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chromosome, as well as the origin and mechanisms of maintenance of gene clusters(see, e.g., [2, 3, 4, 5]).The recent availability of a large and increasing number of sequenced bacterialgenomes provides a substantial advantage in the examination of gene clustering onthe chromosome by simultaneously analyzing a large number of genomes, and conse-quently of gene clusters. Here, we present a method that uses conserved gene clustersfrom a large number of genomes to predict functional coupling between genes inthose genomes. This article further develops the approach previously reported by usin [6] and uses this method to reconstruct several major metabolic and functionalsubsystems.2 MethodologyThe data presented below are computed via the WIT system(http://wit.mcs.anl.gov/WIT2/), developed by Overbeek et al. [7] at Ar-gonne National Laboratory. WIT was designed and implemented to support geneticsequence analysis, metabolic reconstructions, and comparative analysis of sequencedgenomes. WIT currently contains data from 34 genomes, although a few of them areincomplete.Our approach to detection of conserved clusters of genes is based on the followingde�nitions: A set of genes occurring on a prokaryotic chromosome will be called a\run" if and only if they all occur on the same strand and the gaps between adjacentgenes are 300 base pairs or less. Any pair of genes occurring within a single run iscalled \close." If we have two genes Xa and Xb from two genomes Ga and Gb, Xa andXb are called a \bidirectional best hit" (BBH) if and only if recognizable similarityexists between them (in our case, we required FASTA3 scores lower than 1:0� 10�5),there is no gene Zb in Gb that is more similar than Xb to Xa, and there is no gene Zain Ga that is more similar than Xa to Xb. Genes (Xa; Ya) from Ga and (Xb; Yb) fromGb form a \pair of close bidirectional best hits" (PCBBHs) if and only if Xa and Yaare close, Xb and Yb are close, Xa and Xb are a BBH, and Ya and Yb are a BBH. Thenotion of a PCBBH is illustrated graphically in Figure 1.Computation of PCBBHs for 31 complete or partial prokaryotic genomes estab-lished several critical points:1. We found 58,498 PCBBHs among the 31 genomes considered.2. As is typical of most forms of comparative evidence, the number of PCBBHsgrows roughly as the square of the number of genomes (see Table 1).3. From the 31 complete or partial genomes, we were able to infer that approxi-mately 35% of the time, two or more genes already believed to be functionallycoupled appeared in the same run. (More precisely, approximately 35% of the2



genes assigned enzymatic functions from known pathways appeared in the samerun with genes assigned other functions from the same pathway).4. A smaller percentage of genes showed inferred couplings that could not be con-�rmed as \real." This set of coupled genes no doubt includes some \false pos-itive" couplings, as well as pairs of genes that are indeed functionally related,but whose connection has not yet been experimentally con�rmed.The question of whether gene clusters are widely present in the Archaea is wortha comment. Our computation shows that there are 2504 PCBBHs among Methano-coccus jannaschii, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum,and Pyrococcus horikoshii. The number of PCBBHs for the �rst four sequencedbacterial genomes|Haemophilus in
uenzae, Mycoplasma genitalium, Synechocystissp., and Helicobacter pylori|equals 1616. On the other hand, when Haemophilusin
uenzae, Escherichia coli, Bacillus subtilis, and Synechocystis sp. are used, we �nd2981 PCBBHs. Finally, if one considers PCBBHs among the four organisms Haemo-philus in
uenzae, Helicobacter pylori, Methanococcus jannaschii, and Archaeoglobusfulgidus, one sees the following numbers of PCBBHs: 262 PCBBHs between thetwo archaeal genomes, 329 between the two bacterial genomes, and 132 between anarchaeal and a bacterial genome. Hence, it seems likely that gene clusters also play animportant role in the Archaea. However, we have far too little data on the Archaeato make an accurate estimate that takes into account the size of the genomes andphylogenetic distance between the organisms.Motivating the De�nition of a PCBBH.The signi�cance of the couplinginformation provided by PCBBHs will be covered in detail below. First, we motivatethe de�nitions above. The essential questions are as follows:1. Is it important that we restrict our attention to genes clustered on the samestrand? We know that occasionally divergent genes are coregulated, that hori-zontal transfer may be a dominant theme, and that either of these considerationsmight lead to a situation in which mere proximity might convey information re-lating to functional coupling, without regard to strand.2. Assuming that we do restrict our attention to genes clustered on the samestrand, what maximum gap size should be used in the de�nition of PCBBH?To address these questions, we performed a number of computations. First, we re-stricted our attention to a set of ORFs that we have reason to believe are functionallycoupled and that occur within 10,000 bp of one another. For this set, we tabulatedthe number of ORFs that occurred on the same strand, the number of ORFs on thesame strand with no intervening genes on the opposite strand, the number of ORFson opposite strands, and the number on opposite strands that were immediately ad-jacent. To estimate the frequency of occurrence of functionally coupled ORFs in a3



