
Copyright 1999, Society of Petroleum Engineers, Inc.

This paper was prepared for presentation at the 1999 SPE 15th Reservoir Simulation Symposium, Feb.
14-17, Houston Texas.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as presented,
have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the
author(s). The material, as presented, does not necessarily reflect any position of the Society of
Petroleum Engineers, its officers, or members. Papers presented at SPE meetings are subject to
publication review by Editorial Committees of the Society of Petroleum Engineers. Electronic
reproduction, distribution, or storage of any part of this paper for commercial purposes without the
written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is
restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must
contain conspicuous acknowledgment of where and by whom the paper was presented. Write Librarian,
SPE, P.O. Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract

A fully implicit parallel equation-of-state (EOS)
compositional simulator for large-scale reservoir simulation is
presented. This simulator is developed under the framework
named IPARS (Integrated Parallel Accurate Reservoir
Simulator) and is constructed using a Newton-type
formulation. The Peng-Robinson EOS is used for the
hydrocarbon phase behavior calculations. The linear solvers
from the PETSc package (Portable Extensible Toolkit for
Scientific Computation) are used for the solution of the
underlying linear equations. The framework provides
input/output, table lookups, Fortran array memory allocation,
domain decomposition, and message passing between
processors for updating physical properties in mass-balance
equations in overlapping regions. PETSc handles
communications between processors needed for the linear
solver.

Many test runs were performed with up to four million
gridblocks for a dry-gas injection process on an IBM SP
machine and half a million gridblocks on a cluster of 16 PCs.
Results indicate that the scalability of the simulator is very
good. The linear solver takes around half of the total
computational time for homogeneous reservoirs. For layered
heterogeneous reservoirs, the linear solver took a larger
fraction of the total computational time as the permeability
contrast increased. The time for the communication between
processors for updating the flow equations is insignificant.

The PC cluster is roughly a factor of two slower than the
SP for parallel runs, which is very encouraging. This factor
is strongly related to the hardware configuration of the
computers, which is detailed in the paper.

Introduction
The importance and necessity for performing reservoir
simulation studies on parallel computers have been well
addressed in many recent publications1-4. Much effort has
been invested in this area, which has led to significant
progress in the last few years.

The overall objective of this research is the development
of a new-generation framework and simulator suitable for
both massively parallel processors and clusters of PCs. This
research was initiated in 1995 as a joint effort by UT and
Argonne National Laboratory. The product of this research is
intended for use as a vehicle for studying ideas and
algorithms aimed at issues associated with parallel processing
of reservoir simulations.

The simulator formulation and the solution procedure
have been described in our earlier paper5. In this paper, we
focus on the following:
• the framework approach we used to develop and

implement an equation-of-state (EOS) compositional
parallel reservoir simulator

• the outcome of our research for large-scale reservoir
simulations with millions of gridblocks on both IBM SP
machines and a cluster of PCs.
Our experience has shown that the framework approach

works well for processing reservoir simulations on parallel
computers. The complicated issues associated with parallel
processing are as much as possible handled by the framework,
and the model developers solely focus on the formulation and
physical properties of the simulator and then use the
functions provided by the framework for processing the
computations in parallel.

Description of the Governing Equations
Multicomponent and multiphase flow in a porous medium
can be described using three different types of equations when
temperature is constant:
• partial differential, component-mass balances describing

component flow, in which Darcy's law is used to govern
the transport of phases from one cell to another;

• phase equilibrium equations dealing with equilibrium
component mass transfer between phases; and

SPE 51885

A Fully Implicit Parallel EOS Compositional Simulator for Large Scale Reservoir Simulation.
P. Wang, S. Balay1, K.Sepehrnoori, J. Wheeler, J. Abate, B. Smith1, G.A. Pope. The University of Texas at Austin. 1Argonne
National Laboratory

2 P. Wang, S. Balay, K.Sepehrnoori, J. Wheeler, J. Abate, B. Smith, and G.A. Pope SPE 51885

• equations constraining phase saturation and component
concentrations.

