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Abstract

It is well known that good bounds for solutions of nonlinear differential
equations are difficult to obtain. In this paper, we establish a theorem
comparing non-negative solutions (having identical initial values) of the
equations u”(t) + ¢()wP(t) + r(D)u(t) = 0 and v"(t) + k(t)g(t)v"(t) +
r(t)u(t) = 0, respectively. If ¢(¢),r(¢t) > 0, k(t) > 1, k(t) is non-
decreasing, and the first equation satisfies a certain uniqueness criterion,
our result asserts that w(¢) > v(¢). Both the uniqueness assumption on
the equation and the monotonicity requirement on k(t) are necessary. A
particular case of this theorem plays a central role in a recent paper of
Atkinson and Peletier in the study of asymptotic behavior of nonlinear
elliptic equations involving a critical exponent. A simple corollary of our
result provides information on the same type of equations with subcritical
exponents.
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1 Introduction

The celebrated Sturm comparison theorem is a useful tool for obtaining bounds
for linear second-order ordinary differential equations. Suppose that u(t) and
v(t) are, respectively, non-negative solutions of the equations

u” (t) + q(t)u(t) = 0, (1.1)
and
v () + Q(t)v(t) = 0, (1.2)
on (a,b), and they satisfy the same initial conditions
u(a) = v(a) >0, u'(a)="'(a). (1.3)

Furthermore, suppose that the coefficients satisfy the comparison condition
q(t) < Q(t) for allt € (a,b). (1.4)
Sturm’s theorem then asserts that
u' (t)/u(t) > o' (t)/v(t) forall t € (a,b). (1.5)

Consequently,
u(t) > v(t) forallt € (a,b). (1.6)

Hence if one of the two equations mentioned can be solved explicitly, then the
computed solutions can be used as bounds for solutions of the other equation.

Let f:[0,00) — [0,00) be a continuous non-negative function. A nonlinear
equation of the form

u’(t) + q(1)f(u(t)) =0 (L7)
is said to be superlinear (sublinear) if
flu) . ) ) ) )
=~ is an increasing (decreasing) function of u > 0. (1.8)
u

It is easy to see that an analog of the above linear result remains valid when
1) and (1.2) are, respectively, replaced by sublinear equations of the form

(1.1
(1.7) and ¢"(t) + Q) f(v(t)) = 0, both having the same nonlinear function
f(u).

For superlinear equations, the same is no longer true, as the following ex-
ample shows. Let

flu) =, (1.9)

1 1<1
Q(t)_{ 1000 t>1 (1.10)



and
Q(t) = (L1)%4(0). (L.11)
With the initial conditions

u(0)=v(0)=1 and «'(0)=1'(0) =0, (1.12)

numerical results show that at first u(t) stays above v(¢), but dips below v(¢)
after approximately ¢ = 1.08.

In their paper [2], Atkinson and Peletier studied the location of the largest

zero of certain solutions of the nonlinear equation

1
v//+t_4<vs+vq) :0’ 1§q<5, t> 0. (113)

This equation arises in the study of radially symmetric solutions of the semilin-
ear elliptic equation

Aut v’ +ul =0 in R?. (1.14)
Playing a key role in the work is the following lemma.

Let v(t) be the solution of

V() + 5 (1) = 0 (1.15)

with the property that lim;_. v(t) = v > 0. If the nonlinear function f(u)
satisfies

uf'(u) < (26 — 3)f(u), (1.16)
then for t > T, the largest zero of v(t),
1 —-1/(k-2)
ot) < [¥*7F 4+ ﬁtz_k’yl_kf(’ﬂ : (1.17)

This is in fact a comparison theorem because the righthand side of (1.17) is the
solution of the equation

u' (t) + Mu%_?’ =0 (1.18)

with the asymptotic condition

tlim u(t) = 7. (1.19)
These are the so-called Emden solutions of (1.18). Almost all of the other
solutions of (1.18) do not have a simple closed form. Equation (1.18) is a
special case of the classical Emden-Fowler equation made famous by Bellman’s



book [4] and Wong’s survey paper [14]. More recently, the work of Brezis and
Nirenberg [5] generated extensive interest in the perturbed equation (1.13) and
(1.14). Results from their paper will be discussed in more detail in Section 3.

Inequality (1.17) was derived from the fact that the function t*~1v!=*(#)v/ ()
is decreasing in ¢, but this latter assertion had a tricky proof involving some
clever use of a Pohozaev-type energy function.

