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Abstract

Earlier, we presented evidence that it is possible to predict functional cou-
pling between genes based on conservation of gene clusters between genomes.
With the rapid increase in availability of prokaryotic sequence data, it has be-
come possible to verify and apply the technique. In this paper, we extend our
characterization of the parameters that determine the utility of the approach,
and we generalize the approach in a way that supports detection of common
classes of functionally coupled genes (e.g., transport and signal transduction
clusters). Now that the analysis includes over 30 complete or nearly complete
genomes, it has become clear that this approach will play a significant role
in supporting efforts to assign functionality to the remaining uncharacterized
genes in sequenced genomes.

1 Introduction

Gene clusters are known to be prominent features of bacterial chromosomes. De-
merec and Hartman [1] postulated in 1959 that “regardless of how the gene clusters
originated, natural selection must act to prevent their separation” and the “mere
existence of such arrangements shows that they must be beneficial, conferring an
evolutionary advantage on individuals and populations which exhibit them.” One
of the most striking features of prokaryotic gene clusters is that typically they are
composed of functionally related genes. For the past forty years, there has been vig-
orous, ongoing discussion on the functional significance of gene arrangement on the
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chromosome, as well as the origin and mechanisms of maintenance of gene clusters
(see, e.g., [2, 3,4, 5]).

The recent availability of a large and increasing number of sequenced bacterial
genomes provides a substantial advantage in the examination of gene clustering on
the chromosome by simultaneously analyzing a large number of genomes, and conse-
quently of gene clusters. Here, we present a method that uses conserved gene clusters
from a large number of genomes to predict functional coupling between genes in
those genomes. This article further develops the approach previously reported by us
in [6] and uses this method to reconstruct several major metabolic and functional
subsystems.

2 Methodology

The data presented below are computed via the WIT  system
(http://wit.mcs.anl.gov/WIT2/), developed by Overbeek et al. [7] at Ar-
gonne National Laboratory. WIT was designed and implemented to support genetic
sequence analysis, metabolic reconstructions, and comparative analysis of sequenced
genomes. WIT currently contains data from 34 genomes, although a few of them are
incomplete.

Our approach to detection of conserved clusters of genes is based on the following
definitions: A set of genes occurring on a prokaryotic chromosome will be called a
“run” if and only if they all occur on the same strand and the gaps between adjacent
genes are 300 base pairs or less. Any pair of genes occurring within a single run is
called “close.” If we have two genes X, and X, from two genomes G, and G}, X, and
X, are called a “bidirectional best hit” (BBH) if and only if recognizable similarity
exists between them (in our case, we required FASTA3 scores lower than 1.0 x 107°),
there is no gene 7, in (4, that is more similar than X to X, and there is no gene 7,
in G, that is more similar than X, to X;. Genes (X,,Y,) from G, and (X}, Y3) from
Gy form a “pair of close bidirectional best hits” (PCBBHs) if and only if X, and Y,
are close, X, and Y} are close, X, and X}, are a BBH, and Y, and Y, are a BBH. The
notion of a PCBBH is illustrated graphically in Figure 1.

Computation of PCBBHs for 31 complete or partial prokaryotic genomes estab-
lished several critical points:

1. We found 58,498 PCBBHs among the 31 genomes considered.

2. As is typical of most forms of comparative evidence, the number of PCBBHs
grows roughly as the square of the number of genomes (see Table 1).

3. From the 31 complete or partial genomes, we were able to infer that approxi-
mately 35% of the time, two or more genes already believed to be functionally
coupled appeared in the same run. (More precisely, approximately 35% of the



genes assigned enzymatic functions from known pathways appeared in the same
run with genes assigned other functions from the same pathway).

4. A smaller percentage of genes showed inferred couplings that could not be con-
firmed as “real.” This set of coupled genes no doubt includes some “false pos-
itive” couplings, as well as pairs of genes that are indeed functionally related,
but whose connection has not yet been experimentally confirmed.