run as a result of chance alone, we performed one more experiment. We repeatedlytook the same set of ORFs (along with their function assignments), randomly shu�edthe set of locations, and recomputed the values above. The results of both compu-tations are shown in Table 2. Table 2 suggests that co-occurrence of functionallyrelated ORFs on the same strand is of primary signi�cance. The results also suggestthat, while there appear to be more cases of divergent genes with coupled functionsthan expected from chance, their frequency is nearly two orders of magnitude smallerthan that of same-strand ORFs with coupled functions; hence, we shall not examinedivergent pairs further in this paper.Having argued that the essence of the phenomenon we are observing is co-occurrencein runs of genes on the same strand, we next ask, What is the range of gaps thatoccur between genes in such runs? To answer this question, we examined the gaps forthe 10,583 cases used to construct Table 2. The average maximum gap between pairsof related genes was 94 bp, with a standard deviation of 194 bp; after we trimmed50 obvious outliers, the average reduces to 91 bp, with a standard deviation of 136bp. As suggested by the fact that the standard deviation is signi�cantly larger thanthe mean, the gap distribution is rather skewed; nevertheless, two standard devia-tions above the mean still provides a reasonable cuto� for the maximum allowed gap,showing that our initial assumption of a 300 bp maximum gap in a \run" used in [6]was not too far o�.It is important to note that we are dealing with data that su�er frommany sourcesof error and uncertainty. For example, the actual starting positions for ORFs in thecollection are often inaccurate, and, in many cases, short genes were missed in theinitial analysis of each genome. The use of \partial" genomes, having a generallylower quality of sequence data, numerous frameshifts, and frequent truncated genes,also makes analysis more di�cult|although we emphasize that our method itselfappears to be largely insensitive to these problems and that we are grateful for theenormous wealth of data that such partial genomes represent. Taken together, these�gures and observations would perhaps support a slightly larger threshold than the300 bp value used in our de�nition of a run; however, overall the basic de�nitions usedaccurately capture a useful characterization of the notion \pair of close bidirectionalbest hits."Motivating the Score of a PCBBH. The signi�cance of the evidencefor functional coupling provided by a PCBBH depends on a number of factors, themost important of which is the phylogenetic distance between the organisms. Inphylogenetically close organisms, there is a signi�cant probability that two pairs ofnearby genes will form a PCBBH as a result of chance alone, presumably becausewhatever processes are rearranging the gene order have not yet had enough time toact. By the same token, in phylogenetically distant organisms, it is rather unlikelythat two pairs of genes would form a PCBBH as a result of chance alone. To re
ect theimportance of the phylogenetic distance between the genomes in deciding whether the4



