
Data Soni�cation and Sound VisualizationHans G. KaperMathematics and Computer Science Division, Argonne National LaboratorySever TipeiSchool of Music, University of IllinoisElizabeth WiebelMathematics and Computer Science Division, Argonne National LaboratoryAbstractThis article describes a collaborative project between researchers in theMathematics and Computer Science Division at Argonne National Labora-tory and the Computer Music Project of the University of Illinois at Urbana-Champaign. The project focuses on the use of sound for the exploration andanalysis of complex data sets in scienti�c computing. The article addresses dig-ital sound synthesis in the context of DIASS, a Digital Instrument for AdditiveSound Synthesis, and sound visualization in a virtual-reality environment bymeans of M4CAVE. It describes the procedures and preliminary results of someexperiments in scienti�c soni�cation and sound visualization.While most computational scientists routinely use visual imaging techniques to ex-plore and analyze large data sets, they tend to be much less familiar with the use ofsound. Yet, sound signals carry signi�cant amounts of information and can be usedadvantageously to increase the bandwidth of the human/computer interface. Theproject described in this article focuses on scienti�c soni�cation|the faithful render-ing of scienti�c data in sounds|and the visualization of sounds in a virtual-realityenvironment. The project, which grew out of an e�ort to apply the latest super-computing technology to the process of music composition (see Box 1), is a jointcollaboration between Argonne National Laboratory (ANL, Mathematics and Com-puter Science Division) and the University of Illinois at Urbana-Champaign (UIUC,Computer Music Project).Digital sound synthesis is addressed in Section 1. The discussion is centeredaround DIASS, a Digital Instrument for Additive Sound Synthesis. Section 2 describessome experiments in scienti�c soni�cation. Sound visualization in a virtual-reality(VR) environment is discussed in Section 3. Here, the main tool is M4CAVE, aprogram to visualize sounds from a score �le. Section 4 contains some more generalobservations about the project. 1



1 Digital Sound SynthesisDigital sound synthesis is a way to generate a stream of numbers representing thesampled values of an audio waveform. To realize the sounds, one sends these sam-ples through a digital-to-analog converter (DAC), which converts the numbers to acontinuously varying voltage that can be ampli�ed and sent to a loudspeaker.One way of viewing the digital sound-synthesis process is to imagine a computerprogram that calculates the sample values according to a mathematical formula andsends those samples, one after the other, to the DAC. All the calculations are carriedout by a program, which can be changed in arbitrary ways by the user. From thispoint of view, digital synthesis is the same as software synthesis. Software synthesiscontrasts with hardware synthesis, where the calculations are carried out in specialcircuitry. Hardware synthesis has the advantage of high-speed operation, but lacksthe 
exibility of software synthesis. Software synthesis is the technique of choice ifone wishes to develop an instrument for data soni�cation.With software synthesis, one can indeed realize any imaginable sound|providedone has the time to wait for the results. With a sampling rate of 44,100 samples persecond the time available per sample is only 20 microseconds, too short for real-timesynthesis of reasonably complex sounds. For this reason, most of today's synthesisprograms generate a sound �le, which is then played through a DAC. But data soni-�cation in real time may become feasible on tomorrow's high-performance computingarchitectures. Our research e�ort focuses on the development of a 
exible and power-ful digital instrument for scienti�c soni�cation and on �nding optimal ways to conveyinformation through the medium of sound.1.1 DIASS { A Digital InstrumentTwo pieces of software consitute the main tools of the project: DIASS, a DigitalInstrument for Additive Sound Synthesis, and M4CAVE, a program for the visu-alization of sound objects in a multimedia environment. Both are part of a com-prehensive Environment for Music Composition, which includes additional softwarefor computer-assisted composition and automatic music notation. Figure 1 gives aschematic overview of the various elements of the Environment ; C and S mark thedata entry points for composition and soni�cation, respectively.In this section we describe the workings of DIASS; we will describe M4CAVEafter we have discussed our ideas on scienti�c soni�cation.2
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Score editorFigure 1: The Environment for Music Composition.1.1.1 The InstrumentThe DIASS instrument functions as part of the M4C synthesis language developed byBeauchamp and his associates at the University of Illinois [3]. Synthesis languages likeM4C are designed around the notion that the user creates an instrument together witha score that references the instrument. The synthesis program reads the instrument,feeds it the data from the score �le, and computes the �nal audio signal, which isthen written to a sound �le for later playback [16].The M4C synthesis language is imbedded in the C language. As part of thecurrent project, the instrument and relevant parts of M4C were redesigned for adistributed-memory environment. The parallel implementation uses the standardMPI message-passing library [6].Like all additive-synthesis instruments, DIASS creates sounds through a summa-tion of simple sine waves, so the basic formula isS(t) =Xi Pi(t) =Xi ai(t) sin(2�fi(t)t+ �i(t)):The individual sine waves which make up a sound are commonly designated as the\partials" of the sound; hence, the symbol P . The sum extends over all partialsthat are active at the time t; ai is the amplitude, fi the frequency, and �i the phase3



