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1 IntroductionThe celebrated Sturm comparison theorem is a useful tool for obtaining boundsfor linear second-order ordinary di�erential equations. Suppose that u(t) andv(t) are, respectively, non-negative solutions of the equationsu00(t) + q(t)u(t) = 0; (1:1)and v00(t) + Q(t)v(t) = 0; (1:2)on (a; b), and they satisfy the same initial conditionsu(a) = v(a) � 0; u0(a) = v0(a): (1:3)Furthermore, suppose that the coe�cients satisfy the comparison conditionq(t) � Q(t) for all t 2 (a; b): (1:4)Sturm's theorem then asserts thatu0(t)=u(t) � v0(t)=v(t) for all t 2 (a; b): (1:5)Consequently, u(t) � v(t) for all t 2 (a; b): (1:6)Hence if one of the two equations mentioned can be solved explicitly, then thecomputed solutions can be used as bounds for solutions of the other equation.Let f : [0;1)! [0;1) be a continuous non-negative function. A nonlinearequation of the form u00(t) + q(t)f(u(t)) = 0 (1:7)is said to be superlinear (sublinear) iff(u)u is an increasing (decreasing) function of u > 0: (1:8)It is easy to see that an analog of the above linear result remains valid when(1.1) and (1.2) are, respectively, replaced by sublinear equations of the form(1.7) and v00(t) + Q(t)f(v(t)) = 0, both having the same nonlinear functionf(u).For superlinear equations, the same is no longer true, as the following ex-ample shows. Let f(u) = u3; (1:9)q(t) = � 1 t � 11000 t > 1 ; (1:10)2



and Q(t) = (1:1)2q(t): (1:11)With the initial conditionsu(0) = v(0) = 1 and u0(0) = v0(0) = 0; (1:12)numerical results show that at �rst u(t) stays above v(t), but dips below v(t)after approximately t = 1:08.In their paper [2], Atkinson and Peletier studied the location of the largestzero of certain solutions of the nonlinear equationv00 + 1t4 �v5 + vq� = 0; 1 � q < 5; t > 0: (1:13)This equation arises in the study of radially symmetric solutions of the semilin-ear elliptic equation �u+ u5 + uq = 0 in R3: (1:14)Playing a key role in the work is the following lemma.Let v(t) be the solution ofv00(t) + 1tk f(v(t)) = 0 (1:15)with the property that limt!1 v(t) =  > 0. If the nonlinear function f(u)satis�es uf 0(u) � (2k � 3)f(u); (1:16)then for t > T , the largest zero of v(t),v(t) � �2�k + 1k � 1t2�k1�kf()��1=(k�2) : (1:17)This is in fact a comparison theorem because the righthand side of (1.17) is thesolution of the equation u00(t) + f()tk u2k�3 = 0 (1:18)with the asymptotic condition limt!1u(t) = : (1:19)These are the so-called Emden solutions of (1.18). Almost all of the othersolutions of (1.18) do not have a simple closed form. Equation (1.18) is aspecial case of the classical Emden-Fowler equation made famous by Bellman's3



book [4] and Wong's survey paper [14]. More recently, the work of Brezis andNirenberg [5] generated extensive interest in the perturbed equation (1.13) and(1.14). Results from their paper will be discussed in more detail in Section 3.Inequality (1.17) was derived from the fact that the function tk�1v1�k(t)v0(t)is decreasing in t, but this latter assertion had a tricky proof involving someclever use of a Pohozaev-type energy function.I am grateful to Professor Atkinson and Professor Peletier for drawing myattention to their result. The present work is a direct response to their sug-gestion to investigate whether a more general comparison theorem is possible.In this paper the following main theorem is established. The concept of the\uniqueness condition" will be made precise in the next section. A reection(replacing t by �t) has been executed, so that instead of requiring u(t) and v(t)to agree at some terminal \point", namely1, we make them agree at an initialpoint t = a.Main Theorem Let u(t) be a positive solution ofu00(t) + q(t)up(t) + r(t)u(t) = 0; t 2 (a; b) (1:20)where q(t); r(t) � 0, and p > 1. Furthermore, suppose that (1.20) satis�es a\uniqueness condition" for boundary value problems on subintervals of (a; b).Let k(t) � 1 be any increasing function of t. Then the solution v(t) of theequation v00(t) + k(t)q(t)vp(t) + r(t)v(t) = 0; (1:21)satisfying the same initial conditions as those of u(t) at t = a, is smaller thanu(t), before v(t) vanishes for the �rst time.This theorem includes the lemma of Atkinson and Peletier. The approachadopted is completely di�erent from theirs. There are two major extensions.First, a linear term is included, and more general coe�cients for the nonlinearterm other than 1=tk are allowed. Even in the particular case when this coe�-cient is a power of t, this power does not have to be tied to one special exponentof u as in the lemma in [2]. Second, the two solutions, u(t) and v(t), can becompared starting from any initial point t = a, �nite or not.The exponent (2k � 3) that appears in (1.18) is the well-known (Sobolev)critical exponent for the Emden-Fowler equation. The dynamical behavior ofthe solutions changes radically as the exponent increases from the subcriticalto the supercritical case. There is therefore much interest in attempting toextend the work of Atkinson and Peletier to include both the subcritical andsupercritical cases. Our main theorem con�rms that in these noncritical casesa lemma analogous to that of Atkinson and Peletier holds.4



