
Numerical Relativity in a Distributed EnvironmentWerner Benger 1;2 Ian Foster 3 Jason Novotny 4 Edward Seidel 1;4;5John Shalf 4 Warren Smith 3 Paul Walker 11 Max-Planck-Institut f�ur Gravitationsphysik, Albert-Einstein-Institut2 Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin3 Mathematics and Computer Science Division, Argonne National Laboratory4 National Center for Supercomputing Applications5 Departments of Astronomy and Physics, University of Illinois atUrbana-ChampaignAbstractThe Cactus parallel simulation framework provides a modular and extensible set ofcomponents for solving relativity problems on parallel computers. In recent work, wehave investigated techniques that would enable the execution of Cactus applicationsin wide area \computational grid" environments. In a �rst study, we investigated thefeasibility of distributing a single simulation across multiple supercomputers, while in asecond we studied techniques for reducing communication costs associated with remotevisualization and steering. Distributed simulation was achieved by using MPICH-G,an implementation of the Message Passing Interface standard that uses mechanismsprovided by the Globus grid toolkit to enable wide area execution. Experiments wereperformed across SGI Origins and Cray T3Es with geographical separations rangingfrom hundreds to thousands of kilometers. Total execution time when distributedincreased by between 48% and 133%, depending on con�guration. We view theseresults as encouraging as they were obtained with essentially no specialized algorithmicstructures in the Cactus application. Work on remote visualization focused on thedevelopment of a Cactus module that computes isosurfaces inline with numericalrelativity calculations. Experiments demonstrated that this technique can reducenetwork bandwidth requirements by a factor ranging from 2.5 to 114, depending onthe nature of the problem.1 IntroductionMany scienti�c research communities involve collaborations that span the globe and desireto share their widely distributed resources. Recent advances in networking technologyhave supported such e�orts by enabling the construction of scienti�c applications that usegeographically distributed resources. The numerical simulations community is respondingby developing tools that allow better access to widely distributed supercomputing,networking, and storage resources. We discuss our experiences running simulations based onthe Cactus portable parallel simulation framework for solving problems in general relativityon geographically distributed resources.We examine two di�erent issues for running the Cactus code in a distributed environ-ment. The �rst problem is running a Cactus simulation on multiple parallel computersystems. We are examining this problem because we hope to perform larger simulationsthan are currently possible on a single parallel computer. We distribute Cactus simulations1



2across multiple supercomputers using the mechanisms provided by the Globus toolkit. Inparticular, we use Globus mechanisms for authentication, access to remote computer sys-tems, �le transfer, and communication. The Cactus code uses MPI for communication andmakes use of MPICH-G [9], an MPI implementation layered atop Globus communicationmechanisms. These communication mechanisms allow a MPI application to be executedon distributed resources.We �nd that without performing any code optimizations, our simulations ran 48% to100% slower when using an Origin at the National Center for Supercomputing Applications(NCSA) and an Onyx2 at Argonne National Laboratory (ANL). We also ran simulationsbetween Cray T3Es in Germany and a T3E at the San Diego Supercomputing Center(SDSC). Running between the T3Es in Germany resulted in an increase in executiontime of 79% to 133%, and running between a German T3E and a T3E at the San DiegoSupercomputing Center resulted in an execution time increase of 114% to 186%. We �ndthese results encouraging as they indicate that even in extreme wide area con�gurations andin the absence of optimizations, communication costs are only around 50 percent of totalruntime. We expect optimizations such as message combining, optimized protocols, andcomputation/communication overlap to reduce communication costs substantially. Hence,it appears likely that distributed execution of Cactus applications will prove to be practical.The second issue we examine here is remote visualization and steering of the Cactuscode. It is common when performing remote visualization to transfer 3-D datasets from asimulation code to a separate visualization code that (for example) constructs isosurfaces.While simple and modular, this approach can result in excessive communication. Themodular structure of the Cactus framework makes it relatively easy to construct anisosurface module that performs isosurfacing operations on the same processors as thesimulation. Experiments with realistic astrophysics applications demonstrate that thistechnique can reduces bandwidth requirements associated with visualization by a factorthat ranges from 2.5 to 114, depending on the complexity of the data being