of the ith partial. These variables can be modulated periodically or otherwise; themodulations evolve on a slow time scale, typically on the order of the duration ofa sound. Phase modulation is barely distinguishable from frequency modulation,particularly in the case of time-varying frequency spectra, and is not implemented inDIASS.The range of audible frequencies ranges roughly from 20 to 20,000 Hz, althoughin practice the upper limit is one-half the sampling frequency (Nyquist criterion).The partials in a sound need not be in any harmonic relationship (that is, fi neednot be a multiple of some fundamental frequency f0), nor do they need to share anyother property. The de�nition of a sound is purely operational. What distinguishesone \sound" from another is that certain operations are de�ned at the level of a soundand a�ect all the partials that make up the sound.The evolution of a partial can be subject to many other controls, besides ampli-tude and frequency modulation. Moreover, these controls can a�ect a single partialor all the partials in a sound. For example, reverberation, which represents the com-bined e�ects of the size and acoustic characteristics of the hall, a�ects all the partialsin a sound simultaneously, although not necessarily in the same way. Furthermore, ifa random element is present, it must be applied at the level of a sound; otherwise, acomplex wave is perceived as a collection of independent sine waves, instead of a sin-gle sound. Hence, it is important that all partials in a sound access the same randomnumber sequence and that the controls of any partial that changes its allegiance andmoves from one sound to another be adjusted accordingly.Table 1 lists the control parameters that can be applied in DIASS. Some, likestarting time and duration, do not change for the duration of a sound; they are staticand determined by a single value. Others are dynamic; their evolution is controlledby an envelope | a normalized function consisting of linear and exponential segments| and a maximum size. Not all control parameters are totally independent; someoccur only in certain combinations, and some are designed to reinforce others.The control parameters give DIASS its 
exibility and make it an instrumentsuitable for data soni�cation. On the other hand, the fact that the control parametersact at the level of a partial as well as at the level of a sound (or even at the level ofa collection of sounds) signi�cantly increases its computational complexity.4



Table 1: Static (S) and dynamic (D) control parameters in DIASS.Level Description Control parameterPartial Carrier (sine) wave S: Starting time, duration, phaseD: Amplitude, frequencyAM (tremolo) wave S: Wave type, phaseD: Amplitude, frequencyFM (vibrato) wave S: Wave type, phaseD: Amplitude, frequencyAmplitude transients S: Max sizeD: ShapeAmplitude transient rate S: Max rateD: Rate shapeFrequency transients S: Max sizeD: ShapeFrequency transient rate S: Max rateD: Rate shapeSound Timbre D: Partial-to-sound relationLocalization D: PanningReverberation S: Duration, decay rate, mixHall S: Hall size, re
ection coe�cient1.1.2 The ScoreInput for DIASS consists of a raw score �le detailing the controls. The raw score�le is transformed into a score �le for the instrument|a collection of \Instrumentcards" (I-cards), one for each partial, which are fed to the instrument by M4C. Thetransformation is accomplished in a number of steps.Among the controls are certain global operations (\macros"), which are de�nedat the level of a sound. In a �rst pass, these global controls are expanded into controlsfor the individual partials. The next step consists of the application of the loudnessroutines. These routines operate at the sound level and ensure that the sounds havethe desired loudness. The �nal step consists of the application of the anticlip routines.For various reasons, historical as well as technical, sound samples are stored as 16-bitintegers. The anticlip routines guarantee that none of the sample values produced bythe instrument from the score �le exceeds 16 bits. Because loudness and anticlip playa signi�cant role in soni�cation, we discuss the issues in more detail.5



