
Managing Security in High-Performance Distributed
Computations

Ian Foster∗, Nicholas T. Karonis†, Carl Kesselman‡,

Steven Tuecke∗

http://www.globus.org/

Abstract

We describe a software infrastructure designed to support the development of applica-
tions that use high-speed networks to connect geographically distributed supercomputers,
databases, and scientific instruments. Such applications may need to operate over open
networks and access valuable resources, and hence can require mechanisms for ensuring
integrity and confidentiality of communications and for authenticating both users and
resources. Yet security solutions developed for traditional client-server applications do
not provide direct support for the distinctive program structures, programming tools,
and performance requirements encountered in these applications. To address these re-
quirements, we are developing a security-enhanced version of a communication library
called Nexus, which is then used to provide secure versions of various parallel libraries
and languages, including the popular Message Passing Interface. These tools support the
wide range of process creation mechanisms and communication structures used in high-
performance computing. They also provide a fine degree of control over what, where,
and when security mechanisms are applied. In particular, a single application can mix
secure and nonsecure communication, allowing the programmer to make fine-grained se-
curity/performance tradeoffs. We present performance results that enable us to quantify
the performance of our infrastructure.

1 Introduction

The use of high-performance networks to couple geographically distributed supercomputers,
database systems, specialized scientific instruments, etc., is enabling novel applications in areas
such as collaborative engineering, computer-enhanced instrumentation, and ultra-large-scale
scientific simulation [2, 3]. However, widespread use of such applications depends crucially on
the availability of appropriate security mechanisms. Owners of resources require authentica-
tion mechanisms to protect themselves against malicious users. Users of resources may also
demand authentication of resources, in order to protect themselves against spoofing by mali-
cious resource providers. Users will often need to ensure that the integrity and confidentiality of

∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
†Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, U.S.A.
‡Information Sciences Institute, University of Southern California, CA, U.S.A.

1

data communicated between resources are not compromised, particularly when communication
occurs over public networks. Other forms of attack can also be of concern, such as denial of
service attacks against applications that use supercomputers to control remote devices.

The task of meeting these security requirements is complicated by the distinctive pro-
gram structures, computing environments, and performance requirements encountered in high-
performance systems. Traditional distributed systems often have a client-server structure, with
limited mutual trust between client and server. In contrast, parallel programs may comprise
hundreds or thousands of tightly coupled, fully trusting processes. Distributed systems em-
ploy remote procedure call (RPC) or TCP/IP as their primary communication mechanism. In
contrast, the applications that we consider here may communicate by using two-sided mes-
sage passing, streaming protocols, multicast, and/or single-sided get/put operations, as well as
RPC; furthermore, they are typically programmed by using message-passing libraries such as
the standard Message Passing Interface (MPI [13]) or with specialized parallel languages (e.g.,
HPF [17] or HPC++). Programs must run on parallel computers, which typically provide spe-
cialized mechanisms for process creation, communication, and so forth, and which may even
run specialized operating systems. At the same time, programs often must achieve a substantial
fraction of peak computer and network performance.

Historically, we find that security technologies are used only if they are incorporated into
common tools in a seamless and painless fashion. In the case of high-performance computing,
this suggests a need for secure versions of parallel programming tools such as MPI. These secu-
rity enhanced tools must support the diverse process creation and authentication mechanisms
encountered in high-performance systems, and must address scalability issues that arise when
dealing with hundreds or thousands of processes. In addition, the demanding performance
requirements of high-performance applications introduces a need for mechanisms that provide
programmers with fine-grain control over what, when, and where security mechanisms are used
in programs.

We are developing a secure communications infrastructure that addresses these various
concerns. This infrastructure builds on existing components and standards whenever possible
(e.g., SSL [14], Kerberos [28], GSS-API [19]), while also extending the state of the art to provide
four new capabilities:

• A secure process creation interface that supports the wide range of process creation mecha-
nisms encountered in high-performance computing systems, and that addresses scalability
issues that arise in programs that may need to create hundreds or thousands of processes.

• Techniques for managing the use of multiple security mechanisms within a single appli-
cation, in a way that provides a uniform high-level programming model while allowing
the choice of low-level security mechanism to vary according to what is communicated,
where it is communicated, and when it is communicated.

• Techniques for managing the transfer of secure logical communication links among pro-
cesses in large-scale distributed computations.

• Security-enhanced implementations of multiple parallel libraries (MPI, CAVEcomm, etc.)
and languages (HPF, HPC++, etc.), that enable programmers to use our secure process
creation and communication mechanisms while using familiar tools.

2

These new capabilities have been implemented and evaluated in the context of Nexus [12],
a low-level multithreaded communication library designed to support high-performance com-
munication in heterogeneous environments. (The security-enhanced libraries and languages
referred to above are all layered on top of Nexus.) While these capabilities are not in them-
selves a complete solution to the problem of providing security in high-performance distributed
applications, we do believe that they represent useful steps towards that goal.

The rest of this paper, an expanded and revised version of [10], is as follows. In Section 2,
we introduce the problems that we seek to address in our work. In Section 3, we provide an
overview of our approach and review the Nexus communication infrastructure. In Sections 5
and 6, we describe our secure communications infrastructure, and in Section 8, we present some
experiments that allow us to evaluate its effectiveness. Finally, in Sections 9 and 10 we discuss
related work and present our conclusions, respectively.

2 Requirements

We are interested in applications that integrate geographically distributed computing, network,
information, and other systems to form “virtual” networked computational resources. For ex-
ample, global climate scientists often employ large coupled simulation models, constructed by
linking models of atmospheric and ocean behaviors. Such coupled models may use multiple su-
percomputers to exploit large aggregate memory or to run different components more quickly
on different architectures [21, 25]. High-end collaborative engineering environments connect
supercomputers, databases, and advanced display devices to provide remote access to shared
state, which may include simulated entities as well as people [4, 5]. “Smart instruments”
connect scientific instruments or other data sources to remote computing capabilities [18]. In
each case, computations span heterogeneous collections of resources, often located in multiple
administrative domains. They may involve hundreds or even thousands of processes. Commu-
nication costs are frequently critical to achieved performance, and programs often use complex
computation/communication structures to reduce these costs.

