
Advanced Computational Techniques for Laue Di�ractionAnalysis�Zhong Ren,y Rongqin Sheng,z and Stephen J. WrightxFebruary 4, 1999PREPRINT ANL/MCS-P740-0199, JANUARY, 1999, MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NA-TIONAL LABORATORY, ARGONNE, IL 60439, USA.
AbstractWe describe LaueView, a code for processing the measured intensity data in Laue X-raydi�raction experiments to obtain corrected structure amplitudes for each reection that takeaccount of the various distortion e�ects. The resulting corrected intensity data can then beused to recover the molecular structure by isomorphous re�nement or by solution of the phaseproblem. We describe the key numerical techniques used in LaueView and outline the improve-ments we made to obtain a new, more e�cient, and parallel version of the code. We concludewith some computational results obtained on a real data set that illustrate our improvements.The basic principles of the Laue method are described in an appendix, where we outline thedistortions in the measured intensity data due to e�ects such as blurring, overlap of the spots,the nonuniform distribution of intensities in the incident X-ray beam, and absorption e�ects ofvarious types.1 IntroductionX-ray di�raction analysis of crystals reveals the structure of the molecules that make up the crys-tal. The problem of determining the structure of large molecules, particularly biomolecules, is animportant one that tests the limits of current computational capabilities.When X-rays are beamed onto a crystal, they are di�racted to produce a regular array of \spots"of varying intensity on an area detector. The locations of the spots are determined by the crystal lat-tice, while their intensities depend on the spatial and temporal average conformation of all moleculesin the crystal and during data collection. In this paper, we focus on the important process of scalingthe measured intensities to obtain the structure factor amplitudes, and thus correcting for variouse�ects embedded in the raw data. We also identify other issues that arise in the processing of themeasured intensity data, such as prediction of the di�raction pattern and determination of the in-tensity of each spot on the detector by integrating over a �nite area of irregular shape. Processing of�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,by a DOE Grand Challenge Application Grant, B&R No. KJ-01-01-03-0, and in part by NIH Grant RR07707 toKeith Mo�at.yDepartment of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago,IL 60637, USA; renz@cars.uchicago.eduzMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,IL 60439, USA; sheng@mcs.anl.govxMathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,IL 60439, USA; wright@mcs.anl.gov 1



the di�raction data is a challenging task from many viewpoints: modeling and analysis, numericaltechniques, and computational requirements.We are interested in the Laue method of X-ray di�raction, in which the incident X-ray is notmonochromatic, but rather is made up of a spread of di�erent wavelengths. The Laue technique pro-duces complex di�raction images containing many spots, some of which overlap or are superimposed.Monochromatic (single-wavelength) beams are more widely used, and they produce much simplerdi�raction images that are more easily analyzed. Despite the additional complications, however, theLaue technique is more suitable in situations in which data must be gathered quickly, such as whenour intention is to observe reactions in progress (see, for example, Genick et al. [2]). Another ma-jor advantage is that Laue di�raction is more suited to synchotron sources (such as the AdvancedPhoton Source at Argonne National Laboratory), which naturally produce bright X-rays with aspread of wavelengths. Mo�att [4] discusses the Laue technique, while Clifton et al. [1] describe theevaluation of Laue di�raction images.Figure 1 shows a representative Laue di�raction image collected from a restrictocin crystal.This crystal is in space group P21 with cell constants a = 50:2�A, b = 82:2�A, and c = 38:0�A; and� = 100:5�. This crystal has a low mosaic spread and di�racts robustly to a high resolution of1:5�A. Figure 2 is a Laue image of a thermal stable �-glucosidase in space group P4212 with cellconstants a = b = 220�A and c = 100�A. This crystal has much higher mosaic spread, revealed by theelongated di�raction spots. A complete static data set requires tens of such images depending onthe crystal space group, resolution and wavelength bandpass of the beamline used. A time-resolveddata set that imaged a reaction in progress would require a data volume equivalent to 100 staticdata sets, that is, thousands of raw images. The exposure time available to collect those images isvery short, typically subseconds. On the other hand, the elapsed time of such experiment can rangefrom hours to days, most of which is spent on detector readout and crystal manipulation. Monthsare typically required for crystallographers to process the images acquired from a synchrotron run.It is this aspect of the experimental process that we discuss in this paper.To process intensity data from a Laue di�raction experiment, the measured spot intensities mustbe adjusted to account for e�ects of variation in intensities of the incident beam as a function ofwavelength, energy absorption by the crystal, polarization of the X-ray beam, temperature e�ects,and so on. In addition, harmonic overlapping spots must be \deconvoluted" and a speci�c intensityassigned to each of the component reections.The purpose of the LaueView code, which is the basis of the work described here, is to processthe raw data to obtain a set of corrected, accurate structure factor amplitudes. The code consistsof three phases:1. Prediction, in which the locations of the di�raction spots on the image and the wavelength ofeach reection are determined;2. Integration, in which the shape of the di�raction spots in each region of the image and theintensity of each spot are determined; and3. Scaling, in which the measured intensities are corrected to account for the distortion e�ectsdiscussed above and are reduced to structure factor amplitudes.LaueView was written by one of the authors of this paper (Zhong Ren) and is described in detail byRen and Mo�at elsewhere [8, 9]. Our mission in the current project was to enhance the numericaland computational techniques used by LaueView to allow it to produce results of the same or betterquality in less computing time. Faster processing of data gathered from real protein crystals willallow more e�cient use of expensive experimental resources, such as synchotron beam lines, andmore e�ective use of the e�orts of the scientists involved in the experiment.2