observed linkage of their genes is due to chance, we developed the following simplescoring mechanism: The score of a PCBBH is given by the phylogenetic distancebetween organism Ga and organism Gb in the 16S rRNA tree [8], regardless of thephysical distance between the ORFs in either run, or the degree of similarity of eitherBBH. We give some representative phylogenetic distances in Table 3. A number ofother scoring functions were explored, but none appeared to display a signi�cantadvantage over this simple scheme.The rate at which the number of PCBBHs grows as a function of the numberof genomes present in the analysis is worth considering. Our current data pointsare shown in Table 1. Since there is large variability between genomes in termsof size, number of contigs, accuracy with which genes have been identi�ed, and soforth, one would expect only a rough correspondence to be evident from these values.Nevertheless, it does appear that the number of PCBBHs increases as the square ofthe number of genomes.A generalization of PCBBHs was proposed by Prof. W. Pearson (personal com-munication). There is no need to insist that the pairs of genes be bidirectional besthits (BBHs). We can also de�ne the concept of \pairs of close homologs" (PCH)as follows: Genes (X 0a; Y 0a) from Ga and (X 0b; Y 0b ) from Gb form a \pair of close ho-mologs" (PCH) if and only if X 0a and Y 0a are close, X 0b and Y 0b are close, X 0a and X 0b arerecognizably similar, and Y 0a and Y 0b are recognizably similar. Here, we will considertwo genes to be recognizably similar if their gene products produce FASTA3 scoreslower than 1:0 � 10�5: We use a scoring scheme analogous to the one described forPCBBHs to evaluate the connections between PCHs, except that if Ga and Gb arethe same genome, we assign an arbitrary \same-genome score" (\same-genome" pairscannot occur for PCBBHs by de�nition, but for PCHs they are possible). UnlikePCBBHs from two very close genomes for which contiguity is completely uninforma-tive in the vast majority of cases, PCHs allow recognition of gene clusters that playsimilar (but usually not identical) roles (such as two transport cassettes containingpairs of homologs) in the same or similar organisms. The arbitrary \same-genomescore" should, we believe, have a value that is high enough to rank such instances assigni�cant. In [6], we found that PCBBHs with score above 0.1 were signi�cant, andPCBBHs with scores above 1.0 were highly signi�cant; therefore, choosing a \samegenome" score of 0.5 seems a reasonable �rst approximation. With this choice, wehave 103,449 PCHs with scores greater than 0.1, as compared with 58,498 PCBBHs;of these PCHs, approximately 20% represent \same-genome" pairs. This general-ization to PCHs has allowed us to detect broad categories of functionally coupledproteins for which BBHs proved to represent too restrictive a criterion for homology;two examples are transport cassettes and signal transduction operons.We end this section with a fact that is relevant to understanding the underlyingphenomena producing an unexpectedly high number of PCBBHs and PCHs: Considerall pairs of runs Ra and Rb from organisms that have a phylogenetic distance greaterthan 0.1 in the rRNA tree such that they each contain at least three bidirectional5



best hits. Then about 88% of the time the order of the corresponding genes is exactlypreserved: of the 3821 such pairs of runs in our data, only 473 contained permutationsof the gene order.Signi�cance of the PCBBH and PCH Scores. At this time, on theaverage only half of the gene functions in newly sequenced genomes can be predictedon the basis of sequence analysis. Finding new approaches to establish the functionsof such \hypothetical" proteins is one of the major goals of our current research. Wehave found hundreds of instances in which a hypothetical protein is paired with aprotein of known function via one or more PCBBHs or PCHs. The central questionis: how meaningful are such predicted couplings? In this section we explore thisquestion by examining predicted couplings between proteins of known function.Suppose that two genes X and Y from a single run occur in one or more PCBBHs.Then, by the \BBH coupling score" we mean the sum of the scores of all the PCBBHscontaining X and Y: Similarly, by the \coupling score" we mean the sum of the scoresof the PCHs containing X and Y: Thus, to gain an estimate of whether two genes in arun are functionally coupled, we propose simply to add up the scores for the relevantPCBBHs.Once we have de�ned the notion of BBH coupling score, it becomes possible toform clusters of genes that are coupled at some level exceeding a speci�ed threshhold.Basically, one starts with a gene, �nds genes to which it is coupled, adds them (andthe corresponding genes from related genomes) to the emerging set, and continuedoing so until no new genes can be added to the set. (Details of this approach aregiven as Algorithm 1 in the on-line electronic supplement.)3 ResultsBelow, we show the results of applying algorithm 1 to reconstruct two commonmetabolic pathways: purine biosynthesis and glycolysis. (A number of additionalexamples of reconstructed metabolic pathways and functional subsystems, as well assignal-transduction pathways and metabolite transport, are presented in the on-lineelectronic supplement.) The utility of the algorithm was evaluated by asking threequestions:1. How much of the functional coupling implied by the pathway could be deter-mined directly from the PCBBHs?2. How often could the entire pathway be derived directly from just the PCBBHs?3. How many spurious (\false positive") functional couplings were predicted?To answer these questions, we present our results for the de novo purine biosyntheticpathway and the glycolytic pathway. We have tabulated all couplings between genes6