The development of a comprehensive solution to the problem of ensuring “security” in
such applications is clearly a complex and multi-faceted problem. In this article, we focus our
attention on two significant subproblems, namely the authentication of users and resources when
creating computational entities (“processes”) on local and/or remote computer systems (the
process creation problem), and the assurance of integrity and confidentiality when exchanging
data between these processes (the communication problem).

2.1 Process Creation

We use the term process creation to refer to the mechanism by which computational resources
are integrated into computations. These resources may all be acquired before the computation
starts (i.e., static allocation) or may be acquired and released during the course of the compu-
tation (dynamic allocation). Computational resources of interest include both single-processor
and multiprocessor systems, and the low-level mechanisms used to initiate computation may
be quite different in each case. For example, on a workstation we might use secure or unsecure
“remote shell” (rsh) mechanisms or hand-crafted process creation servers; in contrast, parallel
computers typically provide specialized mechanisms that start a user-supplied executable on

3

multiple processors and may require interfacing with local resource management systems such
as a partition manager or scheduler [15]. (A program may also need to attach to other running
processes during its execution; we view this as a generalization of the usual startup problem,
and do not discuss it explicitly here.)

A secure process creation facility for high-performance programs must support a hetero-
geneous mix of process creation mechanisms. It should support authentication of the user of
remote resources and/or of the resources themselves. The process creation mechanism must
provide for the establishment of security contexts that hold security state and configuration in-
formation needed for subsequent secure communication within the program. Because a compu-
tation may comprise hundreds or thousands of processes, which typically are mutually trusting
once created, it is both impractical and unnecessary to perform a formal authentication process
between every pair of processes. Instead, we need scalable mechanisms for process creation that
allow a process to transfer to its offspring the right to communicate with other processes in a
computation.

2.2 Communication

Once processes have been created, they need to be able to exchange data and synchronize their
execution. As noted above, the applications in which we are interested communicate by using
a variety of interaction mechanisms. Communication performance is often critical, but as mes-
sages are often small, latency can be as important as bandwidth. Collective communication
operations across multiple processes can exacerbate the impact of latency on performance. Fur-
thermore, performance and functionality requirements frequently motivate the use of multiple
low-level communication methods within a single application. For example, coupled models
often need to use machine-specific communication methods within computers and optimized
wide area protocols between computers [21, 25]. Collaborative environments require a mixture
of protocols providing different combinations of high throughput, multicast, and high reliabil-
ity [4, 5]. Smart instrument applications may need to be able to switch among alternative
communication substrates in the event of error or high load [18]. In general, the method used
for a communication can vary according to where communication is being performed, what is
being communicated, or when communication is performed [8].

These considerations place demanding requirements on a secure communications infrastruc-
ture. It is clearly critical to be able to specify the security mechanism used for a particular
communication independently of the low-level method used to achieve that communication.
More challenging perhaps is that programmers must be able to write programs that mix se-
cure and unsecure communication. For example, let us consider a coupled climate model as a
prototypical scientific simulation for which security mechanisms may be required. (While this
example may appear contrived, the controversy that surrounds global change studies suggests
that security could well be a concern, if computing in an open environment.) Assume that the
model runs the ocean and atmosphere model components on two separate IBM SP2 parallel
computers, connected by an open high-speed network. The programmer writes the coupled
model so that all communication is expressed using MPI; the MPI implementation selects com-
munication methods for each message, according to message destination [9]. Communication
between two nodes in the same SP2 takes place over a dedicated, high-speed switch using
IBM-specific protocols, and as this environment is tightly controlled, we might reasonably de-

4

various parallel and distributed computing systems

HPF HPC++

Fortran MnJavanPERLCC++CAVEcommMPI

Nexus

. . .

Figure 1: The Nexus communication infrastructure

cide that security measures such as encryption are not required. In contrast, communication
between two nodes in different SP2s occurs over a general purpose computer network using
TCP/IP, and may well require security measures. In Section 8, we present performance results
that demonstrate the advantages of applying security mechanisms only between models.

In this example, it is sufficient to select security mechanisms according to where commu-
nication is directed: that is, according to the underlying physical communication structure.
In other situations, we believe that it is important that programmers be able to vary security
mechanisms according to the logical communication structure of a program. For example, we
may want to use different security mechanisms for communications representing “control” and
“data.”

3 Our Approach

We seek to address the requirements outlined in the preceding section by constructing a secure
communications infrastructure based on a portable communications library called Nexus [12].
We chose to work with Nexus for two reasons. First, it supports many of the tools that are com-
monly used for application development in parallel and distributed systems, such as the Message
Passing Interface (MPI) [13], High Performance Fortran (HPF) [17], and CAVEcomm [5] (a
specialized library for collaborative environment applications). Second, its architecture has
been designed to support the coexistence and concurrent use of different process creation and
communication methods [8]. The latter feature simplifies the integration and management of
different security methods.

Figure 1 shows some of the parallel tools that have been constructed with Nexus mechanisms.
Each of these libraries or languages use Nexus facilities to create processes and to exchange
data between processes; Nexus handles automatically the various low-level issues relating to
the process creation and communication methods to be used in different situations.

5

3.1 Nexus Structure

The Nexus communication library is structured in terms of five basic abstractions: nodes,
contexts, threads, communication links, and remote service requests. A computation executes
on a set of nodes and consists of a set of threads, each executing in an address space called
a context. (For the purposes of this paper, it suffices to assume that a context is equivalent
to a process.) An individual thread executes a sequential program, which may read and write
data shared with other threads executing in the same context. Inter-context references called
communication links provide a global name space for objects, while the remote service request

(RSR) is used to initiate communication and invoke remote computation. Nexus support
for threads is relevant to this paper to the extent that threads can be an important latency
hiding device, and multithreading can have implications for how we maintain and use security
information.

In the following, we expand upon two aspects of the Nexus system: communication links
and management of multiple communication methods.

3.2 Communication Links

As illustrated in Figure 2, communication links connect data structures called startpoints and
endpoints. (Prior papers on Nexus [12] referred to communication links as global pointers;
we adopt the alternative terminology to emphasize that we are not assuming a global address
space.) A communication link is formed by binding a startpoint to an endpoint. Many start-
points can be bound to a single endpoint and there can be many startpoints and endpoints
within a process.

