
Developing a Derivative-EnhancedObject-Oriented Toolkit forScienti�c Computations �Paul Hovlandy Boyana Norrisy Lucas Rohy Barry SmithyAbstractWe describe the development of a di�erentiated version of PETSc, an object-oriented toolkit for the parallel solution of scienti�c problems modeled by partialdi�erential equations. Traditionally, automatic di�erentiation tools are applied toscienti�c applications to produce derivative-augmented code, which can then be usedfor sensitivity analysis, optimization, or parameter estimation. Scienti�c toolkits playan increasingly important role in developing large-scale scienti�c applications. Bydi�erentiating PETSc, we provide accurate derivative computations in applicationsimplemented using the toolkit. In addition to using automatic di�erentiation togenerate a derivative enhanced version of PETSc, we exploit the component-basedorganization of the toolkit, applying high-level mathematical insight to increase theaccuracy and e�ciency of derivative computations.1 IntroductionIn complex computational models of physical phenomena, it is often necessary or desirableto compute the derivatives of a function f : x 2 IRn 7! y 2 IRm, where f is de�ned bya computer program with n inputs and m outputs. We call x the independent variableand y the dependent variable and denote the Jacobian matrix f 0(x) by J . There are manyways in which the desired derivatives can be obtained. After a short summary of sometraditional approaches to computing derivatives, we discuss the di�erentiation of PETSc,an object-oriented toolkit for building scienti�c applications involving the solution of partialdi�erential equations.One standard approach is to use divided di�erences (DD) to approximate the Jacobianmatrix. The ith column of J is approximated by using �rst-order accurate forwarddi�erences, f(x+ hiei)� f(x)hi ;where the step size hi is a suitably chosen parameter and ei is the ith unit vector. The DDapproach has the advantage that the function is needed only as a black box. The accuracy�The submitted manuscript has been created by the University of Chicago as Operator of ArgonneNational Laboratory (\Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department ofEnergy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to thepublic, and perform publicly and display publicly, by or on behalf of the Government.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave,Argonne, IL 60439, [hovland,norris,bsmith]@mcs.anl.gov.



2of approximations depends on the step size hi and may be di�cult to assess. A small stepsize is needed to suitably approximate the derivatives, but this can lead to cancellationerrors and loss of accuracy.Another approach to obtaining the Jacobian matrix of a well-de�ned function is touse a symbolic manipulation package such as Mathematica. Because of excessive resourcerequirements, this approach is predominantly applicable to small problems (e.g., fewer than50 lines of code).Automatic di�erentiation is a powerful tool for augmenting arbitrary codes withaccurate derivative computations. When application codes are written \from scratch,"automatic di�erentiation tools can be applied directly by the application programmer.Scienti�c codes developed using numerical libraries or toolkits o�er additional advantages:not only can automatic di�erentiation tools be applied to the library code, but the libraryprogrammers can use their own unique knowledge of the underlying algorithms to providemore accurate derivative information faster.The remainder of this section introduces the concepts of automatic and computationaldi�erentiation. Section 2 addresses the consequences of di�erentiating approximatemethods and describes our approach to improving the e�ciency of derivative computations,and application areas in which AD can be successfully employed. Section 3 presents someexperimental results and future directions. Section 4 summarizes our conclusions.1.1 Automatic Di�erentiationAutomatic di�erentiation (AD) o�ers a black-box mechanism for accurately computing thederivatives of arbitrary functions. Virtually any computer program written in Fortran,C, or C++ can be automatically augmented to evaluate the derivative of f usingAD, a chain-rule-based technique for evaluating the derivatives of functions de�ned byalgorithms [4, 5, 6, 7, 10]. The code produced by AD tools computes both the functionvalue y and the derivatives of some of the outputs y with respect to some of the inputs x.The basic underlying principle of AD is that any computation, no matter how complex,can be viewed as a limited set of arithmetic operations and elementary function calls.By applying the chain rule to the composition of elementary operations, AD producesaugmented code computing the derivatives of f exactly (to machine precision). AD tools canbe used in a black-box fashion for di�erentiating large scienti�c applications. Derivativescomputed using AD can be used by computational scientists for sensitivity analysis ofcomputational models, that is, the sensitivity of a model's output to perturbations in itsphysical and computational parameters. AD can also be used to help generate derivativesneeded in design optimization, parameter identi�cation, and the solution of sti� di�erentialand algebraic equations.The ADIC (Automatic Di�erentiation in C) tool [6, 7] provides automatic di�eren-tiation of programs written in C. Given a collection of C subroutines and an indicationof which program parameters correspond to independent and dependent variables, ADICproduces C code that allows the computation of derivatives of the dependent variables withrespect to the independent variables.1.2 Computational Di�erentiationWe use the term computational di�erentiation (CD) to designate the approach that couplesAD technology with high-level knowledge about the code being di�erentiated. In general,AD tools operate on the level of simple arithmetic operations, applying the chain rule in



