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Abstract

The I/O access patterns of many parallel applications sbokaccessesto a large number of small, noncontiguous
pieces of data. If an application’s /O needs are met by ngakiany small, distinct I/O requests, however, the I/O
performance degrades drastically. To avoid this problefR)-MD allows users to access noncontiguous data with
a single 1/0 function call, unlike in Unix I/O. In this papere explain how critical this feature of MPI-IO is for
high performance and how it enables implementations tooparoptimizations. We first provide a classification
of the different ways of expressing an application’s I/O dem MPI-IO—we classify them into fouevels called
level 0 through level 3. We demonstrate that, for applicetivith noncontiguous access patterns, the /O performance
improves dramatically if users write their applicationsiake level-3 requests (noncontiguous, collective) retiean
level-0 requests (Unix style). We then describe how our MPimplementation, ROMIO, delivers high performance
for noncontiguous requests. We explain in detail the two &ptimizations ROMIO performs: data sieving for
noncontiguous requests from one process and collectiveot/@oncontiguous requests from multiple processes. We
describe how we have implemented these optimizations lpgrean multiple machines and file systems, controlled
their memory requirements, and also achieved high perfoceaWe demonstrate the performance and portability
with performance results for three applications—an astysjzs-application template (DIST3D), the NAS BTIO
benchmark, and an unstructured code (UNSTRUC)—on fiverdifeparallel machines: HP Exemplar, IBM SP,
Intel Paragon, NEC SX-4, and SGI Origin2000.
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1 Introduction

I/O is a major bottleneck in many parallel applications. hdlagh the 1/0 subsystems of parallel machines may be
designed for high performance, a large number of applinatachieve only about a tenth or less of the peak I/O
bandwidth. One of the main reasons for poor applicatioetlB#® performance is that I/O systems are optimized for
large accesses (on the order of megabytes), whereas maaliepapplications make lots of small requests (on the
order of kilobytes or even less). These small requests doctine following reasons:

¢ In many parallel applications (for example, those that seckstributed arrays from files) each process needs to
access a large number of relatively small pieces of dataatieatot contiguously located in the file [1, 3, 11, 19,
18, 24].

¢ Most parallel file systems have a Unix-like API (applicatmmogramming interface) that allows a user to access
only a single, contiguous chunk of data at a time from alfildloncontiguous data sets must therefore be
accessed by making separate function calls to access adietdiral contiguous piece.

With such an interface, the file system cannot easily detecbverall access pattern of one process individually
or that of a group of processes collectively. Consequetité/file system is constrained in the optimizations it can
perform. Many parallel file systems also provide their owteasgions to or variations of the traditional Unix interface
and these variations make programs nonportable.

To overcome the performance and portability limitationexikting parallel 1/O interfaces, the MPI Forum (made
up of parallel-computer vendors, researchers, and apiplisascientists) defined a new interface for parallel 1/0O as
part of the MPI-2 standard [9]. This interface is commonkgreed to as MPI-10. MPI-I0 is a rich interface with many
features designed specifically for performance and pdityatultiple implementations of MPI-10, both portable@n
machine specific, are available [5, 7, 13, 15, 26]. To avo@ahove-mentioned problem of many distinct, small I/O
requests, MPI-I1O allows users to specify the entire norigapus access pattern and read or write all the data with a
single function call. MPI-IO also allows users to specifyiectively the 1/0 requests of a group of processes, thereby
providing the implementation with even greater accessrinédion and greater scope for optimization.

A simple way to port a Unix I/O program to MPI-IO is to replack @nix 1/O functions with their MPI-IO
equivalents. For applications with noncontiguous accestems, however, such a simple port is unlikely to improve
performance. In this paper, we demonstrate that to getfgignt performance benefits with MPI-1O, users must use
some of MPI-10’s advanced features, particularly nonapmius accesses and collective I/O.

An application can be written in many different ways with M. We provide a classification of the different
ways of expressing an application’s 1/0 access pattern if-I@PWe classify them into foulevels called level 0
through level 3. We explain why, for high performance, usésuld write their application programs to make level-3
MPI-IO requests (noncontiguous, collective) rather treuel-0 requests (Unix style). Similarly, 1/0O librariescbuas
HDF5 [27], that are written on top of MPI-10 should also strio make level-3 requests.

We describe how our portable implementation of MPI-10, @lROMIO, delivers high performance when the
user makes noncontiguous, collective I/O requests. Weaaxpl detail the two key optimizations ROMIO performs:
data sieving for noncontiguous requests from one processaltective /O for noncontiguous requests from multiple
processes. We describe how we have implemented these pagtiiomis portably on multiple machines and file systems,
controlled their memory requirements, and also achievgt performance. We demonstrate the performance and
portability with performance results for three applicasmn five different parallel machines: HP Exemplar, IBM SP,
Intel Paragon, NEC SX-4, and SGI Origin2000. The applicegiowe used are the following:

1. DIST3D, a template representing the 1/O access pattean iastrophysics application, ASTRO3D [24], from
the University of Chicago. This application does a large ami@f 1/0 and is representative of applications that
access distributed arrays.

1Unix does have functionseadv andwr i t ev, but they allow noncontiguity only in memory and not in thefilPOSIX has a function
I'i olisti o thatallows the user to specify a list of requests at a timewé¥er, the requests in the list can be a mixture of reads aitdsyr
and the POSIX standard says that each of the requests willdraited as a separate nonblocking request [6]. Theref®&|X implementations
cannot optimize I/O for the entire list of requests, for exden by performing data sieving as described in Section 5thEunore, since the
I'i o_listiointerface is not collective, implementations cannot penfoollective I/O.



