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1 IntroductionIn this paper we consider direct solution methods for linear systems of the formAx = b ; (1)where A is an n � n sparse symmetric positive de�nite (SPD) matrix, such as arise from�nite di�erence or �nite element discretizations of d-dimensional elliptic partial di�erentialequations (PDEs). We target our algorithm for the \�ne-grained" regime (i.e., n=P � 1)and large numbers of processors, P . Such �ne-grained solvers are required for the solutionof the coarse grid systems encountered when using multigrid or domain decompositionmethods to solve larger linear systems (e.g., [3, 4]). This work focuses on the coarse gridsolution times rather than factor times, as we expect to amortize the factorization costsover several iterations and/or time-steps of the larger governing systems. Per force, thecoarse grid data and solution before and after the solve stage are distributed, so it is notpossible to consider solving the problem on fewer processors (arti�cially increasing n=P )without inducing additional communication overhead.The problem of the coarse grid solve has been studied widely in the domain decom-position community. Widlund [16] established that order-independent convergence ratesin domain decomposition methods cannot be obtained without the solution of a coarsegrid problem. In [3], Chan and Shao present a study of the optimal coarse grid size forparallel applications that illustrates the importance of a fast coarse grid solver. Gropp etal. [9, 11, 14] also discuss the importance and challenge of developing an e�cient paral-lel coarse grid solver for domain decomposition methods. Cai [2] has developed a domaindecomposition scheme requiring a very low dimensional coarse grid space where much ofthe information transfer is through the action of the restriction/prolongation operators.Nonetheless, it is clear that a multicomputer implementation of the coarse grid problemmust require communication in the prolongation/restriction phase or have a minimum ofone degree of freedom per processor, that is, n � P .Since leading-edge multicomputer systems are currently scaling to thousands of pro-cessors, there is a clear need for an e�cient treatment of the parallel coarse grid problem.In particular, if the work per processor remains constant while the number of processors in-creases (the standard model for scaled speedup [12]), the coarse grid problem will ultimatelydominate the complexity unless the solve time can be substantially reduced.In this paper we discuss a fast parallel coarse grid solution algorithm based on creatinga sparse A-conjugate basis for lRn to be denoted by the columns of the matrixX = (x1; : : : ; xn) :We show that this approach constitutes a sparse factorization (not necessarily triangular)of the full matrix A�1. The scheme has a per-solve complexity of O(n
 log2 P ) for commu-nication and O(n1+
=P ) for computation, where 
 � d�1d . This compares quite favorablywith more commonly used approaches that require O(n log2 P ) time for communication andO(n1+
) or O(n2=P ) time for computation. Results obtained on a 512-node Intel Paragon2



show that our method performs well even for values of n=P signi�cantly greater than unity,particularly for larger values of P .The outline of the paper is as follows. Section 2 brie
y describes several communicationprimitives central to distributed direct solution methods. Section 3 reviews several existingcoarse grid solution strategies. Section 4 discusses the computational and communicationcomplexity for the present approach. In Section 5 we present performance results for apn � pn grid problem on a 512-node Intel Paragon. Finally, current research e�orts,possible extensions of the algorithm, and expected performance on thousands of processorsare presented in Section 6.2 Communication PrimitivesIn this section, we review the communication complexity of several all-to-all communicationschemes of relevance to coarse grid solvers.If the originating PDE has an elliptic component, the inverse of A will be a full matrix.Consequently, the computation of x = A�1b (2)for distributed vectors x and b will require some type of all-to-all communication; anynonzero element of b will in
uence every element of x. By de�nition, coarse grid problemsare relatively �ne grained, implying that communication accounts for a substantial fractionof the solution time. Moreover, the messages often are quite short, implying that thecommunication phase is latency dominated; hence, minimizing the total number of messagestartups is of paramount importance. If we assume that the compute nodes can receive onlyone message at a time, it follows that the minimum number of message cycles required toe�ect the requisite all-to-all communication in the evaluation of (2) is log2 P ; we take thisas a lower bound on the solution time.We assume a standard linear model for contention-free interprocessor communicationin which the time to send an m-word message is given bytc[m] = (�+ �m)ta ; (3)where � is the message startup cost (latency), � is the asymptotic per-word-transfer cost(inverse bandwidth), and ta is the characteristic time for an arithmetic operation. Typically,� � � � 1. Thus, optimal communication strategies may possibly require a balancebetween minimizing the number of messages and the length (m) of the messages. Weassume that contention-free transit time is independent of the distance between processors(i.e., the processor network can be modeled as a switching network).Our communication analysis in the forthcoming sections will be based on the use of fan-in/fan-out reduction operations, which are guaranteed to be contention-free, even on one-dimensional networks. To clarify this point, consider the implementation of two commonreduction operations, vector concatenation and vector summation. The �rst gathers adistributed m-vector having mp = m=P components on each processor, p = 0; 1; : : : ; P � 1.3