Neglecting mutual solubility between water and hy-
drocarbon phases, for a system consisting of nc hydrocarbon
components and np fluid phases (excluding the aqueous
phase), the above three types of equations may be mathemati-
cally expressed for a control volume as follows (the disper-
sion term is ignored for simplicity):

Component material balance in terms of moles per unit
time

0q)DP(x
kk

V
t

N
V ijjij

n

1j j

jrj
b

i
b

p

=−∇−∇•∇−
∂

∂ ∑
=

γ
µ

ξ
 (1)

for cn,...,2,1i = . For water, ijx =1 in the above equation.

The pressure difference between phases is evaluated using the
capillary pressure. This equation also holds for water by
inserting the properties of the aqueous phase.

Phase-equilibrium relationship.
The first partial derivative of the total Gibbs free energy

with respect to the independent variables gives equality of
component fugacities among all phases:

0ff gas
i

oil
i =− (2)

for cn variables. The following equations are used in the
solution of Eq. (2):

0
)1K(v1

)1K(zcn

1i i

ii =
−+

−∑
=

, (2a)

∑
=

=−
cn

1i
ij 01x . (2b)

Volume constraints.
The pore volume in each cell must be filled completely by

the total fluid volume:

Vb Ni
i=1

nc

∑ L jv j
j =1

np

∑ − Vp = 0 (3)

The independent variables used in the simulator are
wnc1nc1 N,Kln,,Kln,N,,N,P LL .

Solution Procedure
We discretized the component-mass balance equation, Eq.
(1), on a rectangular grid using the one-point upstream
weighting scheme for the transmissibility terms, which leads
to a set of nonlinear equations that is solved by the Newton
method. The discretized component mass-balance equations
along with the fugacity and volume constraints were then
linearized in terms of the independent variables. Therefore,

the number of linear equations for a reservoir represented by
bn gridblocks is bc n)2n2(+ , which are solved

simultaneously by one of the linear solvers of PETSc
(Portable Extensible Toolkit for Scientific Computation),
which is described in detail later.

During each update of the independent variables, a phase-
stability test is performed for each gridblock to check if the
fluid changes its phase number. For fluid changing from one
hydrocarbon phase to two hydrocarbon phases, the flash
calculation is done to determine composition, amount and
density of each separate phase for initializing the iteration for
the next Newton step. An option is also available to perform
the phase-stability test for gridblocks adjacent to one having
both gas and oil. The gridblocks containing wells are always
checked for phase-number change.

Because the linearized system includes both the flash and
volume constraint equations, the gridblocks representing only
gas or oil have their corresponding off-diagonal elements in
the Jacobian set to zero, and those on the diagonal are set to
one. The corresponding values in the right-hand side vector
are set to zero. The detailed description of the simulator and
the fluid-related calculations can be found elsewhere5.

The Framework
In this research, we employed a framework approach to
handle the complicated tasks associated with parallel
processing. The purpose is to separate as much as possible the
physical model development from parallel processing so that
code implementation in both models and parallel processing
can proceed at the same time by different team members.

Based on this design idea, we have developed a
framework named the Integrated Parallel Accurate Reservoir
Simulator (IPARS)6. Under this framework, several physical
models have been developed, such as two-phase water-oil and
black-oil models in both IMPES and fully implicit
formulations that are implemented in conjunction with the
multiblock algorithm7-8. The EOS compositional model is
only one of the models running under the framework.

The tasks handled by the framework in conjunction with
the EOS compositional model include:
• Input/Output. IPARS allows each processor to read in the

entire input but process only the portion for which a
processor is responsible. The output is collected by the
masterprocessor (processor 0) and then sent to the proper
files.

• Domain splitting. The original reservoir simulation
domain is divided vertically into several subdomains
equal to number of processors required by the run. The
computations associated with each of these subdomains
are assigned to each processor.