Nexus supports a single communication operation: the remote service request, or RSR.
An RSR is directed from a startpoint to an endpoint, causing the transfer of data from the
startpoint process to the endpoint process and the remote execution of a function specified to
be an endpoint handler. An advantage of the startpoint construct in a distributed computing
environment is that the startpoint can be used to encapsulate not only information about where

a remote object is located, but also how to communicate with that remote object. This feature
has been exploited to manage the use of multiple communication methods [8].

The endpoint construct allows us to associate local state with the remote location refer-
enced by a startpoint. This state can be used to maintain security information, and hence
is valuable when implementing stream-oriented communication routines, such as encryption
based on stream ciphers. As illustrated in Figure 2, multiple versions of this local state can be
maintained, one for each startpoint in the case where multiple startpoints are associated with
a single endpoint.

A startpoint/endpoint pair represents a simplex communication channel: that is, it specifies
a remote destination to which a communication operation can be directed by an RSR. These
channels can be created dynamically; once created, a startpoint (but not an endpoint) can be
communicated between nodes by including it in an RSR message buffer. Hence, a startpoint can
be thought of as a capability granting rights to operate on the associated endpoint. The RSR
mechanism allows point-to-point communication, remote memory access, streaming protocols,
and multicast to be supported within a single framework.

6

a

b

c

a

b c

Process 0

Process 1

Process 2

local data
structure

local data
structure

.

.

Figure 2: The Nexus secure communications infrastructure. The figure shows three startpoints
(in the two processes on the left) referencing two endpoints (on the right). The boxes labeled
“a,” “b,” and “c” are security contexts; these are discussed below.

7

3.3 Communication Method Selection

As noted earlier, high-performance applications can require the use of different communication
mechanisms in different situations. Nexus incorporates automatic configuration mechanisms
that allow it to use configuration information provided by a Metacomputing Directory Service
(MDS) [7] to determine which startup mechanisms, network interfaces, and communication
methods to use in different situations [8]. These mechanisms allow Nexus programs to execute
unchanged in different environments, with communication methods selected according to de-
fault rules, depending on the source and destination of the message being sent. For example,
automatic selection allows Nexus RSRs to use IBM’s Message Passing Library (MPL) within
an IBM SP2 and TCP/IP between computers. Manual selection is also supported, for exam-
ple allowing selection of specialized ATM protocols when appropriate. In each case, selection
mechanisms are employed whenever a startpoint is received from another process, and hence
apply both during initial process creation and subsequently as additional communication links
are established.

3.4 Per-link Transformations

Nexus provides a general mechanism for performing per-link mapping on the data carried by a
RSR. For a given communication link, a set of transform functions, called a transform module,
can be associated with the link startpoint and endpoint. Each transform module provide
functions that are called when a startpoint or endpoint is initialized, when a startpoint is
copied, and when data is sent from a startpoint or received at an endpoint.

The startpoint transform function is called after an RSR is assembled, but prior to placing
the RSR onto the network. It can alter the contents of a message, changing the values being
communicated or adding additional data to a message or its header. The startpoint transfer
function can access state information stored in the startpoint. Conversely, the endpoint trans-
form (or untransform function) is called after the RSR is received, but prior to invoking the
remote function. It too can modify head contents, message value, or size. Transform state can
be associated with the endpoint as well. The key to transform modules is that the existence
of a transform module does not effect the way in which startpoints and endpoints are used.
After the user specifies a particular security configuration, the existence of the transform is
transparent to the user.

The data-security methods discussed in this paper are implemented by Nexus transform
modules. However, the transformation mechanism is very general: for example, it has also
been used to implement per-link compression and application-level framing [27].

4 Security Contexts

As we describe in the next two sections, we extend Nexus in two main ways to develop our secure
communications infrastructure. First, we define a secure process creation interface, which we
integrate with Nexus process creation mechanisms. Second, we extend Nexus communication
mechanisms to use and manage security information. Both extensions make extensive use of a
security context similar to that used in GSS-API [19].

8

The Nexus security context is a data structure used to encapsulate security information.
Security contexts are associated with communication links and always exist in pairs: one context
is stored in a startpoint and the other in the associated endpoint. Each security context
is composed of two parts: the security configuration and the security state. The security

configuration describes what type of security should be used for the communication link as
well as the manner in which those security measures should be applied. For example, we
might configure one security context so that each message is encrypted using DES/ECB, while
another security context is configured to encrypt with RC4 and also to perform authentication.
This design not only allows us to configure security characteristics on a per-link basis, but also
provides a framework in which we may exploit different implementations of security algorithms
within a single application, e.g., exploiting high-performance encryption hardware [29] that
only exists on some machines.

The security state houses the values needed to enforce the security specified by the con-
figuration, such as keys and initialization vectors. Some encryption algorithms change the
values of these keys and/or initialization vectors as a function of the plaintext they encrypt
and ciphertext they decrypt. Hence, security state can change over time.

5 Process Creation

Parallel programs use process creation mechanisms to initiate computation on other comput-
ers. In Nexus, process creation involves a call to a “create process” function, which invokes
machine-specific mechanism to create the new process and instantiates a startpoint referencing
an endpoint in the newly created context. Subsequent communication with that context occurs
over the new communication link. The same interface is used to create multiple contexts (for
example, when initiating computation on a parallel computer), except that the call returns a
vector of startpoints, one per new process.

Typically, process creation involves interaction with some remote service, whether this be an
rsh daemon, a scheduler on a supercomputer, or some other specialized server. Authentication
of the requester and/or the remote server may be required, and an initial security context must
be established for subsequent communication between requester and newly created process. As
noted previously, we need to deal with a wide variety of process creation and authentication
mechanisms, and must address scalability issues that arise when creating large number of
processes.