2. The NAS BTIO benchmark [5], a well-known MPI-10 benchmaedveloped at NASA Ames Research Center.

3. Anunstructured code (UNSTRUC) from Sandia National lrataries that is representative of applications that
have irregular access patterns.

The rest of this paper is organized as follows. In Section@ ewplain how MPI-10 supports noncontiguous file
accesses. In Section 3, we present a classification of tieeetit ways of expressing an application’s I/O access patte
in MPI-10. We describe our MPI-10 implementation, ROMIO,$®ction 4. In Sections 5 and 6, we describe in detail
how data sieving and collective 1/0 are implemented in ROMP@rformance results are presented and analyzed in
Section 7, followed by conclusions in Section 8.

2 Noncontiguous Accesses in MPI-IO

In MPI, the amount of data a function sends, receives, remdg;tes is specified in terms of instances aofeatypd10].
Datatypes in MPI are of two kinds: basic and derived. Basiatgpes correspond to the basic datatypes in the host pro-
gramming language—integers, floating-point numbers, anfdigh. In addition, MPI provides datatype-constructor
functions to create derived datatypes consisting of mieltipsic datatypes located either contiguously or nongaati
ously. The different kinds of datatype constructors in M@l as follows:

¢ contiguousCreates a new datatype consisting of contiguous copies @fiating datatype.
¢ vector/hvector Creates a new datatype consisting of equally spaced copéssting datatype.

¢ indexed/hindexed/indexedblock Allows replication of a datatype into a sequence of blockshecontaining
multiple copies of an existing datatype; the blocks may bequially spaced.

e struct The most general datatype constructor, which allows eagbkltb consist of replications of different
datatypes.

¢ subarray Creates a datatype that corresponds to a subarray of a imgtidional array.

e darray Creates a datatype that describes a process’s local artained from a regular distribution a multidi-
mensional global array.

The datatype created by a datatype constructor can be usedigut datatype to another datatype constructor. Any
noncontiguous data layout can therefore be representedms tof a derived datatype.

MPI-10 uses MPI datatypes to describe the data layout in see'sibuffer in memory and also to define the data
layout in the file. The data layout in memory is specified bydh¢ at ype argument in each read/write function in
MPI-IO. The data layout in the file is defined by tfie view When the file is first opened, the default file view is
the entire file; that is, the entire file is visible to the pregeand data will be read/written contiguously startingrfro
the location specified by the read/write function. A proaess change its file view at any time by using the function
MPI _Fi | e_set _vi ew, which takes as argument an MPI datatype callediteiype From then on, data will be read
from or written to only those parts of the file specified by tHetyipe; any “holes” will be skipped. The file view
and the data layout in memory can be defined by using any MRt loaslerived datatype; therefore, any general
noncontiguous access pattern can be compactly represented

Several studies have shown that, in many parallel appticatieach process needs to access a number of relatively
small, noncontiguous portions of a file [1, 3, 11, 19, 24]. rira performance perspective, it is critical that the
I/O interface can express such an access pattern, as itesriflel implementation to optimize the 1/0 request. The
optimizations typically allow the physical I/O to take péeio large, contiguous chunks, even though the user’s réeques
may be noncontiguous. MPI-IO’s file views, therefore, ari¢ical for performance. Users must ensure that they
describe noncontiguous access patterns in terms of a fikeand then call a single I/0 function; they must not try to
access each contiguous portion separately as in Unix I/O.
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Figure 1: Distributed-array access

3 A Classification of I/O Request Structures

Any application has a particular “I/O access pattern” basedts /0 needs. The same 1/O access pattern can be
presented to the 1/O system in different ways, however, n@ipg on which 1/0 functions the application uses and
how. We classify the different ways of expressing /O acqesserns in MPI-10 into four “levels,” level O through
level 3. We explain this classification with the help of anrapée, accessing a distributed array from a file, which
is a common access pattern in parallel applications. (Orteaeobenchmark applications we used for performance
evaluation, DIST3D, has such an access pattern.)

Consider a two-dimensional array distributed among 16gsses in a (block, block) fashion as shown in Figure 1.
The array is stored in a single file corresponding to the dlaivay in row-major order, and each process needs to read
its local array from the file. (Note that the file could be plegdly distributed among disks, but appears to the program
as a single logical file.) The data distribution among preessand the array storage order in the file are such that the
file contains the first row of the local array of process 0,da#d by the first row of the local array of process 1, the
first row of the local array of process 2, the first row of thealaarray of process 3, then the second row of the local
array of process 0, the second row of the local array of pteand so on. In other words, the local array of each
process is located noncontiguously in the file.

Figure 2 shows four ways in which a user can write a programhiickveach process reads its local array from
this file using MPI-10. In level 0, each process does UniXespccesses—one independent read request for each
row in the local array. Level 1 is similar to level O exceptttitauses collective I/O functions, which indicates to
the implementation that all processes that together optreélle will call this function, each with its own access
information. Independent I/O functions, on the other hamoehvey no information about what other processes will do.
In level 2, each process creates an MPI derived datatypestwitle the noncontiguous access pattern, defines a file
view, and calls independent I/O functions. Level 3 is simiitalevel 2 except that it uses collective 1/0 functions.

The four levels represent increasing amounts of data peestgas illustrated in Figure?3The more the amount

2In this figure, levels 1 and 2 represent the same amount ofpdaiteequest, but, in general, when the number of noncontigaocesses per
process is greater than the number of processes, level@sets more data than level 1.