• Memory allocation. The framework allocates memory for
grid-element arrays in the format of I, J, and K being the
first three indices representing the three coordinate
directions. The indices identifying components and
phases are positioned as the fourth and fifth dimension.
A physical model can create as many grid-element arrays

SPE 51885 A Fully Implicit Parallel EOS Compositional Simulator for Large Scale Reservoir Simulation 3

as needed. The model developers need to provide the
variable name, ID in the memory, and size of extra
dimensions. These variable IDs are assigned by the
framework using C language when creating the
variables and stored in a common block for use in
different routines.

• Message passing between processors. The message
passing interface (MPI) is used in the framework to
handle necessary message sending/receiving between
processors. In the physical models, this task is also
carried out through a function call and is performed
when evaluating the residuals of the component mass-
balance equations, averaging some physical properties
such as pressure and saturation, and collecting well data
for output. The update calls require the model developers
to provide the name and ID in the memory for the
properties that need to be updated in the overlapping
regions of all of the processors. Note that the necessary
communications during the solution of the linear
equations are handled by PETSc.

• Others. Some common calculations needed by almost all
of the physical models are also handled by the
framework. These include:
1. identification of the overlapping regions of all of the

processors.
2. the constant portion of transmissibility at the

interface of two adjacent gridblocks.
3. table lookups for phase relative permeability and

capillary pressure and their derivatives with respect
to phase saturation.

4. well locations and productivity indices.
5. preprocessing, which performs computer platform

and simulation run dependent tasks. These include
dimensioning Fortran arrays for non-grid-element
variables, estimating the size of message in bytes to
be needed for passing between processors, and some
dimensions for well specifications.

Implementation of the EOS Compositional Model
The framework IPARS provides hooks for implementing a
specific physical model. Such hooks bridge the model with
the framework.

Several major hooks designed by the framework for the
EOS compositional model are:
• xisdat - input initial scalar data. These include physical

properties of each component, default number of
iterations and convergence tolerances for a variety of
calculations, output flags, and operation-specific flags.
No grid-element arrays can be referenced in this routine.

• xarray - allocate memory for all of the grid-element
arrays.

• xiadat – complete input and print it out to a file.
• xivdat – perform model initialization before time

iteration. The PETSc linear solver is also initialized.
• xstep – perform all of the calculations over a timestep.

• xquit – exit simulation when it meets the maximum time,
production limits, or an error occurs.

These routines are called the executive routines, and any
communications between processors for the compositional
model are performed in these routines. The model developers
need to insert into each of the above routines the codes that
perform the corresponding tasks. The well calculations are
contained in the routine xstep.

There is no argument attached to these calls. Those
variables associated with grids are passed into these routines
through pointers that are stored in a common block. The
calculations associated with these executive routines need to
be performed in the work routines that are called from the
executive routines. The grid dimensions and variables are
passed into these work routines through a C routine (handled
by the framework).

The most important routine for the EOS compositional
model is xstep. It handles the following operations at a given
timestep:
1. compute the dependent variables based on the

independent variables
2. update properties in the overlapping regions of all of the

processors (communications between processors)
3. evaluate the residuals for all of the governing equations.

For the component mass-balance equations, it involves a
summation of the residuals from each of the processors.
The function for doing so is provided by the framework

4. select the maximum residuals for each type of the
governing equations among all of the processors

5. check if a convergence is reached on the masterprocessor
(processor 0) and broadcast the outcome of the check to
other processors

6. if the tolerances are met, output user-specified properties
at this current time level and then return to the
framework for timestepping calculation for the next
timestep

7. if the tolerances are not met, evaluate the element of the
Jacobian and then call PETSc linear solver

8. update the independent variables and go back to step 2
for the Newton iteration.