Figure 1: Laue di�raction image collected from a restrictocin crystal3



Figure 2: Laue image of thermal stable �-glucosidase crystal4



The focus of our investigations was on the scaling part of the code (phase 3 above), whichaccounts for about half the execution time on a typical data set and involves the most challengingalgorithmic issues. The integration portion of the code accounts for most of the remaining processingtime, but it is naturally a parallel operation (di�erent spots can be integrated simultaneously) andis therefore not a bottleneck on our target parallel platforms. The prediction part of the code takesrelatively little time to execute.In the Appendix, we describe the basic principles of X-ray di�raction and explain the Lauemethod. Although this subject is well known to physicists, we believe that our treatment belowwill be easy to understand for a mathematical reader who is not familiar with the topic. Section 2describes the LaueView code, discussing both the modeling aspects and the major numerical com-puting issues. Section 3 describes the main computational issues in more detail and focuses on theimprovements we made in these areas. Computational results on an actual data set are given inSection 4.2 The LaueView CodeLaueView, the code with which we worked in this study, analyzes the measured intensity data fromthe detector and outputs the structure factor amplitudes jF (h; k; `)jfor each set of Miller indices(h; k; `). This section presents a brief description of LaueView. For more details, see Ren andMo�at [9].The �rst phase of LaueView involves indexing and prediction of the di�raction pattern, usingknowledge of the lattice and symmetry information, and of various geometric parameters of theactual experiment, such as the location of the beam center and of the crystal-to-detector distance.Good estimates of the latter parameters are available, and these estimates are re�ned by a least-squares data-�tting procedure based on comparison of the predicted pattern with the observedpattern. The main purpose of this phase is to determine the (h; k; `) indices and the wavelengthassociated with each spot. Such information is essential in dealing with the spatial-overlap problemthat was mentioned at the end of the appendix.In the second phase of LaueView, the raw intensities associated with each spot are determined.Because of the spatial-overlap problem and the irregular shape of most spots, this phase requiressophisticated modeling and numerical techniques. The shapes of spots in the same area of thedetector tend to be similar, though their intensities may vary widely. LaueView formulates a modelfor the intensity distribution in a group of overlapping spots in which a set of shared parameters(which vary only slowly across the detector space) is combined with one intensity parameter perspot, as well as a parameter that de�nes the average background intensity. Speci�cally, the intensityformula for a group of n + 1 overlapping spots that are centered at (xi; yi), i = 0; 1; : : : ; n, withelliptical orientation 'i, i = 0; 1; : : : ; n, isP (x; y) = nXi=0 pi expf�E(x; y;xi; yi; 'i; a; b; �; dx; dy; sa; ta; sb; tb; ga; gb)g + (1)px(x� x0) + py(y � y0) + pb;where E(x; y; x̂; ŷ; '̂; a; b; �; dx; dy; sa; ta; sb; tb; ga; gb) (2)= � (x� x̂+ dx) cos('̂+ �) + (y � ŷ + dy) sin('̂+ �)a+ sa(x� x̂) + ta(y � ŷ) �2ga5



+ ��(x� x̂+ dx) sin('̂+ �) + (y � ŷ + dy) cos('̂ + �)b+ sb(x� x̂) + tb(y � ŷ) �2gb :Note that the coordinates (xi; yi) and orientations 'i, i = 0; 1; : : : ; n are determined in the predictionphase. (The parameters dx, dy, and � are corrections to xi, yi, and 'i, respectively, that are uniformwithin the spot group and are allowed to vary only slowly across the parameter space.)Each spot group contains 14 shared parameters|a, b, �, dx, dy, sa, ta, sb, tb, ga, gb, px, py,and pb|as well as the n + 1 intensity parameters pi, i = 0; 1; : : : ; n. To obtain values for theshared parameters, LaueView chooses a small fraction of reections from the detector|reectionsfor which the signal-to-noise ratio is high, spatial overlap is at a minimum, and the spot center iswell predicted. For each spot group in this sample, it performs nonlinear least-squares data �tting ofthe predicted intensity (1) to the observed data, in which all n+ 15 parameters are allowed to vary.The detector space is then partitioned into a number of \bins," and an averaging and smoothingprocedure is applied to the shared parameters. The end result of this process is a \standard pro�le"for each bin that is de�ned by a set of 13 shared parameters that are shared by all spots withinthe bin. (The smoothing procedure ensures that these parameters vary only slowly across the entiredetector space.) Having thus �xed the shared parameters for all reections, we now perform linearleast-squares data �tting to obtain values for the intensity parameters pi (i = 0; 1; : : : ; n) and pbfor each spot. (Note that these parameters occur only linearly in the formula (1), hence the needonly for linear least squares.) Finally, the intensity I associated with a particular reection atthe point (x̂; ŷ) is obtained by integrating its intensity pro�le P (x; y) by using a standard rulefor numerical integration (Simpson's rule or Gaussian quadrature), and scaling by the intensityparameter p obtained from the linear-least-squares data �t to that reection's spot group.In the third phase of LaueView|the scaling phase|corrections are applied to the completeset of measured intensities to account for such e�ects as temperature factors, radiation damage,general absorption, and, most important, the varying intensity of the incident beam across itsrange of wavelengths. The resulting nonlinear least-squares data-�tting problem involves a verylarge number of observations (of the order of 105{106 for a protein data set) and a relatively smallnumber of parameters (typically 100{200). We recount a few details of the scaling operation hereand refer the interested reader to Ren and Mo�at [8, 9] for further information.We seek a multiplicative scaling factor f to be applied to each measured intensity I, to obtaina corrected intensity fI. The factor f depends on the Miller indices (h; k; `) and an index i of theparticular observation of this reection. In addition, f depends on various parameters whose valuesare to be recovered from the data-�tting process. It is composed of a product of 12 factors:f = fLfP f�fisoSfanisoSfisoBfanisoBfisoDfanisoDfAfUfO; (3)where each factor represents a correction for a di�erent e�ect. These component factors include thefollowing:� A polarization correction fP of the formfP = 2=(1 + cos2(2�) � sin � cos 2' sin2 2�);where � and ' are the Bragg angle of reection and the polar angle (which are functions of(h; k; `)) whereas sin � is the X-ray-beam polarization ratio. Here, � is a parameter whosevalue is to be determined by the data-�tting process.� An isotropic scale factor fisoS with the formfisoS = es;6