MPI_File_open(..., "filename", ..., &fh) MPI_File_open(MPI_COMM_WORLD, "filename", ..., &fh)

for (i=0; i<n_local_rows; i++) { for (i=0; i<n_local_rows; i++) {
MPI_File_seek(th, ...) MPI_File_seek(fh, ...)
MPI_File_read(fh, row[i], ...) MPI_File_read_all(th, row[i], ...)
} }
MPI_File_close(&fh) MPI_File_close(&fh)
Level O Level 1
(many independent, contiguous requests) (many collective, contiguous requests)

MPI_Type_create_subarray(..., &subarray, |..) MPI_Type_create_subarray(.., &subarray, ...)

MPI_Type_commit(&subarray) MPI_Type_commit(&subarray)
MPI_File_open(..., "filename", ..., &th) MPI_File_open(MPI_COMM_WORLD, "filename", ..., &fh)
MPI_File_set_view(fh, ..., subarray, ...) MPI_File_set_view(fh, ..., subarray, ...)
MPI_File_read(fh, local_array, ...) MPI_File_read_all(fh, local_array, ...)
MPI_File_close(&fh) MPI_File_close(&fh)
Level 2 Level 3
(single independent, noncontiguous request) (single collective, noncontiguous request)

Figure 2: Pseudo-code that shows four ways of accessingathgmFigure 1 with MPI-10

of data per request, the greater is the opportunity for thémentation to deliver higher performance. Users should
therefore strive to express their I/0O requests as leveltirahan level 0. How good the performance is at each level
depends, of course, on how well the implementation takearddge of the extra access information at each level.

If an application needs to access only large, contiguou®pief data, level 0 is equivalent to level 2, and level 1 is
equivalent to level 3. Users need not create derived dagatypsuch cases, as level-0 requests themselves will likely
perform well. Most parallel applications, however, do raitiinto this category. Several studies of I/O access padter
in parallel applications [1, 3, 11, 19, 18, 24] have showrt gah process in a parallel program may need to access
a number of relatively small, noncontiguous portions of @ fifrom a performance perspective, it is critical that the
I/O interface can express such an access pattern, as itesriflgl implementation to optimize the 1/0 request. The
optimizations typically allow the physical I/O to take péaio large, contiguous chunks, even though the user’s réeques
may be noncontiguous. Users, therefore, should ensuréhatescribe noncontiguous access patterns in terms of
a file view and then call a single 1/O function; they should trgtto access each contiguous portion separately as in
Unix I/O. Figure 4 shows the detailed code for creating avéeridatatype, defining a file view, and making a level-3
I/O request for the distributed-array example of Figure 1.

4 ROMIO Implementation of MPI-IO

We have developed a freely available, portable implemiamtaif MPI-1O, called ROMIO [14, 25]. It runs on at
least the following machines: IBM SP; Intel Paragon; CrafgTBIP Exemplar; SGI Origin2000; NEC SX-4; other
symmetric multiprocessors from HP, SGI, Sun, DEC, and IBM] aetworks of workstations (Sun, SGI, HP, IBM,
DEC, Linux, and FreeBSD). Supported file systems are IBM FQhRtel PFS, HP HFS, SGI XFS, NEC SFS, NFS,
PVFS, and any Unix file system (UFS).

A key component of ROMIO that enables such a portable MPIl#lémentation is an internal layer called
ADIO [23]. ADIO, an abstract-device interface for 1/O, is @omanism for implementing parallel I/O APIs portably
on multiple file systems. ADIO consists of a small set of bésictions for parallel /0. We have implemented MPI-
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array_of gsizes[0] num gl obal _r ows;
array_of gsizes[1] num gl obal _col s;
array_of distribs[0] = array_of _distribs[1] = MPI_DI STRI BUTE_BLOCK;
array_of dargs[0] = array_of _dargs[1] = MPI_DI STRI BUTE_DFLT_DARG,
array_of psizes[0] = array_of _psizes[1l] = 4;
MPI _Comm r ank( MPI _COWM WORLD, &nynode);
MPI _Type_create_darray(16, nynode, 2, array_of_gsizes, array_of _distribs,
array_of dargs, array_of psizes, MPI_ORDER C,
MPI _FLOAT, &filetype);
MPI _Type_commit (&f il etype);
| ocal _array_size = num|local _rows * numlocal cols;
MPI _Fi |l e_open(MPI _COMM WORLD, "/pfs/test", MPI_MODE_CREATE | MPI _MODE_RDVR,
MPl _| NFO_NULL, &fh);
MPI _File_set_view(fh, 0, MPI_FLOAT, filetype, "native", MPI _I NFO NULL);
MPI _File_ read_all(fh, local _array, local __array_size, MPI_FLOAT, &status);
MPI _File_cl ose(&fh);

Figure 4: Detailed code for the distributed-array exampleigure 1 using a level-3 request
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Figure 5: ROMIO Architecture: MPI-10 is implemented poriabn top of an abstract-device interface called ADIO,
and ADIO is optimized separately for different file systems.

IO portably on top of ADIO, and only ADIO is implemented seqtaty on each different file system (see Figure 5).
ADIO thus separates the machine-dependent and machiepéndent aspects involved in implementing MPI-10.

The following two sections describe the optimizations R@\ilerforms for noncontiguous I/O requests, namely,
data sieving for noncontiguous requests from one processaltective /O for noncontiguous requests from multiple
processes.

5 Data Sieving

To reduce the effect of high I/O latency, it is critical to nealis few requests to the file system as possible. Data
sieving is a technique that enables an implementation tcenaatew large, contiguous requests to the file system
even if the user’s request consists of several small, ndigrayus accesses. Data sieving was used in the PASSION
I/O library [20, 22] to access sections of out-of-core astayWe have extended it in ROMIO to handiay general
noncontiguous access pattern (as can be described by anadiyge) and to use only a constant amount of extra
memory regardless of the access pattern. The user can ctir@nmemory usage dynamically by setting a runtime
parameter.