PETSc Solvers
PETSc 2.09 is a large suite of parallel general-purpose object-
oriented time-steppers, nonlinear and linear solvers10 for the
scalable solution of partial-differential equations discretized
using implicit and semi-implicit methods. PETSc is
implemented in C, and is usable from C, Fortran, and C++. It
uses MPI11 for communication across processors. PETSc has
been used for a wide variety of applications, including
computational fluid dynamics, structural dynamics, materials
modeling, and econometrics. Many of the solvers are
appropriate for problems discretized using either structured
grids or unstructured grids. The EOS compositional
simulator uses the linear solver component of PETSc to solve
the linearized Newton system of equations and uses the
parallel data formats provided by PETSc to store the Jacobian

4 P. Wang, S. Balay, K.Sepehrnoori, J. Wheeler, J. Abate, B. Smith, and G.A. Pope SPE 51885

and the vectors. In this particular application, the linear
systems arise from a structured grid.

The linear solver component of PETSc provides a unified
interface to various Krylov methods, such as conjugate
gradient (CG), generalized minimal residual (GMRES),
biconjugate gradient, etc. It also provides a unified interface
to various parallel preconditioners such as Jacobi, block
preconditioners like block Jacobi, domain decomposition
preconditioners like additive Schwartz. The application uses
this common interface and thus can choose the appropriate
Krylov method and the preconditioner at runtime. The
simulator uses the biconjugate gradient stabilized approach as
the Krylov method and block Jacobi preconditioner, with
point-block incomplete factorization (ILU) on the subdomain
blocks. Here, point-block refers to treating all the variables
associated with a single gridblock as a single unit. The
number of subdomain blocks for block Jacobi is chosen to
match the number of processors used, so that each processor
gets a complete subdomain of the problem and does a single
local incomplete factorization on the Jacobian corresponding
to this subdomain.

PETSc provides various sparse matrix storage formats
including basic sparse storage, point-block sparse storage,
point-block diagonal storage, etc. All the matrix storage
formats have a uniform interface to the matrix operations.
The solvers use this interface to access the matrix operations.
This enables the solvers to work with any of the PETSc
matrix storage formats. Also, internally, each storage format
is associated with its own implementation of the matrix
operations, which take into account the corresponding storage
format. In this way, the individual routines are tuned to
provide the best performance with the corresponding matrix
format. For example, the point-block storage format makes
use of the block structure and stores each point-block
elements contiguously. Its corresponding matrix operations,
including the matrix vector product, factorization and
triangular solve, take advantage of this block structure. Also,
each point-block size has a routine, which is written for this
specific block size, thus giving the best possible performance
on cache-based RISC machines.

The EOS compositional model for the three phase flow,
generates 2n2 c + equations per gridblock. This causes the
Jacobian to have a point-block structure. Therefore, the point-
block sparse storage format is used to store this matrix.
These equations do not result in complete coupling of all the
variables across gridblocks. This causes the Jacobian matrix
to have some 1n c + point-block locations with zero values.
Therefore, a block size of 1n c + is chosen for this matrix
type, which eliminates the need to store the)1n)(1n(cc ++
blocks with zero values.

Table 1 demonstrates the improvement in performance of
the matrix routines when the point-block sparse matrix
storage format, with its associated matrix operations, is used,
compared to the basic version. The runs were done on a
single processor using a sample problem with 2,800 nodes,

and four equations per node. The table shows the
performance in Megaflops; the timings are done using wall-
clock time.

For example on the IBM Power 2 Super Chip(P2SC), one
sees the block format essentially doubles the performance,
hence reducing the computation time by half.

Table 1. Megaflop rates of the matrix routines
on different computers.

Machine Type IBM SP SGI Origin 2000 PC with NT
Processor P2SC MIPS R10000 Pentium II
Clock Speed 120 MHz 250 MHz 400 MHz
 Basic Blocked Basic Blocked Basic
Blocked
MatMult 72 151 40 68 49 64
MatSolve 51 114 34 62 35 68

Simulator Performance
Many test runs have been performed using this fully implicit
EOS compositional simulator on both IBM SP machines and
a cluster of 16-node PCs. In this section, we describe the
hardware configuration of the SP at Maui High Performance
Computing Center (MHPCC), on which we performed the
runs, and a PC cluster.