known to be related to the particular pathway, as well as to other genes that haveno obvious connections to it. These latter genes are candidates for \false positive"results, and a detailed analysis of some of these \false positive" couplings is presented.De novo Purine Biosynthesis. Below, we present a reconstruction of thede novo purine biosynthetic pathway from PCBBHs. Table 4 shows the inferredclustering of genes from a number of genomes. Each row depicts a set of bidirectionalbest hits associated with the function de�ned in the leftmost column, and each columnrepresents one or more gene clusters from a single genome (distinct colors indicatedistinct clusters). Dashes represent enzymes that are not present in PCBBHs in thegiven organism. So, for example, the Deinococcus radiodurans genome has two geneclusters|purEK and purQL|from this pathway.As one can see in Table 4, there is a substantial di�erence in the organizationof pur genes in Gram-positive and Gram-negative bacteria. In the low G+C grampositive group (B. subtilis, E. faecalis, S. pneumoniae, S. pyogenes, and C. aceto-butylicum), pur genes form tight clusters containing most of the genes related topurine biosynthesis. In Gram-negative organisms belonging to the gamma subdi-vision of the Proteobacteria (P. aeruginosa, E. coli, H. in
uenzae, and Y. pestis),pur genes form three highly preserved clusters: purEK, described in E. coli [9, 10],purMN, and purHD. In D. radiodurans, M. leprae, M. tuberculosis, and Synechocystissp., as well as in all the archaeobacterial genomes under consideration, pur genes areinstead gathered into short clusters scattered about the genome.The coupling scores between the distinct functional roles in the pathway are shownin Table 5. The values represent the strongest coupling between the designated func-tions. Almost all of the enzymes of purine biosynthesis are connected by PCBBHcoupling scores above 0.3.Our analysis predicted only one connection outside the known purine biosyntheticpathway that may be interpreted as a false positive result: a set of seven bidirectionalbest hits that were all assigned the function \hypothetical cytosolic protein" (yexA ho-molog). Homologous proteins were found in B. subtilis, Synechocystis sp., E. faecalis,and the archaeal genomes A. fulgidus, M. jannaschii, P. furiosus, and P. horikoshii .It has strong PCBBH scores with the purL, purQ, and purC gene products. We hopethat future laboratory experiments will con�rm or reject the functional connection ofthis protein to the purine biosynthetic cluster.Glycolysis. Our analysis detected two clusters produced by genes encoding gly-colytic enzymes, shown in Figure 2. Both clusters were found only in the bacte-rial genomes. The �rst cluster includes tpi (triosephosphate isomerase, EC 5.3.1.1),gap (glyceraldehyde 3-phosphate dehydrogenase, EC 1.2.1.12), pgk (phosphoglycer-ate kinase, EC 2.7.2.3), pgm (2,3-bisphosphoglycerate-independent phosphoglyceratemutase, EC 5.4.2.1), eno (enolase, EC 4.2.1.11), and a hypothetical protein. Theseresults agree well with the limited data on clustering of glycolytic enzymes [11, 12, 13].7