Figure 6 illustrates the basic idea of data sieving. Assuratthe user has made a single read request for five non-
contiguous pieces of data. Instead of reading each nomranis piece separately, ROMIO reads a single contiguous
chunk of data starting from the first requested byte up todakerequested byte into a temporary buffer in memory. It
then extracts the requested portions from the temporafeband places them in the user’s buffer. The user’s buffer
happens to be contiguous in this example, but it could welidecontiguous.

A potential problem with this simple algorithm is its memagguirement. The temporary buffer into which data
is first read must be as large as thdentof the user’s request, where extent is defined as the totabauof bytes
between the first and last byte requested (including holds.extent can potentially be very large—much larger than
the amount of memory available for the temporary buffer—ase the holes (unwanted data) between the requested
data segments could be very large. The basic algorithrmefitrer, must be modified to make its memory requirement
independent of the extent of the user’s request.

ROMIO uses a user-controllable parameter that defines tlkemman amount of contiguous data that a process can
read at a time during data sieving. This value also repregbetmaximum size of the temporary buffer. The default
value is 4 Mbytes (on each process), but the user can chaageit time via MPI-10O’s hints mechanism. If the extent
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Figure 6: Data sieving

of the user’s request is larger than the value of this paremmBOMIO performs data sieving in parts, reading only as
much data at a time as defined by the parameter.

The advantage of data sieving is that data is always accés$&de chunks, although at the cost of reading more
data than needed. For many common access patterns, theblebtle=en useful data are not unduly large, and the
advantage of accessing large chunks far outweighs the tosading extra data. In some access patterns, however
the holes are so large that the cost of reading the extra datgeighs the cost of accessing large chunks. The BTIO
benchmark (see Section 7), for example, has such an acdgsspan intelligent data-sieving algorithm can handle
such cases as well. The algorithm can analyze the user'sseqnd calculate the sizes of holes in it. Based on
empirically determined prior knowledge of how large holes get before data sieving is no longer beneficial, the
algorithm can decide whether to perform data sieving orsgeach contiguous data segment separately.

Data sieving can similarly be used for writing data. A readdify-write must be performed, however, to avoid
destroying the data already present in the holes betweeingoons data segments. For writing with data sieving,
ROMIO first reads a contiguous chunk of data from the file interaporary buffer in memory, copies data from the
user’s buffer into appropriate locations in the temporaurffdy, and then writes the temporary buffer back to the file.
The portion of the file being accessed must also be lockeaditine read-modify-write to prevent concurrent updates
by other processes.

ROMIO also uses another user-controllable parameter gfates the maximum amount of contiguous data that
a process can write at a time during data sieving. This pasmegy default, has a smaller value than the one used
for reading, because writing involves locking the regiorihd file being accessed. If the region being locked is too
large, many processes remain idle waiting for the lock todbeased. Consequently, parallelism in I/O is lost, and
performance decreases. On the other hand, if the regiog bmgked is too small, there is greater parallelism, but the
size of each 1/0O access also decreases, and performancainsaalyersely affected. In other words, a compromise
is needed between allowing greater concurrency and hasigg laccess sizes. We determined experimentally that
a write size of 512 Kbytes provides a good trade-off betwéertwo conflicting goals and gives good performance.
ROMIO therefore sets the default value of the maximum buglifeg for writing to 512 Kbytes. The user can, of course,
change this value at run time.

One could argue that most file systems perform data sievipganbecause they perform caching. That is, even
if the user makes many small I/O requests, the file systemyalveads multiples of disk blocks and may also perform
aread-ahead. The user’s requests, therefore, may beeshtisti of the file-system cache. Our experience, however,
has been that the cost of making many system calls, each fdf amounts of data, is extremely high, despite the
caching performed by the file system. In most cases, it is refficdent to make a few system calls for large amounts
of data and extract the needed data. (See the performantesiesSection 7.)

ROMIO performs data sieving when the user makes a level-2q@atiguous, noncollective) MPI-10 request. For
level-3 requests (noncontiguous, collective), data sigis used within the collective I/O implementation to penfio
the local I/0O on each process, as explained in the next sectio



6 Collective I/O

The preceding section explained how data sieving can betasgatimize I/O when the entire (noncontiguous) access
information of a single process is known. Further optimaais possible if the implementation is given the entire
access information of a group of processes. Such optimiz&ibroadly referred to as collective I/O.

In many parallel applications, although each process may rie access several noncontiguous portions of a
file, the requests of different processes are often inteziband may together span large contiguous portions of the
file. If the user provides the MPI-IO implementation with tletire access information of a group of processes,
the implementation can improve 1/O performance signifigahy merging the requests of different processes and
servicing the merged request, that is, by performing ctiled/O.

Collective 1/0 can be performed in different ways and hasbstadied by many researchers in recent years. It
can be done at the disk level (disk-directed I/O [8]), at thevar level (server-directed 1/O [17, 16]), or at the client
level (two-phase 1/O [4, 21] or collective buffering [12JEach method has its advantages and disadvantages. Since
ROMIO is a portable, user-level library with no separate $&dvers, it performs collective I/O at the client level by
using a generalized version of two-phase 1/O.

ROMIO performs collective I/O when the user makes level-3144P requests. Most level-1 requests do not
contain enough information for ROMIO to perform collectimptimizations, and ROMIO therefore implements them
internally as level-0 requests. Some level-1 requestd) ascthose that represent a read-broadcast type of access
pattern, are optimized collectively, however.