5.1 Interface

We address the need to deal with a wide variety of process creation and authentica-
tion mechanisms by defining a standard interface. Two of the functions in this interface
are start process and init process (Figure 3). Process creation is initiated by a call to
start process. Using the Metacomputing Directory Service, start process can determine
the authentication protocols that are acceptable to the specified host. Based on this infor-
mation, the initiating process selects the appropriate authentication service and contacts this
service to initiate process creation. Depending on the value of the supplied authentication flag
and the requirements of the host being contacted, authentication may be required just for the
client, or for both the client and the server. An initial security context can be provided to the

9

int start_process(char *hostname,

char *directory,

char *executable,

char **argv,

char **environment,

int authenticate_flag,

security_context_t *sec_context)

int init_process(int *argc,

char ***argv,

security_context_t *sec_context)

Figure 3: Functions used to add a new process to a Nexus computation.

start process call; this is encoded as a byte array, passed over a secure channel, and made
available to the newly created process by placing it in an environment variable.

Successful authentication results in the creation of a new process on the specified host,
with directory, executable, arguments, and environment as specified in the start process

call. The newly created process must call the init process function before performing other
computation. The call returns the process arguments (argc, argv) and populates a user-
supplied security context with the one provided by the process that called start process.

The two functions just described allow us to create a set of processes and an initial set of
shared security contexts. The Nexus implementation then completes the negotiation process by
using these shared security contexts to establish an initial communication link (and associated
security context) from the requesting process to the created process. Note that subsequent
communication with the newly created process can occur with any communication mechanism
supported by Nexus (TCP, vendor-specific libraries, etc.). The interface also includes a split-
phase version of the start process function, so that multiple process creation requests can
proceed concurrently.

Once established, these initial security contexts can be used in a variety of ways. In Nexus
computations, we use them to create communication links, implemented (as described above)
as startpoint/endpoint pairs. We may also want to create specialized communication structures
designed to allow the rapid execution of secure versions of various collective operations, such as
reduction, broadcast, or multicast. These mechanisms can, in many situations, be implemented
with specialized communication structures (e.g., spanning tree) or low-level protocols or hard-
ware. Care must be taken that security mechanisms do not prevent the use of the specialized
communication mechanisms.

5.2 Implementation Examples

Implementations of the process creation interface require mechanisms for authenticating the
user and/or the process creation servers, and for establishing a secure channel for the exchange
of the initial security context. We have developed a variety of such implementations. As an
example, we consider a Secure Socket Library (SSL)-based process creation server. This acts

10

as an SSL server, while the process calling start process (the creating process) acts as an
SSL client. The client connects to the server using normal SSL mechanisms, thus performing
authentication and establishing a secure channel between the client and server. The client then
uses this channel to pass the various process creation arguments to the server, which creates the
new process. When the new process calls init process, it configures itself using the passed
command line arguments, and initializes its security context argument using the information
passed to in by the server in environment variables. This negotiation process completes with a
communication link (and associated security context) being created from the requesting process
to the created process.

As a second example, we consider what happens when we need to create many processes at
a remote location. One approach would be to make multiple start process requests to the
appropriate remote server. However, this approach has significant scalability problems. Hence,
we instead use a single request to ask that multiple requests be created. The process creation
server then creates the processes independently, accumulating the startpoints as they become
available; when it is done, it returns the vector of startpoints to the requesting process. Note
that no additional authentication is required when transferring the startpoints (and associated
security contexts) from the “proxy” node to the requesting process, because we assume that
processes in a parallel program are mutually trusting. These mechanisms allow a program to
create large numbers of processes quickly, by using a hierarchical process structure.

We are currently engaged in recasting these and other implementations in terms of the
functions provided by GSS-API [19], with the goal of simplifying code, supporting a wider
range of security mechanisms and promoting reuse.

6 Communication

As described above, Nexus allows security contexts to be associated with communication links.
This structure gives the tool developer (or application programmer) a fine degree of control
over how security mechanisms are applied during communication. Different contexts can be
associated with different links; in particular, some links may not have any security context at
all. Critical to the success of this strategy is that links that do not require security do not have
to pay a performance penalty.

Figure 2 shows how startpoints and endpoints are extended with security contexts. In this
figure, the boxes labeled “a,” “b,” and “c” represent security contexts. Notice that the lower
endpoint (on the right) has two security contexts associated with it, one for each associated
startpoint. This ability to associate multiple security contexts with an endpoint is important
for several reasons. First, different startpoints might communicate by using different security
mechanisms; second, even if they use the same security mechanism, multiple security contexts
are required when using encryption mechanisms (e.g., DES stream ciphers) that update the
security state as a function of the previously encrypted plaintext.

Nexus mechanisms that manipulate startpoints and endpoints are extended to deal with
security contexts. Whenever a startpoint is copied or sent to another process as part of an
RSR (hence establishing a new communication link), a new pair of security contexts is created.
Depending on the type of security context being created, the copy operation may require
communication with the endpoint, requiring a round trip communication.

11

The application of security mechanisms when initiating or receiving an RSR is triggered by
an “escape” tag associated with a Nexus startpoint and endpoint. If this escape tag is set, a
specified security transformation is applied to communicated data. At the endpoint, we must
identify the correct security context for the incoming communication. To facilitate this, we
must place a context identifier in the message header. Exchanging the context identifier is one
reason why copying a security context may require communication with the endpoint.

The mechanisms just described have the desirable property of introducing little unnecessary
overhead, particularly in the case when they are not used. When they are used, costs associated
with this mechanism (relative to a communication method that always performs encryption,
for example) are a test on the “escape” flag followed by a lookup of a small table to see what
transformation should be applied. If a startpoint is replicated, a small security context index
must be included in each RSR. Space overhead comprises the encoding of the security context.
When not in use, the only time overhead is the test on the escape flag; there is no space
overhead. See Section 8 for additional discussion of performance.

Nexus constructs a remote service request by a series of “put” calls (used to designate
the data to be transferred) followed by a “send” (which completes the transfer). Our current
security-enhanced Nexus copies data into a contiguous buffer, to which a single encryption call
is applied. An alternative approach is to incorporate encryption operations in the “put” calls,
hence reducing the number of times that data is copied. We have experimented with both
approaches, and find that for DES/ECB the latter approach is typically 5–7 percent faster.
The difference would be larger for lower-cost encryption techniques.