IBM SP Specifications at MHPCC
We ran our simulator on a 128-node SP machine with IBM
Power2 Super Chip (P2SC) processors with a clock speed of
160 MHz. The communications between processors are
through the SP high-performance switch. Each node has 512
MB of memory.

The standard IBM compilers xlf and xlc were used to
generate the code executables with optimization level O3.
IBM's implementation of MPI was used for the
communications.

Description of the Test Cases
Several cases with different numbers of components and well
patterns were tested. Each case was run several times with
different numbers of gridblocks in order to evaluate the
simulator scalability. All of the cases simulate a dry-gas
injection process, and use the same porosity and relative
permeability unless otherwise noted.

Case 1.
The reservoir fluid is described using a three-component

Peng-Robinson EOS. The reservoir is homogeneous and
contains two wells, an injector located in one corner and a
producer installed in the opposite corner. Initial conditions
and production scheme were specified so that gas/oil/water
are all present during the entire simulations but water is
immobile. The sizes of each gridblock in x, y, and z

SPE 51885 A Fully Implicit Parallel EOS Compositional Simulator for Large Scale Reservoir Simulation 5

directions are 100 ft, 100 ft, and 50 ft, respectively. The
simulation was for 1000 days. The linear solver options used
are described in the previous section.

Figure 1 shows the speedup for gridblocks up to
1,000,000. The curves are normalized against the timing
from the run with the lowest number of processors. It can be
seen that the simulator exhibits very good scalability. For the
problems with a small number of gridblocks, the performance
was reduced somewhat because the amount of computation on
each of the processors was insufficient. Figure 2 demonstrates
the speedup for the runs where the ratio of the number of
gridblocks to number of nodes (Rgn) is constant; in this case,
Rgn = 20,480, as number of processors increases, namely the
problem size increases as number of processors increases to
maintain computational intensity on each processor. Figure 2
indicates that good scalability can be achieved if each
processor has enough to work on.

Figure 3 shows the breakdown of the computational time
for different tasks for the 1-million-gridblock case. As can be
seen, the linear solver takes the largest portion of the total
computational time; the next is the Jacobian update. Note that
the time for MPI in this figure is one corresponding to the
communication required for evaluating the residuals of the
component mass-balance equations, and clearly it is not
significant. The time on the MPI involved in the linear solver
is excluded from this count because it is handled by PETSc
and included in the solver time.

To update physical properties in the overlapping regions,
one can perform all of the calculations in these regions
without the need for communicating with other processors
(except the need for collecting the residuals from all
processors using the masterprocessor). Such an approach is at
the expense of intensifying the computations on each
processor. As indicated in Figure 3, in which the calculations
in the overlapping regions were not done but updated through
MPI, the communication time is less than 1%. So using MPI
to update the physical properties in these regions was a more
efficient way and hence has been used in all of the test cases.

 For cases shown in Figures 1 through 3, the simulation
domains were split vertically in one direction from one side
of the reservoir to the other because the domains were setup
for a long reservoir. We also performed the timings for runs
where the two-dimensional domain splitting was used to
divide the simulation domains among assigned processors.
Figure 4 shows one of such tests that has a grid of 72 x 72 x
20 (103,680 gridblocks). It appears that the simulator
performs well, although the scalability is not as good as that
achieved from doing the 1D domain splitting. The breakdown
of the computational time on different tasks for runs whose
domains were divided vertically in two directions was similar
to those in Figure 3. No direct comparison between these two
splittings was made because the framework, for a given case,
automatically divides the domain in one of the two ways, but
not both.

The runs described above used a homogeneous
permeability field, where ,50kk yx == and 20k z = . We

also evaluated the simulator performance for layered
permeability fields with contrast up to 250 to 1. It was
observed that more time was spent on the linear solver as the
heterogeneity increased. One such result is given in Figure 5,
in which the permeability contrast is 200 to 1. The CPU for
the solver increased from 50% of the total computational time
for the homogeneous run to 80% for the layered permeability
run, and the total computational time was increased
proportionally.