For equations with non-critical exponents, the solutions satisfying the asymp-totic condition (1.19) (or even solutions of the critical exponent case satisfyingother initial conditions) no longer have a simple closed form. As the proof ofAtkinson and Peletier relies implicitly on such formulas, there seems to be noeasy way to extend it to such cases.In this paper, the main theorem is deduced from a special case, in whichthe function k(t) is a constant. Our method makes extensive use of the Sturmcomparison theorem and is closed related to a method �rst used by Co�man[6,7] to obtain uniqueness results for boundary value problems. His ideas havebeen successfully applied by Ni [11], Ni and Nussbaum [13], McLeod and Serrin[10], and Kwong [8]. For a survey of the method and known results, see thesurvey articles [9,12].In Section 3 we show how the lemma of Atkinson and Peletier and its gen-eralizations to non-critical exponents follow from the preceding theorem. Anapplication to nonlinear elliptic equations involving subcritical exponents givesresults analogous to those of Brezis and Nirenberg for the critical exponent case.These results have been obtained previously using the variational approach, seefor example, Ambrosetti and Rabinowitz [1]. We expect that our main theoremwill also play an important role in the detailed analysis of the structure of thesolution space in the supercritical exponent case.
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2 Main ResultsWe are interested in comparing the positive solutions of the Emden-Fowler equa-tion u00(t) + q(t)up(t) + r(t)u(t) = 0; t 2 (a; b) (2:1)with those of a similar one having a larger coe�cient. We assume that q(t) andr(t) are piecewise continuous andq(t) � 0; r(t) � 0; p > 1: (2:2)The interval (a; b) can be compact or otherwise, i.e., �1 � a < b � 1. How-ever, for most of our discussion, it is assumed to be compact.We may assume without loss of generality that q(t) is not identically zero inany right neighborhood of the left endpoint t = a. In the contrary case, we cansimply bypass such a neighborhood by shifting the left endpoint over it withouta�ecting the validity of our main result. The requirement that p > 1 puts theequation (2.1) in the superlinear category. For such equations it is known thatif the solution has either a su�ciently large initial height or a su�ciently largeinitial slope, it must have a zero close to the initial point a. This is one ofthe important facts used in the shooting method; see, for example, Bandle andKwong [3].As the example comprising (1.10) and (1.11) shows, the expected result is nottrue unless some extra conditions on the coe�cient are imposed. The followingsimple lemma reveals the connection between the existence of a comparisonresult and the uniqueness of certain positive boundary value problems.Lemma 1 Suppose that U (t) is a solution of (2.1) such that U (b) = 0. Letv(t;�), � � 1, be the solution ofv00(t;�) + �q(t)vp(t;�) + r(t)v(t;�) = 0 (2:3)with the same initial conditions as those of U (t),v(a;�) = U (a); v0(a;�) = U 0(a): (2:4)Suppose it is true that for all � > �,v(t;�) < v(t;�) (2:5)in the subinterval (a;B) in which both solutions are positive. Then for eachB 2 (a; b), the boundary value problem (2.1) with boundary conditionsu0(a)=u(a) = U 0(a)=U (a); u(B) = 0; (2:6)6