The question of whether gene clusters are widely present in the Archaea is worth
a comment. Our computation shows that there are 2504 PCBBHs among Methano-
coccus jannaschii, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum,
and Pyrococcus hortkoshii. The number of PCBBHs for the first four sequenced
bacterial genomes—Haemophilus influenzae, Mycoplasma genitalium, Synechocystis
sp., and Helicobacter pylori—equals 1616. On the other hand, when Haemophilus
influenzae, Fscherichia coli, Bacillus subtilis, and Synechocystis sp. are used, we find
2981 PCBBHs. Finally, if one considers PCBBHs among the four organisms Haemo-
philus influenzae, Helicobacter pylori, Methanococcus jannaschii, and Archaeoglobus
fulgidus, one sees the following numbers of PCBBHs: 262 PCBBHs between the
two archaeal genomes, 329 between the two bacterial genomes, and 132 between an
archaeal and a bacterial genome. Hence, it seems likely that gene clusters also play an
important role in the Archaea. However, we have far too little data on the Archaea
to make an accurate estimate that takes into account the size of the genomes and
phylogenetic distance between the organisms.

Motivating the Definition of a PCBBH. The significance of the coupling
information provided by PCBBHs will be covered in detail below. First, we motivate
the definitions above. The essential questions are as follows:

1. Is it important that we restrict our attention to genes clustered on the same
strand? We know that occasionally divergent genes are coregulated, that hori-
zontal transfer may be a dominant theme, and that either of these considerations
might lead to a situation in which mere proximity might convey information re-
lating to functional coupling, without regard to strand.

2. Assuming that we do restrict our attention to genes clustered on the same
strand, what maximum gap size should be used in the definition of PCBBH?

To address these questions, we performed a number of computations. First, we re-
stricted our attention to a set of ORFs that we have reason to believe are functionally
coupled and that occur within 10,000 bp of one another. For this set, we tabulated
the number of ORFs that occurred on the same strand, the number of ORF's on the
same strand with no intervening genes on the opposite strand, the number of ORFs
on opposite strands, and the number on opposite strands that were immediately ad-
jacent. To estimate the frequency of occurrence of functionally coupled ORFs in a



run as a result of chance alone, we performed one more experiment. We repeatedly
took the same set of ORFs (along with their function assignments), randomly shuffled
the set of locations, and recomputed the values above. The results of both compu-
tations are shown in Table 2. Table 2 suggests that co-occurrence of functionally
related ORFs on the same strand is of primary significance. The results also suggest
that, while there appear to be more cases of divergent genes with coupled functions
than expected from chance, their frequency is nearly two orders of magnitude smaller
than that of same-strand ORFs with coupled functions; hence, we shall not examine
divergent pairs further in this paper.

Having argued that the essence of the phenomenon we are observing is co-occurrence
in runs of genes on the same strand, we next ask, What is the range of gaps that
occur between genes in such runs? To answer this question, we examined the gaps for
the 10,583 cases used to construct Table 2. The average maximum gap between pairs
of related genes was 94 bp, with a standard deviation of 194 bp; after we trimmed
50 obvious outliers, the average reduces to 91 bp, with a standard deviation of 136
bp. As suggested by the fact that the standard deviation is significantly larger than
the mean, the gap distribution is rather skewed; nevertheless, two standard devia-
tions above the mean still provides a reasonable cutoff for the maximum allowed gap,
showing that our initial assumption of a 300 bp maximum gap in a “run” used in [6]
was not too far off.

It is important to note that we are dealing with data that suffer from many sources
of error and uncertainty. For example, the actual starting positions for ORFs in the
collection are often inaccurate, and, in many cases, short genes were missed in the
initial analysis of each genome. The use of “partial” genomes, having a generally
lower quality of sequence data, numerous frameshifts, and frequent truncated genes,
also makes analysis more difficult—although we emphasize that our method itself
appears to be largely insensitive to these problems and that we are grateful for the
enormous wealth of data that such partial genomes represent. Taken together, these
figures and observations would perhaps support a slightly larger threshold than the
300 bp value used in our definition of a run; however, overall the basic definitions used
accurately capture a useful characterization of the notion “pair of close bidirectional
best hits.”

Motivating the Score of a PCBBH. The significance of the evidence
for functional coupling provided by a PCBBH depends on a number of factors, the
most important of which is the phylogenetic distance between the organisms. In
phylogenetically close organisms, there is a significant probability that two pairs of
nearby genes will form a PCBBH as a result of chance alone, presumably because
whatever processes are rearranging the gene order have not yet had enough time to
act. By the same token, in phylogenetically distant organisms, it is rather unlikely
that two pairs of genes would form a PCBBH as a result of chance alone. To reflect the
importance of the phylogenetic distance between the genomes in deciding whether the



observed linkage of their genes is due to chance, we developed the following simple
scoring mechanism: The score of a PCBBH is given by the phylogenetic distance
between organism (G, and organism G in the 165 tRNA tree [8], regardless of the
physical distance between the ORF's in either run, or the degree of similarity of either
BBH. We give some representative phylogenetic distances in Table 3. A number of
other scoring functions were explored, but none appeared to display a significant
advantage over this simple scheme.