Loudness. The perception of loudness is a subjective experience. Although theperceived loudness of a sound is related to the amplitudes of its constituent partials,the relation is nonlinear and depends on the frequencies of the partials. At themost elementary level, pure sinusoidal waves of low or high frequencies require ahigher energy 
ow and therefore a larger amplitude to achieve the same loudnesslevel as similar waves at mid-range frequencies. When waves of di�erent frequenciesare superimposed to form a sound, the situation becomes still more complicated. Thesum of two tones of the same frequency produced by two identical instruments playedsimultaneously is not perceived as twice as loud as the tone produced by a singleinstrument.An algorithm for data soni�cation must re
ect these subjective experiences. Forexample, when we sonify two degrees of freedom, mapping one (x1, say) to amplitudeand the other (x2, say) to frequency, then we should perceive equal loudness levelswhen x1 has the same value, irrespective of the values of x2. Also, when the variablex1 increases or decreases, we should be able to perceive a proportional increase ordecrease in the loudness level.The loudness routines in DIASS incorporate the relevant results of psychoacousticresearch [11] and give the user full control over the perceived loudness of a sound.They also scale each partial so each sample value �ts in a 16-bit register (see Box 2).Anticlip. When several sounds coexist and their waveforms are added, sample val-ues may exceed 16 bits (over
ow), even when the individual waveforms stay withinthe 16-bit limit. Over
ow gives rise to \clipping"|a popping noise|when the sound�le is played. The anticlip routines in DIASS check the score for potential over
owand rescale the sounds as necessary, while preserving the ratio of perceived loudnesslevels. Thus it is possible to produce an entire sound �le in a single run from thescore �le, even when the sounds cover a wide dynamic range.To appreciate the di�culty inherent in the scaling processes, consider the caseof a sound cluster consisting of numerous complex sounds, all very loud and resultingin clipping, followed by a barely audible sound with only two or three partials. If thecluster's amplitude is brought down to �t the register capacity, and that of the softtiny sound following it is scaled proportionally, the latter disappears under systemnoise. On the other hand, if only the loud cluster is scaled, the relationship betweenthe two sound events is completely distorted. Many times in the past, individualsounds or groups of sounds were generated separately and then merged with thehelp of analog equipment or an additional digital mixer. The loudness and anticliproutines in DIASS deal with this problem by adjusting both loud and soft sounds, so6



their perceived loudness matches the desired relationship speci�ed by the user, andno clipping occurs (see Box 3).1.1.3 The EditorFeatures like the loudness routines make DIASS a �ne-tuned, 
exible, and preciseinstrument suitable for data soni�cation. Of course, they require the speci�cation ofsigni�cant amounts of input data. The editor in DIASS is designed to facilitate thisprocess. It comes in a \slow" and a \fast" version.In the slow version, data are entered one at a time, either in response to questionsfrom a menu or through a graphic user interface (GUI). The process gives the user theopportunity to build sounds step by step, experiment, and �ne-tune the instrument. Itis suitable for sound composition and designing prototype experiments in soni�cation.The fast version uses the same code, but reads the responses to the menu questionsfrom a script. This version is used for soni�cation experiments.1.1.4 Computing RequirementsThe sound synthesis software embodied in DIASS is computationally intensive (seeBox 4). The instrument proper, the engine that computes the samples, has been im-plemented in a workstation environment and on the IBM Scalable POWERparallel(SP) system. Parallelism is implemented at the sound level to minimize communi-cation among the processors and enable all partials of a sound to access the samerandom number sequence. In parallel mode, at least four processors are used|one todistribute the tasks and supervise the entire run (the \master" processor), a second tomix the results (the \mixer"), and at least two \slave" nodes to compute the samplesone sound at a time. Sounds are computed in their starting-time order, irrespectiveof their duration or complexity. (A smart load-balancing algorithm would take theduration of the various sounds and the number of their partials into account.)Performance depends greatly on the complexity of the sounds|that is, on thenumber of partials per sound and the number of active controls for each partial. Typ-ically, the time to generate a two-channel sound �le for a 2'26" musical compositionwith 236 sounds and 4939 partials ranges from almost two hours on four processorsto about 10 minutes on 34 processors on the SP. Figure 2 gives some indication ofthe speedups one observes in a multiprocessing environment. The three graphs cor-respond to three variants of the same 2'26" piece with di�erent complexity. The time7



Tp refers to a computation on p+2 processors (p \slaves"); all times are approximate,as they were extracted from data given by LoadLeveler, a not very sophisticated tim-ing instrument for the SP. Speedup is measured relative to the performance on fourprocessors (two compute nodes). One observes the typical linear speedup until satu-ration sets in. The more complex the piece (the more partials), the later saturationsets in.
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Figure 2: Timing results for DIASS on an IBM SP.With a sampling rate of 44,100 samples per second and two-channel output,a sound �le occupies 176 KBytes per second of sound, so the sound �le for the2'26" musical composition takes close to 25.8 MB of memory.2 Data Soni�cationSoni�cation is the faithful rendition of data in sounds. When the data come fromscienti�c experiments| actual physical experiments or computational experiments|we speak of \scienti�c soni�cation." Scienti�c soni�cation is therefore the analog ofscienti�c visualization, where we deal with aural instead of visual images. Becausesounds can convey signi�cant amounts of information, soni�cation has the potentialto increase the bandwidth of the human/computer interface. Yet, its use in scienti�ccomputing has received limited attention. One reason is, of course, that our senseof vision seems much more dominant than our sense of hearing. Another importantreason is the lack of a suitable instrument for scienti�c soni�cation. One of the goals8