3order to compute the derivatives of a given code. In some cases, we can reduce the memoryrequirements and increase the performance and accuracy of derivative computations byanalytically deriving and hand-coding the derivatives of frequently used computationalcomponents (e.g., solving of a system of linear equations).Using AD, one can easily produce derivative code that computes gradients withno round-o� error. However, when approximate (e.g., iterative) methods are used,AD computes the derivatives of the algorithm implemented rather than those of themodel function; thus, the resulting values may depend on the particular algorithm.This dependence may be an undesired side-e�ect of di�erentiating a program insteadof the mathematical function. The use of CD in high-level computational componentscan minimize this e�ect. In the following subsection, we consider the computationaldi�erentiation of linear equation solvers.1.3 PETScThe Portable, Extensible Toolkit for Scienti�c Computation (PETSc) is an object-orientedtoolkit for the parallel solution of scienti�c problems modeled by partial di�erentialequations [1, 2, 3]. PETSc includes a suite of parallel linear and nonlinear equation solversand unconstrained minimization modules that may be used in application codes written inFortran, C, and C++.PETSc is organized hierarchically, allowing users to employ the level of abstractionthat is most suitable for a particular problem. This decreases the development cycleand increases the software's maintainability. The actual implementations of most datastructures and algorithms can be speci�ed at run time, allowing for great exibility inchoosing the best combination. The object-oriented organization of PETSc makes applyingan AD tool straightforward.1.4 Combining AD Tools and Scienti�c ToolkitsAD tools provide a mechanism for the simpli�ed generation of derivative-enhanced versionsof scienti�c toolkits, which in turn simplify the di�erentiation of applications implementedusing these toolkits. With minimum e�ort, one can perform sensitivity analysis of existingscienti�c codes or build extensions utilizing the derivatives in some outer computation (e.g.,an optimization toolkit).Augmenting PETSc with derivative code is a natural extension to the toolkit'sfunctionality. Large scienti�c models that have been implemented using the toolkit canbe analyzed and veri�ed in a straightforward fashion. AD-enabled large-scale multivariatesensitivity analysis can help identify model de�ciencies and possible improvements. Adi�erentiated version of PETSc can also be useful in design optimization of complexsystems, where the main goal is to select optimal values for critical model parametersin order to attain some speci�ed design objectives.PETSc provides standardized interfaces to each of its major components. This enablesus to fully automate the process of generating a derivative-enhanced version of the toolkit,which is essential for keeping up with new releases.2 Taking Advantage of Common Algorithmic StructuresMany computational methods for solving partial di�erential equations involve the solutionof sparse linear systems of equations. The linear solver is usually inside the applicationbeing di�erentiated. The Scalable Linear Equation Solver (SLES) component of PETSc