The rate at which the number of PCBBHs grows as a function of the number
of genomes present in the analysis is worth considering. Our current data points
are shown in Table 1. Since there is large variability between genomes in terms
of size, number of contigs, accuracy with which genes have been identified, and so
forth, one would expect only a rough correspondence to be evident from these values.
Nevertheless, it does appear that the number of PCBBHs increases as the square of
the number of genomes.

A generalization of PCBBHs was proposed by Prof. W. Pearson (personal com-
munication). There is no need to insist that the pairs of genes be bidirectional best
hits (BBHs). We can also define the concept of “pairs of close homologs” (PCH)
as follows: Genes (X!,Y/) from G, and (X}, Y/) from G} form a “pair of close ho-
mologs” (PCH) if and only if X/ and Y/ are close, X] and Y} are close, X! and X are
recognizably similar, and Y, and Y} are recognizably similar. Here, we will consider
two genes to be recognizably similar if their gene products produce FASTA3 scores
lower than 1.0 x 107°. We use a scoring scheme analogous to the one described for
PCBBHs to evaluate the connections between PCHs, except that if GG, and G} are
the same genome, we assign an arbitrary “same-genome score” (“same-genome” pairs
cannot occur for PCBBHs by definition, but for PCHs they are possible). Unlike
PCBBHs from two very close genomes for which contiguity is completely uninforma-
tive in the vast majority of cases, PCHs allow recognition of gene clusters that play
similar (but usually not identical) roles (such as two transport cassettes containing
pairs of homologs) in the same or similar organisms. The arbitrary “same-genome
score” should, we believe, have a value that is high enough to rank such instances as
significant. In [6], we found that PCBBHs with score above 0.1 were significant, and
PCBBHs with scores above 1.0 were highly significant; therefore, choosing a “same
genome” score of 0.5 seems a reasonable first approximation. With this choice, we
have 103,449 PCHs with scores greater than 0.1, as compared with 58,498 PCBBHs;
of these PCHs, approximately 20% represent “same-genome” pairs. This general-
ization to PCHs has allowed us to detect broad categories of functionally coupled
proteins for which BBHs proved to represent too restrictive a criterion for homology:
two examples are transport cassettes and signal transduction operons.

We end this section with a fact that is relevant to understanding the underlying
phenomena producing an unexpectedly high number of PCBBHs and PCHs: Consider
all pairs of runs R, and R; from organisms that have a phylogenetic distance greater
than 0.1 in the TRNA tree such that they each contain at least three bidirectional



best hits. Then about 88% of the time the order of the corresponding genes is exactly
preserved: of the 3821 such pairs of runs in our data, only 473 contained permutations
of the gene order.

Significance of the PCBBH and PCH Scores. At this time, on the
average only half of the gene functions in newly sequenced genomes can be predicted
on the basis of sequence analysis. Finding new approaches to establish the functions
of such “hypothetical” proteins is one of the major goals of our current research. We
have found hundreds of instances in which a hypothetical protein is paired with a
protein of known function via one or more PCBBHs or PCHs. The central question
is: how meaningful are such predicted couplings? In this section we explore this
question by examining predicted couplings between proteins of known function.

Suppose that two genes X and Y from a single run occur in one or more PCBBHs.
Then, by the “BBH coupling score” we mean the sum of the scores of all the PCBBHs
containing X and Y. Similarly, by the “coupling score” we mean the sum of the scores
of the PCHs containing X and Y. Thus, to gain an estimate of whether two genes in a
run are functionally coupled, we propose simply to add up the scores for the relevant
PCBBHs.

Once we have defined the notion of BBH coupling score, it becomes possible to
form clusters of genes that are coupled at some level exceeding a specified threshhold.
Basically, one starts with a gene, finds genes to which it is coupled, adds them (and
the corresponding genes from related genomes) to the emerging set, and continue
doing so until no new genes can be added to the set. (Details of this approach are
given as Algorithm 1 in the on-line electronic supplement.)

