
Why Are PVM and MPI So Di�erent?William GroppEwing LuskMathematics and Computer Science DivisionArgonne National LaboratoryAbstract. PVM and MPI are often compared. These comparisons usu-ally start with the unspoken assumption that PVM and MPI representdi�erent solutions to the same problem. In this paper we show that, infact, the two systems often are solving di�erent problems. In cases wherethe problems do match but the solutions chosen by PVM and MPI aredi�erent, we explain the reasons for the di�erences. Usually such di�er-ences can be traced to explicit di�erences in the goals of the two systems,their origins, or the relationship between their speci�cations and theirimplementations.1 IntroductionAlthough they came into existence in quite di�erent ways, PVM [4] and MPI [3]are both speci�cations1 for libraries that can be used for parallel computing. Itis is natural to compare them. Indeed, many useful comparisons have been pub-lished [9, 8, 6, 11]. We consider it worthwhile to do so again for two reasons. Themost obvious is that some convergence has recently taken place in the function-ality o�ered by the two systems (e.g., dynamic processes in MPI, static groupsand message contexts in PVM), and the very di�erent approaches taken in theseextensions merit comment. Equally important, however, is the fact that previ-ous analyses have focused on local, feature-by-feature comparisons, describingsimilarities as well as di�erences. Such feature-by-feature comparisons can bemisleading, particularly when the two systems use the same word for di�erentconcepts. For example, an MPI group and a PVM group are really quite di�er-ent objects, although they have super�cial similarities (e.g., in MPI, sources anddestinations are relative to a group, while in PVM sources and destinations arealways absolute in terms of the \task ids").Rather than go through each speci�cation on feature-by-feature basis, wewill discuss some of the explicit design goals that were established by the MPIForum before it undertook to specify the details. In many cases these goalsdictated details of the speci�cation (such as the contents of individual functionparameter lists). Where these details di�er from the corresponding details inPVM, the goal-oriented approach can elucidate the sources of the di�erences.In addition to di�erences in explicit goals, we will also note a few di�erences1 We treat the Oak Ridge version of PVM as represented by [5, 1] as the PVM speci-�cation. MPI is represented by the MPI-2 speci�cation.

more attributable to the origin of the two systems. PVM was the e�ort of asingle research group, allowing it great exibility in design and also enablingit to respond incrementally to the experiences of a large user community. Inaddition, the implementation team was the same as the design team, so it waspossible for design and implementation to interact quickly. In contrast, MPI wasdesigned by the MPI Forum (a diverse collection of implementors, library writers,and end users) quite independently of any speci�c implementation, but withthe expectation that all of the participating vendors would implement it. Thisrequired that all functionality be negotiated among the users and a wide range ofimplementors, each of whom had a quite di�erent implementation environmentin mind.2 MPI's GoalsThe �rst task of the MPI Forum was to de�ne the goals that would guide itssubsequent discussions. Some of these goals (and some of their implications)were the following:{ MPI would be a library for writing application programs, not a distributedoperating system. This goal has implications for resource management issues,as discussed in Section 4.{ MPI would not mandate thread-safe implementations, but its speci�cationwould allow them. Thread safety implies that there can be no notion of a\current" bu�er, message, error code, etc. As the \nodes" in the networkbecome symmetric multiprocessors, thread safety becomes increasingly im-portant in a heterogeneous, networked environment.2{ MPI would be capable of delivering high performance on high-performancesystems. Hence, no memory copies would be mandated by the design. Scal-ability, combined with correctness, for collective operations required thatgroups be \static".{ MPI would be modular, to accelerate the development of portable par-allel libraries. Modularity has many implications. For example, all refer-ences must be relative to a module, not the entire program. Hence, processsource/destination must be speci�ed by rank in a group rather than by anabsolute identi�er and context must not be a visible value. There are manyothers, some of which are described below.{ MPI would be extensible to meet future needs and developments. This ledto an object-oriented style without a commitment to an object-oriented lan-guage. This approach required functions to manipulate the objects, which isone minor reason for the relatively large number of functions in MPI.{ MPI would support heterogeneous computing (the MPI Datatype object al-lows implementations to be heterogeneous), although it would not requirethat all implementations be heterogeneous.2 There is a project to join threads with PVM (TPVM [2]), but this is more alightweight process model than a fully threaded model and, as such, does not of-fer as rich a programming model as a fully thread-safe model would.