I am grateful to Professor Atkinson and Professor Peletier for drawing my
attention to their result. The present work is a direct response to their sug-
gestion to investigate whether a more general comparison theorem is possible.
In this paper the following main theorem is established. The concept of the
“uniqueness condition” will be made precise in the next section. A reflection
(replacing t by —t) has been executed, so that instead of requiring u(t) and v(%)
to agree at some terminal “point”, namely co, we make them agree at an initial
point ¢ = a.

Main Theorem Let u(t) be a positive solution of
W) + (O (1) + rDu(t) = 0, € (a,h) (1.20)

where q(t),r(t) > 0, and p > 1. FPurthermore, suppose that (1.20) satisfies a
“uniqueness condition” for boundary value problems on subintervals of (a,b).
Let k(t) > 1 be any increasing function of t. Then the solution v(t) of the
equation

v (1) 4+ k(t)q(t)v? (1) + r(t)v(t) = 0, (1.21)

satisfying the same initial conditions as those of u(t) at t = a, is smaller than
u(t), before v(t) vanishes for the first time.

This theorem includes the lemma of Atkinson and Peletier. The approach
adopted 1s completely different from theirs. There are two major extensions.
First, a linear term is included, and more general coefficients for the nonlinear
term other than 1/t* are allowed. Even in the particular case when this coeffi-
cient is a power of ¢, this power does not have to be tied to one special exponent
of u as in the lemma in [2]. Second, the two solutions, u(¢) and v(¢), can be
compared starting from any initial point ¢ = a, finite or not.

The exponent (2k — 3) that appears in (1.18) is the well-known (Sobolev)
critical exponent for the Emden-Fowler equation. The dynamical behavior of
the solutions changes radically as the exponent increases from the subcritical
to the supercritical case. There is therefore much interest in attempting to
extend the work of Atkinson and Peletier to include both the subcritical and
supercritical cases. Our main theorem confirms that in these noncritical cases
a lemma analogous to that of Atkinson and Peletier holds.



For equations with non-critical exponents, the solutions satisfying the asymp-
totic condition (1.19) (or even solutions of the critical exponent case satisfying
other initial conditions) no longer have a simple closed form. As the proof of
Atkinson and Peletier relies implicitly on such formulas, there seems to be no
easy way to extend it to such cases.

In this paper, the main theorem is deduced from a special case, in which
the function k(%) is a constant. Our method makes extensive use of the Sturm
comparison theorem and is closed related to a method first used by Coffman
[6,7] to obtain uniqueness results for boundary value problems. His ideas have
been successfully applied by Ni [11], Ni and Nussbaum [13], McLeod and Serrin
[10], and Kwong [8]. For a survey of the method and known results, see the
survey articles [9,12].

In Section 3 we show how the lemma of Atkinson and Peletier and its gen-
eralizations to non-critical exponents follow from the preceding theorem. An
application to nonlinear elliptic equations involving subcritical exponents gives
results analogous to those of Brezis and Nirenberg for the critical exponent case.
These results have been obtained previously using the variational approach, see
for example, Ambrosetti and Rabinowitz [1]. We expect that our main theorem
will also play an important role in the detailed analysis of the structure of the
solution space in the supercritical exponent case.



2 Main Results

We are interested in comparing the positive solutions of the Emden-Fowler equa-
tion

(1) + gl (1) + r(t)u(t) = 0, € (a,b) (2.1)

with those of a similar one having a larger coefficient. We assume that ¢(¢) and
r(t) are piecewise continuous and

g() >0, r(t) >0, p> 1. (2.2)

The interval (a,b) can be compact or otherwise, i.e., —oo < a < b < co. How-
ever, for most of our discussion, it is assumed to be compact.

We may assume without loss of generality that ¢(¢) is not identically zero in
any right neighborhood of the left endpoint ¢ = a. In the contrary case, we can
simply bypass such a neighborhood by shifting the left endpoint over it without
affecting the validity of our main result. The requirement that p > 1 puts the
equation (2.1) in the superlinear category. For such equations it is known that
if the solution has either a sufficiently large initial height or a sufficiently large
initial slope, i1t must have a zero close to the initial point a. This is one of
the important facts used in the shooting method; see, for example, Bandle and
Kwong [3].

As the example comprising (1.10) and (1.11) shows, the expected result is not
true unless some extra conditions on the coefficient are imposed. The following
simple lemma reveals the connection between the existence of a comparison
result and the uniqueness of certain positive boundary value problems.