6.1 Logical Connections

Because security mechanisms are integrated into Nexus at a low level, they need not be visible
to the programmer. That is, it is straightforward to configure a Nexus application (and hence
an application code using any of the various libraries or languages layered on Nexus) so that all

communications are secured using the same standard mechanism. Furthermore, this security
need not interfere with the various communication optimizations incorporated in Nexus. For
example, in a heterogeneous environment, Nexus can, as usual, use TCP/IP between paral-
lel computers and vendor-supplied communication libraries or shared memory within parallel
computers.

Nevertheless, the full power of our architecture becomes apparent when the programmer
(or tool developer) wants to implement more sophisticated communication structures. Because
security contexts are associated with startpoints and endpoints, rather than processes, we
can maintain multiple logical connections between a pair of processes, and associate different
security mechanisms with different connections. This capability allows the programmer to apply
security mechanisms selectively, depending on what is being communicated, where it is being
communicated, and even on when communication is performed. For example, we may protect
the integrity of control messages at all times, but encrypt data messages only when these are
passed over open networks; or we can use specialized encryption techniques for particular types
of data [20, 1]. Note that because security context information is associated with communication
links, not communication calls, the code that actually performs communication does not need
to be aware of whether security mechanisms are being applied.

The ability to associate security contexts with logical connections is particularly useful in

12

multithreaded environments, where communications over different logical connections can be
interleaved at the physical level. The Nexus architecture avoids the need for an additional
layer of multiplexing/demultiplexing, as would be required, for example, if all communications
between two processes had to occur within a single stream cipher-based security context.

A number of approaches can be taken to specifying the security contexts that are to be
used for specific communications. As noted above, Nexus mechanisms provide a degree of
automatic management. Once a startpoint/endpoint pair has been created, the startpoint
can be communicated to other processes, and any process receiving the startpoint can then
communicate securely with the original process, by using the startpoint and its associated
security mechanism. For more fine-grain control, Nexus provides functions for setting the
security attributes of a startpoint and endpoint. Libraries layered on top of Nexus can use
other, higher-level mechanisms. For example, an MPI implementation can associate security
attributes with a communication structuring mechanism called communicators [13].

7 Implementation of Communication Security

Communication security in Nexus can be completely implemented by the Nexus transformation
mechanism introduced in Section 3.4. Obviously, encryption can be viewed as a mapping
of the contents of a Nexus message. In the case of stream ciphers, this mapping is state
dependent. However, the link-state facilities provided by the Nexus transform modules address
this requirement. If only data integrity is required, the transform can compute a message
authentication code (MAC) and insert it into the message header, without changing the data
at all. Untransforming the data on the receiving side involves calculating a new MAC based
on the received data and comparing it to the MAC in the message header.

A user can specify their security requirements by creating a transform module that imple-
ments the needed security mechanisms and then associating the desired module with startpoints
and endpoints when they are created. In general, Nexus allows a user to control aspects of start-
point and endpoint behavior by providing a startpoint or endpoint attribute data structure
when the startpoint of endpoint is created. A transform module is one of the characteristics
that is controlled by the endpoint attribute data structure. In the following example, we set
the transform module for two endpoint attributes, epa1 and epa2. In the first case, we use a
set of transform functions that perform Electronic Codebook (ECB) DES encryption only, in
the second, the transform module implements Cipher Block Chaining (CBC) DES encryption
with MD5 authentication.

nexus_endpoint_attr_t epa1, epa2;

nexus_endpointattr_set_transform(&epa1,

NEXUS_TRANSFORM_ECB,

(void *) NULL);

nexus_endpointattr_set_transform(&epa2,

NEXUS_TRANSFORM_CBC_AUTH,

(void *) NULL);

13

&Ivec1

sp2

ep1 ECB Key1sp1ECB Key1

ep2
CBC Key2
MD5 Key3

Ivec1

Process 0 Process 1

CBC Key2
MD5 Key3
Ivec1

Figure 4: Two pairs of startpoints and endpoints, each with their security contexts.

Once created, an endpoint attribute can be used to initialize any number of endpoints, each
inheriting the endpoint attribute’s security specification. Each endpoint is used, in turn, to
bind a number of startpoints to it. Each startpoint inherits the endpoint’s transform functions
and consequently its security specification. Thus in the following, we create two endpoints.
The first uses ECB DES encryption for any RSRs sent to it, while the second will use CBC
with MD5 authentication for all incoming communication.

nexus_endpoint_t ep1, ep2;

nexus_endpoint_init(&ep1, &epa1);

nexus_endpoint_init(&ep2, &epa2);

The endpoint initialization function in the transform module is used to initialize the endpoint
security context where the security context is stored in the endpoint as the transform module
state. The structure of each security context is different for each transform module and its
contents are different for each endpoint. Some security contexts remain constant over time
(e.g., ECB encryption) while others change (e.g., CBC encryption).

The endpoint initialization function for ECB encryption acquires a key dynamically and
stores its value as the transform module endpoint state. For CBC encryption with MD5 au-
thentication, endpoint initialization is more complicated as the context consists of separate keys
for CBC and MD5 along with a initialization vector (ivec) that is used to implement the CBC
encryption algorithm. Because CBC is state dependent, we will need a unique ivec for each
communication link terminating at an endpoint. Consequently, the endpoint security context
for CBC and MD5 must actually contain two keys and a set of ivecs. The structure of the two
types of security contexts is shown in Figure 4.

When a startpoint is bound to an endpoint, the startpoint inherits the transform modules,
and hence the security specification, of the endpoint. The startpoint initialization function in

14

the transform module is called, and this function is used to create and initialize the sender’s
security context, which is stored as the startpoint transform module state. For ECB, the
startpoint security context is identical to the endpoint context: the endpoint key is copied into
the startpoint context. For CBC with authentication, the CBC and the MD5 keys are also
copied into the startpoint security context. However, a new ivec must also be created for the
startpoint and this ivec added to the endpoint security context. A copy of the ivec is also
placed in the startpoint security context. Finally, in order to identify which ivec to use to
decode an incoming message, an ivec identifier is placed in the startpoint security context as
well. Thus, with CBC encryption, not only does the startpoint’s security context differ from its
endpoint’s, but the process of binding the startpoint to the endpoint modifies the endpoint’s
security context also.