4provides a uniform interface to a variety of methods for solving large sparse linear systemsin parallel. These methods �nd the solution of the systemA(s) � x(s) = b(s);(1)where s is a m-dimensional parameter, A(s) is a matrix, and b(s) is a vector. This linearsystem of equations represents an implicit de�nition of a function x(s). We wish to �ndthe derivatives dx=ds (designated by rx) of the solution of (1). A detailed analysis ofdi�erentiating parametric linear systems can be found in [8]. For brevity, we will writeequation (1) as Ax = b.The combination of a Krylov subspace method and a preconditioner is at the coreof most modern numerical codes for the iterative solution of linear systems. This isthe approach implemented in the linear equation solver (SLES) component of PETSc.SLES de�nes a standard interface to solving a linear system using preconditioned iterativemethods. At present, PETSc provides about ten di�erent preconditioners and ten Krylovsubspace methods.The derivatives produced by augmenting iterative algorithms do not necessary convergeat the same rate as the function being di�erentiated [8, 9, 11]. Thus, when the stoppingcriterion for the original iteration is satis�ed, the derivative code may not have reachedthe same accuracy as the solution or may have converged to a satisfactory value in feweriterations than the solution. In either case, the programmer has little control over theaccuracy or performance of derivative computations.To compute rx, we can di�erentiate (1), producingArx+rAx = rbArx = rb� rAx(2) rx = A�1(rb� rAx):(3)While logically the Jacobian is given by (3), in practice we obtain it by solving the linearsystem (2). The above derivation applies to the most general case, in which both A and bare dependent on the independent variable s.In our implementation, we consider four cases depending on the relationship betweenA, b, and the user-speci�ed independent variables s. The simplest case is when b is theindependent variable, and A is not a function of b, that is, rb = I and rA = 0. In this case,computing rx is reduced to solving the linear system Arx = I . When rb 6= I and rA = 0,we solve the system Arx = rb. Similarly, we provide implementations for the remainingtwo cases. In each of the four cases, the major part of computing rx involves solving alinear system with multiple right-hand sides. We use the SLES package, taking advantageof the run-time exibility in selecting the preconditioner, solver, and desired accuracy atrun time.By considering each of these cases separately, we avoid overallocation of resources, andensure that any potential parallelism can be exploited. For example, solving (2) requiresthat we �rst solve the system Ax = b before we can compute rx by solving the linearsystem with multiple right-hand sides. When A and b are not parameterized by s, we cansimultaneously solve for x and rx.In addition to providing e�cient implementation of the derivative computation, weprovide a simple polymorphic interface for computing rx. The user need not keep trackof the dependencies between A, b, and x in order to use our CD methods; the appropriatemethod is automatically selected at run time.



5
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−8

10
−6

10
−4

10
−2

10
0

Error in Gradient Computation, N=256, Num.Indep.=256

Convergence Tolerance

N
or

m
 o

f t
he

 E
rr

or
DD
AD
CD

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

1

2

3

4

5

6

7
Execution Time, N=256, Num.Indep.=256

Convergence Tolerance

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

DD
AD
CD

Fig. 1. : Gradient error and execution time with varying convergence tolerances.3 Experimental ResultsADIC has been applied successfully to the uniprocessor version of PETSc, producinga derivative-augmented code for all components of the toolkit. In addition to theautomatically generated code, we have implemented the CD methods discussed in Section2. Because of the modular design and implementation of PETSc, relatively few changesin the code were necessary to produce a working di�erentiated version of the toolkit. Thedynamic polymorphism in PETSc enables the simultaneous use of the undi�erentiatedand derivative-enhanced versions in user applications. In general, AD can be appliedto any modular software package, extending its functionality signi�cantly at a reducedprogramming e�ort.We have tested the di�erentiated version of PETSc, and in particular its SLEScomponent, with an example involving the solution of a linear system of equations Ax = bwhere A is the 256 � 256 matrix corresponding to a �ve-point stencil discretization of a16�16 computational domain. In all plots, DD designates divided di�erence approximation,AD designates black-box automatic di�erentiation, and CD stands for computationaldi�erentiation using hand-coded derivatives of common algorithmic structures. In all ofthe experiments, we have used a GMRES solver in combination with an incomplete LUfactorization preconditioner.Figure 1 contains the accuracy and performance results for various convergencetolerances. The termination condition of the Krylov subspace methods is based on therelative decrease of the l2-norm of the residual and the convergence tolerance value, whichis plotted along the x-axis. The y-axis of the accuracy plot is the l2-norm of the matrixrepresenting the di�erence between the derivatives produced by the various approaches andthe actual solution, rx = A�1b, which we compute separately up to machine precision forveri�cation purposes. For the DD and AD approaches the convergence tolerance refers tothe convergence of x, while in the CD approach it refers to the convergence of rx. In thisexample, the CD approach exhibits signi�cant performance improvement over DD and AD.