where s is a parameter to be determined by data �tting.� An anisotropic scale factor fanisoS, which has one of the following two forms, depending on thedesired level of sophistication: fanisoS = exp(a1h+ a2k + a3`); (4)or fanisoS = exp(a1h+ a2k + a3` + a4h2 + a5k2 + a6`2 + a7hk + a8k`+ a9`h); (5)where (h; k; `) are the Miller indices. The parameters are ai, i = 1; 2; : : :.� Isotropic and anisotropic temperature factors fisoB and fanisoB, respectively, de�ned byfisoB = exp(�B sin2 �=�2);fanisoB = exp(�Bh j�aj2h2 � Bkj�bj2k2 �B`j�cj2`2);where j�aj, j�bj, and j�cj are the lengths of the reciprocal lattice vectors and � is the wavelengththat produced the reection. There are four scalar parameters: B, Bh, Bk, and B`.The wavelength normalization factor f� is used to correct for the fact that the incident beamcontains a spread of wavelengths, of varying intensity. The curve that relates wavelength to intensity,known as the � curve, is not known directly|it must be parameterized and reconstructed by �ttingour intensity data and by using our knowledge of the crystal symmetry. Redundant measurementsat di�erent wavelengths and knowledge of the symmetry are instrumental in reconstructing the �curve. The curve is continuous, but may contain downward spikes at the absorption wavelengths ofa beam-focusing mirror (see Ren and Mo�at [9]).In LaueView2.5, the � curve is de�ned in terms of the Chebyshev basis functions cos(i arccos z),i = 1; 2; 3; : : :, for z 2 [�1; 1]. We �rst select the range [�min; �max] of measured frequencies andde�ne a normalized frequency measure �0 by�0 = �� (�max + �min)=2(�max � �min)=2 : (6)The � curve (equivalently, the correction factor f�) is de�ned asf� = 10�10 + exp " n�Xi=1 ci (cos(i arccos �0) � cos(i arccos �0r))# ; (7)where �0r 2 [�1; 1] is a reference frequency that �xes the scale of f� (through the relation f� =1 + 10�10 when �0 = �0r). The degree of the Chebyshev expansion (chosen by the user) is n�, whileci, i = 1; 2; : : :; n�, are the coe�cients to be determined by �tting the data. The term 10�10 isintroduced to keep f� strictly positive over the range in question.Parameterization of the � curve was one of the features that we changed in transitioning toLaueView3.1, as we describe in the next section.The other factors in (3) that we do not discuss in detail are the Lorentz factor fL, isotropicand anisotropic radiation damage factors fisoD and fanisoD, a general absorption correction fA, adetector spatial-nonuniformity corrector fU , and a detector nonlinearity corrector fO.For practical data sets, LaueView usually does not obtain its best results in a single least-squaresminimization in which all scaling parameters are allowed to vary at once. Rather, a better minimizeris usually found by performing a sequence of runs, where only a subset of the parameters is allowed7



to vary in each run while the remainder are �xed. The decision about which parameters to allowto vary on each run in the sequence is left to the user; intuition from working with large data setsseems to make for good decisions.LaueView2.5 is a Fortran 77 code of approximately 50,000 lines. Most of its arithmetic is per-formed in single precision. A Unix shell script is used to set up each run. The user edits this scriptto select the parameters to be varied and those to be �xed on a particular run, to decide the numberof basis functions to be used in the parametrization of the � curve, and to indicate whether thecode should start \cold" or use the approximate solution generated by a previous run as its startingpoint. LaueView was developed speci�cally for single-processor SGI workstations. It can be used toanalyze even monochromatic data if the parameters are set appropriately. A fuller description of thecode (from the viewpoint of the application) can be found in the papers of Ren and Mo�at [8, 9].It was used to produce the structures reported in Ren et al. [10] and Genick et al. [2]3 Numerical Computing IssuesLaueView uses numerous techniques from scienti�c computing, numerical analysis, and optimization,both in formulating its model of the di�raction process and in \solving" this model to obtain thecorrected intensities. Chief among these techniques are the following.� Curve �tting, in which the �-curve is approximated by ec(�), where c(�) is a �nite linearcombination of basis functions.� Nonlinear least-squares minimization. A large problem of this type is solved during the scal-ing phase of LaueView to determine the parameters, other than the crystal and molecularstructure, that a�ect the measured intensities. In addition, many small problems of this typeare solved during the integration phase of LaueView to determine the pro�le that de�nes theshape, orientation, and intensity distribution within each spot.� Numerical linear algebra, which is used in the solution of the norm-constrained linear least-squares problem that arises at each iteration of the nonlinear least-squares algorithm.In these and other areas, we were able to enhance the performance of LaueView considerably.The previous version, LaueView2.5, evolved into a new version, LaueView3.1. In this section, weoutline the major numerical operations in LaueView, highlighting the improvements we made in thenew version of the code. We also describe how the code was parallelized for execution on an IBMSP multiprocessor.3.1 Least-Squares Data FittingData �tting is the process of estimating the parameters in the model of a system by trying to matcha set of observations of the system as closely as possible. Suppose we denote the model by thefunction � : IRn� IR! IR, where �(x; t) is the output of the model for a given parameter vector x anddata point (ordinate) t 2 IR. Suppose that we have a set of m observations �i of the physical systemtaken at ordinates ti, i = 1; 2; : : : ;m (that is, at the data ordinate t = ti, the observed output of thesystem was �i 2 IR). We can form a residual vector r(x) of the di�erences between the model valuesand the observations, for a given parameter vector x, as follows:r(x) = [ri(x)]i=1m ; where ri(x) = wi[�(x; ti) � �i]:8



The wi, i = 1; 2; : : : ;m, are a set of �xed positive weights, chosen to balance the relative importanceof the di�erent observations. They could reect our relative con�dence in each observation; thosefor which the measurements are known to be more accurate and less \noisy" are sometimes assignedhigher weights.In least-squares data �tting, we seek the vector x that minimizes a weighted Euclidean norm ofthis vector. That is, we solve the optimization problemminx f(x) = 12 mXi=1 r2i (x) = 12kr(x)k22: (8)Various specialized and e�cient algorithms have been developed for solving this problem. Mostof these methods exploit the special structure of the gradient and Hessian (the �rst and secondderivative entities) of the function f(x). The Jacobian of the vector r(x)|the m� n matrix of �rstpartial derivatives|can be written asJ(x) = � @ri@xj �i=1;:::;m;j=1;:::;n :Elementary calculus then shows that the gradient rf(x) and Hessian r2f(x) are as follows:rf(x) = mXi=1 ri(x)rri(x) = J(x)T r(x); (9a)r2f(x) = J(x)TJ(x) + mXi=1 ri(x)r2ri(x): (9b)The algorithm used to solve the least-squares problems that arise both in the integration and inthe scaling phases of LaueView|the Levenberg-Marquardt algorithm|can be viewed as a Newton-like method with a trust region constraint on the step length, in which the true Hessian r2f isapproximated by the �rst term JTJ in its de�nition above (here and subsequently, for conciseness,we omit the argument x). In many situations, good steps can be obtained by making this approx-imation. The second term in (9b) may be dominated by the �rst term JTJ when the residuals ri,i = 1; 2; : : : ;m, are small at the solution, or when the residual functions ri are nearly linear, orwhen cancellation occurs in the summation. Even when the second term is not insigni�cant, theapproximation JTJ has the advantages of being positive semide�nite and of having similar scalingto the true Hessian.Our implementation of the Levenberg-Marquardt algorithm in LaueView3.1 follows that ofMor�e [5]. From our current point x, we obtain a candidate step � 2 IRn by solving the follow-ing subproblem: min�2IRn 12kr + J�k2 subject to kD�k2 � �; (10)where the scalar � is known as the trust-region radius, and D is a diagonal scaling matrix D =diag(d1; d2; : : : ; dn) with positive diagonal elements. Ideally, D should be chosen so that the sensi-tivity of the function f to perturbations in the values of each scaled variable (Dx)i is roughly thesame. (In LaueView3.1, we set Dii = max((JT J)ii; 1).) It is well known (see, for example, Mor�eand Sorensen [6]) that the solution of (10) satis�es the equation[JTJ + D2]� = �JT r; (11)9