LEMMA 1 Suppose that U(t) is a solution of (2.1) such that U(b) = 0. Let
v(t; A), A > 1, be the solution of

V" (5 A) + Ag() v (X)) + (vt X)) =0 (2.3)
with the same initial conditions as those of U(t),
v(a;A) = U(a), V' (a;A)=U'(a). (2.4)
Suppose it 1s true that for all A > p,
v(t; A) < w(t; p) (2.5)

in the subinterval (a, B) in which both solutions are positive. Then for each
B € (a,b), the boundary value problem (2.1) with boundary conditions

w(a)/u(a) = U(a)/U(a), u(B)=0, (2.6)



and positivity requirement
ut) >0, te(aB), (2.7)

has a unique solution.

Proof. To simplify the matter, let o = AY/(®=1. The functions u(t;a) =
av(t; A) are the only solutions of (2.1) that also satisfy the first boundary con-
dition in (2.6). If the first zero of v(¢; A) is at t = B, then u(¢; «) is a solution of
the boundary value problem. By assumption, the first zero of v(#; A) is a strictly
decreasing function of A. Hence no two of them can give rise to solutions of the
boundary value problem with the same endpoint B. |

The first boundary condition in (2.6) is interpreted as the usual Dirichlet
condition u(a) = 0 if it happens that U(a) = 0. Coffman [5] initiated the
study of the uniqueness of ground-state boundary value problems via the first
variational equation. The central question 1s to establish uniqueness of solutions
to boundary value problems for the more general equation (1.7), under suitable
conditions on the coefficient (). We sketch the ideas below. A more detailed
account of this method can be found in Ni [11] or Kwong [9].

Let w(t; &) be defined as

w(tzo) = 5% (100, (2.8)

and let B = B(«) denote the first zero of u(t; «). It is not difficult to see that
the uniqueness of the boundary value problems (2.1) with (2.6) and (2.7), is
implied by (indeed, is almost equivalent to) the fact that

w(B(a),a) <0 for all o > 0. (2.9)

The method continues with a careful analysis of the oscillatory behavior of
the function w(t; «) for a fixed «. Tt satisfies the first variational equation

w”(t; o) + pq(t)up_l(t; a)w(t; o) + r(t)w(t; o) =0, (2.10)

and the initial condition given by the first identity of (2.6). The equation (2.10)
can be viewed as a “linear” equation with pg(t)u?~1(¢; ) as its coefficient, and
Sturm comparison techniques can be applied. It follows easily from the superlin-
earity nature of (2.1) that the equation (2.10) oscillates faster than (2.1). Hence
w(?; ) has a zero before u(?; o) does. In other words, w(t; ) changes from pos-
itive to negative at some point prior to reaching B(«). The final step, which is
the hardest in the whole method, is to show that under the given hypotheses
on ¢(t), w(t;«) does not change sign for a second time before B(«). This is



done by constructing a suitable comparison function which can be shown, via
the Sturm theorem again, to oscillate faster than w(t; &) but to have no zero at
all in the interval in question.

Many useful uniqueness criteria have been established in this way. Although
all of these have been proved only in the cases where the boundary condition at
the left endpoint is either of the Dirchlet or of the Neumann type, the proofs
work in the more general situation. In fact, any criterion established this way
for the boundary value problems with two Dirichlet conditions works when the
condition at £ = a is replaced by any boundary condition. Likewise, any criterion
established for a Neumann condition at ¢ = @ and a Dirichlet condition at ¢ = b
works for any boundary condition at ¢ = a such that u'(a)/u(a) < 0.

Although the proof of our main result does not make use of the first varia-
tional equation, it is rooted in the Coffman method. For instance, the assertion
in Lemma 3 that distinct solutions of (2.1) cannot intersect more than once is
the global manifestation of the fact that w(t; «) does not change sign more than
once in the appropriate interval.

Given a number s € (—o0,00], we say that the equation (2.1) satisfies the
“uniqueness condition” (U) with respect to s in the interval (a, b) if the following

holds.

(U)  Suppose first that b is finite. For any two points A < B €
(a,b], and any number o < s, there exists at most one nontriv-
ial non-negative solution of (2.1) such that v'(A)/u(A) = o
and u(B) = 0. In addition, for any 8 > 0, there exist at most
two solutions of (2.1) such that «/(A)/u(A) = o and u(b) = 5.
If b = 00, we require that for each finite subinterval the above
condition is satisfied.