7.1 Copying Startpoints

The startpoint copying function in the security transform modules work much in the same way
as the startpoint initialization functions. In the case of ECB, the context for the new startpoint
can be copied from initial startpoint. The endpoint’s security context remains unchanged.
For CBC encryption the process is more complicated as the ivec in the endpoint context is
modified as a function of the data being encrypted. In order for CBC encryption to work, not
only do both sides (encrypting and decrypting) require the exact same key, but they also must
both must start with identical ivecs. The ivec values are kept in sync only by encrypting and
decrypting the same data stream. Consequently, each communication link (startpoint/endpoint
pair) must have a distinct ivec, and copying a startpoint must result in the creation of a
new ivec entry in the endpoint’s security context. For this reason, the implementation of the
nexus_startpoint_copy operation will arrange for the startpoint copy function to have access
to the potentially remote endpoint to which the source startpoint is bound, allowing the creation
of an additional endpoint ivec structure for the new startpoint.

7.2 Sending and Receiving Secure Messages

When an RSR is issued over a communication link with a transform module, the transform and
untransform functions are applied to the data. For ECB transforming and untransforming the
data is straightforward. Transforming the message ECB encrypts it using the startpoint’s key
and untransforming it ECB decrypts it using the endpoint’s key.

For CBC and MD5 authentication the process of transforming and untransforming is more
complicated. Transforming the message starts by CBC encrypting the message using the start-
point’s key and ivec. The CBC encryption algorithm modifies the ivec as a function of the
ivec’s initial value and the data being encrypted. Then, after CBC encrypting, a MAC is cal-
culated using MD5 authentication with the startpoint’s MD5 key and the encrypted message.
In addition to sending the encrypted message, the MAC and the address of the ivec node on
the endpoint side are both placed into the message header.

On the receiving side, the untransform operation starts by attempting to authenticate the
message using MD5 authentication. A MAC is calculated using the endpoint’s MD5 key and
the encrypted message. This MAC is compared to the MAC in the message header. If the two
are equal, the message is authenticated, and only then is the message decrypted. Decrypting

15

&Ivec2

sp2

sp2_copy

ep1 ECB Key1sp1ECB Key1

sp1_copyECB Key1

ep2
CBC Key2
MD5 Key3

Ivec1

Ivec2

Process 0 Process 1

CBC Key2
MD5 Key3
Ivec2

CBC Key2
MD5 Key3
Ivec1
&Ivec1

Figure 5: Two pairs of startpoints and endpoints with copies.

the message requires extracting (from the message header) the address of the appropriate ivec
node in the endpoint’s list of ivec nodes. Then, using the endpoint’s CBC key and the ivec
node, the message is CBC decrypted. The CBC decryption algorithm changes the value of the
ivec as a function of the ivec’s original value and the decrypted message. In this example we
illustrate that security contexts may or may not change with use.

8 Experimental Results

We report on a number of experiments that we have conducted to study the performance
of our techniques. These comprise a simple microbenchmark, designed to yield insights into
the costs associated with basic communication operations, and a large-scale application study.
We emphasize that these experiments have all been performed in the context of a large-scale
working system.

All experiments are performed on the Argonne IBM SP2, which connects 80 Power 2 proces-
sors with an SP2 high-speed switch. The SP2 supports both a fast, machine-specific communi-
cation library (MPL) and TCP/IP. MPL has performance characteristics typical of high-speed
parallel computer communication libraries (55 MB/sec bandwidth, small-message latencies of
around 50 µsec). TCP over the SP2 switch runs at about 22 MB/sec and incurs small-message
latencies of around 320 µsec; hence, it has performance characteristics similar to a tuned OC3
or faster ATM network in a metropolitan area network. TCP communication on the SP2 that
does not used the high-speed switch has performance characteristics similar to Ethernet.

8.1 Microbenchmark Results

We use a microbenchmark to compare the performance of secure and unsecure versions of our
basic communication mechanisms. This Nexus program bounces a vector of fixed size back
and forth between two processors a large number of times. Each communication is achieved
by an RSR to the remote node, with the RSR handler that executes on the remote node
invoking an RSR back on the originating node. The experiment is repeated for different vector

16

sizes. Figures 6 and 7 show results obtained in four different configurations: Nexus when using
IBM’s low-level MPL communication library, with and without DES encryption and MD5
authentication (MPL Secure, MPL Unsecure); and Nexus when using TCP/IP communication,
with and without DES encryption and MD5 authentication (TCP Secure, TCP Unsecure). In
those experiments that used TCP/IP communication (TCP Secure and TCP Unsecure) we
did not utilize the SP2 high-speed switch. Note that identical source code, DES encryption
libraries, and MD5 authentication libraries were used for all experiments.

In all the microbenchmark experiments encryption was performed using a DES library in
cipher block chaining (CBC) mode. The library used is libdes version 3.00 written by Eric
Young. Authentication in all the microbenchmark experiments used the MD5 message digest
algorithm. The library used is RSAREF version 2.0 from RSA Laboratories.

The results reveal a number of interesting attributes of our Nexus secure communication
infrastructure. Looking first at Figure 6, we note that for small messages, the underlying
communication protocol (TCP vs. MPL) makes a bigger difference to performance than whether
or not security is enabled. For a 10-byte message, unsecure MPL communication takes 78 µsec,
while secure MPL takes 128 µsec: 64 percent slower than unsecure MPL, but still a lot faster
than both secure and unsecure TCP, which take 394 and 472 µsec, respectively. These results
emphasize the importance of using optimized low-level communication mechanisms when these
are available.

For larger messages, encryption costs dominate communication time. Beyond 300 bytes,
secure MPL is slower than unsecure TCP (but still considerably faster than secure TCP).
Looking at Figure 7, we see that for messages larger than a few thousand bytes, secure MPL
and TCP have essentially the same cost. This is because the communication costs for large
messages are dominated by the limited performance of the DES encryption library; the Power 2
processor can encrypt and then decrypt data at only 1 MB/sec, far slower than the SP2 network.