or, equivalently, [D�1JTJD�1 + I](D�) = �D�1JT r; (12)for some value  > 0. We compute  and the corresponding � by the following procedure. First, wecompute the matrix D�1JTJD�1 explicitly and compute the factorizationD�1JTJD�1 = QSQT ; (13)where Q = [q1 j q2 j : : : j qn] is orthogonal and S = diag(s1; s2; : : : ; sn), withs1 � s2 � � � � � sn � 0:Since (D�1JT JD�1 + I) = Q(S + I)QT ;we can write the solution of (12) explicitly asD� = � nXi=1 qTi D�1JT rsi +  qi: (14)By orthonormality of the vectors q1; q2; : : : ; qn, we have thatkD�k2 = nXi=1 (qTi D�1JT r)2(si + )2 : (15)If the value  = 0 yields a scaled step norm kD�k smaller than �, then we set  = 0 in (11) andcompute � from the formula (14) with  = 0. Otherwise, the problem of �nding the appropriate(�) such that kD�k = � is equivalent to �nding a root of the scalar functionR�() = nXi=1 (qTi D�1JT r)2(si + )2 ��2;which is usually a monotonically decreasing function of . A specialized root �nding algorithm canbe applied to R�() to �nd an approximately optimal  (see Mor�e [5] for details). Then, recoveringthe step � from (14), it computes the ratio � of actual function decrease along this step to thedecrease predicted by the model in (10), that is,� = f(x) � f(x + �)f(x) � 12kr(x) + J(x)�k2 : (16)If this ratio is larger than a small positive number � (� = 10�3, say), the step is accepted, and weset x+ = x+ �. If � is close to its ideal value of 1 (� > :75, say), and if the trust-region constraint isbinding (that is, kD�k = �), we enlarge the trust region for the next iteration by setting � 2�.If, on the other hand, � falls below the acceptance threshold �, we reject the step � decrease � (bya factor of 4, say), and re-solve (10) to obtain a new �.In the scaling part of LaueView, a typical value ofm for a large data set is 105, while n is typicallyof the order of 102. The Jacobian J is large, \long and skinny," and not particularly sparse. Someimplementations of Levenberg-Marquardt (for example, the one described by Mor�e [5]) store Jexplicitly, compute a QR factorization, and use the R factor in the subsequent calculations neededto identify (�). In LaueView, J is too large to store explicitly. Instead, LaueView calculates the10



residual vector r and the Jacobian J row by row (that is, it calculates the quantities ri and rri insequence for i = 1; 2; : : : ;m) and accumulates the products JTJ and JT r(x) by using the formulaeJT J = mXi=1rri(rri)T ; JT r = mXi=1 rirri: (17)Because the evaluations of ri and rri are independent for di�erent values of i, they can be carriedout in parallel. We discuss this point further in Section 3.4.A variant of the Levenberg-Marquardt algorithm obtained from the book Numerical Recipes [7]was used in the earlier version of the code, LaueView2.5. This variant does not make use of a trust-region strategy but rather manipulates the parameter  explicitly. This parameter is increased whenthe candidate step � is unsatisfactory, and decreased when a successful step is taken. The alternativetrust-region implementation that we described above allows more direct control over the length ofthe computed steps. A signi�cant disadvantage of the algorithm described in [7] is that it alwaysevaluates the �rst derivatives rri whenever the residual values ri are evaluated. If the candidateiterate is subsequently rejected (when it does not lead to a signi�cant decrease in the function valueover the current iterate), this derivative evaluation is wasted. If, as in LaueView and in many otherapplications, the derivative is relatively expensive to calculate, the overall wastage in computationale�ort may be considerable. In the new version, LaueView3.1, we separated evaluation of the residualr from evaluation of the Jacobian J , and evaluated the latter only after a point was accepted as thenew iterate.3.2 Linear Algebra IssuesThe most important basic linear algebra calculations in LaueView are accumulation of the sums in(17) to form JTJ , calculation of the factorization (13), and repeated solution of the system (14) for�. In LaueView2.5, the terms in (17) were calculated and accumulated in single-precision arithmetic.This operation appeared to cause di�culties in the Levenverg-Marquardt implementation, becausethe code usually terminated by increasing  to a very large number while still failing to achievedescent in the objective function, suggesting that the computed gradient �JT r was not a descentdirection for the objective function f . In LaueView3.1, we modi�ed the code so that each residualri and its derivatives were still evaluated in single precision, but the results were transferred todouble-precision variables, and the quantities JTJ and JT r were accumulated and stored in doubleprecision. On modern computer architectures, double-precision arithmetic is not much (if any) moreexpensive than single precision, and the additional storage needed for double-precision variables inour scheme is not signi�cant.LaueView2.5 performed a factorization of the matrix JTJ + D2 by using either singular valuedecomposition or Gaussian elimination, and used the resulting factors to solve (11) for the candidatestep �. LaueView3.1 �nds the decomposition (13) (which is equivalent to the svd for this symmetricmatrix) by using the LAPACK routine DSYEV and obtains the candidate steps from (14). Thisrevised strategy is slightly more economical because it exploits symmetry in the calculation of(13) and avoids recalculation of the factorization for each di�erent value of . This part of thecomputation is considerably less expensive than calculation of the residuals ri and their derivatives.3.3 Approximating the � Curve with Local Basis FunctionsIn LaueView2.5, the Chebyshev basis functions cos(i arccos z), i = 1; 2; 3; : : :, were evaluated aswritten for many values of z, by using Fortran library functions to evaluate the cos and arccos11