The second computes v = P�1Xp=0 v(p) ;where each v(p) is an m-vector. Assuming P = 2D, these algorithms can be described asfollows:Procedure Vector-ConcatenateGather via binary fan-inm̂ :=mpdo l = 1 to Dif mod (p; 2l) = 0 thenrecv v(m̂+1:2m̂) from p+ 2l�1elsesend v(1:m̂) to p� 2l�1goto 1endifm̂ := 2m̂enddoBroadcast via binary fan-out1 do l = D to 1 by -1if mod (p; 2l) = 0 thensend v(1:m) to p+ 2l�1elseif mod (p; 2l�1) = 0 thenrecv v(1:m) from p� 2l�1endifenddo
Procedure Vector-SumGather via binary fan-indo l = 1 to Dif mod (p; 2l) = 0 thenrecv w(1:m) from p+ 2l�1v(1:m) := v(1:m) + w(1:m)elsesend v(1:m) to p� 2l�1goto 1endifenddoBroadcast via binary fan-out1 do l = D to 1 by -1if mod (p; 2l) = 0 thensend v(1:m) to p+ 2l�1elseif mod (p; 2l�1) = 0 thenrecv v(1:m) from p� 2l�1endifenddoIn the fan-in stage, communication begins between neighboring processors, then neighborsof neighbors, and so forth, until in the last stage processor P/2 sends data to processor 0. Inthe case that the processors are ordered sequentially along a one-dimensional network or thatP = 2D processors in a two-dimensional grid are labeled using a standard lexicographicalordering, there is no contention for communication links as the distance between processorsincreases because the intermediary processors become inactive once they have sent data.The concatenate routine requires (� log2 P + � � (m �mp))ta time for the gather, plus anadditional (� + �m) log2 P ta time for the broadcast, for a total time of approximately(2�+�m) log2 P ta. The vector sum requires a total time of (2�+2�m+m) log2 P ta, withthe extram log2 Pta term accounting for the vector summation in line four of the algorithm.In contrast to the fan-in/fan-out strategy the respective operations can also be imple-mented via recursive doubling as follows: 4



Procedure Vector-ConcatenateRecursive Doublingm̂ :=mpdo l = 1 to Dsend v(1:m̂) to mod (p+ 2l�1; P )recv v(m̂+1:2m̂) from mod (P+p�2l�1; P )m̂ := 2m̂enddo Procedure Vector-SumRecursive Doublingdo l = 1 to Dsend v(1:m) to mod (p+ 2l�1; P )recv w(1:m) from mod (P+p�2l�1; P )v(1:m) := v(1:m) + w(1:m)enddoIn this case, the concatenate routine nominally requires time (� log2 P + � � (m � mp))ta,roughly a factor of log2 P better than the fan-in/fan-out approach. The vector sum routinerequires a nominal time of (� + �m + m) log2 P ta, roughly a factor of two superior tothe fan-in/fan-out approach. On hypercubes, the recursive doubling algorithms can beimplemented with a contention-free schedule. However, on low-dimensional networks therecursive doubling schemes will su�er observable network link contention unless the problemis latency dominated, i.e.,m<� �=�. Consequently, the performance will generally be inferiorto the fan-in/fan-out approach.It is worth noting that hybrid approaches are possible. For example, for concatenation,recursive doubling can be used until m̂ � �=� and fan-in/fan-out then used on processorsubsets to span the remaining levels of the tree(s). For vector summation there is a well-known hybrid scheme due to van de Geijn et al. [15] that is e�ective when m� �=�. For thevalues ofm required for the coarse grid solution schemes considered here, the fan-in/fan-outschemes capture the essential complexity, while hybrid schemes would be most appropriateas a �ne-tuning measure in the �nal implementation phases, so we do not consider themfurther.To put the forthcoming discussion of solution strategies on a �rm foundation, webrie
y review the communication requirements of a typical matrix-vector multiplicationimplementation on P = 2D processors. Assume x is a vector having n components,(x1; : : : ; xig ; : : : ; xn), which are distributed across P processors according to the bijectivemap, ig = �(i; p) 2 f1; : : : ; ng, where i 2 f1; : : : ; npg is the local index on processor p,for p 2 f0; : : : ; P � 1g. The global-to-local mapping is speci�ed by the inverse mapping,(i; p) = ��1(ig). We assume, without loss of generality, that the number of components ofx on each processor p is the same, namely, np = n=P . Let C = (c1 c2 : : : cn) be an n � nmatrix with each column, ci, partitioned according to the same distribution as x (i.e., rowsof C are contiguous within a processor, with row �(i; p) of C mapped to row i on processorp). Then y = Cx is computed as follows. First, a copy of x is gathered onto each processorusing a vector-concatenate procedure. Then, each processor p computes the inner-productsy�(i;p) = xT r�(i;p) for i = 1; : : : ; np, where r� is the �th row of C. The end result is a vectory that is distributed according to the mapping �. If C is full, the matrix-vector productcomplexity is 2n � npta = 2(n2=P )ta for the local inner-products plus (2� + �m) log2 P tafor the gather. We remark that the daxpy-based approach in which the communicationis performed after the computation can be implemented with identical complexity if onechooses to store C in a column-contiguous format.5



3 Survey of Coarse Grid SolversIt is well known (e.g., [9]) that parallel solution of the coarse grid problem is hamperedby the inherent sequentiality of the forward and backward substitution phases of standardtriangular (LU or LLT ) solves. If n (and, consequently, P ) is su�ciently small, it is feasibleto store, factor, and solve the system locally within a single processor, thus allowing the useof standard serial solvers. On a low-dimensional network, the optimal variant of this schemeis to concatenate b via the binary fan-in scheme of the preceding section, solve the problemon the root, and then cascade the solution from the root using the inverse of the concatena-tion procedure. If the local solution strategy is based on banded solvers, the computationalcomplexity is 4ns operations for a matrix of bandwidth s, while the communication com-plexity is 2� log2 P + 2�n, as noted in the preceding section. For historical reasons, it ismore common to solve the problem redundantly on each processor, obviating the need tobroadcast the solution. On a hypercube, such a strategy is sensible because the recursivedoubling variant of concatenation is contention free and the communication cost is halved.However, on lower-dimensional networks, the optimal communication strategy for the re-dundant solution approach is based on fan-in/fan-out, with a cost of (2�+ �n) log2 P ta.For large numbers of processors and relatively small systems (e.g., P > 128, n < 5000),computing the full inverse of A can be far more e�ective than solving the system redundantly(e.g., [6, 10]). By distributing the rows of A�1 in the same manner as x and b , the solutioncan be computed as a parallel matrix-vector product, A�1b , once b has been gathered ontoeach processor. The communication complexity is identical to that of the redundant LUmethod described above; however, the complexity for the computation of the inner-productsof the rows of A�1 with b is 2n2=P . Parallelism has been introduced to this phase of thesolution, and it follows that the distributed A�1 approach is superior whenever P > n2s .The advantage of the distributed A�1 method is that matrix-vector multiplication isintrinsically parallel. Unfortunately, A�1 is completely full, and, consequently, the storagecost of n2=P per processor limits this approach to values of n of up to only a few thousand inpractice. With the advent of computers containing thousands of processors, this restrictionis problematic. Ideally, one would like a matrix-vector product-based approach involvingsparse matrices.A step in this direction is the method of Alvarado et al. [1] who develop fast paralleltriangular solvers by recasting the inverse of a sparse triangular matrix, L, as a product ofl sparse factors, ~L�1i , each of which can be computed in place. The solution for a singletriangular system is then given by the sequence of products v0 = b, vi = ~L�1i vi�1; : : : ; x =~L�1l vl�1. Analysis of this approach is quite di�cult, since each factor is sparse, and it'sunclear where data is located at the start and �nish of each multiplication. However,Alvarado et al. strive to minimize l, in which case each matrix-vector product must beperformed in turn, with communication taking place in between (otherwise, there wouldbe further parallelism to be exploited, and l would therefore not be minimal). Assumingthat the work of each matrix-vector product is distributed across P processors, we estimatethe communication time for each of the l cycles as tc = 2�(log2 P )ta. If A is the discreteLaplacian for a problem on a two-dimensional grid, the number of factors is typically l �6