In practice, it is easier to establish property (U) via the first variational
equation as in Coffman’s method. Thus (U) is implied by the following property:

(W) TFor any point A € (a,b) and any solution of (2.1) such
that «'(A)/u(A) < s, the corresponding solution w(t) of
the first variational equation (2.10) such that w'(A)/w(A) =
uw'(A)/u(A), can change sign at most once before the first
zero of u(t), or b in case u(t) does not vanish in (a, b).

Although the statement of conditions (U) and (W) involves solutions with an
arbitrary initial point A and an arbitrary initial condition less than s, known
uniqueness criteria that work for a particular s and the whole interval (a,b)
usually work automatically for smaller s and subintervals. Thus, in practice,
reference to these arbitrary numbers is not necessary.



Most known uniqueness criteria deal with the case r(t) = 0. When ¢(2) is
any power of ¢, positive or otherwise, boundary value problems of (2.1), with
Dirichlet conditions at both endpoints, or with Dirichlet condition at one and
Neumann condition at the other, are unique. This fact was first established by
Coffman even though the idea can be traced back to earlier work of Fowler. It
is not hard to see that the same proof shows that (2.1) satisfies (U) for any s
and any interval. The only other uniqueness criterion available in the literature
is a generic one that works for any superlinear equation, given in [9] as an
improvement of an earlier result of Coffman. In the next lemma we summarize
the known uniqueness criterion and a couple of new ones, the proof of which will
appear elsewhere. It is interesting to find more classes of admissible coefficients
made possible by the special structure of the nonlinear term f(u) = u?.

LEMMA 2 With r(t) = 0, the equation (2.1) satisfies condition (U) with respect
to any s on (a,b), if one of the following conditions holds:

1. a >0, and q(t) is a power of t.

2. (t — a)?q(t)is non-decreasing in t € (a,b), (2.11)

and
(b —1)%q(t) is non-increasing in t € (a,b). (2.12)

3. Suppose a > 0. Then
tP1q(t) is non-increasing (2.13)

and
t734(t) is non-decreasing ; (2.14)

in particular, if q(t) is a non-negative linear combination of 1/t* with
p+1<k<p+3:

g()=> et™, ¢ >0p+1<k <p+3. (2.15)
4. q(t) is a non-negative linear combination of 1/t* withp+3 <k <p+5:

g(t) = ct™ ¢ >0,p+3<k <p+5. (2.16)

5. For some number & > 0, q(t) is a non-negative linear combination of
Powers t5 with & <k<<(@p+D(E+2)/p-1:

g(t) =D et®, >08<k<(p+1)(6+2)/p— 1L (2.17)

If only (2.12) holds, then (2.1) satisfies (U) with respect to any s < 0.



A crucial step in obtaining our main theorem is to prove a converse of
Lemma 1. We first establish a consequence of condition (U).

LEMMA 3 Suppose that (2.1) satisfies (U). Let u1(t) and ua(t) be two distinct
positive solutions of (2.1) on (a, B) C (a,b), satisfying the same initial condition

(@) /(@) = wh(a) /us(a) < . (2.18)

They cannot intersect more than once in (a, B].

Proof. The proof consists of a continuity argument making use of elementary
topological properties of the plane. We do not insist on absolute rigor while
presenting the proof. Theoretical details can be easily filled in.

Let us first look at the case in which B is a zero of one of the solutions,
say u1(B) = 0. Then us(B) > 0 because by (U) there cannot be two solutions
that have the same boundary condition at B. At ¢t = a, either us(a) > uy(a) or
ua(a) < ui(a). We use a shooting method argument to show that the first case is
vacuous. By keeping the ratio u/(a)/u(a) = s, and increasing u(a) starting from
ua(a), we can shoot out various solutions. In case the ratio uj(a) = ua(a) = 0 is
zero, the solutions u(t) starts out with u(a) = 0, but with progressively increas-
ing initial slope u/(a). In the following we will not point out this modification
explicitly. The value u(B) depends continuously on the initial height. By (U),
u(B) cannot vanish, so it must remain positive for all initial height u(a). On
the other hand, superlinearity implies that for u(a) large enough, the solution
must have a zero in (a, B). Pick the first initial height at which this happens.
Because u(B) > 0, the solution can be tangent to the ¢-axis only at this zero,
but this is impossible. Tt follows that the first case, uz(a) > uy(a) is empty, as
claimed.