6.1 Two-Phase I/O

Two-phase I/0O was first proposed in [4] in the context of asicesdistributed arrays from files. Consider the example
of reading a two-dimensional array from a file into a (blotgl) distribution in memory, as shown in Figure 7.
Assume that the array is stored in the file in row-major ordera result of the distribution in memory and the storage
order in the file, the local array of each process is locategontiguously in the file: each row of the local array of
a process is separated by rows from the local arrays of otleeepses. If each process tries to read each row of its
local array individually, the performance will be poor besa of the large number of relatively small I/O requests.
Note, however, that all processes together need to readhtire éle, and two-phase 1/O uses this fact to improve
performance as explained below.

If the entire 1/0O access pattern of all processes is knowhdarhplementation, the data can be accessed efficiently
by splitting the access into two phases. In the first phasmasses access data assuming a distribution in memory
that results in each process making a single, large, camiigaccess. In this example, such a distribution is a row-
block or (block,*) distribution. In the second phase, pgsas redistribute data among themselves to the desired
distribution. The advantage of this method is that by maldhdile accesses large and contiguous, the 1/O time
is reduced significantly. The added cost of interprocessnmonication for redistribution is (almost always) small
compared with the savings in I/O time.

The basic two-phase method was extended in [21] to accetsrseof out-of-core arrays. Since MPI-IO is a
general parallel 1/0O interface, 1/0O requests in MPI-IO capresentiny access pattern, not just sections of arrays.
The two-phase method in [21] must therefore be generaliadibhdle any noncontiguous I/O request. We have
implemented such a scheme in ROMIO.

Two-phase I/O does increase the memory requirements ofgggro For reading a distributed array, for example,
the amount of extra memory needed on each process (to seodath read in the first phase) is equal to the size of the
local array itself. Since this amount of memory may not belalike, the basic two-phase algorithm must be modified
to read and communicate smaller parts of the array at a tirimeilaBly, on machines in which the I/O performance
does not scale with the number of processes making simoltanie accesses, it may be beneficial to have only
a subset of processes perform 1/0, with the remaining pseseparticipating only in the redistribution phase. All
these generalizations—any access pattern, fixed memomjreetent, and variable number of processes performing
I/O—are incorporated in ROMIO’s collective I/O implemetite.
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Figure 7: Reading a distributed array by using two-phase 1/0

6.2 Generalized Two-Phase I/0 in ROMIO

ROMIO uses two user-controllable parameters for collecti®: the number of processes that should directly access
the file and the maximum size on each process of the tempotdfgr meeded for two-phase 1/0O. By default, all
processes perform 1/O in the 1/0O phase, and the maximum fisiffe is 4 Mbytes per process. The user can change
these values at run time via MPI-1O’s hints mechanism (sgergi8).

We first explain the algorithm that ROMIO uses for collectireads and then describe how the algorithm differs
for collective writes. Figure 9 shows a simple example thasirates how ROMIO performs a collective read. In this
example, all processes perform I/O, and each process isiadsw have as much memory as needed for the temporary
buffer.

In MPI-10, the collective I/O function called by a proces®siiies the access information of that process only. If
an MPI-I0 implementation needs the access informationlgfralcesses participating in a collective I/O operation,
it must gather the information from those processes dutiegexecution of the collective I/O function. Also, file
accesses in collective I/O refer to accesses from multigegsses to eommoriile.

6.2.1 Collective Reads

In ROMIQO’s implementation of collective reads, each precésst analyzes its own I/O request and creates a list
of offsets and a list of lengths, whefteengt h[ i ] gives the number of bytes that the process needs from lacatio
of fset[i] inthe file. Each process also calculates the locations dirtebyte (start offset) and the last byte (end
offset) it needs from the file and then broadcasts these tigetsfto other processes. As a result, each process has the
start and end offsets of all processes.

In the next step, each process tries to determine whethrepénticular access pattern can benefit from collective
I/O, that is, whether the accesses of any of the processéstarkeaved in the file. Since an exhaustive check can be
expensive, each process checks only whether, for any tweepses with consecutive rankafdi + 1), the following
expression is true: (start-offsgt < end-offsef). If the expression is not true, each process concludestiiactive
I/0 will not improve performance for this particular accesgtern, since the requests of different processes caenot b
merged. In such cases, each process just calls the cortisgandependent I/O function, which uses data sieving to
optimize noncontiguous requests.

If the above expression is true, the processes perfornotiold/O as follows. Portions of the file are “assigned” to
each process such that, in the 1/0 phase of the two-phasatapera process will access data only from the portion of
the file assigned to it. This portion of the file assigned toatess is called the procesfile domain If a process needs
data located in another process’s file domain, it will reeghe data from the other process during the communication
phase of the two-phase operation. Similarly, if this pretseBle domain contains data needed by other processes, it



/* create new info object */
MPI I nfo_create(& nfo);

/* specify buffer size for collective I/0 */
MPI _Info_set(info, "cb_buffer_size", "8388608");

/* specify that only half the processes should performI/Oin collec-
tive /0 */

sprintf(value, "%", nprocs/2);

MPI _Info_set(info, "cb_nodes", value);

/* specify buffer size for data sieving in independent reads */
MPI _Info_set(info, "ind_rd_buffer_size", "1048576");

/* specify buffer size for data sieving in independent wites */
MPI _Info_set(info, "ind w_buffer_size", "262144");

/* use this info object in the open function */
MPl _Fi |l e_open( MPI _COMM WORLD, "/pfs/test", MPI_MODE_CREATE | MPI _MODE_RDVR,
i nfo, &f h);

Figure 8: Example showing how to specify hints in MPI-IO. Ttweo collective I/O hints,cb_buf f er si ze
and cb_nodes, are predefined hints in MPI-IO; the two data-sieving hinitsyd_r d_buf f er si ze and
i nd_.wr _buf f er _si ze, are additional hints that ROMIO supports.

must send this data to those processes during the commionighiase.

