
DESIGN OF A NEXT-GENERATION REGIONAL
WEATHER RESEARCH AND FORECAST MODEL

J. Michalakes,2 J. Dudhia,1 D. Gill,1 J. Klemp,1 W. Skamarock1

Mesoscale and Microscale Meteorology Division1

 National Center for Atmospheric Research
 Boulder, Colorado 80307 U.S.A.

Mathematics and Computer Science Division2

Argonne National Laboratory
Chicago, Illinois 60439 U.S.A.

michalak@ucar.edu
+1 303 497-8199

ABSTRACT

The Weather Research and Forecast (WRF) model is a new model development
effort undertaken jointly by the National Center for Atmospheric Research (NCAR), the
National Oceanic and Atmospheric Administration (NOAA), and a number of
collaborating institutions and university scientists. The model is intended for use by
operational NWP and university research communities, providing a common framework
for idealized dynamical studies, full physics numerical weather prediction, air-quality
simulation, and regional climate. It will eventually supersede large, well-established but
aging regional models now maintained by the participating institutions. The WRF effort
includes re-engineering the underlying software architecture to produce a modular,
flexible code designed from the outset to provide portable performance across diverse
computing architectures. This paper outlines key elements of the WRF software design.

1 Introduction

The Weather Research and Forecast (WRF) model is a joint development effort between
the National Center for Atmospheric Research (NCAR), the Forecast Systems Laboratory and
the National Centers for Environmental Prediction of the National Oceanic and Atmospheric
Administration (FSL, NCEP/NOAA), and the Center for Analysis and Prediction of Storms
(CAPS) at the University of Oklahoma, with collaboration from scientists at a number of other
universities. The model will provide a common framework for both research and operational
numerical weather prediction. The WRF will be a completely redesigned code, targeted for the
1-10 km grid-scale and intended for operational weather forecasting, regional climate
prediction, air-quality simulation, and idealized dynamical studies. Conditional on its merits, it

1 This work was supported under National Science Foundation Cooperative Agreement ATM-9732665.

2 This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

will be a prime candidate to eventually supercede large, well-established but aging existing
models such as the PSU/NCAR Mesoscale Model (MM5) at NCAR, the ETA model at
NCEP, and the RUC system of NOAA/FSL. Collaborating institutions are interacting
extensively on dynamical core and grid structure; physical parameterizations, including land-
surface processes; initialization from gridded fields; data assimilation; post processing and
graphics; real-time operational testing; and software architecture and portability. While
specifics of the WRF architecture are subject to continued discussion and debate by scientists
and software engineers at the participating institutions, consensus exists that WRF should be a
modular, flexible, maintainable and extensible code designed to provide portable performance
on diverse computing architectures. With the intent of stimulating further discussion toward a
comprehensive WRF design, this paper describes the software architecture and other features
of a prototype code now under development at NCAR.

2 Software Design

Many of the inadequacies of existing models stem from constraints imposed by languages
and design methods that were in use when the models were first formulated. Typical are
statically allocated data structures communicated through COMMON blocks,
EQUIVALENCE data, missing or inconsistent indentation conventions, short obscure
variable names, implicit typing, haphazard control structures, inconsistent subroutine
interfaces, inconsistent definition of physical constants, Fortran record-blocked I/O, use of
eight-byte integers to store string values and other Cray specific constructs, and vector specific
loop and data structures. This legacy structure impairs readability and limits use of new
modules in plug-compatible fashion. It hinders porting and parallelization without extensive
modification, leading to multiple versions and unnecessary maintenance effort. Some progress
has been demonstrated towards “same source” implementations of existing models on parallel
platforms [5]. However, the approach involves source translation and build scripts, and parts
of the model such as nesting code and I/O are not handled. WRF presents an opportunity to
employ new language features and current software methodologies to construct a well-
designed, maintainable, portable code from the outset.