The hypothetical protein, which is functionally connected to most of the enzymes inthis cluster, is most probably a transcriptional regulator. It is highly homologous toa hypothetical transcriptional regulator from B. megaterium (spjP35168) and con-tains a weak signature for the deoR family of transcriptional regulators. The secondglycolytic cluster contains pfk (phosphofructokinase, EC 2.7.1.11) and pyk (pyruvatekinase, EC 2.7.1.40)|the only two glycolytic enzymes that do not participate ingluconeogenesis.This cluster was previously described in the literature [14, 15, 16], where it wassuggested that both genes constitute an operon. Our analysis shows functional re-lationship between this cluster and the alpha chain of DNA polymerase III (dnaE ).While it is possible that there is a connection between glycolysis and replication, wecurrently consider the presence of dnaE (EC 2.7.7.7) in this cluster to be a \falsepositive" result. Tables 6 and 7 show the connection matrices for both glycolyticclusters.A More Systematic Exploration of Functional Couplings. Thesimple algorithm alluded to in the preceding section can be used very e�ectively togain insights into the roles of speci�c genes. Two questions immediately arise:1. How much of known metabolism can be deduced from gene clusters?2. How many hypothetical proteins can be coupled to functional subsystems?To explore these questions systematically, we developed the approach presented inthe next section.Identifying Corresponding Genes from Di�erent Organisms. We begin byforming sets of genes that we call role groups. A role group is a set of genes suchthat the set contains at most one gene from an organism, each gene in the set is abidirectional best hit with at least two other genes in the set, the set is \connected"in the sense that one could not split it without separating two bidirectional besthits, and the set contains no pair of genes Xa and Xb from organisms Ga and Gb;respectively, such that Xa is a bidirectional best hit with Yb from Gb and Yb is not Xb:The last condition is especially important in cases with a large number of paralogs,where our ability to accurately identify corresponding genes from distinct organismsis limited. We will call these sets \role groups," since we are attempting to isolategenes from di�erent organisms that play identical roles in each organism (and again,we emphasize that our ability to accurately compute such groupings is limited).These role groups are related to the much better known clusters of orthologousgenes (COGs) developed by R. Tatusov et al. [17]. COGs play an invaluable role inattempting to characterize families of proteins. They tend to be much larger groupingsthan the role groups; that is, COGs are often the union of a set of role groups. COGsrepresent an attempt to group proteins at the level of abstraction appropriate to8



assigning function; role groups attempt to identify corresponding genes in distinctorganisms. In this sense, COGs have a much more clearly defensible conceptual basis(and require more judgment to curate). Both COGs and role groups have extremelyinteresting properties and utility. The current WIT system has over 5200 identi�edrole groups.Connecting Role Groups. After computing role groups for a set of organisms,one can compute connections between speci�c groups based on coupling scores (orcoupling BBH scores) as follows. Let X and Y be genes from a single organism suchthat the coupling score between X and Y is Sc: Then if X is from one role groupRx and Y is from another group Ry, (X;Y ) is said to be a connection at score Scbetween Rx and Ry: If Rx and Ry are connected by two or more such connectionswith scores greater than or equal to some threshold T; Rx and Ry are said to beconnected at threshold T: That is, one can compute a set of connections betweenrole groups imposed by the coupling scores between genes in the groups. Amongother things, these connections between role groups can be used to infer functionalcouplings between genes that do not occur in gene clusters.Clustering Role Groups. Our �rst attempt to cluster role groups was based on theapproach we used for Algorithm 1. We then devised a better approach that computesall connections between role groups at a threshold of 0.1, orders the connections basedon the maximumconnection score, and allows a knowledgeable biologist or biochemistto decide whether to add a new role group to an existing cluster of connected groups orto terminate the search; once a group has been added to a cluster, it is removed fromfurther consideration, ensuring that each group occurs in one and only one cluster.(For details, see Algorithm 2 in the on-line supplement.)There were 7464 connections between the role groups maintained in WIT2; 343clusters of role groups were produced. Each such cluster represents a working hy-pothesis of the composition of a functional subsystem in some set of organisms.4 ConclusionThe availability of multiple genomes provides an opportunity to gain new insights intothe processes that drive the dispersion and formation of chromosomal gene clusters.The results obtained using the method described above con�rm that conserved geneclusters accurately convey functional coupling between the genes present in them. Wehave supported this by anecdotal evidence, with further examples being available inthe on-line supplement. The importance of simultaneous analysis of a large numberof genomes for the reconstruction of functional subsystems using functional couplingis illustrated by the following calculation.Three parameters determine the utility of this class of data: the percentage ofgenes that occur within clusters, the average size of a cluster, and the size of the real9