8.2 Application Results

Our application study uses the FOAM fast ocean-atmosphere model, designed to run at rel-
atively low resolutions for multicentury simulations [30]. This model uses MPI for communi-
cation and combines a large atmosphere model (the Parallel Community Climate Model [6])
with an ocean model (from U. Wisconsin). The two models execute concurrently and perform
considerable internal communication. Periodically, the models exchange information such as
sea surface temperature and various fluxes.

To provide a controlled environment for our experiments, we run the two model components
not on two different computers but instead on distinct sets of nodes (partitions) of the Argonne
SP2 (Figure 8). Communication between partitions is always performed by using TCP, this time
utilizing the high-speed switch hence approximating a situation in which we have two computers
connected by an ATM metropolitan area network. Communication within a partition may be
performed by using either MPL or TCP; we present results for both cases. In all cases, user-
level communication is achieved by using the MPI implementation that we have constructed
by layering on top of Nexus [9]. (This layering adds an execution time overhead of about 6
percent when compared with a “native” MPI.) No changes to the application program were
required to run the different scenarios considered below.

Table 1 gives our results. We present results for three different scenarios: no encryption

17

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
s)

Msg Length (bytes)

TCP Secure
MPL Secure

TCP Unsecure
MPL Unsecure

F
igu

re
6:

M
icrob

en
ch

m
ark

resu
lts:

S
ee

tex
t

for
d
etails

18

1e-05

0.0001

0.001

0.01

0.1

1 10 100 1000 10000

T
im

e
(s

ec
s)

Msg Length (bytes)

TCP Secure
MPL Secure

TCP Unsecure
MPL Unsecure

F
igu

re
7:

M
icrob

en
ch

m
ark

resu
lts;

n
ote

th
e

u
se

of
log

scales.
S
ee

tex
t

for
d
etails

19

TCP

Atmosphere Ocean

MPL MPL

Figure 8: The Argonne/Wisconsin coupled ocean/atmosphere model in the configuration used
for our multimethod communication experiments, showing the two IBM SP partitions.

Table 1: Time per simulated day for the coupled ocean/atmosphere model, with different
security modes and communication protocols on an IBM SP2

Mode TCP time MPL time
(secs/day) (secs/day)

No secure 854 574
Coupler secure 897 590
All secure 1459 1187

(“No secure”), encryption (ECB mode) only on communications between models (“Coupler
secure”), and encryption (ECB mode) on all communications (“All secure”). In each case, we
consider configurations in which either TCP or MPL are used within a partition.

Our results demonstrate the importance of a communications infrastructure that can both
support the use of multiple low-level communication methods (MPL as well as TCP) and permit
selective application of encryption. When using encrypted TCP for all communication, total
time is 1459 seconds per simulated day. Allowing the use of MPL within a partition reduces
execution time by 19 percent, to 1187 seconds/day. Turning off encryption within partitions
reduces execution time by a further 50 percent, to 590 seconds/day. The latter time is only 3
percent slower than when using no encryption at all.

9 Related Work

While there has been considerable earlier work on portable security mechanisms for distributed
computing, issues relating to high-performance computing have received less attention.

The Secure Socket Library [14] (SSL) allows the programmer to associate different secu-
rity mechanisms with different physical connections (sockets), but does not permit the use of
specialized communication methods. In contrast, Nexus allows different security mechanisms

20

to be associated with different logical connections, which furthermore can communicate with
different low-level protocols.

Jaspan [16] describes the use of GSS-API to implement secure remote procedure calls. He
reports an overhead of over 11 milliseconds for a secured RPC with no arguments; clearly, this
work does not emphasize performance.

Venugopal [32] describes a secure implementation of Parallel Virtual Machine, a popular
message passing library. He uses a secure rsh for remote process creation and Diffie-Hellman
key exchange to communicate a secret session key from the initial user process to all other
processes. Encryption is enabled on a per-session basis, at the command line, although the
programmer also has the option of specifying that a specific message should be secured using a
particular technique. There is no support for associating a security mechanism with a particular
logical connection.

The Prospero Resource Manager (PRM) [24] uses Kerberos mechanisms to provide secure
process creation mechanisms for PVM. Depending on the level of security required, PRM can
be configured to execute (a) only those programs whose executables reside in the PRM binaries
directory (b) executables residing on the filesystem local to the site (c) local executables as well
as those downloaded from remote sites from which jobs are submitted.

The x-kernel [26] and Horus [31] use protocol composition techniques to construct security
enhanced versions of communication methods without the specialized “escape” used in Nexus.
This approach introduces certain overheads but has high flexibility. We hope to explore its use
in future work.

10 Conclusions

We have described the design and implementation of a secure communications infrastructure
for high-performance distributed computing applications. This infrastructure integrates au-
thentication, encryption, and data integrity mechanisms into the tools typically used to de-
velop high-performance applications. These security-enhanced tools make it possible to run
large-scale distributed applications in a secure manner, without any changes to the applica-
tions themselves. In addition, the tools provide hooks that programmers can use to manage
explicitly the security mechanisms used for different communications. Experimental results
demonstrate that in heterogeneous environments we can obtain significant performance advan-
tages by employing multiple transport mechanisms and by enabling security mechanisms only
when communicating selectively.

In more recent work than is reported here, Nexus has been integrated into Globus [11], a
toolkit for constructing high-performance distributed computing, or metacomputing systems.
As part of this integration, the process-creation mechanisms have been replaced by a more flex-
ible service called the Globus Resource Allocation Manager, or GRAM. GRAM is responsible
for implementing a well-defined Globus security policy that provides a single sign on capability
and mutual process to resource and process to process authentication. This security policy has
been implemented using the GSS-API [19], eliminated the need to code authentication or trans-
form modules to a specific security API. The transform based encryption methods discussed in
this paper are used to provide data privacy in Globus.