The WRF prototype makes extensive use of modern programming language features that
have been standardized in Fortran90: modules, derived data-types, dynamic memory
allocation, recursion, long variable names, and free-format. A central object of a nested model
is a domain, represented as an instance of a Fortran90 derived data type. The memory for fields
within a domain are sized and allocated dynamically. The WRF prototype employs
INTERFACE blocks and IMPLICIT NONE to allow compile-time checking for misspelled
variable names and argument type and number mismatches: errors easily introduced by
momentary lapses of attention but only painfully uncovered, if at all. To assure readability and
understandability, capitalization, indentation, and commenting are being standardized. The use
of Fortran90 array syntax is an open issue subject to efficiency concerns.

The WRF prototype employs a layered software architecture that promotes modularity,
portability and software reuse. Information hiding and abstraction are employed so that
parallelism, data management, and other issues are dealt with at specific levels of the hierarchy
and transparent to other layers; more will be said about this shortly.

Other tools, such as MPI, OpenMP, single-sided message passing, and higher-level
libraries for parallelization, data formatting, and I/O, will be employed as required by platform
or application; however, these are considered external to the design, and their interfaces are
being encapsulated within specific layers or modules.

2.1 Parallelism: two-level decomposition

The WRF model is required to run efficiently on different types of parallel machine. These
include distributed memory, shared memory (or at least shared address space), and distributed
memory clusters of shared memory nodes. The software architecture for the WRF prototype
addresses this issue by adopting a two-level decomposition for parallelism in which domains
may be decomposed into patches, for distributed memory; patches, in turn, may be multi-
threaded over tiles, for shared memory. A patch is a section of a model domain allocated to a
single memory address space. It may also include memory for halo regions, used to store data
from neighboring patches, or boundary regions, used to store data associated with certain physical
boundary conditions (e.g. periodic boundaries). A tile is the amount of a patch that is allocated
to a one thread of execution and every cell of a patch that requires computation must fall into
some tile. On a distributed memory machine with single-processor nodes, there would be one
patch per processor, each with a single tile. On a distributed memory machine with multiple
processors per node, there would still be one patch per node (that is, per memory), but each
patch may contain a number tiles equal to or greater (perhaps much greater) than the number
of processors on each node. A two-level decomposition is described in [2], and others have
also successfully employed two-level approaches to parallelizing geophysical models: e.g.,
MICOM [9] and MC2 [1,10].

Each domain in a simulation may be decomposed and tiled independently. Particular
decomposition, tiling strategies, and communication packages are architecture- and
application-specific and not part of the proposed WRF design. However, the initial
implementation of the WRF prototype is using two-sided MPI communication to handle
exchanges between patches and OpenMP to implement multithreading over tiles.

2.2 Data structures and classifications

The principal data object is the domain type. This is a Fortran90 derived data type
containing state data fields, defined as deferred shape data arrays (actually, as Fortran90
POINTERS). The size of the memory allocated to the domains is determined by the driver at
run time and depends on the logical domain size and the patch decomposition employed. The
domain type also contains pointers that can be associated with other instances of the domain
type; for example, parent domains, child domains, and siblings.

Model data in the WRF prototype is classified according to how it is used and its
persistence. The class of state data, designated as S, persists over the life of a domain: for
example, prognostic variables such as wind velocity, temperature, moisture, and pressure at
several time levels. S data is stored as dynamically allocated fields in an instance of a Fortran90
derived data type for a domain. Other data in the model is considered intermediate, of which
there are two classes. The first class of intermediate data, I1, is for data that persists over the
duration of a time step on a domain and that must be preserved between calls to different
sections of the model (tendency arrays, for example). The second class of intermediate data,
I2, is for data that is strictly local to one section of the model and is not preserved between

successive sections within a time step (for example, local working storage in a physics routine).
I1 and I2 classed data are subject to automatic (stack) allocation. I1 data is defined and
allocated at the beginning of the solver for a domain, and it is allocated to be the same memory
dimensions as state data. I1 data may be communicated between processors; threads have
shared access to it. I2 data is defined and allocated within the local subroutine that uses it, and
is defined as having the same dimensions of the tile. I2 data is private to a thread and it may
not be communicated between processors. If communication or sharing is required, the data
item should be promoted to I1, allocated at the solver level (part of the mediation layer), and
passed to the subroutine as an argument.