and positivity requirement u(t) > 0; t 2 (a;B); (2:7)has a unique solution.Proof. To simplify the matter, let � = �1=(p�1). The functions u(t;�) =�v(t;�) are the only solutions of (2.1) that also satisfy the �rst boundary con-dition in (2.6). If the �rst zero of v(t;�) is at t = B, then u(t;�) is a solution ofthe boundary value problem. By assumption, the �rst zero of v(t;�) is a strictlydecreasing function of �. Hence no two of them can give rise to solutions of theboundary value problem with the same endpoint B.The �rst boundary condition in (2.6) is interpreted as the usual Dirichletcondition u(a) = 0 if it happens that U (a) = 0. Co�man [5] initiated thestudy of the uniqueness of ground-state boundary value problems via the �rstvariational equation. The central question is to establish uniqueness of solutionsto boundary value problems for the more general equation (1.7), under suitableconditions on the coe�cient q(t). We sketch the ideas below. A more detailedaccount of this method can be found in Ni [11] or Kwong [9].Let w(t;�) be de�ned as w(t;�) = @u@� (t;�); (2:8)and let B = B(�) denote the �rst zero of u(t;�). It is not di�cult to see thatthe uniqueness of the boundary value problems (2.1) with (2.6) and (2.7), isimplied by (indeed, is almost equivalent to) the fact thatw(B(�); �) < 0 for all � > 0: (2:9)The method continues with a careful analysis of the oscillatory behavior ofthe function w(t;�) for a �xed �. It satis�es the �rst variational equationw00(t;�) + pq(t)up�1(t;�)w(t;�) + r(t)w(t;�) = 0; (2:10)and the initial condition given by the �rst identity of (2.6). The equation (2.10)can be viewed as a \linear" equation with pq(t)up�1(t;�) as its coe�cient, andSturm comparison techniques can be applied. It follows easily from the superlin-earity nature of (2.1) that the equation (2.10) oscillates faster than (2.1). Hencew(t;�) has a zero before u(t;�) does. In other words, w(t;�) changes from pos-itive to negative at some point prior to reaching B(�). The �nal step, which isthe hardest in the whole method, is to show that under the given hypotheseson q(t), w(t;�) does not change sign for a second time before B(�). This is7



done by constructing a suitable comparison function which can be shown, viathe Sturm theorem again, to oscillate faster than w(t;�) but to have no zero atall in the interval in question.Many useful uniqueness criteria have been established in this way. Althoughall of these have been proved only in the cases where the boundary condition atthe left endpoint is either of the Dirchlet or of the Neumann type, the proofswork in the more general situation. In fact, any criterion established this wayfor the boundary value problems with two Dirichlet conditions works when thecondition at t = a is replaced by any boundary condition. Likewise, any criterionestablished for a Neumann condition at t = a and a Dirichlet condition at t = bworks for any boundary condition at t = a such that u0(a)=u(a) � 0.Although the proof of our main result does not make use of the �rst varia-tional equation, it is rooted in the Co�man method. For instance, the assertionin Lemma 3 that distinct solutions of (2.1) cannot intersect more than once isthe global manifestation of the fact that w(t;�) does not change sign more thanonce in the appropriate interval.Given a number s 2 (�1;1], we say that the equation (2.1) satis�es the\uniqueness condition" (U) with respect to s in the interval (a; b) if the followingholds.(U) Suppose �rst that b is �nite. For any two points A < B 2(a; b], and any number � � s, there exists at most one nontriv-ial non-negative solution of (2.1) such that u0(A)=u(A) = �and u(B) = 0. In addition, for any � > 0, there exist at mosttwo solutions of (2.1) such that u0(A)=u(A) = � and u(b) = �.If b =1, we require that for each �nite subinterval the abovecondition is satis�ed.In practice, it is easier to establish property (U) via the �rst variationalequation as in Co�man's method. Thus (U) is implied by the following property:(W) For any point A 2 (a; b) and any solution of (2.1) suchthat u0(A)=u(A) � s, the corresponding solution w(t) ofthe �rst variational equation (2.10) such that w0(A)=w(A) =u0(A)=u(A), can change sign at most once before the �rstzero of u(t), or b in case u(t) does not vanish in (a; b).Although the statement of conditions (U) and (W) involves solutions with anarbitrary initial point A and an arbitrary initial condition less than s, knownuniqueness criteria that work for a particular s and the whole interval (a; b)usually work automatically for smaller s and subintervals. Thus, in practice,reference to these arbitrary numbers is not necessary.8