log2pn � log2pP (see, e.g., [8]). Since solution of (??) requires both a forward andbackward sweep, we estimate a lower bound on the solution time of 2�(log2 P )2ta. Thisestimate neglects both the work, which, with a lower bound of 
(n log2 nP ) [8], probably isnegligible, and the amount of data communicated, which probably is not negligible.Another approach of interest is that of Farhat and Chen [5], who solve the coarsegrid problem by projecting onto sets of previously generated Krylov vectors that constitutean approximation space. Let Xk = (x1 x2 : : : xk) be a matrix of A-conjugate vectorsnormalized to satisfy xTi Axj = �ij ; (4)where �ij is the Kronecker delta. Then�x = XkXTk b (5)yields the projection onto R(Xk) satisfying�x 2 R(Xk) ; jjx� �xjjA � jjx� vjjA ; 8v 2 R(Xk) : (6)Here, R(�) denotes the range of the argument, and jj � jjA denotes the A-norm given byjjwjjA = (wTAw) 12 .Farhat and Chen build the space R(Xk) by collecting the A-conjugate search directionsgenerated in the course of applying (a slightly modi�ed) conjugate gradient (CG) iterationto (1) for several right-hand sides. In time transient problems, the successive right-handsides often share enough information such that very few CG iterations are required to solvethe problem subsequent to the initial projection (6). In the examples reported in [5], Farhatand Chen observe that superconvergence sets in for k >� 0:25n, at which point only one ortwo conjugate gradient iterations are required subsequent to the initial projection.We can estimate the complexity of the projection+CG approach by computing the costof the projection step (though the subsequent CG iteration cost is in fact non-negligible).Assume that each basis vector, xj , is distributed in the same fashion as x and b. To compute�x = XkXTk b, one �rst computes an intermediate k-vector, c = XTb, in two stages, beginningwith evaluation of the local dot productsc(p)j = npXi=1 b�(i;p) x�(i;p);j ; j 2 1; : : : ; kp 2 0; : : : ; P � 1 ; (7)followed by a log2 P sum across processorscj = P�1Xp=0 c(p)j j 2 1; : : : ; k : (8)With the components of c known to every processor, the distributed vector �x is computedas �x�(i;p) = kXj=1 cjx�(i;p);j i 2 1; : : : ; npp 2 0; : : : ; P � 1 : (9)7



This �nal stage is recognized as a sequence of k daxpys, �x(p) = �x(p) + cjx(p)j , of length npon each processor p, and is fully concurrent.If the vectors xj are full, this approximation has leading-order computational complex-ity of 4nk=P operations for the required dot products (7) and daxpys (9). The communica-tion time for the gather of the k coe�cients of each column vector (8) is log2 P (2�+2�k+k)ta, where the last k term accounts for the summation in (8). Note that if k = O(n), thenthe projection approach is better than the distributed A�1 approach by at most a constant,with a lower bound solution time of 2�ta log2 P being obtained for both methods. Fur-thermore, any CG iterations required for the projection+CG scheme will incur additionallatency overhead of at least 2�ta log2 P per iteration due to the inner-products required forthe CG algorithm.In the next section, we present a projection method for which k � n but which, byvirtue of using a sparse basis set, X , achieves communication and computation complexitiesthat are of lower order than the A�1 approach. Moreover, this approach requires a minimumnumber of message cycles and thus achieves the lower bound latency time of 2�ta log2 P .4 Sparse Basis Projection MethodThe goal of the method of Farhat and Chen [5] is to choose a basis set Xk such that�x is a good approximation to x. We observe that if k = n, then R(Xk) = lRn and,from (6), �x � x. This implies that XnXTn is the inverse of A. In [7], we introduced amethod in which the projection approach is modi�ed to incorporate a matrix of n basisvectors, X � Xn, which is as sparse as possible and which yields signi�cantly reducedcomputational and communication complexities. We now describe the implementation ofthe method and discuss communication considerations in depth. In the next section, weconsider the implementation of the XXT based method for a pn� pn model problem onthe 512-node Intel Paragon and compare its performance with that of the redundant LUand A�1 approaches of Section 3.4.1 BasisWe begin with the following observation. Let the unit vectors êi and êj denote the ith andjth column of the n�n identity matrix. Let Nj , the neighborhood of j, be the set of rowindices corresponding to nonzeros in column j of A, that is, i 2 Nj i� aij 6= 0. ThenêTi Aêj = 0 8 i =2 Nj :Geometrically, this corresponds to the situation for the 9-point stencil shown in Fig. 1a. (Inthis and subsequent �gures, the degrees of freedom are associated with the centroids of thecells in the computational grid.) From this �gure it is clear that at least n=max(#Nj) ofthe unit vectors are A-conjugate to one another, where #Nj is the cardinality of Nj .The generation of a sparse basis for X starts with �nding a maximal (or near-maximal)set of k1 A-conjugate unit vectors and normalizing them to satisfy (4). The �rst such k1columns of X will each have only one nonzero entry. Additional entries in X are generated8