In future work, we propose to deploy these security-enhanced communication tools in a

21

wide-area Globus testbed that we are constructing, called GUSTO. This deployment will allow
large-scale application experiments and hence provide feedback on how our security mecha-
nisms work in practical situations. It seems certain that encryption performance will be a
bottleneck in many situations. Hence, we will experiment with various performance enhance-
ment techniques, including specialized protocols [1], parallel encryption algorithms [22, 23], and
use of dedicated encryption processors. Another interesting direction for further work will be
to investigate the feasibility of using the Metacomputing Directory Service to determine when
secure communication mechanisms must be employed, for example because communication oc-
curs over insecure network connections. Clearly one issue that will be important to address in
this context is the authenticity of resource database entries.

Acknowledgments

We are grateful to Greg Koenig and Jonathan Geisler their his considerable assistance with the
experiments reported in this paper, and to John Anderson, Robert Jacob, and Chad Schafer
for making the coupled model available to us. This work was supported by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of Computational
and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

References

[1] I. Agi and L. Gong. An empirical study of secure MPEG video transmissions. In Proc.

Symp. on Network and Distributed System Security, pages 137–144. IEEE Computer So-
ciety Press, 1996.

[2] C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44–52,
1992.

[3] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-WAY:
Wide area visual supercomputing. International Journal of Supercomputer Applications,
10(2):123–130, 1996.

[4] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann. Remote
engineering tools for the design of pollution control systems for commercial boilers. Inter-

national Journal of Supercomputer Applications, 10(2):208–218, 1996.

[5] T. L. Disz, M. E. Papka, M. Pellegrino, and R. Stevens. Sharing visualization experiences
among remote virtual environments. In International Workshop on High Performance

Computing for Computer Graphics and Visualization, pages 217–237. Springer-Verlag,
1995.

[6] J. Drake, I. Foster, J. Michalakes, B. Toonen, and P. Worley. Design and performance of a
scalable parallel Community Climate Model. Parallel Computing, 21(10):1571–1591, 1995.

[7] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A
directory service for configuring high-performance distributed computations. In Proc. 6th

22

IEEE Symp. on High Performance Distributed Computing, pages 365–375. IEEE Computer
Society Press, 1997.

[8] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple communication
methods in high-performance networked computing systems. Journal of Parallel and Dis-

tributed Computing, 40:35–48, 1997.

[9] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-WAY: A wide-area, multimethod imple-
mentation of the Message Passing Interface. In Proceedings of the 1996 MPI Developers

Conference, pages 10–17. IEEE Computer Society Press, 1996.

[10] I. Foster, N.T. Karonis, C. Kesselman, G. Koenig, and S. Tuecke. A secure communications
infrastructure for high-performance distributed computing. In Proc. 6th IEEE Symp. on

High Performance Distributed Computing, pages 125–136. IEEE Computer Society Press,
1997.

[11] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International

Journal of Supercomputer Applications, 11(2):115–128, 1997.

[12] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading
and communication. Journal of Parallel and Distributed Computing, 37:70–82, 1996.

[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the

Message Passing Interface. The MIT Press, 1994.

[14] K. Hickman. The SSL protocol. Internet Draft RFC, 1995.

[15] International Business Machines Corporation, Kingston, NY. IBM Load Leveler: User’s

Guide, September 1993.

[16] B. Jaspan. GSS-API security for ONC RPC. In Proc. Symp. Network and Distributed

Systems Security, pages 144–151. IEEE Computer Society Press, 1993.

[17] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel. The High Performance

Fortran Handbook. The MIT Press, 1994.

[18] C. Lee, C. Kesselman, and S. Schwab. Near-realtime satellite image processing: Metacom-
puting in CC++. Computer Graphics and Applications, 16(4):79–84, 1996.

[19] J. Linn. Generic security service application program interface. Internet RFC 1508, 1993.

[20] T. Maples and G. Spanos. Performance study of a selection encrytion scheme for the secu-
rity of networked, real-time video. In Proc. 4th Intl. Conf. on Computer Communications

and Networks, 1995.

[21] C. Mechoso et al. Distribution of a Coupled-ocean General Circulation Model across high-
speed networks. In Proceedings of the 4th International Symposium on Computational

Fluid Dynamics, 1991.

23

[22] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. Towards high performance crypto-
graphic software. In 3rd IEEE Workshop on the Architecture and Implementation of High

Performance Communication Subsystems, 1995.

[23] E. Nahum, D. Yates, S. O’Malley, H. Orman, and R. Schroeppel. Parallelized network
security protocols. In Proc. Symp. on Network and Distributed System Security, pages
145–154. IEEE Computer Society Press, 1996.

[24] B. Clifford Neuman and Santosh Rao. The Prospero resource manager: A scalable frame-
work for processor allocation in distributed systems. Concurrency: Practice & Experience,
6(4):339–355, 1994.

[25] M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist, K. Keahey,
J. Ostriker, J. Shalf, J. Welling, and S. Yang. Galaxies collide on the I-WAY: An ex-
ample of heterogeneous wide-area collaborative supercomputing. International Journal of

Supercomputer Applications, 10(2):131–140, 1996.

[26] S. O’Malley and L. Peterson. A dynamic network architecture. ACM Transactions on

Computing Systems, 10(2):110–143, 1992.

[27] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol for
real-time applications. Internet RFC 1889.

[28] J. Steiner, B. Neuman, and J. Schiller. Kerberos: An authentication system for open
network systems. In Usenix Conference Proceedings, pages 191–202. 1988.

[29] D. Stevenson, N. Hillary, G. Byrd, F. Gong, and D. Winklestein. Design of a key agile
cryptographic system for OC-12c rate ATM. In Proc. Symp. Network and Distributed

Systems Security, pages 17–30. IEEE Computer Society Press, 1993.

[30] M. Tobis, I. T. Foster, C. M. Shafer, R. L. Jacob, and J. R Anderson. FOAM: Expanding
the horizons of climate modelling. In Supercomputing ’97, San Jose, California, 1997.
ACM.

[31] R. van Renesse, K. Birman, R. Friedman, M. Hayden, and D. Karr. A framework for
protocol composition in Horus. In Proc. Principles of Distributed Computing Conf., 1995.
http://www.cs.cornell.edu/Info/People/rvr/papers/podc/podc.html.

[32] N. Venugopal. The design, implementation, and evaluation of cryptographic distributed
applications: Secure PVM. Technical report, University of Tennessee, Knoxville, Tenn.,
1996.

24