File domains are assigned as follows. Each process casula minimum of the start offsets and the maximum of
the end offsets of all processes. The difference betweese tind offsets gives the total extent of the combined request
of all processes. The file domain of each process is obtaipatividing this extent equally among the processes.
For example, if the combined request of all processes spans dffset 100 to offset 399 in the file, and there are
three processes, the file domain of process 0 will be fronebif60 to 199; the file domain of process 1 will be from
offset 200 to 299; and the file domain of process 2 will be frdfaet 300 to 399.

When file domains are selected in this manner, the file domfam mrocess may not contain data needed by
any process (e.g., if the access pattern has large holesuchna case, the process will not perform any 1/0O and
will participate only in communication. (It is possible tesign a more intelligent file-domain selection scheme that
analyzes the access pattern and then assigns file domainsainreer that ensures an even balance of the I/0 workload
and/or reduces the communication needs.)

After the file domains are determined, each process caézulatwhich other process’s file domain its own 1/O
request (or a portion of it) is located. For each such proéeseeates a data structure containing a list of offsets and
lengths that specify the data needed from the file domainaifgfocess. It then sends this access information to the
processes from which it expects to receive data. Similather processes that need data from the file domain of this
process send the corresponding access information toribiegs. After this exchange has taken place, each process
knows what portions of its file domain are needed by othergsses and by itself. It also knows which other processes
are going to send the data that it needs.

The next step is to read and communicate the data. This steyuecees the majority of the time because all the
I/O and data communication takes place here. Note that thememication in earlier steps involved only access
information. The access information is usually much smalan actual data, unless the access pattern is so irregular
that an index is needed to represent the location of eveiig Hatatype needed from the file.

As mentioned above, ROMIO performs the read-and-commtenstap in several parts to reduce its memory re-
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Figure 9: A simple example illustrating how ROMIO performeallective read

guirement. Each process first calculates the offsets qurnelng to the first and last bytes needed (by any process)
from its file domain. It then divides the difference betwelese offsets by the maximum size allowed for the tempo-
rary buffer (4 Mbytes by default). The result is the numbetimies fit i nes) it needs to perform I/O. All processes
then perform a global-maximum operation i mes to determine the maximum number of timesk_nt i nes)

any process needs to perform I/O. Even if a process has ctedm# the 1/0 needed from its own file domain, it may
need to participate in communication operations there&fteeceive data from other processes. Each process must
therefore be ready to participate in the communication @hax_nt i mes number of times.

For each of theat i mes 1/O operations, a process does the following operationshétks whether the current

portion of its file domain (no larger than the maximum buffeze¥ has data that any process needs, including itself.
If it does not have such data, the process does not need tripeffO in this step; it then checks whether it needs to
receive data from other processes, as explained belowdd&s$ have such data, it reads with a single I/O function call
all the data from the first offset to the last offset neededhfthis portion of the file domain into a temporary buffer in
memory. The process effectively performs data sievinghasiata read may include some unwanted data. Now the
process must send portions of the data read to processesetththem.

Each process first informs other processes how much dataydimg to send to each of them. The processes

then exchange data by first posting all the receives as nokibigoperations, then posting all the nonblocking sends,
and finally waiting for all the nonblocking communication ¢complete. MPI derived datatypes are used to send
noncontiguous data directly from the temporary buffer ®dlestination process. On the receive side, if the user has
asked for data to be placed contiguously in the user-suppliéfer, the data is received directly into the user’s huffe

If data is to be placed noncontiguously, the process firgives data into a temporary buffer and then copies it into
the user’s buffer. (Since data is received in parts overipielcommunication operations from different processes, w
found this approach easier than creating derived datatyp#se receive side.)

Each process performs I/O and communicatibm mes number of times and then participates only in the com-
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munication phase for the remainirffgrax_nti mes - nti nes) number of times. In some of these remaining
communication steps, a process may not receive any datertheless, the process must check whether it is going to
receive data in a particular step.

6.2.2 Collective Writes

The algorithm for collective writes is similar to the one fmilective reads except that the first phase of the two-phase
operation is communication and the second phase is I/O.di/@ phase, each process checks to see whether any
holes (gaps) exist in the data it needs to write. If holestgiiperforms a read-modify-write; otherwise it performs
only a write. During the read-modify-write, a process needl Iock the region of the file being accessed (unlike
in independent 1/O), because the process is assured thaheo grocess involved in the collective I/O operation
will directly try to access the data located in this proce$i# domain. The process is also assured that concurrent
writes from processes other than those involved in thisectilte I/O operation will not occur, because MPI-IO’s
consistency semantics [9] do not automatically guaramesistency for such writes. (In such cases, users must use
MPI _Fi | e_sync and ensure that the operations are not concurrent.)

6.2.3 Performance Issues

Even if I/O is performed in large contiguous chunks, the @eniance of the collective I/O implementation can be
significantly affected by the amount of buffer copying andnoaunication. We were able to improve ROMIO’s
collective I/O performance by as much as 50% on some macbiésning the implementation to minimize buffer
copying, minimize the number of communication calls, anel the right set of MPI communication primitives.

Initially, in each of the communication steps, we alwaysieed data into a temporary buffer and then copied
it into the user’s buffer. We realized later that this copyneeded only when the user’s buffer is to be filled non-
contiguously. In the contiguous case, data can be receivedtlg into the appropriate location in the user’s buffer.
We similarly experimented with different ways of communing data in MPI and measured the effect on overall
collective 1/0 performance with different MPI implemernitats and on different machines. We selected nonblocking
communication with the receives posted first and then théssenstrategy that performs well on most systems. It may
be possible, however, to tune the communication furtheroomesmachines by posting the sends before the receives
or by using MPI's persistent requests.