Most known uniqueness criteria deal with the case r(t) = 0. When q(t) isany power of t, positive or otherwise, boundary value problems of (2.1), withDirichlet conditions at both endpoints, or with Dirichlet condition at one andNeumann condition at the other, are unique. This fact was �rst established byCo�man even though the idea can be traced back to earlier work of Fowler. Itis not hard to see that the same proof shows that (2.1) satis�es (U) for any sand any interval. The only other uniqueness criterion available in the literatureis a generic one that works for any superlinear equation, given in [9] as animprovement of an earlier result of Co�man. In the next lemma we summarizethe known uniqueness criterion and a couple of new ones, the proof of which willappear elsewhere. It is interesting to �nd more classes of admissible coe�cientsmade possible by the special structure of the nonlinear term f(u) = up.Lemma 2 With r(t) = 0, the equation (2.1) satis�es condition (U) with respectto any s on (a; b), if one of the following conditions holds:1. a � 0, and q(t) is a power of t.2. (t � a)2q(t)is non-decreasing in t 2 (a; b); (2:11)and (b � t)2q(t) is non-increasing in t 2 (a; b): (2:12)3. Suppose a � 0. Then tp+1q(t) is non-increasing (2:13)and tp+3q(t) is non-decreasing ; (2:14)in particular, if q(t) is a non-negative linear combination of 1=tk withp+ 1 � k � p+ 3 :q(t) =X cit�ki ; ci > 0; p+ 1 � ki � p+ 3: (2:15)4. q(t) is a non-negative linear combination of 1=tk with p+ 3 � k � p+ 5 :q(t) =X cit�ki ; ci > 0; p+ 3 � ki � p+ 5: (2:16)5. For some number � � 0, q(t) is a non-negative linear combination ofpowers tk with � � k � (p+ 1)(� + 2)=p� 1:q(t) =X citki ; ci > 0; � � k � (p+ 1)(� + 2)=p� 1: (2:17)If only (2.12) holds, then (2.1) satis�es (U) with respect to any s � 0.9



A crucial step in obtaining our main theorem is to prove a converse ofLemma 1. We �rst establish a consequence of condition (U).Lemma 3 Suppose that (2.1) satis�es (U). Let u1(t) and u2(t) be two distinctpositive solutions of (2.1) on (a;B) � (a; b), satisfying the same initial conditionu01(a)=u1(a) = u02(a)=u2(a) � s: (2:18)They cannot intersect more than once in (a;B].Proof. The proof consists of a continuity argument making use of elementarytopological properties of the plane. We do not insist on absolute rigor whilepresenting the proof. Theoretical details can be easily �lled in.Let us �rst look at the case in which B is a zero of one of the solutions,say u1(B) = 0. Then u2(B) > 0 because by (U) there cannot be two solutionsthat have the same boundary condition at B. At t = a, either u2(a) > u1(a) oru2(a) < u1(a). We use a shooting method argument to show that the �rst case isvacuous. By keeping the ratio u0(a)=u(a) = s, and increasing u(a) starting fromu2(a), we can shoot out various solutions. In case the ratio u1(a) = u2(a) = 0 iszero, the solutions u(t) starts out with u(a) = 0, but with progressively increas-ing initial slope u0(a). In the following we will not point out this modi�cationexplicitly. The value u(B) depends continuously on the initial height. By (U),u(B) cannot vanish, so it must remain positive for all initial height u(a). Onthe other hand, superlinearity implies that for u(a) large enough, the solutionmust have a zero in (a;B). Pick the �rst initial height at which this happens.Because u(B) > 0, the solution can be tangent to the t-axis only at this zero,but this is impossible. It follows that the �rst case, u2(a) > u1(a) is empty, asclaimed.In the second case, the two solutions must intersect. Suppose they do so morethan once. We shoot out solutions as before but with progressively decreasinginitial height. Since u(B) remains positive and two solutions of (2.1) cannot betangential at any point, the number of points of intersection of u(t) with u1(t)has to be a constant; in particular, it is greater than one. It is geometricallyobvious that as u(a) decreases towards 0, the �rst intersection point of u(t) withu1(t) approaches the endpoint B. In other words, if u(a) is su�ciently small,all the intersections occur within a very small right neighborhood of B. LetW (t) = u(t) � u1(t). Then W (t) changes sign (oscillates) more than once inthis neighborhood. The function satis�es the second-order \linear" di�erentialequation W 00(t) + �q(t)[up(t) � up1(t)]u(t)� u1(t) + r(t)�W (t) = 0: (2:19)Observe that the \coe�cient" in this equation, the expression enclosed in largesquare brackets, is a bounded function in this neighborhood, and it is well known10