In the second case, the two solutions must intersect. Suppose they do so more
than once. We shoot out solutions as before but with progressively decreasing
initial height. Since u(B) remains positive and two solutions of (2.1) cannot be
tangential at any point, the number of points of intersection of w(t) with wuy(¢)
has to be a constant; in particular, it is greater than one. It is geometrically
obvious that as u(a) decreases towards 0, the first intersection point of u(t) with
u1(t) approaches the endpoint B. In other words, if u(a) is sufficiently small,
all the intersections occur within a very small right neighborhood of B. Let
W(t) = u(t) — uy(t). Then W(t) changes sign (oscillates) more than once in
this neighborhood. The function satisfies the second-order “linear” differential
equation

" g(t) [P (t) — ui(t)] _
Wi+ | S O W =0 (2.19)

Observe that the “coefficient” in this equation, the expression enclosed in large
square brackets, is a bounded function in this neighborhood, and it is well known

10



that solutions of such equations cannot oscillate in an arbitrarily small interval.
We therefore have a contradiction.

Now suppose that B = b and that both u;(b) and us(b) are positive. We
may assume that uj(a) < us(a). We first consider the case where u1(b) < ua(b).
If the two solutions do not intersect, we have nothing to prove. So suppose
they do. As a consequence, part of the graph of ua(t) lies below that of uy ().
We will show that there are two other solutions that satisfy the same boundary
conditions as those of uy(¢), thus contradicting (U). If u1(b) = ua(b), the first
solution is simply us(¢). In the contrary case, the first solution is obtained
by shooting with initial height above us(a). As pointed out before, if u(a) is
large enough, the solution must have a zero near the left endpoint. So as u(a)
increases from ws(a), the other end of the curve u(b) must eventually come
down and pass through u;(b), giving the first solution. Next, since both wu;(¢)
and wus(t) are bounded away from zero, we see that if we shoot with sufficiently
small initial height, the solution will remain small and so will not cross either
function. As we gradually increase the initial height, there must be a first time
when the solution u(?) intersects one of these given solutions. By the choice
of this critical case, the graphs of u;i(¢) and us(t) must lie entirely above that
of u(t). This rules out the possibility that «(¢) coincides with wuy(¢) since, by
assumption, part of the graph of ua(t) lies below that of the ui(¢). If a point
of intersection of u(t) with the other two functions is an interior point of the
interval (a, b), then u(?) must be tangential to the solution that it intersects at
this point. This contradicts the uniqueness of initial value problems. So the
only possibility left is that w(t) intersects u;(¢) at b, giving the second solution
we need.

Now consider the case u1(b) > wua(b). If the two solutions intersect more
than once, they must do so at least three times (recall that solutions cannot
be tangent to each other). Let us shoot out solutions as before with increasing
initial heights starting from wua(a), and follow their terminal values u(b). We
know that eventually «(b) must hit the t-axis, but before it does so, it may or
may not pass through the point u1(b). Suppose it does. At the moment when
this first happens, we are back to the previous case. Note that the number of
times u(?) intersects uy(t) remains a constant during this continuous deforma-
tion of u(t) (as u(a) is increased). Suppose that u(b) does not pass through
u1(b) before it hits the #-axis. At the moment when u(b) first becomes zero, we
have the very first situation at the beginning of the proof. In all cases, we have
a contradiction, and so the proof is complete. 1

11



We are now ready to show that the converse of Lemma 1 holds.

LEMMA 4 Suppose that (2.1) satisfies (U) with respect to s. Let U(t) be a pos-
itive solution of (2.1) in (a,b) such that U'(a)/U(a) = s. Then for any A > 1,
the solution v(t; X)) of (2.3) and (2.4) satisfies

w(t; A) < U(1) (2.20)

for allt before the first zero of v(1).

Proof. As in the proof of Lemma 1, we define u(t; o) = av(t; A), a = A/ (@-1)
by scaling the function v(¢; A). Let B be the first zero of v(t; A) or b if v(t; A)
does not vanish. If u(?; &) intersects U(t) in (a, B], it does so at a unique point,
by Lemma 3. Denote this point by C'. If the two graphs do not intersect, we take
C' = B. Since A > 1, the scaling is a stretching and u(a; ) > U(a). It follows
that in (C, B), v(t; A) < u(t; ) < U(t). It remains to show that v(¢;A) < U(?)
in (a,C) as well.