of our project is to demonstrate that, with an instrument like DIASS, one can probemultidimensional datasets with surgical precision and uncover structures that maybe hidden to the eye.2.1 Past ExperimentsAn early experiment with scienti�c soni�cation was done by Yeung [29]. Seven chem-ical variables were matched with seven variables of sound: two with frequency, oneeach with loudness, decay, direction, duration, and rest (silence between sounds). Histest subjects (professional chemists) were able to understand the di�erent patterns ofsound representations and correctly classify the chemicals with a 90% accuracy ratebefore and a 98% accuracy rate after training. His experiment showed that motivatedexpert users can easily adapt to complex auditory displays.Recently, a successfull application of scienti�c soni�cation was reported in physicsby Pereverzev et al. [15]. The authors were able to detect quantum oscillations be-tween two weakly coupled reservoirs of super
uid 3He using sound, where oscilloscopetraces failed to reveal structure.Several other experiments reported in the literature refer to situations wheresounds are used in combination with visual images for data analysis. Bly [4] randiscriminant analysis experiments using sound and graphics to represent multivari-ate, time-varying, and logarithmic data. Mezrich et al. [14] used sound and dynamicgraphics to represent multivariable time series data. The \Exvis" experiment at theUniversity of Massachusetts at Lowell [20] expanded this work by assigning sonicattributes to visual icons. The importance of sound localization is recognized byongoing work at NASA-Ames [27]. The evaluation of auditory display techniques isreported extensively at the annual conferences of ICAD, the International Confer-ence on Auditory Display; see [12]. Sound as a component of the human/computerinterface is discussed in [1].Most of the attempts described above used MIDI-controlled synthesizer sounds,which have drastic limitations in the number and range of their control parameters.Bargar et al. [2] at the National Computational Science Alliance (NCSA) have de-veloped a complex instrument with interactive capabilities, which includes the VSSsound server for the CAVE virtual-reality environment.9



2.2 What We Have Done So FarMuch of our work so far has been focused on the development of DIASS [13, 10]. Inaddition, we have used DIASS for two preliminary experiments in scienti�c soni�ca-tion, one in chemistry, the other in materials science.The �rst experiment used data from Dr. Je� Tilson, a computational chemist atANL, who studied the binding of a carbon atom to a protonated thiophene molecule.The data represented the di�erence in the energy levels before and after the bindingat 128� 128� 128 mesh points of a regular computational grid in space. Because thedata were static, we arbitrarily identi�ed time with one of the spatial coordinates andsoni�ed data in planes parallel to this axis. The time to traverse a plane over its fulllength was usually kept at 30 seconds. In a typical experiment, we assigned a soundto every other point in the vertical direction, distributing the frequencies regularlyover a speci�ed frequency range, and used the data in the horizontal direction togenerate amplitude envelopes for each of the sounds. Thus, a sound would becomelouder or softer as the data increased or decreased, and the evolution of the loudnessdistribution within the ensemble of 64 sounds was an indicator of the distribution ofthe energy di�erence before and after the reaction in space. The sound parameterschosen for the representation of the data varied from one experiment to another.The second experiment involved data from a numerical simulation in materialscience. The scientists were interested in patterns of motion of magnetic 
ux vorticesthrough a superconducting medium. The medium was represented by 384�256 meshpoints in a rectangular domain. As the vortices are driven across the domain, fromleft to right, by an external force, they repel each other but are attracted by regularlyor randomly distributed defects in the material. In this experiment, frequency andfrequency modulation (vibrato) were used to represent movement in the plane, andchanges in loudness were connected to changes in the speed of a vortex. A travelingwindow of constant width was used to capture the motion of a number of vorticessimultaneously.These investigations are still ongoing, and the results have not been subjected torigorous statistical evaluation. They have merely served to demonstrate the capabil-ities of DIASS and explore various mappings from the degrees of freedom in the datato the parameters controlling the sound synthesis process. Samples can be heard onthe Web [25]. 10