6
0 50 100 150 200 250

10
−8

10
−6

10
−4

10
−2

Error in Gradient Computation, N=256, Conv.Tol.=1e−8

Number of Independent Variables

N
or

m
 o

f t
he

 E
rr

or
DD
AD
CD

0 50 100 150 200 250
0

1

2

3

4

5

6

7
Execution Time, N=256, Conv.Tol.=1e−8

Number of Independent Variables

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

DD
AD
CD

Fig. 2. : Gradient error and execution time with varying number of independent variables.Figure 2 illustrates the accuracy and performance results for various numbers ofindependent variables and a �xed convergence tolerance of 10�8. Again, the convergencetolerance refers to the computation of x in the case of DD and AD and to rx in the case ofCD. In other words, we set the convergence criterion for the solution to 10�8 for all testsin this example, which does not imply that the derivative converges to the same accuracy.In fact, it has been shown that automatically generated derivatives of iterative solvers mayoften converge more slowly than the solution [11]. The accuracy of the resulting gradientis shown in the �rst plot. For larger numbers of independent variables, CD produces moreaccurate results than AD, and both AD and CD are several orders of magnitude moreaccurate than the DD approach.
60 80 100 120 140 160 180 200 220 240 260

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Matrix Size

N
or

m
 o

f t
he

 E
rr

or

Error in Gradient Computation, Num.Indep=64, Tol=1e−8

DD
AD
CD

60 80 100 120 140 160 180 200 220 240
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Matrix Size

Execution Time, Num.Indep.=64, Conv.Tol.=1e−8

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

DD
AD
CD

Fig. 3. : Gradient error and execution time with varying problem sizes.Figure 3 shows the accuracy and timing results for varying problem sizes. The dimensionof the square grid varies from 8 to 16, with corresponding matrix sizes indicated on thex axis. As in our previous experiments, we observe that the AD and CD methods forcomputing the derivatives result in more accurate results than the traditional DD approach.As described in Section 2, the CD approach involves the solution of a linear system withmultiple right-hand sides. In our implementation we invoke an iterative solver for eachright-hand side. An implementation that takes advantage of the multiple right-hand-sideswould improve performance signi�cantly.



7
0 50 100 150 200 250

0

2

4

6

8

10

12
Execution Time, N=256

Number of Independent Variables

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

AD, Tol=1e−2
AD, Tol=1e−4
AD, Tol=1e−6
AD, Tol=1e−8
CD, Tol=1e−2
CD, Tol=1e−4
CD, Tol=1e−6
CD, Tol=1e−8