Let z(t) = U(t) — v(t; A). Tt satisfies the differential equation

(1) + q(1) [%] A0+ r(1)(t) = (A = Da(t)o(t, A).  (2.21)

It also satisfies the initial conditions
z(a) = Z'(a) = 0. (2.22)

Note that the righthand side of equation (2.21) is positive in (a, C'). Using the
variation of parameter formula 1t is easy to see that in some neighborhood of
the endpoint ¢t = a, z(t) is positive. If positivity prevails throughout (a,C),
the proof is complete. So suppose the contrary, and let D < C be the first
point at which z(D) = 0. We compare equation (2.21) with the one satisfied by
wl(t) = ult; a) — (1),

s b

In (a, D), v(t; X)) < U(t) < u(t; ). This implies that the expression inside the
square brackets in (2.23) is larger than the corresponding expression in (2.21).
Rewriting (2.21) in homogeneous form:

(8) + q(t) [UUPEQ = Z]Eftﬁ) _Q- 1)5(%)“(“ A)] A1)+ (=) = 0, (2.24)

] w(t) + r(t)w(t) = 0. (2.23)

we see that it has a coefficient smaller than that of (2.23). Hence w(t) oscillates
faster than z(¢) in [a, D]. This contradicts the fact that w(?) has no zero in

12



(a, D) whereas z(t) vanishes at both endpoints a and D. The proof of the
lemma is now complete. |

So far we have been considering only a finite left endpoint ¢ > —oo. When
a = —oo, some technical details have to be added. Since we are comparing
only essentially positive solutions, we can include only those equations (2.1)
that admit a nonoscillatory solution near —oo. Because of the concavity of u(t),
«'(t) approaches a finite non-negative limit as ¢ — —oo. The value lim;_. _ o u(?)
may or may not be bounded. In any case, the boundary conditions (2.4) have
to be interpreted as asymptotic relations. We can get around this difficulty by
requiring that the solution v of (2.3), or of (2.25) below, can be approximated
by solutions satisfying (2.4) for finite values of a as we let ¢ — —oc.

THEOREM 1 Let u(t) be a positive solution of (2.1) in (a,b), —oo < a < b < o0,
where q(t) > 0, and p > 1, and suppose that condition (U) with respect to
s = u'(a)/ula) is satisfied. Let k(t) > 1 be any increasing function of t. Then
the solution v(t) of the equation

v (1) + k(t)g(t)v? (t) + r(t)v(t) = 0, (2.25)

such that
v(a) = u(a), V'(a)=u(a), (2.26)

satisfies

v(t) < wu(t), te(a,B), (2.27)
where B is the first zero of v(t) or b if v(t) does not vanish.

Now if u(t) is a positive solution of (2.1) on (—00,b), and if the solution
va(t) of (2.25) satisfying (2.26) for some finite a < b converges uniformly to a
solution v(t) of (2.25) as a — —oo, then (2.27) holds in (—oco, B).

Proof. The result for an unbounded interval follows from that for compact
intervals using a continuity argument. It also suffices to assume that k() is a
step function. The general case is obtained by taking limits. The proof of the
theorem in the reduced case is done most easily by induction on the number of
steps of k(t). By leveling the last step of k(t) with the previous one, we obtain
a function k, (¢) with one less step. The original k(?) can easily be recovered as
the product of k,(¢) and a two-step function. Let v, (¢) be the solution of the
equation of the form (2.25) with k(¢) replaced by k,(¢). By applying Lemma 4
to the interval of the last step of k(t), we see that v(t) < v, (). By the induction
hypothesis, v, (t) < u(t). So the conclusion of the theorem follows. 1

We remark that Theorem 1 is no longer true if the monotonicity hypoth-
esis on k(¢) is simply removed. Numerical experimentation quickly yields the

13



following example:

k(1) = { . S (2.28)

() +uP(t) =0, te(0,4), (2.29)

v (t) + k(2 ) 3t)y=0, te€(0,4), (2.30)

u(0) = v(0) = 0, '(0) = v/(0) = 0.5. (2.31)

The solution v(¢) intersects u(t) at approximately ¢ = 3.143 and remains larger

than u(t) after that.
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3 The Atkinson and Peletier Lemma and Sub-
critical Equations

The following simple consequence of Theorem 1 covers the lemma of Atkinson
and Peletier. To see this, we first have to make a reflection, replacing ¢ by —t¢,
and then choose a = —oc0, ¢(t) = t~* and r(t) = 0. Their condition (1.16) on
the function f(u) is restated in an equivalent form which makes the proof more
transparent. A differentiation shows that (1.16) holds if and only if f(u)/u?*~3
18 non-increasing.