2.3 What We Have Found So FarGeneral conclusions are that (i) the sounds produced in each experiment conveyedinformation about the qualitative nature of the data, and (ii) DIASS is a 
exible andsophisticated tool capable of rendering subtle variations in the data.Changes in some control variables, like time, frequency, and amplitude, are im-mediately recognizable. Changes in the combination of partials in a sound, identi-�able through its timbre, can be recognized with some practice. Some e�ects areenhanced by modi�ers like reverberation, amplitude modulation (tremolo), and fre-quency modulation (vibrato). In some instances, a modi�er may lump two, three, ormore degrees of freedom together, like hall size, duration, and acoustic properties inthe case of reverberation. Through the proper manipulation of reverberation, loud-ness, and spectrum, one can create the illusion of sounds being produced at arbitrarylocations in a room, even with only two speakers.Like the eye, the ear has a very high power of discrimination. Even a coarse grid,such as the temperate tuning used in Western music, includes about 100 identi�ablediscrete steps over the frequency range encompassed by a piano keyboard. Contem-porary music, as well as some non-Western traditional music, successfully uses smallerincrements of a quarter tone or less for a total of some 200 or more identi�able stepsin the audible range. Equally discriminating power is available in the realm of timbre.Sound is an obvious means to identify regularities in the time domain, both atthe microlevel and on a larger scale, and to bring out transitions between randomstates and periodic happenings. Most auditory processes are based on the recognitionof time patterns (periodic repetitions giving birth to pitch, amplitude or frequencymodulation; spectral consistency creating stable timbres in a complex sound; etc.)and the ear is highly attuned to detect such regularities.Most conceptual problems in scienti�c soni�cation are related to �nding suitablemappings between the space of data and the space of sounds. Common sense pointstoward letting the two domains share the coordinates of physical space-time if theseare relevant and translating other degrees of freedom in the data into separate soundparameters. On the other hand, it may be advantageous to experiment with alterna-tive mappings. Soni�cation software must be su�ciently 
exible that a user can pairdi�erent sets of parameters in the two domains.Any mapping between data and sound parameters must allow for redundancies toenable the exploration of data at di�erent levels of complexity. Similar to visualizationsoftware, soni�cation software must have utilities for zooming, modifying the audio11



palette, switching between visual and aural representation of parameters, de�ningtime loops, slowing down or speeding up, etc.Our experiments also showed that DIASS, at least in its present form, has itslimitations. One limitation concerns the sheer volume of data in scienti�c soni�cation.While the composition of a musical piece (the original intent behind DIASS) typicallyentails the handling of a few thousands sounds, each with a dozen or so partials,the number of data points in the computational chemistry experiment ran into themillions, a di�erence of several orders of magnitude. By the same token, while atypical amplitude envelope for a partial or sound in a musical composition involvesten or even fewer segments, both experiments required envelopes with well over 100such segments. Another di�culty encountered was the fact that both experimentsrequired sounds to be accurately located in space. While panning is very e�ective inpinpointing the source on a horizontal line, suggesting the height of a sound is a majorchallenge. We hope that additions to the software as well as a contemplated eight-speaker system will help us get closer to a realistic three-dimensional representationof sounds. Finally, to become an e�ective tool for soni�cation, DIASS must operate inreal time. All three concerns are being addressed in the new C++ version of DIASScurrently under development.3 Sound Visualization in a VR EnvironmentThe notion of sound visualization may at �rst sight seem incongruous in the contextof data soni�cation. However, as has been recognized by several researchers, thestructure of a sound is di�cult to detect without proper training, and any means ofaiding the detection process will enhance the value of data soni�cation. Visualizingsounds is one of these means. In this project we are focusing on the visualization ofsounds in the CAVE, a room-size virtual-reality (VR) environment [26], and on theImmersaDesk, a two-dimensional version.3.1 M4CAVE { A Visualization ToolThe software collectively known as M4CAVE takes a score �le from the sound synthe-sis program DIASS and renders the sounds represented by the score as visual imagesin a CAVE or Immersadesk. The images are computed on the 
y and are made tocorrespond exactly to the sounds one hears through a one-to-one mapping between12