that solutions of such equations cannot oscillate in an arbitrarily small interval.We therefore have a contradiction.Now suppose that B = b and that both u1(b) and u2(b) are positive. Wemay assume that u1(a) < u2(a). We �rst consider the case where u1(b) � u2(b).If the two solutions do not intersect, we have nothing to prove. So supposethey do. As a consequence, part of the graph of u2(t) lies below that of u1(t).We will show that there are two other solutions that satisfy the same boundaryconditions as those of u1(t), thus contradicting (U). If u1(b) = u2(b), the �rstsolution is simply u2(t). In the contrary case, the �rst solution is obtainedby shooting with initial height above u2(a). As pointed out before, if u(a) islarge enough, the solution must have a zero near the left endpoint. So as u(a)increases from u2(a), the other end of the curve u(b) must eventually comedown and pass through u1(b), giving the �rst solution. Next, since both u1(t)and u2(t) are bounded away from zero, we see that if we shoot with su�cientlysmall initial height, the solution will remain small and so will not cross eitherfunction. As we gradually increase the initial height, there must be a �rst timewhen the solution u(t) intersects one of these given solutions. By the choiceof this critical case, the graphs of u1(t) and u2(t) must lie entirely above thatof u(t). This rules out the possibility that u(t) coincides with u1(t) since, byassumption, part of the graph of u2(t) lies below that of the u1(t). If a pointof intersection of u(t) with the other two functions is an interior point of theinterval (a; b), then u(t) must be tangential to the solution that it intersects atthis point. This contradicts the uniqueness of initial value problems. So theonly possibility left is that u(t) intersects u1(t) at b, giving the second solutionwe need.Now consider the case u1(b) > u2(b). If the two solutions intersect morethan once, they must do so at least three times (recall that solutions cannotbe tangent to each other). Let us shoot out solutions as before with increasinginitial heights starting from u2(a), and follow their terminal values u(b). Weknow that eventually u(b) must hit the t-axis, but before it does so, it may ormay not pass through the point u1(b). Suppose it does. At the moment whenthis �rst happens, we are back to the previous case. Note that the number oftimes u(t) intersects u1(t) remains a constant during this continuous deforma-tion of u(t) (as u(a) is increased). Suppose that u(b) does not pass throughu1(b) before it hits the t-axis. At the moment when u(b) �rst becomes zero, wehave the very �rst situation at the beginning of the proof. In all cases, we havea contradiction, and so the proof is complete.11



We are now ready to show that the converse of Lemma 1 holds.Lemma 4 Suppose that (2.1) satis�es (U) with respect to s. Let U (t) be a pos-itive solution of (2.1) in (a; b) such that U 0(a)=U (a) = s. Then for any � > 1,the solution v(t;�) of (2.3) and (2.4) satis�esv(t;�) � U (t) (2:20)for all t before the �rst zero of v(t).Proof. As in the proof of Lemma 1, we de�ne u(t;�) = �v(t;�), � = �1=(p�1),by scaling the function v(t;�). Let B be the �rst zero of v(t;�) or b if v(t;�)does not vanish. If u(t;�) intersects U (t) in (a;B], it does so at a unique point,by Lemma3. Denote this point by C. If the two graphs do not intersect, we takeC = B. Since � > 1, the scaling is a stretching and u(a;�) > U (a). It followsthat in (C;B), v(t;�) < u(t;�) < U (t). It remains to show that v(t;�) < U (t)in (a;C) as well.Let z(t) = U (t)� v(t;�). It satis�es the di�erential equationz00(t) + q(t) �Up(t)� vp(t;�)U (t)� v(t;�) � z(t) + r(t)z(t) = (� � 1)q(t)v(t; �): (2:21)It also satis�es the initial conditionsz(a) = z0(a) = 0: (2:22)Note that the righthand side of equation (2.21) is positive in (a;C). Using thevariation of parameter formula it is easy to see that in some neighborhood ofthe endpoint t = a, z(t) is positive. If positivity prevails throughout (a;C),the proof is complete. So suppose the contrary, and let D < C be the �rstpoint at which z(D) = 0. We compare equation (2.21) with the one satis�ed byw(t) = u(t;�)� U (t),w00(t) + q(t) �up(t;�)� Up(t)u(t;�)� U (t) �w(t) + r(t)w(t) = 0: (2:23)In (a;D), v(t;�) � U (t) � u(t;�). This implies that the expression inside thesquare brackets in (2.23) is larger than the corresponding expression in (2.21).Rewriting (2.21) in homogeneous form:z00(t) + q(t) �Up(t)� vp(t;�)U (t)� v(t;�) � (� � 1)q(t)v(t; �)z(t) � z(t) + r(t)z(t) = 0; (2:24)we see that it has a coe�cient smaller than that of (2.23). Hence w(t) oscillatesfaster than z(t) in [a;D]. This contradicts the fact that w(t) has no zero in12