There is a small amount of “global” data, primarily physical constants. These are stored in
a Fortran90 module and are accessed by subroutines that need them by use-association; that is,
with a Fortran90 USE statement.

To maintain consistent data use and to aid in propagating changes to data specifications,
we are developing a data registry for use in developing the WRF prototype. This is a table of
data elements in the model classified and described in a consistent fashion. Initially this will
simply be a human-readable-only table that is maintained with the code and shared as a
common reference among developers of the code. Ultimately, scripts and other code
maintenance utilities will make use of the table information to automatically propagate changes
to model data specifications throughout the software.

2.3 Hierarchical software design

The WRF prototype software architecture shown in Figure 1 consists of three layers: the
driver layer, which occupies the topmost levels of the call tree; the model layer, which occupies
the lowest; and a mediation layer, that sits between driver and model. All layer interfaces are
through subroutine calls and through use association of Fortran90 modules. The layers
encapsulate and hide details that are of no concern to other layers. For example, the low-level
model layer is protected from architecture-specific details such as message-passing libraries,
thread packages, and I/O libraries. The design facilitates interchangeable, reusable software;
for example third-party packages for structured adaptive mesh refinement and steering may be
employed without affecting the underlying model. Conversely, driver software written for the
WRF model can be used for other models that conform to the interface specifications.

Driver layer. The driver is responsible for top-level control of initialization, time-stepping,
I/O, instantiating domains, maintaining the nesting hierarchy between domain type instances,
and setting up and managing domain decomposition, processor topologies, and other aspects
of parallelism. The driver deals only with domains and does not see the data fields they
contain. When a new domain is created, the driver calls the mediation layer, passing it an
instance of the domain type plus memory size information. On return, memory for fields of
the domain type instance is allocated. On a coding level, the definition of the domain derived
data type and the routines for allocating and deallocating memory are contained in a Fortran90
module that is known to the driver by use association.

Model layer. The model layer comprises the subroutines that perform actual model
computations. Model subroutines are written to be callable over an arbitrarily shaped piece of
the three-dimensional model domain. No data is passed through common; a very small
amount of global data (physical parameters, model-wide switches, etc.) may enter the
subroutine through use association of Fortran90 modules. All state data (S) and one class of

intermediate data (I1) are passed through the argument list of the model subroutine. Only
primitive Fortran data types and simple arrays are passed through the argument list; state data
stored as fields in the domain type instance is dereferenced by the mediation layer prior to the
call to the model subroutine. Local (I2) data is allocated on the program stack when the
subroutine is called. Three kinds of dimension information are passed into the model
subroutine as the last 18 integer arguments:3

• Starting and ending indices of each dimension of the logical (undecomposed) domain.
These arguments are used in the routine for testing boundary proximity.

• Starting and ending indices of each dimension of the array in local memory. These
arguments are used to dimension arrays that are passed in as arguments to the routine.

• Starting and ending indices of the tile dimensions. Used in loops within the
subroutine. These are also used to dimension local (I2) storage.

Routines in the model layer are callable for a single tile, that is, the section of a domain
allocated to a single thread. The extent of one call to a model routine is also bounded by the
amount of computation that can be completed without concern for coherency before
horizontal dependencies arise. When that occurs, the model routine returns to the
driver/mediation layer, which communicates, synchronizes, or otherwise ensures coherency,
then passes control back to the next routine in the model. It is hoped that this structure will
induce model layer developers to identify and make explicit the coherency issues in the code.
Computation on halo regions is allowed and is specified by the driver/mediation layer, which
increases the span of the tile dimensions by the necessary amount when the model routine is
called. An open question at present is whether and how to allow model routines themselves to
perform halo computations without introducing too much driver information into the model
layer.

Mediation layer. This layer mediates between the model and driver layers. The mediation
layer contains information pertaining to both the model layer and the driver layer: model-
specific information such as the flow of control to compute a time step on a domain and
driver-specific mechanisms such as tiling and communication.