control parameters and visual attributes. The code, which is written in C++, usesOpenGL for visualizing objects.3.1.1 Graphical RepresentationsCurrently, M4CAVE can represent sounds either as a collection of spheres (or cubesor polyhedra), as a cloud of confetti-like particles, or as a collection of planes.The spheres representation is the most developed and incorporates more param-eters of a sound into the visualization than either of the other. Sounds are visualizedas stacks of spheres, each sphere corresponding to a partial in the sound. The posi-tion of a sphere along the vertical axis is determined by the frequency of the partial,and its size is proportional to the amplitude. A sound's position in the stereo �elddetermines the placement of the spheres in the room. The visual objects rotate orpulse when tremolo or vibrato is applied, and their color varies when reverberationis present. An optional grid in the background shows the octaves divided into twelveequal increments. Figure 3 | taken from our Web site [25], where more samples canbe found | shows a visualization of nine sounds with di�erent numbers of partials.The plane and cloud representations were designed more on the basis of artisticconsiderations. (Remember that the purpose of the visualization is to aid the per-ception of sounds.) The strength of the cloud representation is in showing tremoloand vibrato in the sound. The planes representation is unique in that it limits thevisualization to only one partial (usually the fundamental) of each sound. The variousrepresentations can be combined, and the mappings chosen for each representationcan be varied by means of a menu.3.2 Preliminary FindingsWe have used M4CAVE to explore various mappings from the sound domain to thevisual domain. Besides the obvious short score �les to test the implementation ofthese mappings, we have used score �les generated with DIASS of various musicalcompositions, notably the \A.N.L.-folds" of Tipei [24]. A.N.L.-folds is an exampleof a manifold composition described in Box 1. Each member of A.N.L.-folds lastsexactly 2'26", comprises between 200 and 500 sounds of medium to great complexity.The picture of Fig. 3 was taken from a run of one of these A.N.L.-folds.13



Figure 3: Visualization of nine sounds. (Picture taken from a CAVE simulator.)The combination of visual images and sounds provides indeed an extremely pow-erfool tool for uncovering complicated structures. Sometimes, the sounds reveal fea-tures that are hidden to the eye; at other times, the visual images illuminate featuresthat are not easily detectable in the sound. The two modes of perception reinforceeach other, and both improve with practice.4 Larger IssuesThis project is unusual in several respects. It is somewhat speculative, in the sensethat we don't have much experience with the use of sound in scienti�c computing.This is the main reason why the involvement of someone expert in the intricacies ofthe sound world is critical for its success. In our case, the expertise comes from therealm of music composition. 14



When do we declare \success"? Can we reasonably expect that soni�cation willevolve to the same level of usefulness as visualization for computational science? Theanswers to these questions depends on one's expectations. Ours is a visually orientedculture par excellence, and as a society we watch rather than listen. Contemporarymusical culture is often reduced to entertainment genres that use a simple-mindedvocabulary|no small impediment to discover the potential bene�ts of the world ofsound. But with an awareness for unusual and unexpected sonorities, we may yetdiscover that we have not lost the ability to listen.When we engage in this type of research, it is easy to get swept up by unreason-able expectations, looking for the \killer application." But the killer application isa phantom, not worth pursuing. What we can o�er is a systematic investigation ofthe potential of a new tool. If it helps us understand some computational data sets alittle better, or if it makes it a little easier to explore these data sets in more detail, wehave good reason to claim success. If the project adds to our understanding of auralsemiotics, we have even more reason to claim success. And if none of these successesmaterialize, we can still claim that the people involved, both scientists and musicians,gained by becoming more familiar with each other's work and ways of thinking. Sucha rapprochement has, in fact, already occurred and led to a new \Discovery" courseentitledMusic, Science, and Technology at UIUC, where some of the issues presentedhere are being discussed in a formal educational context.AcknowledgmentsThis work was partially supported by the Mathematical, Information, and Computa-tional Sciences Division subprogram of the O�ce of Computational and TechnologyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.References[1] Baecker, R. M., J. Grudin, W. Buxton, and S. Greenberg, Readings in Human-Computer Interaction: Toward the Year 2000, second edition, Morgan KaufmannPubl., Inc., San Francisco, 1995[2] Bargar, R., I. Choi, S. Das, and C. Goudeseune, \Model-based interactive soundfor an immersive virtual environment," Proc. 1994 Int'l. Computer Music Con-ference (Tokyo, Japan), pp. 471{477.15
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Box 1. Computer-Assisted Music CompositionThe idea of using computers for music composition goes back to the 1950s, whenLejaren Hiller performed his experiments at the University of Illinois [7]. The premiereof his Quartet No. 4 for strings \Illiac Suite" [8] (May 1957) is generally regardedas the birth of computer music. Since then, computers have helped many composersto algorithmically synthesize new sounds and produce new pieces for acoustic as wellas digital instruments. The proceedings of the annual conferences sponsored by theICMA (International Computer Music Association) are good sources of references [19].Why would a composer need computer assistance when composing? A quickanswer is that, like in many other areas, routine operations can be relegated to themachine. A more sophisticated reason may be that the composer may rely on expertsystems to write Bach-like chorales or imitate the mannerisms of Chopin or Rach-maninov. There are, however, more compelling reasons when composing is viewed asa speculative and experimental endeavor, rather than as an ability to manufacturepleasing sounds [22].Music is basically a dynamic event evolving in a multidimensional space; as such,it can be formalized [28]. The composer controls the evolution by supplying a set ofrules, and accepts the output as long as it is consistent with the logic of the programand the input data. If the set of rules allows for a certain degree of randomness, theoutput will be di�erent every time a new \seed" is introduced. The same code andinput data may thus produce an unlimited number of compositions, all belonging tothe same \equivalence class" ormanifold composition [23]. The members of a manifoldcomposition are variants of the same piece; they share the same structure and are theresult of the same process, but di�er in the way speci�c events are arranged in time.A nontraditional way of composing, the manifolds show how high-performacecomputing provides the composer with new means to try out compositional strategiesor materials and hear the results in a reasonable amount of time.
20