3 Results

Below, we show the results of applying algorithm 1 to reconstruct two common
metabolic pathways: purine biosynthesis and glycolysis. (A number of additional
examples of reconstructed metabolic pathways and functional subsystems, as well as
signal-transduction pathways and metabolite transport, are presented in the on-line
electronic supplement.) The utility of the algorithm was evaluated by asking three
questions:

1. How much of the functional coupling implied by the pathway could be deter-
mined directly from the PCBBHs?

2. How often could the entire pathway be derived directly from just the PCBBHs
?

3. How many spurious (“false positive”) functional couplings were predicted?

To answer these questions, we present our results for the de novo purine biosynthetic
pathway and the glycolytic pathway. We have tabulated all couplings between genes



known to be related to the particular pathway, as well as to other genes that have
no obvious connections to it. These latter genes are candidates for “false positive”
results, and a detailed analysis of some of these “false positive” couplings is presented.

De novo Purine Biosynthesis. Below, we present a reconstruction of the
de novo purine biosynthetic pathway from PCBBHs. Table 4 shows the inferred
clustering of genes from a number of genomes. Each row depicts a set of bidirectional
best hits associated with the function defined in the leftmost column, and each column
represents one or more gene clusters from a single genome (distinct colors indicate
distinct clusters). Dashes represent enzymes that are not present in PCBBHs in the
given organism. So, for example, the Deinococcus radiodurans genome has two gene
clusters—purEK and pur()L—from this pathway.

As one can see in Table 4, there is a substantial difference in the organization
of pur genes in Gram-positive and Gram-negative bacteria. In the low G4C gram
positive group (B. subtilis, F. faecalis, S. pneumoniae, S. pyogenes, and C. aceto-
butylicum), pur genes form tight clusters containing most of the genes related to
purine biosynthesis. In Gram-negative organisms belonging to the gamma subdi-
vision of the Proteobacteria (P. aeruginosa, E. coli, H. influenzae, and Y. pestis),
pur genes form three highly preserved clusters: purFK, described in FE. coli [9, 10],
purMN, and purHD. In D. radiodurans, M. leprae, M. tuberculosis, and Synechocystis
sp., as well as in all the archaeobacterial genomes under consideration, pur genes are
instead gathered into short clusters scattered about the genome.

The coupling scores between the distinct functional roles in the pathway are shown
in Table 5. The values represent the strongest coupling between the designated func-
tions. Almost all of the enzymes of purine biosynthesis are connected by PCBBH
coupling scores above 0.3.

Our analysis predicted only one connection outside the known purine biosynthetic
pathway that may be interpreted as a false positive result: a set of seven bidirectional
best hits that were all assigned the function “hypothetical cytosolic protein” (yexA ho-
molog). Homologous proteins were found in B. subtilis, Synechocystis sp., E. faecalis,
and the archaeal genomes A. fulgidus, M. jannaschii, P. furiosus, and P. horikoshii.
It has strong PCBBH scores with the purl, pur@®, and purC gene products. We hope
that future laboratory experiments will confirm or reject the functional connection of
this protein to the purine biosynthetic cluster.

Glycolysis. Our analysis detected two clusters produced by genes encoding gly-
colytic enzymes, shown in Figure 2. Both clusters were found only in the bacte-
rial genomes. The first cluster includes ¢pi (triosephosphate isomerase, EC 5.3.1.1),
gap (glyceraldehyde 3-phosphate dehydrogenase, EC 1.2.1.12), pgk (phosphoglycer-
ate kinase, EC 2.7.2.3), pgm (2,3-bisphosphoglycerate-independent phosphoglycerate
mutase, EC 5.4.2.1), eno (enolase, EC 4.2.1.11), and a hypothetical protein. These
results agree well with the limited data on clustering of glycolytic enzymes [11, 12, 13].



The hypothetical protein, which is functionally connected to most of the enzymes in
this cluster, is most probably a transcriptional regulator. It is highly homologous to
a hypothetical transcriptional regulator from B. megaterium (sp|P35168) and con-
tains a weak signature for the deoR family of transcriptional regulators. The second
glycolytic cluster contains pfk (phosphofructokinase, EC 2.7.1.11) and pyk (pyruvate
kinase, EC 2.7.1.40)—the only two glycolytic enzymes that do not participate in
gluconeogenesis.

This cluster was previously described in the literature [14, 15, 16], where it was
suggested that both genes constitute an operon. Our analysis shows functional re-
lationship between this cluster and the alpha chain of DNA polymerase 111 (dnaF).
While it is possible that there is a connection between glycolysis and replication, we
currently consider the presence of dnal (EC 2.7.7.7) in this cluster to be a “false
positive” result. Tables 6 and 7 show the connection matrices for both glycolytic
clusters.