(a;D) whereas z(t) vanishes at both endpoints a and D. The proof of thelemma is now complete.So far we have been considering only a �nite left endpoint a � �1. Whena = �1, some technical details have to be added. Since we are comparingonly essentially positive solutions, we can include only those equations (2.1)that admit a nonoscillatory solution near �1. Because of the concavity of u(t),u0(t) approaches a �nite non-negative limit as t!�1. The value limt!�1 u(t)may or may not be bounded. In any case, the boundary conditions (2.4) haveto be interpreted as asymptotic relations. We can get around this di�culty byrequiring that the solution v of (2.3), or of (2.25) below, can be approximatedby solutions satisfying (2.4) for �nite values of a as we let a!�1.Theorem 1 Let u(t) be a positive solution of (2.1) in (a; b), �1 < a < b �1,where q(t) � 0, and p > 1, and suppose that condition (U) with respect tos = u0(a)=u(a) is satis�ed. Let k(t) � 1 be any increasing function of t. Thenthe solution v(t) of the equationv00(t) + k(t)q(t)vp(t) + r(t)v(t) = 0; (2:25)such that v(a) = u(a); v0(a) = u0(a); (2:26)satis�es v(t) � u(t); t 2 (a;B); (2:27)where B is the �rst zero of v(t) or b if v(t) does not vanish.Now if u(t) is a positive solution of (2.1) on (�1; b), and if the solutionva(t) of (2.25) satisfying (2.26) for some �nite a < b converges uniformly to asolution v(t) of (2.25) as a!�1, then (2.27) holds in (�1; B).Proof. The result for an unbounded interval follows from that for compactintervals using a continuity argument. It also su�ces to assume that k(t) is astep function. The general case is obtained by taking limits. The proof of thetheorem in the reduced case is done most easily by induction on the number ofsteps of k(t). By leveling the last step of k(t) with the previous one, we obtaina function kn(t) with one less step. The original k(t) can easily be recovered asthe product of kn(t) and a two-step function. Let vn(t) be the solution of theequation of the form (2.25) with k(t) replaced by kn(t). By applying Lemma 4to the interval of the last step of k(t), we see that v(t) � vn(t). By the inductionhypothesis, vn(t) � u(t). So the conclusion of the theorem follows.We remark that Theorem 1 is no longer true if the monotonicity hypoth-esis on k(t) is simply removed. Numerical experimentation quickly yields the13



following example: k(t) = � 2 t � 11 t > 1 ; (2:28)u00(t) + u3(t) = 0; t 2 (0; 4); (2:29)v00(t) + k(t)v3(t) = 0; t 2 (0; 4); (2:30)u(0) = v(0) = 0; u0(0) = v0(0) = 0:5: (2:31)The solution v(t) intersects u(t) at approximately t = 3:143 and remains largerthan u(t) after that.
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3 The Atkinson and Peletier Lemma and Sub-critical EquationsThe following simple consequence of Theorem 1 covers the lemma of Atkinsonand Peletier. To see this, we �rst have to make a reection, replacing t by �t,and then choose a = �1, q(t) = t�k and r(t) = 0. Their condition (1.16) onthe function f(u) is restated in an equivalent form which makes the proof moretransparent. A di�erentiation shows that (1.16) holds if and only if f(u)=u2k�3is non-increasing.Theorem 2 Let p > 1 and f(u) be a C1 function for u > 0 satisfying thecondition f(u)up is a non-increasing function of u: (3:1)Suppose that (2.1) satis�es the uniqueness condition (U) and u(t) is a positivesolution of (2.1) in (a; b) such thatu0(a) � 0: (3:2)Then the solution of the initial value problemv00(t) + q(t)f(v(t)) + r(t)v(t) = 0; (3:3)v(a) = u(a); v0(a) = u0(a); (3:4)satis�es the inequality v(t) � u(t); (3:5)before v(t) changes sign.Proof. The boundary condition (3.2) implies that v(t) is decreasing in t in theinterval (a;B). By (3.1), the function f(v(t))=vp (t) is therefore an increasingfunction of t in (a;B). Rewriting (3.3) asv00(t) + f(v(t))vp(t) q(t)vp(t) + r(t)u(t) = 0; (3:6)we bring it into the form of (2.25), with k(t) = f(v(t))=vp (t). Theorem 1 nowapplies.As pointed out in [2], all functions of the form f(u) = up + �uq , or moregenerally f(u) =P �iuqi , with 0 < q; qi < p; �; �i > 0 satisfy (3.1).15