Box 2. LoudnessSound is transmitted through sound waves|periodic pressure variations that causethe eardrums to vibrate. But the perception of loudness has as much to do withthe amount of energy that is carried by the sound wave as with the processing ofthis energy that takes place in the ear and the brain once the sound wave has hitthe eardrums. The latter is a much more subjective part of the experience. Thealgorithms underlying the loudness routines of DIASS incorporate therefore formalde�nitions, as well as results of psychoacoustic research experiments. We summarizethe most relevant elements of the algorithm, referring the reader to [17] or [18] fordetails.The de�nition of (perceived) loudness begins with the consideration of the energycarried by the sound wave. The intensity I of a pure tone (sinusoidal sound) isexpressed in terms of its average pressure variation �p (measured in newton/m2),I = 20� log10(�p=�p0):�p0 is a reference value, usually identi�ed with a traveling wave of 1,000 Hz at thethreshold of hearing, �p0 = 2 � 10�5 newton/m2. The unit of I is the decibel (dB).Because of the way acoustical vibrations are processed in the cochlea (the internalear), the sensation of loudness is strongly frequency dependent. For instance, while anintensity of 50 dB at 1,000 Hz is considered piano, the same intensity is barely audibleat 60 Hz. In other words, to produce a given loudness sensation at low frequencies,a much higher intensity (energy 
ow) is needed than at 1,000 Hz. The intensity I istherefore not a good measure of loudness if di�erent frequencies are involved.In the 1930s, Fletcher and Munson [5] performed a series of loudness-matchingexperiments, from which they derived a set of curves of equal loudness. These arecurves in the frequency (f) vs. intensity (I) plane; points on the same curve rep-resent single continuously sounding pure tones that are perceived as being \equallyloud." They are similar to those recommended by the International Organization forStandardization (ISO) [9] and are presented in Fig. 4. The curves show clearly that,in order to be perceived as equally loud, very low and very high frequencies requiremuch higher intensities (energy) than frequencies in the middle range of the spectrumof audible sounds.The (physical) loudness level Lp of a Fletcher-Munson curve is identi�ed withthe value of I at the reference frequency of 1,000 Hz. The unit of Lp is the phon.The Fletcher-Munson curves range from a loudness level of 0 to 120 phons over a21
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Figure 4: Curves of equal loudness (marked in phons) in the frequency vs. intensityplane.frequency range from 25 to 16,000 Hz.The loudness level Lp still does not measure loudness in an absolute manner: atone whose Lp is twice as large does not sound twice as loud. Following Rossing [18],we de�ne the (subjective) loudness level Ls in terms of Lp by the formula Ls =2(Lp�40)=10. The unit of Ls is a sone. To be e�ective, loudness scaling must be doneon the basis of sones.The loudness of a sound which is composed of several partials depends on howwell the frequencies of the partials are separated. With each frequency f is associateda critical band, whose width �f is approximely given by the expression [31]�f � 25 + 75 �1 + 1:4(f=1000)2�0:69 :Intensities within a critical band are added, and the loudness of a critical band canagain be read o� from the Fletcher-Munson tables. If the frequencies of its constituentpartials are spread over several critical bands, the loudness of a sound is computedin accordance with a formula due to Rossing [18],Ls = Ls;m + 0:3Xi Ls;i:Here, Ls;m is the loudness of the loudest critical band, and the sum extends over theremaining bands.The loudness routines in DIASS use critical band information and a table derivedfrom the Fletcher-Munson curves to create complex sounds of speci�ed loudness.22