A More Systematic Exploration of Functional Couplings. The
simple algorithm alluded to in the preceding section can be used very effectively to
gain insights into the roles of specific genes. Two questions immediately arise:

1. How much of known metabolism can be deduced from gene clusters?
2. How many hypothetical proteins can be coupled to functional subsystems?

To explore these questions systematically, we developed the approach presented in
the next section.

Identifying Corresponding Genes from Different Organisms. We begin by
forming sets of genes that we call role groups. A role group is a set of genes such
that the set contains at most one gene from an organism, each gene in the set is a
bidirectional best hit with at least two other genes in the set, the set is “connected”
in the sense that one could not split it without separating two bidirectional best
hits, and the set contains no pair of genes X, and X, from organisms G/, and Gy,
respectively, such that X, is a bidirectional best hit with Y, from G}, and Y} is not Xj,.
The last condition is especially important in cases with a large number of paralogs,
where our ability to accurately identify corresponding genes from distinct organisms
is limited. We will call these sets “role groups,” since we are attempting to isolate
genes from different organisms that play identical roles in each organism (and again,
we emphasize that our ability to accurately compute such groupings is limited).
These role groups are related to the much better known clusters of orthologous
genes (COGs) developed by R. Tatusov et al. [17]. COGs play an invaluable role in
attempting to characterize families of proteins. They tend to be much larger groupings
than the role groups; that is, COGs are often the union of a set of role groups. COGs
represent an attempt to group proteins at the level of abstraction appropriate to



assigning function; role groups attempt to identify corresponding genes in distinct
organisms. In this sense, COGs have a much more clearly defensible conceptual basis
(and require more judgment to curate). Both COGs and role groups have extremely
interesting properties and utility. The current WIT system has over 5200 identified
role groups.

Connecting Role Groups. After computing role groups for a set of organisms,
one can compute connections between specific groups based on coupling scores (or
coupling BBH scores) as follows. Let X and Y be genes from a single organism such
that the coupling score between X and Y is S.. Then if X is from one role group
R, and Y is from another group R,, (X,Y) is said to be a connection at score S,
between R, and R,. If R, and R, are connected by two or more such connections
with scores greater than or equal to some threshold 7, R, and R, are said to be
connected at threshold 7. That is, one can compute a set of connections between
role groups imposed by the coupling scores between genes in the groups. Among
other things, these connections between role groups can be used to infer functional
couplings between genes that do not occur in gene clusters.

Clustering Role Groups. Our first attempt to cluster role groups was based on the
approach we used for Algorithm 1. We then devised a better approach that computes
all connections between role groups at a threshold of 0.1, orders the connections based
on the maximum connection score, and allows a knowledgeable biologist or biochemist
to decide whether to add a new role group to an existing cluster of connected groups or
to terminate the search; once a group has been added to a cluster, it is removed from
further consideration, ensuring that each group occurs in one and only one cluster.
(For details, see Algorithm 2 in the on-line supplement.)

There were 7464 connections between the role groups maintained in WIT2; 343
clusters of role groups were produced. Each such cluster represents a working hy-
pothesis of the composition of a functional subsystem in some set of organisms.

4 Conclusion

The availability of multiple genomes provides an opportunity to gain new insights into
the processes that drive the dispersion and formation of chromosomal gene clusters.
The results obtained using the method described above confirm that conserved gene
clusters accurately convey functional coupling between the genes present in them. We
have supported this by anecdotal evidence, with further examples being available in
the on-line supplement. The importance of simultaneous analysis of a large number
of genomes for the reconstruction of functional subsystems using functional coupling
is illustrated by the following calculation.

Three parameters determine the utility of this class of data: the percentage of
genes that occur within clusters, the average size of a cluster, and the size of the real



subsystems. Reconsidering the experiments described earlier, we can state that the
percentage of genes assigned to a pathway that occur within the same run with at
least one other gene from the same pathway is approximately 35% (see section 2).
The average size of a gene cluster appears to be approximately 3 genes. This number
may be lower than the actual value, since genes may be clustering with other genes
of unidentified function and our statistics could be influenced by our use of partial
genomes.

Consider a subsystem composed of 5 genes. How many genomes containing this
subsystem will be needed before the coupling between two specific genes G, and G,
in the subsystem might be revealed via PCBBHs?