via Gram-Schmidt orthogonalization. Let Xk = (Xk�1 xk) denote the n � k matrix withcolumns (x1 x2 : : : xk), and let V = (v1 v2 : : :vn) be an appropriate permutation of theidentity matrix. Then the proceduredo k = 1; : : : ; n:w := vk � Xk�1XTk�1Avk (10)xk := w=jjwjjAXk := (Xk�1 xk)enddoensures thatX = Xn is the desired factor of A�1. For k � k1 the projection, Xk�1XTk�1Avk,computed in (10) will be void and xk will simply be a multiple of vk . As k increases beyondk1, Xk will begin to �ll in. The goal is to �nd an ordering, V , which yields minimal or nearminimal �ll for the factor X .Following [8], an e�cient procedure for selecting the permutation matrix, V , can bedeveloped by de�ning separators that recursively divide the domain (or graph) associatedwith A into nearly equal subdomains. For a pn�pn grid the �rst such separator is shownin Fig. 1b. Since the stencil for Aêj does not cross the separator, it is clear that every unitvector êi associated with the left half of the domain in Fig. 1b is A-conjugate to every unit6 -xy pn� -pn?6êi Aêj(a) pnX = n?600 (c)
6 -xy pn� - pn?6(b) pnpn2X = n?600 0000 (d)Figure 1: (a) geometric support (shaded) of orthogonal vectors êj and Aêi, (b) support ofseparator set, (c) zero/�ll structure for X resulting from ordering the separator set last, (d)zero/�ll structure after second round of recursion.9



vector êj associated with the right half. If V is arranged such that vectors associated withthe left half of the domain are ordered �rst, vectors associated with the right half second, andvectors associated with separator last, then application of Gram-Schmidt orthogonalizationwill generate a matrix X with worst-case �ll depicted by Fig. 1c (X is shown here with therows reordered according to the permutation used for the columns of V ). This procedurecan be repeated to order the vectors within each subdomain, giving rise to the structureshown in Fig. 1d. To complete the construction, we recur until no more separators can befound.It is clear from (5) that the computational complexity of each solve is proportional tothe amount of nonzero �ll in the factor X . For the pn �pn grid we observe from Fig. 1dthat the number of nonzeros in each row is bounded by the sequencepn + pn2 + pn2 + pn4 + pn4 + : : : � 3pn ;implying a total bound on the amount of �ll in X of 3npn. Since we can evenly distributethe work among processors, we get a computational complexity of O(n 32 =P ). Similar argu-ments in three-dimensions lead to a computational complexity of O(n 53 =P ). Both the twoand three-dimensional cases provide a clear gain over the O(n2=P ) cost incurred by the fullinverse approach.The communication complexity is dependent on the mapping of the rows of X (andhence, x and b) to the processors. In the worst case, the bound is simply that derived for(8), namely, log2 P (2� + 2�n + n)ta, which is essentially the same as the A�1 approach.Because of the signi�cant reduction in computational complexity, even a naive implemen-tation of the XXT approach will be superior to the A�1 approach. However, for properlymapped two-dimensional problems, it is possible to obtain a contention-free communicationcomplexity bound of (2� log2 P + O(n 12 )� log2 P )ta, even on a linear array of processors.The three-dimensional bound has the form (2� log2 P + O(n 23 )� log2 P )ta. Results in Sec-tion 5 show that, for large problems, this lower communication complexity is as signi�cantas the improved computational complexity in reducing the overall solution time.4.2 A Detailed ExampleTo understand the ordering and processor mapping requirements necessary to reduce thecommunication complexity, we consider the 7�7 grid example of Fig. 2 in some detail. Asin Fig. 1, the degrees of freedom are represented by the square cells shown in (a), and it isassumed that A has a 3�3 stencil. The �rst three levels of separators have been labeled in(a), and an associated hierarchy is depicted by the binary tree in (b). To obtain the desirednonzero structure of X , the separator labeling is continued until all degrees of freedomhave been identi�ed as an element of a separator. The degrees of freedom are then labeledin reverse order, i = n; : : : ; 1, using a depth-�rst traversal of the tree. One begins withelements in separator S0, followed by those in S2, S22, and so on, to yield the orderingsshown in (c) and (d). The descendants of an element j are denoted as the set Dj comprisingj and any element i that is below j in the tree.10



The Gram-Schmidt procedure (10) does not require the rows of X to be permutedwith the same ordering as the columns. However, there are notational and implementationadvantages to doing so. Thus, from here on we assume that A has been constructed accord-ing to the ordering in Fig. 2c, corresponding to a symmetric permutation of the originaloperator. In this case, the Gram-Schmidt procedure (10) is simpli�ed in that the basisvectors become vk = êk, k = 1; : : : ; n. Because of the reversed depth-�rst ordering, thiscorresponds to starting at the leaves of the tree (not shown in Fig. 2d); subsequent unitvectors are selected for orthogonalization only after their descendants. By construction,a unit vector êk is automatically A-conjugate to any unit vector which is not its directdescendant or direct ancestor. Hence, the Gram-Schmidt projection step only needs to bee�ected against the columns of Xk�1 that correspond to descendants of k. Thus, (10) is
S0S1 S2S11S12 S21S22(a)2 9 5 49 23 30 263 8 6 48 24 29 271 7 4 47 22 28 2519 20 21 46 40 41 4211 18 14 45 32 39 3512 17 15 44 33 38 3610 16 13 43 31 37 34(c)
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39...37�� TT(d)Figure 2: (a) separator sets (only �rst three levels shown), (b) separator set tree, (c) globalnumbering induced by depth �rst ordering of separator sets, (d) global numbering embedded inseparator set tree. 11



