equation of the form f(B�1A)w = u.To extend van der Vorst's procedure to this more general case, we retain the precon-ditioned form of the CG algorithm, setting M � B. (In the spectral element method Bis diagonal, so its inversion is trivial. In the �nite element method it probably su�ces toemploy a (diagonal) lumped mass matrix in place of the standard mass matrix.) If we de�neZ = M�1R, with R containing the normalized residual vectors as de�ned above, then thecolumns of Z are orthonormal with respect to the M inner product, that is, ZTMZ = I .The tridiagonal matrix (9) is now T = ZTAZ, and the eigenpairs of T = SQST yield approx-imate eigenvalues (qi) and eigenvectors (the columns of ZS ) for the generalized eigenvalueproblem Ax = �Mx. The resultant extension of van der Vorst's method to f(B�1A)w = uis ŵ = B�1RS[f(Q)]�1STRTu ; (12)where R, Q, and S result from the Lanczos/CG procedure (8) applied to Av = Bu, precon-ditioned with M = B.To summarize, the �ltering problem in the Galerkin case is solved by setting f = Pm(7) and using (12) to compute the �ltered output, �u = ŵ. Note that if the approximationspace (given by the range of B�1R) is to contain u, then the initial residual in the CGprocedure must be r0 = Bu rather than just u.At this point, the issue of inhomogeneous boundary conditions has not been addressed.A standard procedure (e.g., [4]) for implementing inhomogeneous Dirichlet boundary con-ditions in the numerical solution of PDEs is to split the solution into v = vh + vb, where vhsatis�es homogeneous boundary conditions and vb is any known function that satis�es thedesired boundary conditions on v, and to then subtract the inhomogeneous boundary termfrom both sides of the equation. For example, for Poisson's equation, we have�r2vh = f +r2vb in 
vh = 0 on @
 :The advantage of this approach is that the trial and test spaces in the Galerkin formula-tion are now coincident and the resultant discrete operator on the left will be symmetric.Straightforward application of a similar decomposition for the �lter problem (3) would yieldPm�uh = u� �Pm�ub ; (13)where �Pm is given by (7), appropriately augmented to incorporate the e�ects of the boundaryconditions upon the interior nodal point values.Unfortunately, formation of the right-hand side of (13) requires evaluation of (B�1A)m�ubwhich, unless �ub is the solution to Laplace's equation, is numerically unstable because ofthe conditioning problems noted earlier. A suitable alternative is to set ub = u and rewritethe �lter in the following equivalent form:�B�1A + �(B�1A)1�m� �uh = �B�1Au (14)�u = �uh + u :6



Once again we have an equation of the form f(B�1A)x = b, which is solved using thetechniques outlined above. Note that this approach actually corresponds to subtracting o�the high wave number components of u to obtain the low pass complement.3 Results and DiscussionWe present initial tests of the PDE/Krylov-based �ltering strategy for two- and three-dimensional problems discretized with spectral elements. Similar results have also beenobtained in the somewhat easier case of �nite di�erence approximations.We begin with a two-dimensional test on the unit square, 
 = [0; 1]2 with the asym-metric input functionu(x; y) = = 20Xl=2 20Xk=2�2k�2:0�2l �0:3 sin(k�x) sin(l�y) ; (15)which is shown in Fig. 2a. The discretization consists of a 5� 5 array of 9th-order spectralelements, for a total resolution of 46 � 46. Figure 2b shows the result of applying the�lter (11-12) to (15), with kc = 12, m = 8, and Krylov subspace dimension j = 100.The di�erence between the exact and Krylov-based �lter outputs is shown in Fig. 2c. Thecomputed two-dimensional transfer function, j�̂uklj=jûklj, is shown in Fig. 2d. The transferfunction captures the correct modal decay rate down to the the level of the error resultingfrom the Krylov subspace approximation, that is, 10�3 in the present case.
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We demonstrate the versatility of the Krylov-based �lter by applying it in the complexthree-dimensional domain shown in Fig. 3. For this test, the input is the velocity �eldassociated with the horseshoe vortex 
ow arising from a 
at-plate boundary layer interactingwith an end mounted cylinder of height H = D=2 and diameter D. The incoming boundarylayer thickness is �99 � D=21, and the Reynolds number is ReD = U1D=� = 3000. Thediscretization consists of 168 spectral elements of order 9. The 
ow in the cylinder wakeis severely underresolved, as witnessed by symmetry-plane contours of x-velocity shown inFig. 3c (upper). Application of a 12th-order �lter (m = 6) with �lter width � = 0:01Dand Krylov subspace dimension j = 50 e�ectively dampens the underresolved oscillatorycomponents in the wake (Fig. 3c, lower) while allowing the well-resolved horseshoe vortexstructures (a) to pass through the �lter with little change (b).As presented, the Krylov-based �ltering scheme requires three input parameters: theorder, m, the �lter-width, �, and the Krylov subspace dimension, j. The former are trueparameters of the �lter and not dependent upon the method used to implement it. TheKrylov subspace dimension required to obtain an accurate approximation is a function ofm, �, and u. Unfortunately, it is di�cult to monitor the residual, jju� Pm�uj jj2 during theCG iteration because of the ill-conditioning associated with Pm. However, it is possible tomonitor the convergence of jju� �uj jj2 as shown, for example, in Fig. 3d. One can simplyestimate the decay of the oscillatory envelope and stop the CG iteration when the deviationis within a desired tolerance of the estimated mean. From Fig. 3d we estimated that aKrylov subspace dimension of j = 50 would be su�cient to �lter the �eld shown in Fig.3a. Comparisons reveal that increasing j to 150 results in only a half of a percent furtherchange in the �ltered output; that is, the output is indeed reasonably well converged atj = 50.It is apparent from the streamlines in (b) that the �ltered �eld is no longer diver-gence free. This is to be expected because a divergence-free constraint was never enforced.However, if desired, the PDE-based approach employed here could readily be extended toaccommodate such a constraint, yielding a Stokes-like system in which all three velocitycomponents are computed simultaneously.We conclude by noting that several techniques might be used to improve the e�ciencyof this general �ltering approach. One important idea is that a given Krylov space, R,might be used to �lter similar right-hand sides by simply changing the right-most term (u)in either (10) or (12) (see, e.g., [2, 3]). In addition, we note that multi-level solvers mightbe used to speed the �ltering process, following ideas outlined in [7].AcknowledgmentsThis work was supported by the NSF under Grant ASC-9405403 and by the AFOSR un-der Grant F49620-95-1-0074. The work of J. Mullen was supported by a NASA studentfellowship, Grant NGT-51029. 8
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