{ MPI would require well-de�ned behavior (no race conditions or avoidableimplementation-speci�c behavior).Finally, the MPI Forum sought to simplify the interface by making eachapproach solve as many problems as possible. For example, datatypes solve bothheterogeneity and noncontiguous data layouts, both for messages and for �les.3 Implementation and De�nitionOne common confusion in comparing MPI with PVM comes from comparing thespeci�cation of MPI with the implementation of PVM. Standards speci�cationstend to specify the minimumlevel of compliance, while any implementation o�ersmore functionality. In the MPI Forum, many such \added-value" features arelisted as expected of a \high-quality implementation".Error handling and recovery are a good example. Standards tend not tomandate speci�c behavior on errors, other than to list error indicator values.The expectation is that high-quality implementations will give users what theyexpect. Speci�c implementations can easily de�ne their individual handling oferrors. Thus, most MPI implementations do not simply abort when an erroris detected; just as the PVM implementation does, they attempt to provide auseful error indication and allow the user to continue.Another source of confusion involves features of a particular implementationthat are exposed to the programmer.As an example, consider the pvm reg taskerroutine that allows a process to indicate to PVM that it, rather than fork/exec,should be used to start tasks. This is an powerful hook to allow extension of thePVM implementation by special applications, such as debugger servers. MPI,as a standard, has no such object, but speci�c MPI implementations can anddo provide similar services; for example, the MPICH implementation of MPIprovides a process startup hook used by the Totalview [13] debugger. The MPIstandard does not specify how implementations are to provide this service; as astandard, it should not. We note that some PVM implementations for massivelyparallel procesors (MPPs) also do not provide this routine; if the MPI standardhad mandated such a routine, any MPI implementation would have to provideit. This is an example of the freedom of PVM to provide features only in someenvironments; MPI as a standard does not have that freedom.4 Dynamic ProcessesOne way to understand the di�erences between PVM and MPI is to look at thenew MPI-2 features for creating and attaching to processes. While the two ap-proaches may seem similar, they are actually quite di�erent. Perhaps the greatestdi�erence is in the handling of resource information that is used to determinewhere to create the new process. This reects a di�erence in the approach to pro-viding distributed operating system support by MPI and PVM. PVM, through

its virtual machine (implemented as the PVM demons) provides a simple yet use-ful distributed operating system. Special interfaces, such as the pvm reg tasker,allow the PVM system to interface with other resource management systems.MPI does not provide a virtual machine, even in MPI-2. Rather, it providesa way, through a new MPI object (MPI Info), to communicate with whatevermechanism is providing distributed operating system services.To illustrate the di�erence, consider the resources that an application maywant to specify when creating a new process:Any system that can run an RS/6000, AIX 4.y (y � 2) executable,with 4 memory banks and at least 256 MB of memory, 200 MB of /tmp,and a load of < 2, and able to run for 48 hours.Such a speci�cation is complicated, and probably beyond what would be ex-pected from a parallel programming system. But it is well within the capabili-ties of advanced resource management systems. How should a parallel computingsystem interface with such a system? The choices are (a) pick a small subset thatall systems can support, (b) de�ne a general and generic, but fully expressive,system, or (c) provide an interface that allows information to be passed, in animplementation-speci�c manner, to the resource system.PVM chose (a)3; this is the most convenient form for many users, particu-larly if the default choices are adequate. More demanding users want (b); thisgives them the maximum portability without sacri�cing too much expressivity.Unfortunately, (b) has two drawbacks|it isn't extensible, and it assumes thatthere is a well-de�ned interface that users agree on. This led the MPI Forum,which spent a great deal of time trying to �nd a solution like (b), to choose (c).In MPI, this is the \info" argument to an MPI Comm spawn command:MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,info_for_resource_manager, 0, MPI_COMM_SELF,&everyone, MPI_ERRCODES_IGNORE);Just like �lenames, the speci�c contents of \info" depend on the implementation.MPI de�nes a few items, such as working directory and architecture. Otherinformation can be passed directly to the local resource manager. For example,an MPI implementation could provide a way to pass the above example to theresource manager.Another di�erence between MPI and PVM shows up in the presence ofpvm config and the lack of an MPI equivalent. The pvm config function pro-vides information on the virtual machine. This information can be used by theprogrammer to attempt to manage resources directly, for example, by specifyingparticular hosts in pvm spawn. Why doesn't MPI provide a similar function?The problem is that the information that any command can provide on theenvironment is immediately out of date. For example, even in PVM, between the3 PVM-aware resource managers such as Condor and LoadLeveler can provide thesemore complex services, but this is outside of the PVM program itself and is speci�cto the particular resource manager in use.