recast as do k = 1; : : : ; n:wk := êk � Xj2Dknkxj(xTj Aêk) (11)xk := wk=jjwkjjAXk := (Xk�1 xk)enddoIn general, xik will be nonzero for all elements i 2 Dk, save the possibility of fortuitouscancellation during the projection step.For the important case when A is an M -matrix, that is, SPD with nonpositive o�-diagonal entries, then it is guaranteed that all of the entries in X are non-negative and thatthere will be no cancellation during the projection step (11). The non-negativity of the xij 'sis established by induction. It clearly holds for the leaves of the tree because, in that case,each xj is simply a positive multiple of êj . Now consider the sign of the basis coe�cientsin the projection step (11):cj = xTj Aêk j 2 f1; :::; k� 1g= nXi=1 xijaik : (12)Since k > j, we have xkj = 0, and all terms in the summation (12) are nonpositive bythe assumptions xij � 0 and aij � 0, i 6= j. Therefore, cj � 0. Since the vector cjxj issubtracted from from êk in (11), all elements of wk and hence, xk, must be positive. Itis interesting to note that simply adding positive components to the unit vector êk yieldsa vector (wk) having a greater 2-norm, but reduced A-norm. We conclude that this mustresult from \smoothing" the Kronecker delta function represented by êk. Indeed, for thecase when A is a discrete Laplacian, plots of the element distribution on the physical meshreveal that the basis vectors xk (or wk) smoothly decay away from element k to the boundaryof the support of Dk.From the above arguments, we see that the number of nonzeros in any column xj is(generally) going to be equal to #Dj , that is, the number of descendants of j. It followsthat the number of nonzeros in a given row, i, is given by the number of ancestors of i, thatis, by counting up from the location of i to the root of the tree. For example, in Fig. 2d,the number of nonzeros in column 49 of X will be 49, whereas the number of nonzeros inrow 49 will be 1. We conclude that, thus generated, X is upper triangular and thereforethe unique Cholesky factor of A�1.To illustrate the signi�cance of obtaining a proper ordering prior to generating X ,we close this section with a one-dimensional example. Figures 3a and b show the sparsitypatterns obtained for the upper-triangular Cholesky factor, LT , and its inverse when A isthe well-known tridiagonal matrix, LLT = A =tridiag (-1,2,-1), deriving from a centereddi�erence approximation to a second-order derivative. Despite the fact that LT has theminimum possible �ll, (LT )�1 is completely full. However, if one �rst permutes A using a12
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(d)Figure 3: (a) sparsity pattern for the upper triangular Cholesky factor, LT , of a 15 � 15tridiagonal matrix, (b) sparsity pattern of (LT )�1, (c) sparsity pattern for the Cholesky factor,LTN , obtained from a nested dissection ordering of A, (d) sparsity pattern for X = (LTN)�1.depth-�rst nested-dissection ordering, V , and then computes the factors LNLTN = V TAV ,one obtains the sparsity patterns shown in Figs. 3c and d. It is readily shown that inthis case, the number of nonzeros in X � (LTN )�1 is O(n logn). Of course, because theGreen's function for the associated continuous equation is nonvanishing everywhere,XXT =(VAV T )�1 is completely full.4.3 Parallel ImplementationWe now examine the in
uence of the nonzero pattern of X on the communication require-ments for the parallel solver and show that this can be exploited to obtain a communicationcomplexity that is signi�cantly less than O(n).Recall that the nonzeros in each column xj correspond to descendants of j in the13



separator tree, that is, xij 6= 0 =) i 2 Dj :Thus, the dependency graph in Fig. 2b re
ects the input requirements for the evaluation ofthe dot products (7) and daxpys (9) during the computation of XXTb. The dot products,cj = xTj b, are computed as
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cj = nXi=1 xijbi= Xxij 6=0 xijbi= Xi2Dj xijbi ; (13)from which it is clear that the computation of cj depends only on the descendants of j.Communication can be minimized during the computation of cj (13) if the lowerbranches of the tree are, to the extent possible, self-contained within a given processor.This can be achieved in a natural way by assigning the processor distribution during thenested dissection phase of the ordering. Degrees of freedom to the left of the �rst separatorare assigned to the lower half-set of processors, those to the right are assigned to the upperhalf, and those belonging to the separator itself can be assigned to any processor in theset. Repeating this procedure recursively for the example problem of Fig. 2 leads to theelement-to-processor distribution shown in Figs. 4a and b.In general, one obtains an admissible element-to-processor map by simply overlayingthe processor and separator trees. At each level, the elements of a given separator canbe assigned to any processors in the pool associated with that branch of the tree. In theevent that the processor tree has insu�cient depth to cover the separator tree, all remainingbranches in the separator tree are assigned to the associated leaves of the processor tree.In the event that the separator tree has insu�cient depth to cover the processor tree,processors at the leaves would draw on elements belonging to separators above them inthe tree. The latter situation will generally only arise in abstract applications. Standarddomain decomposition strategies based on recursive bisection will ensure an appropriateelement-to-processor map provided that separator elements are drawn from the partitionboundaries generated at each bisection step.Given a proper ordering and processor distribution, the communication for the fan-in phase (8) of the XXTb evaluation will have the structure illustrated in Fig. 4c. Thearrows indicate message sources and destinations for each of the log2 P phases as well asthe amount of data transmitted. Processors that sum incoming data are denoted in theovals at each level of the tree. Since the evaluation of each element of c = XTb depends onlyon descendants of cj , the amount of information that must propagate up the tree steadilydecreases as the summation progress toward the root. For example, the computation of cj ,8j 2 S0 requires only #S0 = pn elements to be propagated in the �nal phase of the fan-in.The required communication is readily incorporated into the Vector-Sum procedure ofSection 2 if the data is sorted according to the global ordering such that �(i; p) is monotoni-cally increasing with i for a given processor, p. Suppose that the sequence s(p)l , l = 1; : : : ; D,represents the cardinality of the separator sets encountered as one traverses from leaf p of theprocessor tree to the root (Fig. 4a) and that mp = Pl s(p)l . Then the modi�ed Vector-Sumprocedure is given by 15