Information the model layer knows that the driver layer needs is provided through query
routines that the model makes available to the driver. These include routines for determining
recommended halo widths, boundary region memory requirements, communication stencil
widths and/or widths of replicated halo computations for a model subroutine. These routines
are also considered part of the mediation layer. The Fortran90 module that contains the
domain type definition and routines for allocating fields within the domain are also part of the
mediation layer.

3 Outstanding Issues

The WRF design is still preliminary – dry prototypes of the dynamical model are being
constructed, allowing testing of an actual implementation -- and a number of important issues
remain.

3 In the present implementation, these are passed as separate arguments. Discussion continues on ways to streamline this

process, perhaps through a type definition or through the use of TASK-COMMON (which would force an exception
to the “no COMMON” rule).

External packages. For a machine with a single processor, address space, and thread of
control, the WRF model is essentially complete. Otherwise, the model will certainly rely on
other tools, libraries, and packages depending on the needs of the application and on the
architecture. MPI and MPI-2 are likely to be used in distributed memory settings, and it is
likely that higher level application libraries such as RSL [6] or NNT/SMS [8] will also be
deployed. On symmetric multiprocessors and machines composed of SMP nodes, OpenMP
will play an important role in specifying multi-threading. Code frameworks such as Overture
[3], LPARX [4], and Dagh [7] are attractive for their emphasis on adaptive mesh refinement
and multi-grid solvers, and could be layered into WRF at the driver level; however,
compatibility with Fortran90 is an issue that must be explored. Fortran record-blocked I/O
will almost certainly need to be abandoned in favor of byte-stream I/O, which is easier to
parallelize and compatible with existing parallel I/O packages such as MPI-2 and SMS. Meta-
data formats such as NetCDF and HDF are attractive for interoperability, but overheads are a
concern. The proposed WRF design neither includes nor endorses any particular package,
requiring only that packages be well-encapsulated and interchangeable.

Generality and cost. The proposed WRF design strives for generality with respect to
hardware and architecture specific coding. Tile-based expression of subroutines makes the size
and shape of what a thread computes a run-time driver-level concern, with potential benefits
for cache-locality, load balancing, and vector length. In this vein, one would also wish to
control array index order and loop ordering/nesting on a per-architecture basis; however, there
are no language facilities for this. Additional help from source translation tools would be
required to, say, permute all the definitions of three-dimensional arrays from i,j,k to k,i,j or i,k,j
and then to make corresponding changes in the loop structure. Based on early discussions, a
k-innermost index ordering for three-dimensional arrays has been chosen for the prototype,
since there are demonstrated performance benefits on cache-based processors, while at the
same time, vector systems have become sufficiently sophisticated to handle without penalty
inner loop stride-lengths greater than one. Another performance concern is the cost of
dereferencing fields from domain data structures. It is hoped that since dereferencing is done
at a high level in the call tree, the amount of work done per dereference will offset the
additional overhead. Likewise, calling overhead stemming from the decision to pass all data
through argument lists is a concern. Once a prototype code is available, design features with
the potential to affect performance will be tested extensively and, if costs are found to be
unacceptable, revised.

4 Summary

The design for a WRF prototype code sketched in this paper uses modern programming
language features standardized in Fortran90 for constructing modular, flexible, and
maintainable software. The proposed software architecture is layered functionally to provide
abstraction and encapsulation, facilitating porting to different architectures and compatibility
with alternative solvers, physics, and external software packages and parallel libraries. The
WRF development effort provides a rare opportunity to reconsider, in collaborative fashion,
basic software architecture issues and, free from hindrance of legacy structures and
methodologies, to design a next-generation regional model.

5 References

1. M. Desgagne, S. J. Thomas, R. Benoit, M. Valin, and A.V. Malevsky, Making its
Mark, World Scientific, River Edge, New Jersey (1997), pp. 155— 181.

2. I. Foster and J. Michalakes, Parallel Supercomputing in Atmospheric Science, World
Scientific, River Edge, New Jersey (1993), pp. 354— 363.