visualized. Thisperformance improvement and the availability of high-performance wide area networks hasallowed scientists in the United States to perform real-time visualization and steering oflarge Cactus calculations running in Germany.The next section describes the Cactus framework. Section 3 describes the Globustoolkit, Section 4 describes our experiences and results, and Section 5 contains ourconclusions.2 CactusCactus [1] is a modular framework for creating portable parallel �nite-di�erence simulationcodes. The Cactus code's primary application has been solving Einstein's equations ofgravity [4], including studies involving black holes [5], self-gravitating �elds [16], andrelativistic hydrodynamics such as the coalescence of two neutron stars (NASA NeutronStar Grand Challenge Project) [2]. The Cactus code was originally developed at the Max-Planck-Institut for Gravitational Physics (Albert-Einstein-Institut) in Potsdam, Germany,by Paul Walker and Joan Mass�o. Since then, development of Cactus has been taken overby a community of Cactus users, particularly at Washington University in St. Louis incollaboration with the Computational Relativity Group at AEI-Potsdam. The most recentversions of Cactus are completely generalized so it can be reused to support wider range ofsimulation problems.Cactus has been designed from the start to support the development e�orts of many



3programmers working on independent projects by making heavy use of the CVS coderevision system and a very modular system for adding simulation capabilities. The modulesthat plug into Cactus are commonly referred to as \thorns." Parallelism and portabilityare achieved by hiding MPI, the I/O subsystem, and the calling interface under a simpleabstraction API. Cactus allows modules to be written completely natively in either Cor f77/f90. This makes it considerably easier for physicists to turn existing codes (themajority of which are implemented in Fortran) into modules (thorns) that plug into theCactus framework. All of the bene�ts of a modern simulation code are available withoutrequiring major technique changes for the programmers.The Cactus user community spans the globe, with users in the United States, Germany,Spain, and Hong Kong. Similarly, the computational resources that the Cactus users wouldlike access to are also widely distributed. Managing remote data poses one of the mostdi�cult challenges to using distant resources. It can take longer to transfer the data thatresults from a simulation than to actually run the simulation code. For the largest problems,the computational resources needed to visualize the resulting data may be nearly as large assupercomputer that was originally used to create the data. In order to meet these challenges,researchers at NCSA and the Rechenzentrum der MPG at Garching Germany [3] created aremote visualization thorn that does the visualization computations in-line with the codeand can be steered by using a remote client application. This allows the visualizationcomputations to run with the same degree of parallelism as the simulation codes, resultingin exceptionally fast performance. The geometric information is sent via a network socket toa visualization client application, which runs on a display device such as an ImmersaDesk.The geometry data generally requires considerably less network bandwidth than does theraw data. The user can control various visualization parameters such as the isosurface levelfrom the visualization client. In addition, selected simulation parameters can be controlledby the client so that the simulation can be steered as it proceeds.3 GlobusThe supercomputing resources available to Cactus users have di�erent resource reservationprocedures, data storage systems, security requirements, and programming environments.The Globus system provides a single set of tools to bring control of these worldwidedistributed resources to each user's desktop. Globus consists of a core set of low-levelservices upon which higher-level services are constructed. The low-level services used inthis work are services for authentication, information distribution, resource management,and access to remote data.The Globus Security Infrastructure (GSI) provides authentication based on public keycryptography. Once a user has been authenticated to Globus, he is then automaticallyauthenticated to all local administrative domains that have installed Globus and that theuser has access to. This is accomplished by mapping Globus credentials to local credentialsthrough a security gateway.The Metacomputing Directory Service [7] (MDS) provides a logically centralized placeto store information about entities. The MDS is accessed using the Lightweight DirectoryAccess Protocol [12] (LDAP) and stores information in a hierarchical directory informationtree. The directory service contains information about computer systems, networks, users,and so forth. Further, the MDS contains dynamic information such as the number of freenodes on computer systems and the latency and bandwidth between systems. This allowsreal-time decisions to be made about what resources to use.