THEOREM 2 Let p > 1 and f(u) be a C! function for u > 0 satisfying the
condition
f(u)

upP

is a non-increasing function of u. (3.1)

Suppose that (2.1) satisfies the uniqueness condition (U) and u(t) is a positive
solution of (2.1) in (a,b) such that

w'(a) < 0. (3.2)

Then the solution of the initial value problem
V() + () f(o(1)) + r(t)e(t) = 0, (3.3)
v(a) = u(a), v'(a)=1u/(a), (3.4)

satisfies the inequality
before v(t) changes sign.

Proof. The boundary condition (3.2) implies that v(¢) is decreasing in ¢ in the
interval (a, B). By (3.1), the function f(v(¢))/v? (t) is therefore an increasing
function of ¢ in (@, B). Rewriting (3.3) as

0+ 2D 0y 0) 4 rtyatn) = (3:5)

we bring it into the form of (2.25), with k(¢) = f(v(t))/v? (¢). Theorem 1 now
applies. 1

As pointed out in [2], all functions of the form f(u) = u? + Au?, or more
generally f(u) =5 Aju®, with 0 < ¢, ¢; < p, A, A; > 0 satisfy (3.1).
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Let © denote the unit ball in R™. Brezis and Nirenberg in [5] studied the
nonlinear eigenvalue problem

Au+v? +duf =0 in Q, (3.7)
with Dirichlet boundary condition

u=0 on 9%, (3.8)

2 . . - .
where l < g < p= ;2 They obtained, using variational techniques, neces-
n—

sary and sufficient conditions on the value of A for the existence of a solution.
What is most interesting is that the necessary and sufficient range depends on
the value of ¢ as well as on n. Two or three distinct cases can be distinguished
according to whether n > 4 or n = 3. For all values of n, the cutoff value of ¢
for the first case is n/(n —2), whereas for n = 3, the value ¢ = 1 is in a separate
category by itself.

An alternative approach using ordinary differential equation methods was
adopted in [2] to reconfirm and to refine the results of Brezis and Nirenberg. Tt is
known that any solution of the eigenvalue problem must be radially symmetric.
Thus we are really dealing with an ordinary differential equation. A scaling in
the independent variable further changes the problem to the equivalent one of
studying the location of the first zero of the solutions of the initial value problem

n—1
i

u(0) =, u'(0)=0. (3.10)

u//(t) +

u'(t) + uf () + ul(t) = 0, (3.9)

As the initial height « varies from 0 to oo, the first zero is tracked; the range of
possible locations is related to the range of possible eigenvalues of (3.7).

We remark that the method presented below works without change for the
more general equation

N
Au+tul +3 cul +du? =0 in Q, (3.11)
i=1

where ¢; > 0, and ¢ < ¢; < p, and the equivalent scaled equation

n—1
i

u''(t) + (1) +uP (1) + Y Ciuf +u(t) = 0. (3.12)

It is natural to ask what the corresponding result of Brezis and Nirenberg is
in cases where the main exponent p is non-critical. The variational approach has
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been successfully applied to the subcritical case to answer this question. See,
for example, the work of Ambrosetti and Rabinowitz [1]. The shooting method
of Atkinson and Peletier provides an alternative. In fact, in the case of p being
subcritical, the extension of their key lemma as given by Theorem 2 is all we
need. As our next result shows, the corresponding Brezis and Nirenberg result
is simpler, comprising always two cases, ¢ = 1 and ¢ > 1.

2
THEOREM 3 Suppose 1 < ¢ < p < _n—i— 5" If ¢ > 1, the set of the first zero of
n—

all solutions of (3.9) (more generally, (3.9") and (3.10) is (0,00). Equivalently,
the eigenvalue problem (3.7) (more generally, (3.7')) and (3.8) has a solution
for all X > 0.

If ¢ = 1, the set of the first zero of all solutions of (3.9) (more generally,
(3.99) and (3.10) is (0,T) where T is the first zero of the solution of the linear

wmitial value problem

n—1
i

¢"(1) + ¢'(t) + o(t) =0, (3.13)

3(0)=1, ¢'(0)=0. (3.14)

Fquivalently, the eigenvalue problem (3.7) (or (3.7")) and (3.8) has a solution
Jor all X € (0,77).