Let 
 denote the unit ball in Rn. Brezis and Nirenberg in [5] studied thenonlinear eigenvalue problem�u+ up + �uq = 0 in 
; (3:7)with Dirichlet boundary conditionu = 0 on @
; (3:8)where 1 < q < p = n+ 2n� 2 . They obtained, using variational techniques, neces-sary and su�cient conditions on the value of � for the existence of a solution.What is most interesting is that the necessary and su�cient range depends onthe value of q as well as on n. Two or three distinct cases can be distinguishedaccording to whether n � 4 or n = 3. For all values of n, the cuto� value of qfor the �rst case is n=(n�2), whereas for n = 3, the value q = 1 is in a separatecategory by itself.An alternative approach using ordinary di�erential equation methods wasadopted in [2] to recon�rm and to re�ne the results of Brezis and Nirenberg. It isknown that any solution of the eigenvalue problem must be radially symmetric.Thus we are really dealing with an ordinary di�erential equation. A scaling inthe independent variable further changes the problem to the equivalent one ofstudying the location of the �rst zero of the solutions of the initial value problemu00(t) + n� 1t u0(t) + up(t) + uq(t) = 0; (3:9)u(0) = �; u0(0) = 0: (3:10)As the initial height � varies from 0 to 1, the �rst zero is tracked; the range ofpossible locations is related to the range of possible eigenvalues of (3.7).We remark that the method presented below works without change for themore general equation�u+ up + NXi=1 ciuqi + �uq = 0 in 
; (3:11)where ci > 0, and q < qi < p, and the equivalent scaled equationu00(t) + n� 1t u0(t) + up(t) + NXi=1 Ciuqi + uq(t) = 0: (3:12)It is natural to ask what the corresponding result of Brezis and Nirenberg isin cases where the main exponent p is non-critical. The variational approach has16



been successfully applied to the subcritical case to answer this question. See,for example, the work of Ambrosetti and Rabinowitz [1]. The shooting methodof Atkinson and Peletier provides an alternative. In fact, in the case of p beingsubcritical, the extension of their key lemma as given by Theorem 2 is all weneed. As our next result shows, the corresponding Brezis and Nirenberg resultis simpler, comprising always two cases, q = 1 and q > 1.Theorem 3 Suppose 1 � q < p < n+ 2n� 2 . If q > 1, the set of the �rst zero ofall solutions of (3.9) (more generally, (3.90)) and (3.10) is (0;1). Equivalently,the eigenvalue problem (3.7) (more generally, (3.70)) and (3.8) has a solutionfor all � > 0.If q = 1, the set of the �rst zero of all solutions of (3.9) (more generally,(3.90)) and (3.10) is (0; T ) where T is the �rst zero of the solution of the linearinitial value problem �00(t) + n� 1t �0(t) + �(t) = 0; (3:13)�(0) = 1; �0(0) = 0: (3:14)Equivalently, the eigenvalue problem (3.7) (or (3.70)) and (3.8) has a solutionfor all � 2 (0; T 2).Proof. To emphasize the fact that the solution to (3.9) and (3.10) depends onthe initial shooting height �, we write it as u(t;�). Its �rst zero is therefore alsoa function of �; we denote it by b(�). Let us �rst show that in all caseslim�!1 b(�) = 0: (3:15)Let U (t;�) denote the solution of the initial value problemU 00(t;�) + n� 1t U 0(t;�) + Up(t;�) = 0; (3:16)U (0) = �; U 0(0) = 0; (3:17)and B(�) the �rst zero of U (t;�). Using the well-known Emden transform, wecan rewrite (3.9) and (3.16) in a form similar to (1.13), for which we can applyTheorem 2 to conclude thatu(t;�) � U (t; �) for all t 2 (0; b(�)): (3:18)As a consequence, b(�) � B(�): (3:19)17