functions. In a later version (LaueView3.0, which predates LaueView3.1), we replaced this techniqueby a more e�cient, well known recurrence relation. Given z 2 [�1; 1], we de�nec1 = cos(arccos z) = z; s1 = sin(arccos z) =p1� z2;and recur by using the formulaeci+1  cic1 � sis1; si+1  q1� c2i+1; i = 1; 2; : : : :Global basis functions such as Chebyshev are not particularly well suited to the representationof the � curve, since (as noted above) this curve is not particularly smooth and contains downwardspikes at the absorption wavelengths of the focusing mirror. Moreover, such functions give rise toa Jacobian matrix that is almost fully dense and quite expensive to evaluate. In LaueView3.1, wereplaced them by piecewise-quadratic basis functions with local support de�ned on a uniform meshover the user-de�ned range of wavelengths spanned by the data. We then replace the de�nition (7)of f� by f� = 10�10 + exp " n�Xi=1 ci (pi(�0) � pi(�0r))# ; (18)where �0 2 [�1; 1] is the normalized frequency from (6), �0r is the reference frequency, andpi(�0) = 8<: (�0 � ai�3)2=(6h3) �0 2 [ai�3; ai�2];1=(4h)� (�0 � ai�3=2)2=(3h3) �0 2 [ai�2; ai�1];(�0 � ai)=(6h3) �0 2 [ai�1; ai];where h = 2=(n� � 2); ai = �1 + ih; i = �3;�2; � � � ; n�:3.4 Parallel ImplementationThe most expensive part of the calculation in the scaling phase of LaueView is evaluation of thequantities rT r, JTJ and JT r, at a given parameter vector x. LaueView evaluates these terms in themanner suggested by the formulae (17). That is, for each value of the index i in turn, it evaluatesr2i , rirri, and rri(rri)T and accumulates these quantities in the appropriate data structures.A parallel version of this process proceeds in the obvious way: The indices i = 1; 2; : : : ;m are\dealt out" to the P available processors, so that each processor receives an approximately equalnumber of indices. Processor j forms its own partial sums JT[j]J[j] and JT[j]r[j], where [j] denotesthe subset of indices received by processor j. A global summation operation is performed to obtainJTJ = PPj=1 JT[j]J[j]. Parallel evaluation rT r and JT r takes place similarly. The other operationsassociated with LaueView, including computation of the candidate Levenberg-Marquardt step, takeplace concurrently (and redundantly) on all processors; their relatively low computational cost makesit not worthwhile to parallelize them.4 Computational ResultsIn this section we report on the e�ects of our improvements to LaueView, as measured by itsperformance on a real data set from a crystal of photoactive yellow protein, for which structure resultsobtained with LaueView2.5 are presented in [2]. The value ofm for this set is approximately 120; 000,12



Table 1: Parameter Settings for PYP data setParameter 1 2 3 4 4S 6Hot start? (starting set) N Y (1) Y (1) Y (1) N NImage weighting N Y Y Y Y NLorentz fL Y Y Y Y Y YPolarization fP N Y Y Y Y NWavelength f� Y N N Y Y YIsotropic scaling fisoS N Y N Y Y YAnisotropic scaling fanisoS (4) N N N N N NAnisotropic scaling fanisoS (5) N N N N N NIsotropic scaling fisoB N N Y Y Y YAnisotropic scaling fanisoB N N N N N Nwhile the number of parameters n is small, between about four and seventy in our experiments. Wefocus on the improvements in computational performance in this section, rather than the scienti�c�ndings.Table 1 indicates the parameter settings for the six runs that we performed on the PYP dataset. Most of the rows correspond to parameters while the columns indicate the runs. The entry Yor N indicates whether the parameter in question was allowed to vary (Y) or held �xed (N) duringthe run in question. The �rst row indicates whether or not a hot start was performed for the runin question, using as a starting point the output of another run. Runs 1, 4S, and 6 do not use ahot start, while runs 2, 3, and 4 use the �nal point attained by run 1 as their starting point. Forinstance, run 3 of LaueView2.5 uses the output of run 1 of LaueView2.5 as its starting point, whilerun4 of LaueView3.1 uses the output of run 1 of LaueView3.1 as its starting point.We performed experiments on two computational platforms. The �rst was an SGI Onyx2 RealityMonster running IRIX 6.4, equipped with sixteen MIPS R10000 processors (of which we used justone) and 4 GB of memory. The second was an 80-node IBM SP in which each node is an RS/6000workstation equipped with a 120 MHz P2SC chip and 256 MB of memory. On the SGI, the code usedSGI's XFS �le system to do I/O from disk. On the IBM, the parallel input/output �le system wasused. The use of these advanced �le systems reduced the time to completion considerably (withouta�ecting the CPU time) because the code needs to write (and in some cases to read) very large�les. On the IBM SP, about 100 seconds of CPU time is needed to write an 85 MB output �le thatcontains the corrected intensity data, independently of the number of processors used and of theparticular version of LaueView. In the cases of runs 2, 3, and 4, a �le of this size is also read at thestart of the computation to provide \hot start" data.4.1 Numerical ImprovementsTable 2 summarizes the computational performance of the three di�erent versions of LaueView onthe SGI machine. LaueView2.5 is the original version of the code prior to numerical improvements,LaueView3.1 incorporates all the improvements described above, while LaueView3.0 is identical toLaueView3.1 except that it continues to use the Chebyshev basis functions of LaueView2.5 insteadof B-spline basis functions. We tried two choices n� = 32 and n� = 64 for the number of local basisfunctions in LaueView3.1. In LaueView2.5 and 3.0, 64 Chebyshev basis functions were used in allruns. 13



Table 2: CPU Times (seconds) for Di�erent Versions of LaueView on SGI Reality MonsterData Set LaueView2.5 LaueView3.0 LaueView3.1 (n� = 64) LaueView3.1 (n� = 32)time (s) optimal f time (s) optimal f time (s) optimal f time (s) optimal f1 2096 1045598 411 1042412 257 1006824 191 10174732 3725 485746 260 491415 376 478604 247 5093503 7700 576934 529 575237 343 562133 386 5913434 failed 1618 466239 698 462022 559 4920594S not tested 4034 467767 2380 461494 1617 4918016 10841 633712 2530 639705 1525 598617 1171 61056514