For runs made in this case, we have used up to 4.032
million gridblocks on the 128 processors, which drove the
linear solver to solve a system with 32.256-million unknowns
simultaneously, because a reduction in the size of the
Jacobian through a row elimination using Eq.(2) was not
done in these runs. For this largest run we made, it took less
than half an hour to make seven timestep iterations that
involved solving the 32.256-million unknowns 21 times for a
200-day simulation.

Case 2.
In this case, we used a six-component PR EOS to represent
the reservoir fluid and a five-spot well pattern for the
production scheme; otherwise run specifications were the
same as those in Case 1. Figure 6 shows the speedup of one of
the runs that used 64 x 64 x 8 grids for five years of
production. It indicates that the simulator scalability remains
very good.

As can be seen, in some of the runs, the number of
gridblocks is not very large because we intended to compare
our simulator performance between different computer
platforms, especially a cluster of PCs. For the cluster of PCs
that we used, the hardware and software are briefly described
as follows:
• 16 nodes, 300 MHz Intel Pentium II processors, each

with 384 MB memory, 66 MHz internal bus;
• Connected by switched 100 Mbps Ethernet (use Intel

EtherExpress Pro/100 Mbps network cards and Intel
510T 10/100 Mbps switch); and

• RedHat Linux 5.0, GNU C/C++ compilers and Portland
Group Fortran 77/90 compilers, MPICH, an
implementation of MPI from Argonne National
Laboratory, for parallel communication.
Figure 6 shows the speedup on the cluster of PCs, which

is not quite as good as that for the SP when the number of
processors increases from 8 through 16. However, by putting
enough gridblocks on each processor to keep the number of
gridblocks per processor constant (Rgn in Figure 6), we
observed almost identical speedup on both the SP and the
cluster of PCs. This case would be more realistic because we
would try first to allocate as many gridblocks as possible to
each processor to maximize the use of its resources. Figure 7
shows the CPU distribution for different tasks for this case on
the PCs as a function of number of processors. The solver
time increased as we used more processors. There were no
significant load-balancing problems.

6 P. Wang, S. Balay, K.Sepehrnoori, J. Wheeler, J. Abate, B. Smith, and G.A. Pope SPE 51885

The largest run we made on the 16-node PC cluster was
on 512,000 gridblocks using three-component PR EOS and
two wells.

Case 3.
To further evaluate the performance of the simulator on both
the SP and the 16-node PC cluster , we set up a case that is
close to a full-field scale (initial oil in place is on the order of
109STB) with homogeneous and layered anisotropic
permeability and with a relatively realistic production
scheme. The dry gas with three hydrocarbon components
started injection through four injectors into the reservoir after
a one-year primary production through nine producers. The
injectors were installed only in the top nine layers and the
producers penetrated the bottom nine layers. These wells are
in operation during the entire simulation period of 10 years.
Table 2 lists some basic specifications for this run.

Table 2. Basic specifications for the 207,360-gridblock
and 13-well run.

Reservoir size (ft) 9,000 x 12,800 x 900
Grid 90 x 128 x 18
Permeability (md) kx=ky=50, kz=30
Porosity 0.20
Residual water saturation 0.20

For the run with the layered anisotropic permeability, the
largest and smallest permeabilities are 2,500 md and 5 md,
respectively. The largest permeability contrast between two
adjacent layers is 250 to 1.

We ran this case on the 16 processors. The simulation
domain was divided vertically in one dimension along the y
direction, which makes only five processors contain wells,
Processors 0, 7, and 15 contain three producers per node, and
processors 3 and 11 have two injectors per node. For the
homogeneous case, the simulator took close to seven hours on
the 16-node PC cluster and around four hours on the SP at
MHPCC to complete the run. Figure 8 illustrates the
breakdown of the computational time for the two most time-
consuming tasks. It appears that the time for the linear solver
drops significantly when running on the SP compared with
PCs..