Procedure Vector-Sum 2Gather via binary fan-inm0 := 1do l = 1 to Dif mod (p; 2l) = 0 thenrecv w(m0 :m) from p+ 2l�1v(m0 :mp) := v(m0 :mp) + w(m0 :mp)m0 :=m0 + s(p)lelsesend v(m0 :mp) to p� 2l�1goto 1endifenddo
Broadcast via binary fan-out1 do l = D to 1 by -1if mod (p; 2l) = 0 thenm0 :=m0 � s(p)lsend v(m0 :mp) to p+ 2l�1elseif mod (p; 2l�1) = 0 thenrecv v(m0 :mp) from p� 2l�1endifenddoAt the end of the procedure, each processor has precisely the coe�cients required for the�nal phase of the coarse grid solve, x = Xc. Since the amount of data transmitted at eachstage is bounded by the number of ancestors for any given leaf, namely, by the number ofnonzeros in any row, we conclude that the total communication complexity for the XXTalgorithm is bounded by 2 log2 P (�+ 3pn�) for the pn �pn grid problem.We comment that we explicitly used a depth-�rst traversal of the tree (Fig. 2d) indeveloping the separator-based ordering of the degrees of freedom. Clearly, the same com-munication complexity is also obtained if one uses a breadth-�rst traversal. However, thedepth-�rst traversal guarantees that the nonzero pattern within each column of X is con-tiguous within each processor, as illustrated in Fig. 4d. Consequently, unit-stride directaddressing can be used during the local dot product (7) and daxpy (9) phases of theXXTb computation, resulting in improved vectorization and cache performance as well asreduced memory overhead.Finally, we note that the work required to generate X via the Gram-Schmidt procedure(11) is O(n2) and the time is O(n2=P ). These estimates are derived as follows. Let W (n)be the number of operations required to compute X for a pn�pn grid. The work requiredto compute the last pn columns of X is essentially the same as the work required to e�ectpn projections onto X , namely, 2 � 3n 32 operations for each of the dot product and daxpyphases, yielding an operation count of 12n 32 per column. Generation of the pn=2 basesassociated with each of the two second-level separators (S1 and S2) involves projectionsonto matrices with columns of length n=2 and at most 2pn nonzeros per row, yielding anoperation count bounded by 4n2. Generation of the bases associated with all remainingseparators comprises four subproblems, each of size n=4. Therefore, the total work estimatesatis�es the recursion W (n) = 12n2 + 4n2 + 4W (n4 ) ; (14)The solution to (14) is W (n) � 4316n2. The P -processor time estimate exploits the factthat each of the four subproblems can be treated independently on processor subsets of size16



P=4. Thus, T (n; P ) = 12 n2P + 4 n2P + 44 T (n4 ; P4 ) (15)= 16 n2P + 16 n242 4P + T ( n16; P16)= 16 n2P �1 + 14 + 116 + : : :�� 4316 n2P ;and we conclude that, properly implemented, the Gram-Schmidt procedure attains fullP -fold concurrency.5 Numerical ResultsSolution times for the XXT method on q�q �nite di�erence meshes for q = 3; 7; 15; : : : ; 511are presented in Table 1. The matrix A (with n = q2) is derived from a 5-point stencil dis-cretization of the Poisson problem with Dirichlet boundary conditions. For comparisonwe provide corresponding times for both the redundant LU and distributed A�1 methods.Note that all times were generated on the 512-node Intel Paragon XPS at Caltech run-ning Paragon OSF/1, release 1.0.4. Also, note that the symbol g in the table indicates agranularity restriction (i.e., n < P ) while m indicates a memory restriction.For P = 1 or 2, the redundant LU approach is the fastest method in all cases exceptfor the smallest, where the amount of work is insu�cient to allow reliable timings. Theredundant LU and A�1 approach both su�er memory constraints at values of n that aremuch smaller than achievable with the XXT approach. For n � 225, the XXT approachis the fastest of the three; it is an order of magnitude faster than the A�1 approach forn > 16129, which is, in turn, an order of magnitude faster than the redundant LU approach.The table veri�es the assertion made in Section 3 that theA�1 approach will be superiorto the redundant LU approach whenever P > n=2s, where s is the matrix bandwidth forthe LU scheme. For this problem, s = pn = q, implying that the A�1 approach should besuperior whenever P > q=2. The performance transition is observed at precisely this pointfor all of the entries in the left half of the table. For the larger problems on the right, thetransition occurs at lower values of P as the A�1 approach bene�ts from enhanced vectorperformance as discussed below.A careful examination of the operation counts for the A�1 and XXT methods revealsthat for n = 3969 the latter should be ten times faster than the former, instead of theobserved fourfold improvement. We found that this result is due to the use of the blaslibrary ddot routine on the Paragon, which, as is seen in Fig. 5c, shows a sudden 2.25�performance gain for vector lengths greater than � 2330. Since the distributed A�1 ap-proach requires ddots of length n, whereas the XXT approach requires ddots and daxpysof at most length n=P or 3pn, the former method bene�ts from this vector performancegain, whereas the latter does not for the values of n considered here.17