Box 3. Loudness of Sound ClustersThe waveform of Fig. 5, which was produced with DIASS, illustrates the concept ofequal loudness across the frequency spectrum and for di�erent timbres. The waveformrepresents �ve sound clusters, each lasting 5.5 seconds (except the fourth, which lasts5.7 seconds). The clusters, altough of widely di�erent structure, have been designedto be perceived at the same loudness level (25 sones).
Figure 5: Waveform of �ve sound clusters of equal perceived loudness.The distribution of the sounds within each cluster is represented schematicallyin the diagram of Table 2. The �rst sound cluster has 24 sounds. The fundamentalfrequencies of the sounds range from 40 to 5,000 Hz. Each sound is harmonicallytuned; that is, it is made up of a fundamental and all its harmonics (partials whosefrequencies are integer multiples of the fundamental frequency). The frequencies arelimited to one-half of the sampling rate (Nyquist criterion); hence, the number ofpartials in this cluster is 754 (at a sampling rate of 22,050 Hz). The second soundcluster has 5 sounds, harmonically tuned, with fundamental frequencies ranging from40 to 4,000 Hz; the number of partials is 113. The third, fourth, and �fth clusterhave 15, 1, and 10 sounds, with 453, 60, and 250 partials, respectively. All partialsare assigned the same amplitude, which presents the worst case scenario when onetries to obtain the same perceived loudness for all clusters.23



Table 2: Distribution of fundamentals in the clusters of Figure 5.Fundamental 24 sounds 5 sounds 15 sounds 1 sound 10 soundsfrequency (754 partials) (113 partials) (453 partials) (60 partials) (250 partials)5,000 Hz4,500 Hz4,000 Hz3,000 Hz2,666 Hz2,000 Hz1,666 Hz1,333 Hz1,000 Hz750 Hz625 Hz500 Hz400 Hz300 Hz200 Hz165 Hz130 Hz90 Hz80 Hz70 Hz60 Hz53 Hz46 Hz40 HzTime 0.0" 5.5" 11.0" 16.5" 22.2"
24



Box 4. Computational ComplexityTo give some idea of the computational complexity, consider the following simplescenario, where we wish to sonify time-varying data representing the values of twoprimary and several secondary observables measured over the course of an experiment.A natural choice is to map the primary observables onto loudness and frequency andto use amplitude and frequency modulation to monitor the secondary observables.The sample values of the sound wave S must be calculated from an expression of theform S(t) = a(t) sin (2�f(t)t+ �) : (1)The frequency f represents three degrees of freedom: the carrier frequency fC , andthe amplitude aFM and frequency fFM of the modulating wave,f(t) = fC(t) + aFM(t) sin �2�fFM t+ �FM� : (2)The carrier frequency is identi�ed with a primary observable, each of the remainingtwo degrees of freedom can be identi�ed with a secondary observable,Similarly, the amplitude a is given by an expression of the forma(t) = aC(t) + aAM (t) sin �2�fAM t+ �AM� : (3)We compute the carrier amplitude aC from the observed loudness, which is identi�edwith one of the (primary) observables, so its value is given. The amplitude aAM andfrequency fAM of the modulation represent two more degrees of freedom, which canbe identi�ed with two other secondary observables. In total, we have therefore twoprimary and four secondary variables (not counting the phases, which we assume tobe static).The amplitude aC(t) must be computed such that S(t) has the perceived loudnesslevel Ls(t), Ls(S(t)) = Ls(t): (4)The loudness function Ls is a nonlinear function of the amplitude and frequency ofthe partial (sound). Its computation is done in the loudness routines of DIASS andinvolves a signi�cant number of operations, including table lookups; see Box 2.On the basis of these formulas we can obtain a rough estimate of the numberof operations (additions, multiplications, function evaluations|sine, exponential, orlogarithm, and table lookups) required for the computation of a single sample value.The contribution that is most di�cult to estimate is the computation of the carrier25



Table 2: Number of operations per partial per sample value.Eq. Adds Mults Fn Evals Tbl Lkups(1) 1 3 1 -(2) 2 3 1 -(3) 2 3 1 -(4) 1 3 2 1Total 6 12 5 1amplitude from the loudness; the data in Table 2 represent the minimum number ofoperations. Ignoring phases, etc., we �nd a total of at least 24 operations. Hence, atthe standard rate of 44,100 samples per second, one needs to perform more than 1.1million operations per second.The simultaneous soni�cation of more observables is obviously much more com-plicated; in fact, the complications grow exponentially. A careful estimate of thecomputational complexity requires an analysis of the anticlip routines, which is be-yond the scope of the present article.
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