time pvm config is called and pvm spawn is called, another PVM applicationmay have executed pvm delhosts, thus invalidating the information providedby pvm config. As the number of items grows larger and more complex, thelikelihood that some critical item will be out of date increases (consider space in/tmp or load average).The MPI Forum discussed this situation at great length, but could �nd noworkable solution. This is an example of a \race condition", a situation in whichthe user is in a race with other users and the system and where the \expected"behavior depends on the user's winning the race. It is also another example ofthe tradeo� in user convenience and precise system behavior. It is natural towish to perform the operations PVM provides. But they cannot guarantee thatthe resources described will exist when a process is created.Hence, the MPI Comm spawn call combines process creation with informationon the needed resources. Combining operations is a classic way to solve raceconditions, and this solution is used in many places in MPI. Eliminating raceconditions makes many operations in MPI are collective. Note that the PVM 3.4pvm newcontext [1] presents a race condition in the delivery of the new contextvalue to other processes; MPI solves this problem by making context creationcollective over all processes that will use the context.Because of the presence of such race conditions, MPI also forms the MPIcommunicator (roughly similar to a PVM group and context) at the same timeas creating the processes. MPI provides an MPI Comm spawn multiple routinethat allows MPI to create processes for a large collection of di�erent executablesin a single operation, for the same reason.Another di�erence is in the use of MPI intercommunicators. An MPI inter-communicator represents two groups of processes that communicate with eachother. It is a natural representation for created processes: one group representsthe children and one group represents the parents (multiple parents are allowedin MPI to avoid race conditions).A �nal di�erence illustrates how a combination of features can a�ect fu-ture enhancements. PVM 3.4 adds contexts; unlike MPI, these are user-visibleintegers that may be sent from process to process and otherwise manipulatedby the user. They are also guaranteed to be globally unique; PVM can ensureuniqueness because there is a single virtual machine. MPI's contexts are opaqueand de�ned only by their e�ect in MPI operations; while a simple implementa-tion could make them globally unique, that is not required (and, for scalabilityreasons, may not be desirable).Consider the case of two parallel programs that wish to connect to eachother. Both MPI-2 and PVM provide a way to do this. But the PVM approachrequires that both programs belong to a single PVM virtual machine. The de-cision to make the PVM context a visible, explicit integer means that programsbelonging to di�erent PVMs cannot safely connect (because they may alreadyhave the same \unique" context id). It also means that di�erent PVMs cannotbe merged into a single PVM, since this again would make previously uniquecontext integers no longer unique. The MPI-2 approach sacri�ces some exibility

(explicit, unique context values) for the extensibility o�ered by a more modularand encapsulated design.5 Nonblocking OperationsNonblocking operations (e.g., MPI Isend) are often misunderstood as a \per-formance" optimization. In fact, these are necessary when constructing anylarge, complex communication system. These should be distinguished from asyn-chronous operations. A nonblocking operation is simply one that does not blockthe calling process. An asynchronous one usually implies that the operation con-tinues to take place concurrently with other operations. (Note that the PVMdocumention sometimes uses \asynchronous" where MPI would use \nonblock-ing" and sometimes uses nonblocking.) Consider the following program runningon two processes: Process 1 Process 2pvm_psend(..., size, ...) pvm_psend(..., size, ...)pvm_precv() pvm_precv()(particularly if pvm setopt(PvmRoute, PvmRouteDirect) has been called).Does this program work? The answer depends on the size of the messages (size),the particular platforms (MPP, workstation networks, or symmetric multipro-cessors), and even the environment (e.g., free swap space). For short messages,this will almost always work. At some message size, it will fail; the programswill hang, each waiting for the other to execute the pvm precv. This may seemunusual, but programs that process large amounts of data can easily exceed theamount of available bu�ering.Again, this is a tradeo� between user convenience and precise behavior by theinterface. MPI is careful to specify the kind of bu�ering behavior and to providetwo alternative solutions to the problem of writing reliable programs: a bu�eredsend (MPI Bsend) with a guaranteed amount of (user-controlled) bu�ering, andnonblocking operations. The degree to which users want such programs to workwas shown by the public reaction to the MPI 1 draft that did not provide abu�ered send; the MPI Forum added the bu�ered send to satisfy this need. See[7, 12] for a more detailed introduction to MPI's handling of bu�ering.It is worth noting that the Unix socket interface provides a solution muchlike the MPI nonblocking operations, though somewhat less convenient for theuser. A socket can be set so that read or write returns rather than blocking,using the error code EAGAIN (or EWOULDBLOCK) to indicate that the operationwould block. This allows careful users to avoid deadlock in their applications.6 Beyond Message PassingThe evolution of parallel computing has taken us beyond simple message pass-ing. One area that MPI-2 has developed is remote-memory operations. These