Table 3: Parallel Performance of LaueView3.1 on IBM-SP MultiprocessorData Set Processors Time (s) Speedup Approx. Speedup(excluding data output)1 1 5511 2 377 1.5 1.61 4 274 2.0 2.66 1 44436 2 2522 1.8 1.86 4 1334 3.3 3.56 8 765 5.8 6.56 16 485 9.2 11.36 32 351 12.7 17.3From Table 2, we see that LaueView3.0 obtains similar �nal objective function values to Laue-View2.5 in considerably less CPU time. On data sets for which both codes produced a result, theimprovement in CPU time is a factor of between about 5 and 14. LaueView3.0 is also considerablymore robust, as demonstrated by its convergence on runs 4 and 4S (yielding the smallest objectivefunction values in the �rst two columns) where LaueView2.5 failed.The use of local basis functions (LaueView3.1) results in a further improvement. For Laue-View3.1, smaller �nal objective values were found in all cases, and CPU requirements decreasedsigni�cantly in most cases. Further decreases in CPU time can be noted when n� is decreased to32, at the cost of slight increases in the optimal objective value.Another lesson we draw from this table is the usefulness of the strategy of �nding a good min-imizer by performing a sequence of runs in each of which just a subset of parameters is allowed tovary. Runs 4 and 4S allow the same parameters to vary, the only di�erence being that run 4 usesas its starting point the result of run 1, while run 4S starts cold. The combined strategy of run 1followed by run 4 �nds a slightly smaller objective value in a total run time of half that of run 4S(411 + 1618 = 2029 seconds vs 4034 seconds).4.2 ParallelizationResults of the parallel code running on the IBM SP are presented in Table 3. We show resultson runs 1 and 6|a short run and a longer one. LaueView3.1 was used with the number of basisfunctions set to 64. In all cases, the results of the computation are independent of the number ofprocessors used.Note that the single-processor times are longer than on the SGI platform by a factor of twoto three, since the SGI nodes are more powerful. Since, as mentioned above, we parallelized onlythe critical section of the code in which the matrix JTJ and the vector JT r are evaluated andaccumulated, the speedups are considerably less than linear in the number of processors; the non-parallel parts of the computation (particularly the 100 seconds spent in writing the output �le todisk) become relatively more signi�cant as the number of processors is increased. However, the wall-clock time is reduced considerably on multiple processors. The �nal column in Table 3 indicates thespeedup �gure obtained when the 100 seconds spent on writing the output �le is subtracted from thetotal CPU time for each run. A more sophisticated parallel code could parallelize this operation byhaving each processor write a section of the output to its own �le, while any subsequent run could15



read these �les in parallel, in an analogous fashion. We feel that the run-time advantages obtainedwith our current parallelization technique are su�cient to meet the needs of experimentalists forfaster turnaround time, however.AcknowledgmentsWe thank Joe Czyzyk and Madhu Nayakkankuppam for their help in the earlier stages of this project,both in investigating the scienti�c issues and in working with the LaueView code. We also thankKeith Mo�at for valuable comments on an earlier draft.A Outline of X-ray Di�ractionDi�raction of X-rays by a crystal admits a beautiful mathematical explanation in terms of latticetheory, simple geometry, and other classical tools. Here we briey summarize of the backgroundtheory for our study.A lattice is an in�nite, regular array of points in a space of some given dimension that satis�es theproperty that its geometry relative to any point in the array is independent of the particular choiceof point. A crystal is a collection of molecules arranged in a (�nitely truncated) three-dimensionallattice. That is, if we choose some point in the molecule in question as a reference point, then thearray of these points in space would form a three-dimensional lattice if extended in�nitely in alldirections.A three-dimensional lattice can be characterized by a set of three basis vectors a, b, and c in IR3,where each point in the lattice can be expressed asxa+ yb+ zc; where x, y, and z are integers. (19)We can assume that a, b, and c are linearly independent; otherwise, the lattice collapses to one oflower dimensionality. The parallelepiped whose sides are the vectors a, b, and c is referred to as theunit cell. The 3� 3 matrix A assembled from these basis vectors, namely,A = [a : b : c] ;is nonsingular by our linear independence assumption. Another useful concept is that of the reciprocallattice, which is a lattice of the same dimension characterized by three basis vectors �a, �b, and �c withthe following properties: a � �a = 1; a � �b = 0; a � �c = 0;b � �a = 0; b � �b = 1; b � �c = 0; (20)c � �a = 0; c � �b = 0; c � �c = 1;where \�" denotes the standard (Euclidean) inner product. It is easy to see that �a, �b, and �c aresimply the columns of the matrix A�T , that is,��a : �b : �c� = A�T :In Figure 3, we illustrate a lattice together with its basis vectors. This �gure, as well as allour other illustrations, uses a two-dimensional geometry for simplicity. The extension to three16



a

bFigure 3: Two-dimensional lattice generated by basis vectors a and bdimensions is in all cases easy to envisage. Note in particular that the di�erence vector R betweenany two lattice points also has the form (19), that is, it is expressible asR = xa+ yb + zc; where x, y, and z are integers. (21)Each molecule in the crystal contains a number of electrons, arranged in a cloud about the atomicnuclei. When each of these electrons encounters the incident X-ray, the electron is set in motionand becomes an oscillating dipole|and therefore a source of secondary radiation. We refer to thisprocess as \scattering" of the X-rays. Interference between the X-rays scattered from the electronsin the crystal gives rise to the di�raction patterns observed on the detector. Some scattering mayalso take place from the nuclei, but its amplitude is usually much smaller and can be neglected forour purposes.To describe why certain scattering directions are directions of constructive interference, we makethe (temporary) simplifying assumption that each unit cell contains a single scattering center, whichis in the same location in each cell. These scattering centers themselves make up a lattice thatis characterized by the same basis vectors a, b, and c. We now outline a geometric argument toidentify the scattering directions and X-ray wavelengths for which the beams scattered from all thesecenters are in phase, and so yield spots on the detector.Consider any two scattering centers, as shown in Figure 4. Because both are points in the lattice,the vector displacement R between them will have the form (21). Suppose that the incident beamhas direction t, which we express in terms of the reciprocal lattice basis byt = xt�a + yt�b+ zt�c; ktk = 1=�; (22)for some coe�cients xt, yt, and zt. (The normalization condition ktk = 1=� ensures that eachdirection is uniquely speci�ed by the coe�cient triple (xt; yt; zt).) Suppose we investigate a par-ticular direction of scattering s, also de�ned in terms of the reciprocal basis vectors with the samenormalization condition as in (22) bys = xs�a+ ys�b+ zs�c; ksk = 1=�: (23)In Figure 5, we illustrate scattering in the direction s from the two lattice points separated by thedisplacement R of the form (21). The important point to note is that the path lengths traversed bythe two beams di�er slightly. The scattered beams will remain in phase provided that the di�erencein path length is an integer multiple of the wavelength �. From the diagram, we see that the twodi�erent portions of the paths can be measured by dropping perpendiculars from one path to theother, and simple geometry indicates that these lengths are �R � t and �r � s, respectively. We cantherefore express the di�erence in path length analytically by�R � (s� t): (24)17