Table 1: Solution time in seconds for a q � q grid on p processorsp Red. LU Dist. A�1 XXT Red. LU Dist. A�1 XXTn = 3�3 n = 63�631 4.4600E-05 3.6105E-05 3.4902E-05 1.1949E-01 { 3.4203E-012 1.7068E-04 1.3949E-04 1.3573E-04 1.2003E-01 { 1.9369E-014 2.9398E-04 2.5764E-04 2.5064E-04 1.2045E-01 m 8.4266E-028 4.6827E-04 3.7863E-04 3.5714E-04 1.2107E-01 1.5573E-01 4.1084E-0216 g g g 1.2186E-01 8.0204E-02 2.0343E-0232 { { { 1.2263E-01 4.2857E-02 1.0608E-0264 { { { 1.2431E-01 2.5133E-02 6.2606E-03128 { { { 1.2692E-01 1.7932E-02 4.1330E-03256 { { { 1.3228E-01 1.7967E-02 3.8113E-03512 { { { 1.4916E-01 2.8438E-02 5.0652E-03n = 7�7 n = 127�1271 2.9800E-04 3.2989E-04 2.7725E-04 9.1016E-01 { {2 4.4168E-04 2.7822E-04 2.9301E-04 9.1129E-01 { {4 5.8261E-04 3.4939E-04 3.5085E-04 9.1280E-01 { m8 7.4149E-04 4.3863E-04 4.3446E-04 9.1395E-01 { 3.5016E-0116 9.3307E-04 5.6306E-04 5.7672E-04 9.1594E-01 { 1.6388E-0132 1.1162E-03 6.9726E-04 7.2160E-04 9.1807E-01 { 8.1527E-0264 g g g 9.1976E-01 m 4.1622E-02128 { { { 9.2159E-01 1.7435E-01 2.2244E-02256 { { { 9.2980E-01 1.2968E-01 1.3643E-02512 { { { 1.0379E+00 1.5087E-01 1.1458E-02n = 15�15 n = 255�2551 2.0880E-03 9.5215E-03 4.5643E-03 { { {2 2.2781E-03 4.9863E-03 2.3550E-03 { { {4 2.4351E-03 2.7819E-03 1.1259E-03 { { {8 2.6284E-03 1.6877E-03 8.2464E-04 { { {16 2.8119E-03 1.1831E-03 7.9471E-04 { { {32 3.1127E-03 1.0036E-03 9.1089E-04 { { m64 3.2951E-03 1.0952E-03 1.0084E-03 { { 3.2321E-01128 3.5418E-03 1.1286E-03 1.1770E-03 { { 1.6368E-01256 g g g { { 8.5836E-02512 { { { m m 5.3390E-02n = 31�31 n = 511�5111 1.6356E-02 1.6719E-01 4.5315E-02 { { {2 1.6640E-02 8.3992E-02 2.1006E-02 { { {4 1.6858E-02 4.2522E-02 9.8550E-03 { { {8 1.7122E-02 2.1893E-02 5.1827E-03 { { {16 1.7501E-02 1.1735E-02 3.0003E-03 { { {32 1.7995E-02 6.8829E-03 2.0195E-03 { { {64 1.8841E-02 4.9585E-03 1.6644E-03 { { {128 1.9221E-02 4.0317E-03 1.5370E-03 { { {256 2.0097E-02 4.0358E-03 1.6672E-03 { { m512 2.1847E-02 5.6248E-03 2.3776E-03 m m 3.6714E-0118



We note that for the n = 961, 3969, and 16129 (resp., q = 31, 63, and 127) cases thee�ciency of all of the methods begins to deteriorate as P approaches 512. These trendsare clearly revealed in the plots of solution time vs. number of processors shown in Figs. 5aand b. One would, of course, expect such trends for the �xed-problem-size speedup model;the work scales as 1=P , while the communication scales as log2 P . What is surprising isthe amount of communication overhead su�ered by the A�1 approach due to bandwidthconstraints. The upward swing at the tails of the curves in Fig. 5a reveal the dominance ofcommunication cost, but the magnitude is well above the latency bound, �ta log2 P , whichis also plotted. By contrast, the tails of the XXT curves (Fig. 5b) are much closer to thelatency curve, although not as close as might be expected, particularly for the n = 961(31� 31) case.A plot of the total communication overhead for n � P , added as a dashed line in Fig.5b, reveals that the XXT communication costs grow faster than log2 P between P = 256and 512. This fact is explained by a design feature of the Paragon operating system, whichprovides greater bandwidth for smaller numbers of processors, as indicated by the plots ofcommunication time vs. message length shown in Fig. 5d. These times were measured usinga standard ping-pong test with noncached data on successive transfers and asynchronous(i.e., preposted) receives for P = 2, 4, 8,: : : ; 512. While there is virtually no change inlatency as the number of processors increases, there is a �vefold reduction in bandwidthas one moves from P = 2 to P = 512. This accounts for the faster than log2 P growthin communication costs observed in Fig. 5b. Presumably this loss of bandwidth is a resultof requiring the system message bu�er space to be more �nely partitioned in the large Pcases. However, in the timings, use of asynchronous receives should have implied that themessage bu�er memory was managed by the driving application.Figure 5d also reveals that the linear communication model (3) is adequate at the smalland large message limits but does not capture sudden transitions in communication costwhich may be signi�cant in actual measured applications. As these nonlinear features arehardware and operating system dependent, there is little one can do to incorporate them intogeneric complexity estimates in any meaningful way. Actual message-passing performancewill always need to be measured to yield a complete understanding of algorithm behavior.6 DiscussionBecause of the generality of the graph-partitioning arguments and the binary tree embed-dings employed in developing the XXT method, the scheme readily extends to general meshproblems. For more complex two- or three-dimensional meshes, separator sets can be foundwith standard graph-splitting techniques (e.g., recursive coordinate bisection) or via oneof the many variants of recursive spectral bisection (e.g., [13]). In general, one can expectsomewhat smaller complexity constants than for the examples considered here, as pn isgenerally the worst-case separator bound for planar graphs. Provided that subdomains aremapped according to the separator induced partitioning, the general geometry implemen-tation of this problem should enjoy the same low communication requirements as the veryregular examples considered here. 19
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1e+01 1e+02 1e+03 1e+04 1e+05 1e+06Figure 5: (a) solution times for A�1 approach, (b) solution times for XXT approach, (c)Paragon ddot performance vs. vector length, (d) Paragon communication time vs. messagesize. In addition, this method can be applied to nonsymmetric problems by solving theproblem ATAx = AT b. In general, this is inadvisable because of potential ill-conditioningof the system. However, this should not be a problem for the target application of coarsegrid problems as these will generally be much better conditioned than the originating largerproblem which is being solved iteratively. The foundation for the procedure in the case of anon-symmetric system would be to seek unit vectors êi, êj , which are ATA-conjugate, thatis, satisfying (Aêi)TAêj = 0. From considerations similar to those presented in Fig. 1, it isclear that this is achieved by simply choosing separators of width two rather than unity. Allof the computational and communication complexity bounds follow immediately in lR2 orlR3, and we expect the nonsymmetric solver to require twice the storage, twice the amount20