Fig. 4. : Performance comparison between AD and CD.Figure 4 contains a summary of the execution times obtained for varying numbers ofindependent variables and convergence tolerances. As the convergence tolerance becomestighter, the execution time for the AD approach increases more rapidly than CD as thenumber of independent variables grows. A large number of independent variables meansmore time spent performing a single iteration when using the AD approach, whereas forCD the time for a single iteration is the same, but the number of linear systems solvedincreases.Figure 5 shows the performance of the three methods for computing rx to an accuracyof approximately 10�4. Overall, we observe that for a �xed convergence tolerancewith respect to rx, CD consistently outperforms AD and DD for various numbers ofindependent variables. For the problem sizes in our experiments, CD is clearly the bestmethod for obtaining mathematically-meaningful derivatives of the solution to the linearsystem. Sometimes, it may be desirable to compute the derivatives of the algorithmitself, for example, when evaluating the sensitivity of the model to perturbations in itsinput parameters. In that case, CD-produced derivatives would be less meaningful thanderivatives obtained with AD tools.4 ConclusionsAugmenting PETSc with derivative computations using automatic di�erentiation greatlyincreases the functionality of the toolkit with minimum programming e�ort. While thederivatives produced using AD are often more accurate, the performance of the augmentedcode is somewhat worse than that of the original computation. Nevertheless, computingderivatives using AD is often faster than obtaining them with less accurate methods, suchas divided di�erences.We can draw several conclusions from our experiences:� Toolkits providing good data and algorithm encapsulation allow computational



8
0 50 100 150 200 250

0

1

2

3

4

5

6

7
Execution Time, N=256, Sol.Acc.=1e−4

Number of Independent Variables

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

DD
AD
CD

Fig. 5. : Execution time for achieving 10�4 accuracy in the gradient.di�erentiation techniques to be incorporated under existing interfaces.� Computational di�erentiation is usually faster and more accurate than both automaticdi�erentiation and divided di�erences.� Automatic di�erentiation can be used on an entire toolkit; subsequently, the com-putational di�erentiation approach can be applied to important common algorithmicstructures.� The simultaneous use of the toolkit and its derivative-enhanced version is possible.� Toolkits maintain consistent interfaces for both non-derivative and derivative compu-tations, while the underlying implementations may change. The applications usingthe toolkit need not be aware of such changes.While high-level knowledge about the algorithms used in a toolkit can be used to utilizethe faster and more mathematically meaningful CD approach to obtaining derivatives,sometimes we wish to analyze the algorithms themselves. In that case, AD-generatedderivatives can be used. By augmenting PETSc with both types of computations, weallow the user to specify at run time the desired method for computing the derivatives.This strategy results in great exibility, allowing the use of PETSc in a straightforwardfashion for sensitivity analysis, design optimization, parameter identi�cation, and othercomputations that need derivatives.References[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, E�cient management of parallelism inobject oriented numerical software libraries, in Modern Software Tools in Scienti�c Computing,E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser Press, 1997, pp. 163{202.



9[2] , PETSc 2.0 users manual, Tech. Rep. ANL-95/11 - Revision 2.0.22, Argonne NationalLaboratory, 1998.[3] , PETSc home page. http://www.mcs.anl.gov/petsc, 1998.[4] M. Berz, C. Bischof, G. Corliss, and A. Griewank, Computational Di�erentiation: Techniques,Applications, and Tools, SIAM, Philadelphia, 1996.[5] C. Bischof, A. Carle, P. Khademi, and A. Mauer, ADIFOR 2.0: Automatic di�erentiation ofFortran 77 programs, IEEE Computational Science & Engineering, 3 (1996), pp. 18{32.[6] C. Bischof and L. Roh, ADIC user guide, Technical Memorandum ANL/MCS-TM-225,Mathematics and Computer Science Division, Argonne National Laboratory, 1997.[7] C. Bischof, L. Roh, and A. Mauer, ADIC | An extensible automatic di�erentiation tool forANSI-C, Software{Practice and Experience, 27 (1997), pp. 1427{1456.[8] H. Fischer, Automatic di�erentiation of the vector that solves a parametric linear system,Journal of Computational and Applied Mathematics, 35 (1991), pp. 169{184.[9] J.-C. Gilbert, Automatic di�erentiation and iterative processes, Optimization Methods andSoftware, 1 (1992), pp. 13{22.[10] A. Griewank, On automatic di�erentiation, in Mathematical Programming: Recent Develop-ments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers, Dordrecht,1989, pp. 83{108.[11] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Derivative convergence ofiterative equation solvers, Optimization Methods and Software, 2 (1993), pp. 321{355.