Figure 4: Di�raction from two points in the lattice (beams di�ract in all directions from all points;we show just a few directions here)
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Figure 5: Beam from direction t di�racted in in direction s from two lattice points separated by R,showing di�erence in path length 18



Our requirement that this di�erence is an integral multiple of the wavelength can be expressed as�R � (s� t) = �(xa+ yb+ zc) � [(xs � xt)�a+ (ys � yt)�b+ (zs � zt)�c]= �x(xs � xt) + �y(ys � yt) + �z(zs � zt)= �m; for some integer m; (25)where we used the relations (20) to derive the second equality. Recall that if s is to yield a brightspot on the detector, the relation (25) must hold for all pairs of points in the lattice, that is for allintegers x, y, and z. This is possible only if the coe�cients of s satisfy the relationsxs � xt = h; ys � yt = k; zs � zt = `; for h, k, and ` integers. (26)The integer triple (h; k; `), along with the �xed direction t of the incident beam, completely charac-terizes the direction s. We refer to (h; k; `) as the Miller indices.To summarize, we conclude from (23) and (26) that the direction s will produce a spot on thedetector if satis�es the following conditions for some set of Miller indices (h; k; `):s = (xt + h)�a+ (yt + k)�b+ (zt + `)�c; (27a)k(xt + h)�a + (yt + k)�b+ (zt + `)�ck = 1=�: (27b)These relations constitute Bragg's law.We can illustrate these conditions via a device known as an Ewald sphere, a two-dimensionalversion of which is plotted in Figure 6. The sphere has radius 1=�, so from the normalizationconditions in (22) and (23), both s and t must lie on its surface. The grid of points represents thereciprocal lattice centered at the vector t. Geometrically stated, then, condition (27) says that thevector s is a direction of constructive interference only if it both corresponds to one of the latticepoints in Figure 6 and lies on the surface of the Ewald sphere. The �gure suggests that just a fewdirections satisfy this condition. It also clari�es why radiation whose wavelength is of the same orderas the basis vectors a, b, and c is required to produce di�raction. If a longer wavelength � is used,the Ewald sphere in Figure 6 shrinks. When the sphere becomes smaller than the spacing betweenthe lattice points, it will not intersect the lattice, thereby producing no directions of constructiveinterference.Laue di�raction images, however, contain many more spots than the description above wouldsuggest. There appear to be many directions s, each characterized by the Miller indices (h; k; `) in(27), for which a spots appears on the detector. The reason is that the incident beam consists notjust of a single wavelength �, as assumed in the description above, but a whole range of wavelengths.Typically, � takes on a range of values between 0:3�A and 2:0�A, depending on the synchrotron sourceand its insertion device. Because of this property, we have not just one Ewald sphere as in Figure 6,but a continuum of spheres of varying radii 1=� and changing origin, all of which have t on theirboundary and make the same tangent with this vector. The situation is depicted in Figure 7,where the shaded area indicates the space traversed by the continuum of Ewald spheres. Eachreciprocal lattice point lying in this shaded region lies on the boundary of an Ewald sphere for some� 2 [�min; �max], and so gives rise to a spot on the detector. Comparison of Figures 6 and 7 suggeststhat we can expect many more spots in Laue di�raction than in di�raction with a monochromaticbeam.Having described why spots appear on the detector, we now outline the reasons for the di�erencesin brightness between the spots|di�erences that allow a density map of the electron cloud to beconstructed. Much of this e�ect can be attributed to the fact that scattering does not take placefrom isolated scattering centers arranged in a lattice (as we assumed for simplicity above) but rather19



t

centered at 

reciprocal lattice

t

this     yields a spots

Ewald sphere, radius 1/λ

(-2,2)

(-1,1)

(1,0)

(0,1) (1,1)

(-1,2)

Figure 6: The Ewald sphere, in two dimensions. Direction s yields a spot only if it lies on the sphereof radius 1=� and is a point on the reciprocal lattice originating at t. Labels on some points showtheir Miller indices, which contain just two components in this two-dimensional example.
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Ewald sphere, radius Figure 7: In Laue di�raction, incident radiation has wavelength in the range [�min; �max], yieldinga continuum of Ewald spheres with radii between 1=�max and 1=�min. Any reciprocal lattice pointslying between these spheres (shaded area) yields a spot on the detector.20
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rFigure 8: Scattering in the same direction s from the central reference point in the electron cloudand another point at a displacement rfrom any location in the electron cloud. As a result, the scattered rays will generally not be perfectlyin-phase even along the directions s that satisfy (27), and the intensity of the resulting spot indicatesthe deviation from the idealized situation of point di�ractors described earlier.To explain this e�ect, we �rst consider the case in which the point di�ractor is replaced by aspherically symmetric electron cloud associated with a single atom. We use Q(jrj) to denote theelectron density function for this cloud, where r indicates the displacement from the atomic nucleus(the center of the cloud), so that jrj denotes the radial distance. Figure 8 shows scattering of incidentrays with the same incidence and scattering directions t and s from two points in the cloud. Oneis scattered from the central reference point, and the other from another point at a displacement r.By using the same argument as the one that led to (24), we can show that the di�erence in pathlength between the two rays is �r � (s� t);leading to a phase di�erence of �2�� ��r � (s� t) = 2�r � (s� t): (28)By integrating over all displacement vectors r in the cloud and scaling by the density, we deducethat the amplitude of the radiation scattered by the whole cloud isf def= ZS Q(jrj) exp(2�ir � (s � t))dr; (29)where S denotes the sphere of integration. The quantity f is known as the atomic scattering factorfor the atom in question. Because of spherical symmetry, we can assume without loss of generalitythat t = (1=�)(1; 0; 0)T ; s = (1=�)(cos 2�; sin 2�; 0)T ;where 2� is the angle of scattering. (The factor 2 is introduced for convenience.) Elementarytrigonometric relationships then imply thats� t = 2(sin �=�)(� sin �; cos �; 0)T : (30)21