operations support put, get, and accumulate operations in an \one-sided" man-ner. Maintaining MPI's commitment to heterogeneity, even these analogues of\store into array" are de�ned to operate in a heterogeneous environment. MPImakes use of MPI Datatypes and a new MPI object, a \window" (MPI Win),to provide this capability. Maintaining MPI's commitment to performance andscalability as well as adaptability to a wide range of environments, MPI-2 intro-duces a number of ways to synchronize access to the shared data areas, includingsupport for the bulk synchronous programming (BSP) model. PVM provides nosimilar functionality.Parallel I/O is another area where MPI-2 provides a rich set of performance-oriented operations. As with all MPI operations, these support heterogeneoussystems and allow the user to choose between forms optimized for a particu-lar system (\native") or for interoperation with other environments and MPIimplemenations (\external32"). These facilities are fully integrated with MPI'sother functions. In PVM's case, while there are some projects like PIOUS [10],there is no integrated parallel I/O capability. This reects the di�erences in theorientation of the two systems: many of the parallel I/O functions are collectiveand are best de�ned in terms of static groups, such as MPI de�nes. PVM onlyrecently added static groups, and they are not as fully developed as the groupsin MPI.7 ConclusionIn this short note, we have focused on a few of the many di�erences betweenMPI and PVM. We have shown that the di�erences between MPI and PVMremain profound, despite some convergence. These di�erences are accountablefor if one bears in mind their quite di�erent origins and goals.AcknowledgementsThis work was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Computational and TechnologyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.References1. J. J. Dongarra, G. A. Geist, R. J. Manchek, and P. M. Papadopoulos. Addingcontext and static groups into PVM. http://www.epm.ornl.gov/pvm/context.ps,July 1995.2. A. J. Ferrari and V. S. Sunderam. TPVM: Distributed concurrent computing withlightweight processes. In IEEE, editor, Proceedings of the Fourth IEEE Interna-tional Symposium on High Performance Distributed Computing. IEEE ComputerSociety Press, 1995. IEEE catalog no. 95TB8075.3. Message Passing Interface Forum. MPI: A message-passing interface standard.International Journal of Supercomputer Applications, 8(3/4), 1994.

4. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, andVaidy Sunderam. PVM: Parallel Virtual Machine: A Users' Guide and Tutorialfor Networked Parallel Computing. MIT Press, Cambridge, MA, 1994.5. Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, andVaidy Sunderam. PVM 3 Users Guide and Reference Manual. Oak Ridge NationalLaboratory, Oak Ridge, TN, May 1994.6. G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. PVM and MPI: A comparisonof features. Calculateurs Paralleles, 8(2), 1996.7. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable ParallelProgramming with the Message Passing Interface. MIT Press, Cambridge, MA,1994.8. J. C. Hardwick. Porting a vector library: a comparison of MPI, Paris, CMMDand PVM. In IEEE, editor, Proceedings of the 1994 Scalable Parallel LibrariesConference, pages 68{77, IEEE Computer Society Press, 1995.9. R. Hempel. The status of the MPI message-passing standard and its relation toPVM. Lecture Notes in Computer Science, 1156:14{21, 1996.10. Steven A. Moyer and V. S. Sunderam. PIOUS: A scalable parallel I/O systemfor distributed computing environments. In Proceedings of the Scalable High-Performance Computing Conference, pages 71{78, 1994.11. William Saphir. Devil's advocate: Reasons not to use PVM. PVM User GroupMeeting, May 1994.12. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.MPI: The Complete Reference. MIT Press, Cambridge, MA, 1995.13. Web page: Introduction to the totalview debugger.http://www.dolphinics.com/tw/tv/totalview.html.
This article was processed using the LaTEX macro package with LLNCS style