4The Globus Resource Allocation Manager [6] (GRAM) provides resource managementfunctions to start, monitor, and terminate serial and parallel applications. The purpose ofthe GRAM is not to replace local scheduling systems but to provide a common interfaceto the variety of local scheduling systems already in use. GRAMs have been layered atopEASY [13], LSF [15], Condor [14], and other local scheduling systems. In addition, aGRAM that simply does a fork() and exec() is available for unscheduled local resources.Globus provides access to remote data using the Global Access to Secondary Storage(GASS) component. This component allows applications to access �les from various typesof servers (currently GASS, ftp, or http) from remote systems. The remote �les are accessedby using GASS versions of the standard C I/O functions. Files from these servers are movedto local caches and accessed locally. If remote �les are written to, they are moved backto their remote server after they have been closed. The GASS library has been integratedwith the GRAMs so that the executable given to the GRAMs can be located remotely.The GRAM will use GASS to transfer the remote executable to the local system and thenexecute it. This functionality along with the GASS �le I/O commands enables location-independent applications.One high-level Globus service used by Cactus is an implementation of the MPI [11]message-passing standard called MPICH. MPICH is a portable implementation of MPIdeveloped at Argonne National Laboratory and Missouri State University. MPICH isimplemented over an abstract communication device, which in turn can be implementedusing many di�erent communication mechanisms such as shared memory or a proprietarymessage-passing protocol. A Globus implementation [9] of this abstract communicationdevice that uses the Nexus [10] communication library, and Globus mechanisms for resourceallocation is available.The Nexus library is a low-level Globus component that is a communication library thatprovides asynchronous remote procedure calls and threading mechanisms. Nexus supportsmultimethod communication mechanisms where a process can use multiple communicationmechanisms to communicate with other processes. Nexus will automatically select theoptimal communication mechanism to use. For example, Nexus will use shared memoryto communicate with processes on the same SMP and will use TCP to communicate withprocesses on a di�erent computer system.4 Experiences and ResultsWe use Cactus and Globus day-to-day and also in demonstrations such as 1998 meeting ofthe National Computational Science Alliance (Alliance98) and the SC'98 conference. Wehave several goals with this work. First, we want to run very large Cactus simulations ondistributed computer systems. These are simulations that we cannot perform on a singlesupercomputer. Second, we want to be able to interactively visualize and steer Cactussimulations while they execute.4.1 Single-System PerformanceThe �rst issue we examine is the overhead of using MPICH with the Globus device (MPICH-G) instead of native MPI. Figure 1 compares the execution times of a single iterationof a 128x128x128 Cactus simulation on the ANL Onyx2 when Cactus is compiled withnative MPI or MPICH-G. The execution times are nearly the same. Figure 2 showsthe execution time of the same problem on a T3E at the Konrad-Zuse-Zentrum f�urInformationstechnik Berlin (ZIB). We see that Cactus performance decreases when MPICH-
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Fig. 1. Execution time of a single iteration of a 128x128x128 Cactus simulation on the ANLOnyx2 when compiled with native MPI and MPICH-G.G is used instead of native MPI on the T3E. This decrease occurs because MPICH-Gperformance is proportionally worse than native MPI on the T3E than the Onyx2, as wewill see next.Figure 3 shows the performance of the native MPI and MPICH-G implementations onthe ANL Onyx2. The data shows that the MPICH-G implementation has lower bandwidththan the native MPI implementation. The native MPI has a bandwidth that ranges from4.3 Mbits/sec for small messages to 1.6 Gbits/sec for large messages while the MPICH-Gimplementation has a bandwidth of 1.7 MBits/sec for small messages to 673.7 Mbits/secfor large messages. In addition, the native MPI implementation has a latency of 14.5microseconds while the MPICH-G implementation has a latency of 37.5 microseconds.Figure 3 also shows the same bandwidths on the ZIB T3E. The native MPI implementationhas a bandwidth that ranges from 3.9 Mbits/sec for small messages to 1.3 Gbits/sec forlarge messages while the MPICH-G implementation has a bandwidth of 280 Kbits/sec forsmall messages to 539 Mbits/sec for large messages. The latency for native MPI on thatT3E is 16.5 microseconds, and the latency is 225 microseconds when using MPICH-G.The performance of the Cactus code does not su�er when using MPICH-G on theANL Onyx2 because the Cactus code overlaps computation and communication and canhide the lower communication performance of MPICH-G. The di�erence in performancebetween native MPI and MPICH-G on the ZIB T3E, however, is too large to be hidden bythe Cactus computations. The lower bandwidth of the MPICH-G implementation is dueto an extra copy on the sending and receiving sides. These copies are being removed, andwe expect the MPICH-G bandwidth to be close to the native MPI bandwidth.4.2 Distributed PerformanceWe next examine the performance of the Cactus code when executed on multiple parallelcomputers. We use several pairs of computers in these experiments to investigate the
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Fig. 2. Execution time of a single iteration of a 64x64x128 Cactus simulation on the ZIB T3Ewhen compiled with native MPI and MPICH-G.