We now perform an orthogonal change of variables to r̂, wherer̂ = �r; where � = 24 � sin � cos � 0cos � sin � 00 0 �1 35 ;and note that jr̂j = jrj and that the domain of integration S is unchanged. Using (30), we can nowrewrite (29) as f = ZS Q(jr̂j) exp(2�i(�T r̂) � (s� t))dr̂= ZS Q(jr̂j) exp �4�i(sin �=�)r̂ ��(� sin �; cos �; 0)T � dr̂= ZS Q(jr̂j) exp �4�i(sin �=�)r̂ � (1; 0; 0)T� dr̂= ZS Q(jr̂j) exp (4�i(sin �=�)xr̂) dr̂; (31)where xr̂ is the component of r̂ along the x axis. It is clear from (31) that f is a function of theratio sin �=�; we write f(sin �=�) to emphasize the dependence.Experiments have determined the atomic scattering factors for many atoms as a function ofsin �=�. For � = 0, the value of f(sin �=�) = f(0) is simply equal to the number of electrons in thecloud, while the function decreases with as its argument increases.By taking conjugates in (31), it is easy to see that f(sin �=�) is real. In practice, however,deviations from symmetry give rise to nonzero imaginary components of f(sin �=�).We now consider the more interesting case in which the unit cell contains not a single atom butrather a molecule consisting of N atoms, located at positionsxia + yib+ zic; i = 1; 2; : : : ; N;where a, b, and c denote the basis vectors for the lattice and xi, yi and zi are the coordinates of thecenter of the ith electron cloud relative to some reference point in the unit cell. Scattering takes placefrom each atomic cloud, and the e�ects of path length di�erences on the amplitude of scattering ineach direction can be determined by similar arguments to those advanced above. Suppose we aregiven a direction t for the incident beam and a scattering direction s that satis�es (27) for some setof Miller indices (h; k; `) (that is, s is a direction of strong scattering for the lattice structure formedby the crystal under investigation). We �nd that the phase di�erence between a ray scattered fromthe center of the ith electron cloud and one scattered from the molecular reference point is(2�=�)�(xia + yib+ zic) � (h�a + k�b+ `�c) = 2�(hxi + kyi + `zi): (32)By applying this phase shift to the atomic scattering factor fi associated with the ith atom, weobtain a contribution of fi exp (2�(hxi + kyi + `zi))to the scattering associated with the molecule, where fi is given by (31). The total scattering in thedirection characterized by (h; k; `) and � is then given by summing the contributions from each ofthe atoms, to obtain F (h; k; `) def= NXi=1 fi exp (2�(hxi + kyi + `zi)) : (33)22



This quantity, a Fourier series, is known as the structure factor. In the absence of other factors thata�ect the scattering, the amplitude of the scattered ray in direction s will be jF (h; k; `)j.Other factors such as temperature e�ects (which cause the molecules to oscillate around theirmean position in the lattice) and polarization e�ects contribute to the intensity of each spot. Thecode LaueView aims to quantify each of these e�ects, so that the amplitudes of the structure factorscan be recovered from the observed amplitude measurements.Our discussions above about the interference patterns produced by the scattered rays assumedan in�nite lattice. In �nite lattices, the nonzero intensities can be detected also in directions thatdeviate slightly from the directions that satisfy (27). Microcrystals of unit cells fewer than 1000 inany dimension will give rise to non-Bragg scattering. The energy associated with each spot mustbe determined by integrating the intensity over a �nite area on the detector that covers the spot inquestion. In typical applications of LaueView, the spots are often streaky because of mosaic spreadof the crystal, and they often overlap, making it necessary to do a \deconvolution" to determinethe intensity associated with each component spot. (The simple alternative approach of deletingoverlapping spots from the data set degrades the quality of the data set considerably.)Basic descriptions of X-ray di�raction appear in many books; we mention in particular thoseof Wilson [11] (from which some of the discussion of this section is drawn) and Glusker and True-blood [3].References[1] I. J. Clifton, E. M. H. Duke, S. Wakatsuki, and Z. Ren. Evaluation of Laue di�raction patterns.Methods in Enzymology, 277:448{467, 1997.[2] U. K. Genick, G. E. O. Borgstahl, K. Ng, Z. Ren, C. Pradervand, P. M. Burke, V. Srajer,T.-Y. Teng, W. Schildkamp, D. E. McRee, K. Mo�att, and E. Getzo�. Structure of a proteinphotocycle intermediate by millisecond time-resolved crystallography. Science, 275:1471{1475,March 1997.[3] J. P. Glusker and K. N. Trueblood. Crystal Structure Analysis: A Primer. Oxford UniversityPress, second edition, 1985.[4] Keith Mo�at. Laue di�raction. Methods in Enzymology, 277:433{447, 1997.[5] Jorge J. Mor�e. The Levenberg-Marquardt algorithm: Implementation and theory. In G.A.Watson, editor, Lecture Notes in Mathematics, No. 630{Numerical Analysis, pages 105{116.Springer-Verlag, 1978.[6] Jorge J. Mor�e and D.C. Sorensen. Computing a trust region step. SIAM Journal on Scienti�cand Statistical Computing, 4:553{572, 1983.[7] W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in Fortran: The Art ofScienti�c Computing. Cambridge University Press, second edition, 1992.[8] Zhong Ren and Keith Mo�at. Deconvolution of energy overlaps in Laue di�raction. Journal ofApplied Crystallography, 28:482{493, 1995.[9] Zhong Ren and Keith Mo�at. Quantitative analysis of synchotron Laue di�raction patterns inmacromolecular crystallography. Journal of Applied Crystallography, 28:461{481, 1995.23
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