Under the assumptions that a given gene will occur in a run in 35% of the genomes
and that the average length of a gene cluster is 3 genes, one expects to see 1 co-
occurrence of (¢, and G, in a run (i.e., a single pair) in 6 genomes, about 2 co-
ocurrances in 11 genomes (that is, 11 genomes is the smallest number for which one
expects to first see a PCBBH containing GG, and (), and about 3 co-occurrences in
17 genomes.

These simple calculations reveal an important characteristic of gene clusters: func-
tional clustering could only be detected once we had access to 10 or more genomes
containing the functional subsystem of interest. This property has caused the util-
ity of preserved chromosomal gene clusters to be undervalued while only a limited
number of genomes were sequenced. However, given the availability of hundreds of
genomes (which we certainly expect within the next few years), this class of data
may well offer a very precise description of the functional coupling between genetic
subsystems in prokaryotic genomes.
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Figure 1: Illustration of the definitions of “pairs of close bidirectional best hits”
and “pairs of close homologs.” BBH: bidirectional best hit; PCBBH: pair of close
bidirectional best hits; PCH: pair of close homologs.
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Figure 2: Functional clusters in the glycolysis pathway; BB: B. burgdorferi, DR: D.
radiodurans, CA: C. acetobutylicum, BS: B. subtilis, EF: E. faecalis, MP: M. pneumo-
niae, MG: M. genitalium, ML: M. leprae, MT: M. tuberculosis, CJ: C. jejuni, TP: T.
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Table 1: Increase of the number of PCBBHs with the number of genomes.

No. Genomes

No. PCBBHs

with Scores > 0.1

oo

24
31

998
4859
12570
23144
58498

Table 2: Locations of functionally related ORF's on the chromosome.

Reak Data Shuffled
Dataset

Functionally | Mean No. of
Strand Related Functionally | Std. Dev.

ORFs Related ORFs
Same strand 10,968 445 23
Same strand, no 10,583 273 24
intervening genes
Opposite strand 349 256 18
Divergent genes 43 19 5

Table 3: PCBBH scores based on phylogenetic distances between pairs of organisms.

Pair of Organisms Pbylo.

Dist
N. gonorrhoea, N. meningitidis 0.01
M. genitalium, M. pneumoniae 0.01
E. coli, H. influenzae 0.21
M. genitalium, B. subtilis 0.41
M. genitalium, Synechocystis 0.80
M. genitalium, E. coli 0.88
M. genitalium, P. furiosus 1.57
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Table 4: Functional couplings between the genes of the purine biosynthetic pathway.

Assigned functionf
Organism

C. acetobutylicum
. thermoautotrophicum

Synechocystis sp.
5. pneumoniae

5. pyogenes
B. subtilis

E. faecalis

A fulgidus
M. jannaschii
P. horikoshii

EC4.1.1.21 pawE
EC 4.1.1.21 pawX
EC4.3.2.2 pewB
EC6.3.2.6 pewC
unknown yexA
EC 6.3.5.3 pew@?
EC6.3.9.3 pawd j
EC2.4.2.14 pewF - -
EC6.3.3.1 pewrdd - -
EC2.1.2.2 pew - -

EC2.12.3
3.5.4.10 purtl

EC6.3.4.13 pewd = =

i

% 3

= (=]

2 £

BELE

= o
- - -
e

Table 5: Connection matrix between the genes of the purine biosynthetic pathway.
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Table 6: Connection matrix of the glycolytic enzymes at 0.4 threshold (Cluster 1)
| [5.3.1.1 [ 1.2.1.12 [ 2.7.2.3 | 5.4.2.1 | 4.2.1.11 | Unknown |

5.3.1.1 — 2.96 3.38 1.85 0.81 0.42
1.2.1.12 2.96 — 9.30 0.42 0.81
2.7.2.3 3.38 9.30 — 0.38 0.81 0.42
5.4.2.1 1.85 0.38 — 0.38

4.2.1.11 0.81 0.42 0.81 0.38 — 0.42
Unknown 0.42 0.81 0.42 0.42 —

Table 7: Connection matrix of the glycolytic enzymes at 0.4 threshold (Cluster 2)
| [2.7.1.11 [ 2.7.1.40 | 2.7.7.7 |
2.7.1.11 — 2.79 1.44
2.7.1.40 2.79 — 0.94
2.7.7.7 1.44 0.94 —
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