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Fig. 3. Bandwidth of native MPI and MPICH-G.
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Fig. 4. Execution time of a single iteration of a 128�128�128 Cactus simulation.e�ect of network performance. Figure 4 shows the execution time of an iteration of a128�128�128 Cactus simulation when the simulation is run on only the ANL Onyx2 or anequal number of nodes on both the ANL Onyx2 and a NCSA Origin. The data shows thatusing two machines instead of one increases the execution time of each iteration by 48%to 100%. This decrease in performance is not acceptable in most circumstances, althoughwe can imagine that the larger amount of memory available will allow us to run largersimulations than we can run on a single system.Figure 5 shows the bandwidth obtained when running an MPI ping-pong test betweenthe ANL Onyx2 and a NCSA Origin. Our MPI measurements show that the latency is3.75 milliseconds and the bandwidth varies from 17 Kbits/sec for small messages to 24.2Mbits/sec for large messages. This latency is 250 times worse than the latency betweenprocesses on the Onyx2, and the bandwidth is a factor of 30 worse.Figure 6 shows the average execution time of an iteration of a 64x64x128 Cactussimulation when executed on one or two Cray T3Es. Using the ZIB T3E and the T3E atRechenzentrum Garching (RZG) increases execution time from 79% to 133%. This increaseis larger than the increase seen when using two SGI systems. This larger increase can beattributed to the network between the two T3Es being slower than the network betweenthe two SGI systems. Also note that the execution time for the simulation between ZIBand RZG increased when 64 nodes were used. We believe this was due to competition forthe network connection between the two machines. Figure 5 shows that the MPICH-Gbandwidth between a T3E at ZIB and a T3E at RZG is 1.5 Kbits/sec for small messagesand 4.2 Mbits/sec for large messages. The latency is 42.5 milliseconds. This latency is 10times higher than the latency between the SGI systems and the bandwidth is 6 times lower.We also ran simulations between the ZIB T3E and the SDSC T3E over a temporaryhigher-speed trans-Atlantic connection into STAR-TAP. Simulating on these two systemsresulted in an execution time increase of 114% to 186% over using the ZIB T3E. Weobserved that the network performance between these systems was worse than the networkperformance between the two German T3Es. Unfortunately, we did not make systematic
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Fig. 6. Execution time of a single iteration of a 64�64�128 Cactus simulation.MPICH-G bandwidth measurements during this time.The performance results for the Cactus simulations above were obtained withoutperforming any optimizations for a distributed environment. One possible optimizationis to combine messages. We instrumented the Cactus code to examine the messages beingsent between the processes. We found that most of the messages being sent are small(9300 bytes during a 128�128�128 simulation on 128 nodes). The data in Figure 5 showsthat larger messages should be used to achieve higher bandwidth: the large latencies aredominating communication time for smaller messages. We can accomplish this task in twoways. First, we can send the arrays for all of the variables as one message instead of onemessage per array. Second, if this does not provide su�ciently large messages, we cancombine messages from processes on the same machine that are going to the same process



9Table 1Simulation performance of a 128�128�128 computational domain on a 128-processor Origin2000Number of Average Simulation Average Isosurfacing Percentage of TimeProcessors Time per Step (sec) Time per Step (sec) Isosurfacing1 129.00 71.3 35.62 66.70 24.1 26.64 30.20 10.6 26.38 15.60 5.28 25.316 7.10 2.63 27.032 3.57 1.37 27.764 2.03 0.77 27.5on a di�erent machine.4.3 Remote Visualization and SteeringThe last issue we address is performing isosurfacing calculations inline with the parallelsimulations. This technique allows the parallel computers to quickly calculate isosurfacesand then send only the geometry data to the visualization device, reducing network tra�c.Using this technique, we have found that the current generation of wide-area networksprovide su�cient performance for real-time visualization and steering of the Cactus code,even when the MPP and visualization device are separated by the Atlantic ocean.Our experiments show that computing isosurfaces on the parallel computer for a128�128�128 problem and then sending them to the visualization device results in 0.14 to6.4 Mbytes of data being transferred, depending on the complexity of the isosurface. If wesend the data at all of the grid points, 16 Mbytes would be transferred. This is a reductionin data transmission by 2.5 to 114.Table 1 shows a series of benchmark runs on a NCSA Origin. Each of the benchmarkruns of the