of data tra�c, and precisely the same number of messages ( 2 log2 P ) as its symmetriccounterpart.It is possible that further reductions in the number of nonzeros in X may be attainedby carefully selecting the generating basis, V , and thresholding small entries in X . This isparticularly true in the case where A is being used as a preconditioner, in which case theexact solution to (1) is not required. One promising approach in this regard is to recognizethat the computational complexity bounds derived in Section 4 are independent of thechoice of basis vectors within a given separator Sl. Therefore, rather than using successiveunit vectors, êi, i 2 Sl, one might choose a Fourier-like basis having the formvi = f:::::11111111:::::gTvi+1 = f:::::11110000:::::gT (16)... ...vi�1+#Sl = f:::::10101010| {z }:::::gTSupport of Sland which vanish outside the support of Sl. Applied to each separator, this leads to a �llpattern more closely resembling that shown in Fig. 1d rather than a strictly upper-triangularfactor. Because the basis vectors xj decay smoothly away from the separators (at least forelliptic problems), the highly oscillatory generating basis should yield columns in X that aree�ectively zero away from the separator. Initial results for Poisson's equation on a squarehave shown that the bases (16) do indeed lead to a greater number of \small" entries in X ,and to better round-o� properties. However, it appears that a smoother set of oscillatorybasis functions will ultimately be required if signi�cant savings are to be realized from thisthresholding strategy.Another common strategy for improved performance is to solve the coarse grid problemcooperatively (and redundantly) among processor subsets. The cooperative solve can beimplemented with any of the approaches discussed previously, including theXXT approach.Of course, this does not circumvent the log2 P bound on the minimum number of messagesand so does little to reduce latency. However, it could be used to ameliorate the nontrivialbandwidth limitations. Our suggested strategy is to gather segments of the right-hand side,b, onto independent processor subsets using l0 rounds of the recursive doubling variant ofthe Vector Concatenate routine of Section 2. Here, l0 is determined such that the messagesize in the l0th round of the concatenation is equal to a threshold value, m0. For example,let m0 = min(�=�; 3pn) and choose l0 such that 2l0�1n=P = m0. This ensures that therecursive doubling variant of concatenation does not su�er line contention (since messagesshorter than �=� are latency dominated) and does not require message lengths exceedingthose required by the XXT algorithm. After l0 rounds of recursive doubling, the coarsegrid problem can be solved with the XXT algorithm using only 2(log2 P � l0) rounds ofcommunication. A similar strategy is employed when P 6= 2D. One identi�es the largestvalue of D such that P 0 = 2D < P , and maps the right-hand side data from processorsp = P 0; : : : ; P � 1, onto respective counterparts in f0; : : : ; P 0 � 1g. The solution is thencomputed using P 0 = 2D processors following the strategy outlined in Section 4.21



Finally, we close with predicted performance of the XXT method on state-of-the-arttera
ops machines. Such machines are just coming on line at national DOE laboratoriesand employ from 3000 to 9000 processors. Our prediction will be based on P = 8192 = 213processors. We assume that the coarse grid is as small as possible, n = P (the mostchallenging case), and use the communication constants�ta = 5:0� 10�5 seconds�ta = 6:8� 10�7 seconds=64� bit� word ;which were derived from the P = 512 measurements of Fig. 5d. To estimate the computa-tional cost, we assume a conservative value of ta = 1:� 10�7 ops/second, corresponding to10 mflops. For this model problem with n = P , the communication cost isTc = 2�ta log2 P + 3pn(2� + 1)ta log2 P= 1:3� 10�3 + 5:2� 10�3seconds :The computational cost is Ta = (4 � 3npn=P ) ta= 0:11� 10�3seconds :These results reveal that, under reasonable model assumptions, the bandwidth cost (5.2msec) is of the same order as the latency cost (1.3 msec) and that the arithmetic cost (0.11msec) is an order of magnitude smaller than the latency cost. Because of the signi�cance ofthe latency term, it is clear that any competing methods will need to adhere to the strategyof using a minimum number of messages. Moreover, as the bandwidth term is of the sameorder as the latency term, it becomes more important to focus on reducing the total amountof message tra�c than it is to focus on any further reductions in work.We conclude that the relatively low computational complexity and excellent commu-nication complexity of the XXT -based solver will make it a very competitive algorithmfor leading-edge multicomputer systems. Moreover, since the coarse grid solve is central toe�cient iterative solution of many systems arising from partial di�erential equations, fastcoarse grid solvers such as presented here will be critical to future Tera
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