6.2.4 Portability Issues

We were able to implement these optimizations portably,witldout sacrificing performance, by using ADIO as a
portability layer for 1/O (see Section 4) and by using MPI fmmmunication. Data sieving and collective 1/O are
implemented as ADIO functions [23]; data sieving is usechemADIO functions that read/write noncontiguous data,
and collective 1/0O is used in ADIO’s collective I/O functisnBoth these optimizations ultimately make contiguous
I/O requests to the underlying file system, which are implaiee by using ADIO’s contiguous I/O functions. The
contiguous 1/O functions, in turn, are implemented by udimg appropriate file-system call for each different file
system.

7 Performance Evaluation

We describe the three applications used in the performatperienents, the machines on which we ran the applica-
tions, and the set of experiments performed. We then presehanalyze the performance results.

7.1 Applications

The first application we used is DIST3D, a template représegtihe I/O access pattern in an astrophysics application,
ASTRO3D [24], from the University of Chicago. It measures ffrerformance of reading/writing a three-dimensional
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array distributed in a (block,block,block) fashion amonggesses from/to a file containing the global array in row-
major order.

The second application is the BTIO benchmark [5] from NASA&siResearch Center, which simulates the 1/0
required by a time-stepping flow solver that periodicallytes its solution matrix. The solution matrix is distribdte
among processes by using a multipartition distributionifi2jvhich each process is responsible for several disjoint
subblocks of points (cells) of the grid. The cells are areghguch that, for each direction of the solve phase, the
cells belonging to a certain process will be evenly distedalong the direction of solution. The solution matrix is
stored on each process@shree-dimensional arrays, whetéas the number of cells on each process. (The arrays are
actually four dimensional, but the first dimension has onlg lements and is not distributed.) Data is stored in the
file in an order corresponding to a column-major orderinghefglobal solution matrix. Note that this distribution is
different from the (block,block,block) distribution of BT3D. The benchmark performs only writes, but we modified
it to perform reads also, in order to measure the read baridsvid

The third application we used is an unstructured code (whieltall UNSTRUC) written by Larry Schoof and
Wilbur Johnson of Sandia National Laboratories. It is a bgtit benchmark that emulates the I/O access pattern in
unstructured-grid applications. It generates a randoegidar mapping from the local one-dimensional array of a
process to a global array in a common file shared by all presesEhe mapping specifies where each element of the
local array is located in the global array. The size of eaelmeht can also be varied in the program.

7.2 Machines

We ran the codes portably and measured the performance odiffeeent parallel machines: the HP Exemplar and
SGI Origin2000 at the National Center for Supercomputingligations (NCSA), the IBM SP at Argonne National
Laboratory, the Intel Paragon at the California Institut&@echnology, and the NEC SX-4 at the National Aerospace
Laboratory (NLR) in Holland. These machines cover almostehtire spectrum of high-performance systems, and
they represent distributed-memory, shared-memory, anallplvector architectures. They also represent a wide
variation in I/O architecture, from the “traditional” pdle file systems on distributed-memory machines such as the
SP and Paragon, to the so-called high-performance fileragst@ shared-memory machines such as the Origin2000,
Exemplar, and SX-4.

We used the native file systems on each machine: HFS on thedaerdFS on the Origin2000, PIOFS on the
SP, PFS on the Paragon, and SFS on the SX-4. At the time werpedahe experiments, these file systems were
configured as follows: HFS on the Exemplar was configured aivevdisks; XFS on the Origin2000 had two RAID
units with SCSI-2 interfaces; the SP had four servers forf8Ceach server with four SSA disks attached to itin one
SSA loop; the Paragon had 64 I/O nodes for PFS, each with avidodl Seagate disk; and SFS on the NEC SX-4
was configured on a single RAID unit comprising sixteen S€8kta disks.

7.3 Experiments

We modified the 1/O portions of these applications to coresito each of the four levels of requests (see Section 3)
and ran the programs on all five machines. In all experimaevs,sed the default values of the sizes of the internal
buffers ROMIO uses for data sieving and collective 1/0 (seeti®ns 5 and 6). We also used the default values of the
file-striping parameters on all file systems. On PFS and PlitbE8efault striping unit was 64 Kbytes.

On each machine, we used as many processors as we couldaielgsaccess. We also tried to use the same
number of processors on a given machine for each applichtibrvere at times constrained by the application’s
requirements: BTIO requires that the number of processera perfect square, whereas UNSTRUC requires that
the number of processors be a power of two. On some machhmegfore, we could not use the same number of
processors for both BTIO and UNSTRUC; for example, on the NEX=4 we had to run BTIO on 9 processors and
UNSTRUC on 8 processors.

The access patterns in DIST3D and BTIO are such that levetidasts cannot be optimized with collective 1/O.
In such cases, ROMIO internally translates level-1 requegb level-0 requests (with some overhead incurred in
analyzing the level-1 request). In UNSTRUC, the I/O accestem is irregular, and the granularity of each access is
very small (64 bytes). Level-0/1 requests are not feasiteHis kind of application because they take an excessive
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Figure 10: Performance of DIST3D (array size 512x512x51&gers = 512 Mbytes). Level-1 results are not shown
because, for this access pattern, ROMIO simply translatet-IL requests internally into level-0 requests.

amount of time. Therefore, we present results with levée@el-2, and level-3 requests for DIST3D and BTIO, and
with level-2 and level-3 requests for UNSTRUC.