3. W. D. Henshaw, Los Alamos National Laboratory Report LA-UR-96-3894 (1998).
4. S. R. Kohn, and S. B. Baden, in Proceedings of Supercomputing '95, IEEE

Computer Society Press (1996).
5. J. Michalakes, in Proceedings of the Second International Workshop on Software

Engineering and Code Design in Parallel Meteorological and Oceanographic
Applications, NASA Preprint GSFC/CP-1998-206860 (1998), pp. 129— 139.

6. J. Michalakes, Argonne National Laboratory Tech. Report ANL/MCS-TM-197
(1994).

7. M. Parashar, M. and J. C. Browne, in Proceedings of the International Conference
for High Performance Computing (1995) pp. 22--27.

8. Rodriguez, B., L. Hart, and T. Henderson, Coming of Age, World Scientific, River
Edge, New Jersey (1995) pp. 148--161.

9. A. Sawdey, M. O’Keefe, and W. Jones, Making its Mark, World Scientific, River
Edge, New Jersey (1997), pp. 209— 225.

10. S. J. Thomas, M. Desgagne, R. Benoit, and P. Pellerin, in Proceedings of the
Symposium on Regional Weather Prediction on Parallel Computers, University of
Athens, Greece (1997), pp. 33— 42.

Figure 1. Hierarchical software design being implemented in the WRF prototype. The three main layers, Driver, Mediation, and
Model and their functions are outlined from left to right. The three classes of data, State, Intermediate-1, and Intermediate-2, are
shown at the levels in which they reside. State data exists as structures (Fortran90 derived data types) at higher levels of the hierarchy
and as individual fields in the model layer. Functional descriptions and representative pseudo-code fragments are shown on the last
rows of the table. Intermediate-1 data, which persists for the duration of a time step, is stack-allocated in the model “solve” routine,
part of the Mediation layer. Intermediate-2 data, which exists only for the duration of a particular call to a model subtree, is stack-
allocated in the called subroutine. The Mediation layer, which contains the top-level flow of control over a single time step on a
domain, also contains the calls to communication libraries and/or multi-threading directives, indicated above as “communication or
synchronization.” The “physics” subroutine interface shown in the Model layer is part of a uniform template that specifies domain,
memory, and tile dimensions separately and explicitly, allowing model subroutines to be called for arbitrarily shaped tiles. This gives
the Driver and Mediation layers great flexibility in organizing the two-level decomposition for parallellism without changing the
underlying model code.

MEDIATION

Top Level Domain Hierarchy Layer Solver, Coherency, Dereferencing

One model run One time step One Domain

State

I1 Automatic (stack) data in SOLVE

I2

Initialization
 Creates, destroys instances of Domain type

 Calls Mediation layer to allocate Domain data fields

 SUBROUTINE ALLOC_DOMAIN (domain, dimensions)
 ALLOCATE(domain%field1(dimensions))
 ALLOCATE(domain%field2(dimensions)) . .
.

Time Loop

 Steps all domains in nest hierarchy:

 STEP(LEVEL)
 Foreach domain at LEVEL
 Call SOLVE(domain)
 Recurse: STEP(LEVEL-1)

 SUBROUTINE SOLVE (domain, dimensions)
 Communication or synchronization
 Dereference and call BIG STEP
 Communication or synchronization
 Minor time loop
 Communication or synchronization
 Dereference and call SMALL STEP
 End minor time loop
 Communication or synchronization
 Dereference and call PHYSICS

DRIVER

Functions

Domain data type; heap-allocated and passed between Driver and Mediation layers as a structure

D
at

a

Layer

Sub-layer

Control

MODEL

Model Subroutines

One tile

Individual fields passed as arguments

Individual fields passed as arguments

Allocated automatically in model subroutine

 SUBROUTINE QUERY FCN (…)

 SUBROUTINE PHYSICS (u, v, …, &
 ids, ide, ims, ime, its, ite, &
 jds, jde, jms, jme, jts, jte, &
 kds, kde, kms, kme, kts, kte)
 REAL, DIMENSION(kms:kme, ims:ime, jms:jme) :: u, v
 REAL, DIMENSION(kts:kts, its:ite, jts:jte) :: local
 ...
 CALL SUBS (…)