Proof. To emphasize the fact that the solution to (3.9) and (3.10) depends on
the initial shooting height o, we write it as u(¢; o). Tts first zero is therefore also
a function of «; we denote it by b(«). Let us first show that in all cases

lim b(a) = 0. (3.15)

Let U(t; «) denote the solution of the initial value problem
-1
U"(t; o) + nTU/(t;a)—l—Up(t;a):O, (3.16)

U(0)y=a, U'(0)=0, (3.17)

and B(«) the first zero of U(¢; «). Using the well-known Emden transform, we
can rewrite (3.9) and (3.16) in a form similar to (1.13), for which we can apply
Theorem 2 to conclude that

u(t;) < U(t,e)  forall t € (0, b(w)). (3.18)

As a consequence,

b(a) < B(a). (3.19)
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Incidentally this establishes the fact that all solutions of (3.9) and (3.10) must
have a finite zero; in other words b(«) < oco. Now (3.15) follows if we can show
that

allrrgo B(a) = 0. (3.20)
This is a well-known fact, since U(t; o) can be obtained from the special case
U(t; 1) by scaling, namely,

Ut; ) = alU(aP~D/%; 1), (3.21)
and B(1)

Next let us show that for ¢ > 1,

lim b(«) = 0. (3.23)

a—0

We exploit the method of scaling again. Define

1 t
v(t;a) = —u (m;a) . (3.24)

«

Then v(¢; o) satisfies the initial value problem

-1

v (t o) + 1 v (t ) + P TP (o) + vt a) = 0, (3.25)

v(0) =1, '(0)=0. (3.26)

Note that as @ — 0, the coefficient of the term of in (3.25) goes to zero. Thus
by continuity, v(¢; «) converges uniformly to U(¢; 1) in any finite interval. The
first zero of v(¢; o) therefore approaches B(1). Tt follows that b(«), being the
first zero of v(¢; o) divided by a4=D/2 approaches oo as o — 0.

By (3.15) and (3.23), the set of b(«) contains arbitrarily large and arbitrarily
small positive values. By connectedness, the set must therefore be (0, 00).

Now let us look at the case ¢ = 1. In view of (3.15), it remain to show that
b(e) is always less than T', but can be arbitrarily close to T. Writing (3.9) in
the form of a “linear” equation:

n—1

1
[
w1+

w'(t) + [wP ) + 1] u(t) = 0, (3.27)

we see that it oscillates more than (3.16), since the coefficient of the last term
in (3.27) is larger than the corresponding coefficient of the last term in (3.16).
Hence the first zero of u(t; «) is strictly less than the first zero of U(¢); in other
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words, b(a) < T. On the other hand, u(?; ) < a in (0, b6(«x)) so that if « is very
small, the first term of the expression inside the square brackets in (3.27) is very
small, say less than some € > 0. Hence it oscillates slower than the equation

n—1
i

w”(t) + w' () + [e + 1w(t) =0, (3.28)
implying that b(«) is larger than the first zero of w(t) (which is assumed to
satisfy the initial conditions w(0) = 1 and «'(0) = 0). Since the first zero of
w(t) tends to T" as € — 0, so does b(«). This completes the proof of the theorem.

After establishing existence, the next natural question to ask is how many
solutions there are for each given A or b(«). Results of Ni [11] and Ni and

Nussbaum [13] imply uniqueness when 1 < ¢ < p < e The situation is more
n

complicated for larger values of p. So far most of the knowledge is derived from
numerical computation. The number of solutions can be read from the graph
plotting & against A or b(«), the so-called bifurcation diagram. Atkinson and
Peletier [2] proved that when 2 < n < 4, pis critical, and 1 < ¢ < (6—n)/(n—2),
there are at least two solutions for each large b(«). The bifurcation curve looks
like one branch of a hyperbola with the horizontal axis as one of its asymptotes,
and the other end of the curve runs off to infinity at the top right-hand corner.
Theorem 3 shows that if p is decreased from the critical value, this end of the
curve will approach the vertical axis b = 0 instead. Hence if p is sufficiently close
to the critical value, the bifurcation curve will maintain the hyperbolic shape of
the curve for the critical exponent case within a bounded region, but the upper
portion of the curve will, for large «, be bent back towards the vertical axis.
This creates (at least) a doublefold curve. Tt follows that there are values of
b(e) or A for which there are at least three distinct solutions.

A similar phenomenon was observed by Ni and Nussbaum [13] when p is
supercritical and ¢ is subcritical. As p is further reduced, numerical evidence
indicates that the doublefold curve gradually unfolds; below a certain threshold,
depending on ¢, the bifurcation curve becomes strictly monotone, and unique-
ness for the boundary value problems for all b(«) is regained. It will be inter-
esting to see whether these facts can be verified theoretically and the threshold
value can be determined.
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