7.4 Results

Figure 10 shows the read and write bandwidths for DIST3D. Beutated the bandwidth as the total data transferred
by all processes divided by the maximum of the time taken/foly any one process. The performance with level-0
requests was, in general, very poor because level-0 reqjressilt in too many small read/write calls. For level-2
requests—for which ROMIO performs data sieving—the reaadbadth improved over level-0 requests by a factor
ranging from 2.6 on the HP Exemplar to 453 on the NEC SX-4. @iyj the write bandwidth improved by a factor
ranging from 2.3 on the HP Exemplar to 121 on the NEC SX-4. @GnlBM SP, however, level-2 write requests
performed the same as level-0 requests. This is because @Oafinot perform data sieving for writing on the SP’s
PIOFS file system, since PIOFS does not support file lockimPI@FS, ROMIO internally translates level-2 requests
into level-0 requests.

The performance improved considerably with level-3 retpibgcause ROMIO performs collective 1/O in this
case. The read bandwidth improved by a factor of as much asv&3evel-0 requests (NEC SX-4) and as much as
14 over level-2 requests (Intel Paragon). Similarly, webdl-3 requests, the write performance improved by a factor
of as much as 721 over level-0 requests (NEC SX-4) and as nsuéh aver level-2 requests (HP Exemplar).

Figure 11 presents results for Class C of the BTIO benchniak BTIO, level-0 requests performed better than
level-2 requests on three out of the five machines. The reiasihrat the holes between data segments needed by a
process are large in BTIO—more than five times the size of Hia degment. As a result, a lot of unwanted data
was accessed during data sieving (level 2), resulting iretgeerformance than with Unix-style accesses (level 0).
As mentioned in Section 5, an intelligent data-sieving gtgm could detect such large holes and internally perform
Unix-style accesses. ROMIO’s data-sieving algorithm dugscurrently do this, however.

Level-3 requests performed extremely well on BTIO becawsemvanted data was accessed during collective I/O
and all accesses were large. The performance improved loyaa t as much as 512 over level-0 requests for reading
and 597 for writing, both on the NEC SX-4.

Figures 12 shows the read and write bandwidths for UNSTRUE r&M a problem size of 8 million grid points
on all machines except the Origin2000 where, because of myelimitations imposed by the scheduler, we had
to run a smaller problem size of 4 million grid points. Le@&lequests again performed much better than level-2
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requests.

requests, the only exception being for reads on the NEC SKr4his case, because of the high read bandwidth of
NEC's Supercomputing File System (SFS), data sieving lgffitaitperformed the extra communication required for
collective 1/0.

7.5 Impact of Architecture and System Configuration

The above results show that although level 3 performed thedreeach machine, there was a wide variation in the
performance of the applications among the different mahiihis variation is because the machines were configured
with different amounts and types of 1/O hardware (disksjfedént amounts of memory, and, of course, they had
different I/O architectures and file systems. Our goal is gtudy was to compare the performance of the different
levels of requests on a given machine, rather than comp#amgerformance of different machines. In general, the
parallel I/O performance of a machine depends on the folig#actors:

o the I/O architecture;

¢ the speed and amount of I/O hardware (disks, etc.);

¢ how well the file system can handle concurrent reads andsyatel

o how well the file system’s caching policies (read-aheadtealsehind) work for the given application.

The performance on the NEC SX-4 was the best among the fiveinegchVe believe that is because the machine has
high memory and I/O bandwidth and it was configured with sigfficl/O hardware for high performance. We believe
the performance would have been similar even if the machadentore processors.

8 Conclusions
The results in the preceding section demonstrate that K@Rien deliver good I/O performance to applications.

To achieve high performance with MPI-10, however, userstmige some of MPI-IO’s advanced features, partic-
ularly noncontiguous accesses and collective 1/0. By niakével-3 MPI-1O requests (noncontiguous, collective),
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Figure 12: Performance of UNSTRUC. Level 0/1 results arefeasible for this application because they take an
excessive amount of time because of the small granulariéaol request. On the IBM SP, because of the absence of
file locking in the PIOFS file system, ROMIO translates leRelxites into level-0 writes, which are very slow in this
case. Hence, results for level-2 writes on the SP are notrshow

we achieved I/O bandwidths on the order of hundreds of Mibgges whereas with level-0 requests (Unix style) we
achieved less than 15 Mbytes/sec even when using highrpeafee file systems. With level-3 requests, the band-
width achieved was limited only by the 1/O capabilities oétinachine and underlying file system. We believe that
such performance improvements with level-3 requests cmba expected in applications other than those considered
in this paper.

We have described in detail the optimizations ROMIO perfoifor noncontiguous requests: data sieving and
collective I/O. We note that, to achieve high performantese optimizations must be carefully implemented to
minimize the overhead of buffer copying and interprocesaroonication. Otherwise, these overheads can impact
performance significantly.

To carry out these optimizations, an MPI-1O implementatierds some amount of temporary buffer space, which
reduces the total amount of memory available to the appbicafrhe optimizations, however, can be performed with
a constant amount of buffer space that does not increasdlvétsize of the user’s request. Our results demonstrate
that by allowing the MPI-10 implementation to use as littteaMbytes of buffer space per process, which is a small
amount on today’s high-performance machines, users carogdérs of magnitude improvement in I/O performance.

We note that the MPI-10 standard does mequire an implementation to perform any of these optimizations.
Nevertheless, even if an implementation does not perfosnoptimization and instead translates level-3 requests int
several level-0 requests to the file system, the performanced be no worse than if the user made level-0 requests.
Therefore, there is no reason not to use level-3 requestev@r2 requests where level-3 requests are not possible).
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