Incidentally this establishes the fact that all solutions of (3.9) and (3.10) musthave a �nite zero; in other words b(�) <1. Now (3.15) follows if we can showthat lim�!1B(�) = 0: (3:20)This is a well-known fact, since U (t;�) can be obtained from the special caseU (t; 1) by scaling, namely,U (t;�) = �U (�(p�1)=2t; 1); (3:21)and B(�) = B(1)�(p�1)=2 : (3:22)Next let us show that for q > 1,lim�!0 b(�) =1: (3:23)We exploit the method of scaling again. De�nev(t;�) = 1�u� t�(q�1)=2 ;�� : (3:24)Then v(t;�) satis�es the initial value problemv00(t;�) + n� 1t v0(t;�) + �p�qvp(t;�) + vq(t;�) = 0; (3:25)v(0) = 1; v0(0) = 0: (3:26)Note that as �! 0, the coe�cient of the term vp in (3.25) goes to zero. Thusby continuity, v(t;�) converges uniformly to U (t; 1) in any �nite interval. The�rst zero of v(t;�) therefore approaches B(1). It follows that b(�), being the�rst zero of v(t;�) divided by �(q�1)=2, approaches 1 as �! 0.By (3.15) and (3.23), the set of b(�) contains arbitrarily large and arbitrarilysmall positive values. By connectedness, the set must therefore be (0;1).Now let us look at the case q = 1. In view of (3.15), it remain to show thatb(�) is always less than T , but can be arbitrarily close to T . Writing (3.9) inthe form of a \linear" equation:u00(t) + n� 1t u0(t) + �up�1(t) + 1�u(t) = 0; (3:27)we see that it oscillates more than (3.16), since the coe�cient of the last termin (3.27) is larger than the corresponding coe�cient of the last term in (3.16).Hence the �rst zero of u(t;�) is strictly less than the �rst zero of U (t); in other18



words, b(�) < T . On the other hand, u(t;�) � � in (0; b(�)) so that if � is verysmall, the �rst term of the expression inside the square brackets in (3.27) is verysmall, say less than some � > 0. Hence it oscillates slower than the equationw00(t) + n� 1t w0(t) + [�+ 1]w(t) = 0; (3:28)implying that b(�) is larger than the �rst zero of w(t) (which is assumed tosatisfy the initial conditions w(0) = 1 and w0(0) = 0). Since the �rst zero ofw(t) tends to T as �! 0, so does b(�). This completes the proof of the theorem.After establishing existence, the next natural question to ask is how manysolutions there are for each given � or b(�). Results of Ni [11] and Ni andNussbaum [13] imply uniqueness when 1 � q < p < nn� 2 . The situation is morecomplicated for larger values of p. So far most of the knowledge is derived fromnumerical computation. The number of solutions can be read from the graphplotting � against � or b(�), the so-called bifurcation diagram. Atkinson andPeletier [2] proved that when 2 < n < 4, p is critical, and 1 < q < (6�n)=(n�2),there are at least two solutions for each large b(�). The bifurcation curve lookslike one branch of a hyperbola with the horizontal axis as one of its asymptotes,and the other end of the curve runs o� to in�nity at the top right-hand corner.Theorem 3 shows that if p is decreased from the critical value, this end of thecurve will approach the vertical axis b = 0 instead. Hence if p is su�ciently closeto the critical value, the bifurcation curve will maintain the hyperbolic shape ofthe curve for the critical exponent case within a bounded region, but the upperportion of the curve will, for large �, be bent back towards the vertical axis.This creates (at least) a doublefold curve. It follows that there are values ofb(�) or � for which there are at least three distinct solutions.A similar phenomenon was observed by Ni and Nussbaum [13] when p issupercritical and q is subcritical. As p is further reduced, numerical evidenceindicates that the doublefold curve gradually unfolds; below a certain threshold,depending on q, the bifurcation curve becomes strictly monotone, and unique-ness for the boundary value problems for all b(�) is regained. It will be inter-esting to see whether these facts can be veri�ed theoretically and the thresholdvalue can be determined.References[1] Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in criticalpoint theory and applications, J. Funct. Anal., 14 (1973), 349-381.19
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