simulation code used 128�128�128 grid where each grid point contains 56double-precision values, one double value for each of 56 properties being monitored. Thedata shows that the isosurfacer is as parallel as the simulation code (the percentage of timespent isosurfacing stays relatively constant).Another approach is to perform the isosurfacing on a separate parallel computer.Members of our team used that approach for a distributed computing demo at SC95 on theI-WAY [8]. The problem with this approach is that the cost of moving the data from thesimulation host can far exceed the bene�ts of parallelizing the visualization computations.We can consider the case of a 128�128�128 simulation in Table 1 over a connection with15 Mbytes/sec (the availible bandwidth we had at Alliance98). It would have taken 80seconds to send each step of the simulation as raw data. Sending the geometry would take1.4 to 30 seconds, and more than makes up for the cost of computing the isosurfaces in-linewith the simulation.5 ConclusionWe have found that the hardware and software infrastructure exists to simulate general rel-ativity problems in a distributed computational environment, at some cost in performance.We examine two di�erent issues for running the Cactus code in such a distributed environ-



10ment. The �rst issue is running a Cactus simulation on multiple parallel computer systems.Our objective is to perform larger simulations than are currently possible on a single paral-lel computer. We distribute Cactus simulations across multiple supercomputers using themechanisms provided by the Globus toolkit. In particular, we use Globus mechanisms forauthentication, access to remote computer systems, �le transfer, and communication. TheCactus code uses MPI for communication and makes use of an MPI implementation layeredatop Globus communication mechanisms. These communication mechanisms allow a MPIapplication to be executed on distributed resources.We �nd that without performing any code optimizations, our simulations ran 48% to100% slower when using an Origin at the National Center for Supercomputing Applications(NCSA) and an Onyx2 at Argonne National Laboratory (ANL). We also ran simulationsbetween Cray T3Es in Germany and a T3E at the San Diego Supercomputing Center(SDSC). Running between the T3Es in Germany resulted in an increase in execution timeof 79% to 133%, and running between a German T3E and a T3E at the San DiegoSupercomputing Center resulted in an execution time increase of 114% to 186%. Weare very encouraged that we are able to run simulations on parallel computers that aregeographically distributed, and we have identi�ed several areas to investigate to improvethe performance of Cactus simulations in this environment.The second issue we examine here is remote visualization and steering of the Cactuscode. Cactus is a modular framework and we have implemented a module for this task.This module performs isosurfacing operations on the same parallel computers that arerunning the simulation and reduces bandwidth requirements between the simulation andvisualization components by a factor of 2.5 to 114, depending on the complexity of thedata being visualized. This performance improvement and the available high-performancewide area networks allow us to distribute the simulation and visualization components indi�erent parts of the United States and Europe and interactively visualize and steer cactussimulations.In future work we will address the performance problems when running the simulationcode on distributed resources. We are improving the performance of the Globus MPICHdevice to increase the bandwidth that can be used to transfer data between processes.We are also looking at techniques to improve the performance of Cactus in a distributedenvironment. One example is combining the many small messages that the Cactus codecurrently sends into fewer, larger messages between the computer systems. This will helpovercome the large latencies that exist between geographically distributed computers.AcknowledgmentsWe gratefully acknowledge the contributions of Manuel Panea, Ulli Schwenn, HermannLederer at RZG-Garching, Hans-Christian Hege and Hubert Busch at Konrad-Zuse-Institut, the groups at AEI and Washington University, especially Joan Mass�o and GerdLanfermann at AEI and Mark Miller and Malcolm Tobias at Washington U, Tom Clune atSGI/Cray, Peter Feil and sta� at Deutsche Telekom/Berkom, Bill St. Arnaud and sta� atTeleglobe/Canarie, Jason Novotny and Meghan Thornton at NLANR, and Brian Toonenat Argonne National Laboratory. The Cactus code is supported by the Albert EinsteinInstitute and NASA grant NASA-NCCS5-153. The Globus project is supported by theMathematical, Information, and Computational Sciences Division subprogram of the O�ceof Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38; by NSF, through its PACI program; and by DARPA, as part of its
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