subsystems. Reconsidering the experiments described earlier, we can state that thepercentage of genes assigned to a pathway that occur within the same run with atleast one other gene from the same pathway is approximately 35% (see section 2).The average size of a gene cluster appears to be approximately 3 genes. This numbermay be lower than the actual value, since genes may be clustering with other genesof unidenti�ed function and our statistics could be in
uenced by our use of partialgenomes.Consider a subsystem composed of 5 genes. How many genomes containing thissubsystem will be needed before the coupling between two speci�c genes Gx and Gyin the subsystem might be revealed via PCBBHs?Under the assumptions that a given gene will occur in a run in 35% of the genomesand that the average length of a gene cluster is 3 genes, one expects to see 1 co-occurrence of Gx and Gy in a run (i.e., a single pair) in 6 genomes, about 2 co-ocurrances in 11 genomes (that is, 11 genomes is the smallest number for which oneexpects to �rst see a PCBBH containing Gx and Gy), and about 3 co-occurrences in17 genomes.These simple calculations reveal an important characteristic of gene clusters: func-tional clustering could only be detected once we had access to 10 or more genomescontaining the functional subsystem of interest. This property has caused the util-ity of preserved chromosomal gene clusters to be undervalued while only a limitednumber of genomes were sequenced. However, given the availability of hundreds ofgenomes (which we certainly expect within the next few years), this class of datamay well o�er a very precise description of the functional coupling between geneticsubsystems in prokaryotic genomes.AcknowledgmentThis work was supported in part by U.S. Department of Energy, under ContractW-31-109-Eng-38.References[1] Demerec, M. E., & Hartman, P. (1959) Annu.Rev. Microbiol.13, 377{406.[2] Lawrence J. G., and, Roth J. R. (1996) Genetics 143, 1843{1860.[3] Lawrence J. G. (1997) Trends Microbiol. 5, 355{359.[4] Shapiro J. A. (1997) Trends Genet. 13, 98{104.[5] Blumenthal T. (1998) Bioessays 20, 480{487.10
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Figure 1: Illustration of the de�nitions of \pairs of close bidirectional best hits"and \pairs of close homologs." BBH: bidirectional best hit; PCBBH: pair of closebidirectional best hits; PCH: pair of close homologs.
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Figure 2: Functional clusters in the glycolysis pathway; BB: B. burgdorferi, DR: D.radiodurans, CA: C. acetobutylicum, BS: B. subtilis, EF: E. faecalis, MP: M. pneumo-niae, MG: M. genitalium, ML: M. leprae, MT: M. tuberculosis, CJ: C. jejuni, TP: T.pallidum, HP: Helicobacter pylori, ST: Streptococcus pyogenes, PN: S. pneumoniae.
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Table 1: Increase of the number of PCBBHs with the number of genomes.No. Genomes No. PCBBHswith Scores > 0.14 9988 485916 1257024 2314431 58498Table 2: Locations of functionally related ORFs on the chromosome.Reak Data \Shu�ed"DatasetStrand FunctionallyRelatedORFs Mean No. ofFunctionallyRelated ORFs Std. Dev.Same strand 10,968 445 23Same strand, nointervening genes 10,583 273 24Opposite strand 349 256 18Divergent genes 43 19 5Table 3: PCBBH scores based on phylogenetic distances between pairs of organisms.Pair of Organisms Phylo.Dist.N. gonorrhoea, N. meningitidis 0.01M. genitalium, M. pneumoniae 0.01E. coli, H. in
uenzae 0.21M. genitalium, B. subtilis 0.41M. genitalium, Synechocystis 0.80M. genitalium, E. coli 0.88M. genitalium, P. furiosus 1.5714



Table 4: Functional couplings between the genes of the purine biosynthetic pathway.

Table 5: Connection matrix between the genes of the purine biosynthetic pathway.
15



Table 6: Connection matrix of the glycolytic enzymes at 0.4 threshold (Cluster 1)5.3.1.1 1.2.1.12 2.7.2.3 5.4.2.1 4.2.1.11 Unknown5.3.1.1 | 2.96 3.38 1.85 0.81 0.421.2.1.12 2.96 | 9.30 0.42 0.812.7.2.3 3.38 9.30 | 0.38 0.81 0.425.4.2.1 1.85 0.38 | 0.384.2.1.11 0.81 0.42 0.81 0.38 | 0.42Unknown 0.42 0.81 0.42 0.42 |
Table 7: Connection matrix of the glycolytic enzymes at 0.4 threshold (Cluster 2)2.7.1.11 2.7.1.40 2.7.7.72.7.1.11 | 2.79 1.442.7.1.40 2.79 | 0.942.7.7.7 1.44 0.94 |
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