The run for the heterogeneous case had different
computational loads on different processors because of wells
and different numbers of phases in the different regions. To
evaluate whether the load imbalance is significant for this
heterogeneous case, we timed the minimum and maximum
time spent among the 16 processors for some major
computational tasks including solver, Jacobian update,
dependent-variable updates, message passing, and the well
calculations, which are shown in Figure 9 (except for the MPI
and well-calculation times since their portions are too small
to show on the chart). The figure clearly indicates that, for
given tasks, different processors took different times. For the
Jacobian update, for example, the minimum time for this task

on a processor was 15 minutes less than the maximum time;
for the linear solver, a difference of 10 minutes was observed.
For the well calculations, we noticed a factor of two
difference between the minimum and maximum times.
Fortunately, these differences did not introduce any
significant load-balancing problem for this run. All of the
processors completed their jobs within a range of two
minutes, which is 0.5% of the total computational time. The
run took 11 hours and 15 minutes on the cluster.

For all of the runs tested, we observed the PC cluster is
roughly a factor of 2 slower than the SP at MHPCC, which is
very encouraging. The detailed analysis of the simulator
performance on clusters of PCs compared to IBM SP
machines is given in a separate paper12.

Summary and Conclusion
The parallel EOS compositional simulator developed in

this work is intended to serve as a vehicle for further studying
ideas and algorithms associated with parallel processing of
reservoir simulations. Our experience and simulation results
show the follwoing:

1. The framework approach for developing parallel
simulators works well; it can separate, to a significant
degree, the framework from the physical models
without loss of simulator efficiency. Such a separation
enables the framework and physical model to be
developed and implemented simultaneously.

2. The simulator exhibits very good scalability on both
IBM SP machines and a cluster of PCs. Cost of the
massage sending/receiving between processors for
physical properties in the overlapping regions is
insignificant.

3. The linear solvers scale very well with the number of
processors. For the model problems they take roughly
fifty percent of the computational time, this becomes
higher for heterogeneous reservoirs.

4. A cluster of PCs with 16 nodes can be used effectively
for large-scale reservoir simulation studies.

Future Work
Our research is still ongoing and simulator enhancement and
refinement will be continuing. In the future, we plan to focus
on the following:
1. Enhance fully implicit EOS compositional model with a

black-oil option and other new features.
2. Improve the performance of the PETSc linear solvers

with particular attention to
a. optimizing the floating point performance on Intel

Pentium II processors, and
b. improving the PETSc preconditioner performance.

3. Update the framework to incorporate use of automatic
differentiation tools for generation of the Jacobian
matrix.

4. Generalize the EOS compositional model to include
thermal and chemical options.

SPE 51885 A Fully Implicit Parallel EOS Compositional Simulator for Large Scale Reservoir Simulation 7

Acknowledgement
This research has been supported by the U.S. Department of
Energy under the Natural Gas and Oil Technology
Partnership Program, contract W-31-109ENG-38. We would
also like to thank Maui High Performance Computing Center
for the use of their IBM SP, Intel for donating the PCs and
networking hardware, and Robert Schneider of our
department for setting up the cluster.

Nomenclature

D depth from a reference datum plane
fi residual of Eq. 2
Ki equilibrium ratio for component i, yi x i

k formation permeability
krj relative permeability for phase j
Lj ratio of moles in phase j to the total number of moles

in the mixture
Ni moles of component i per unit bulk volume
nb number of cells
nc number of components
n p number of phases
nw moles of water
Pj pressure of phase j
q i molar injection (positive) or production (negative)

rate for component i
t time
Vb bulk volume for a cell
Vp pore volume for a cell
v gas-phase molar fraction in absence of water
v j molar volume of phase j
xij mole fraction of component i in phase j
zi overall mole fraction of component i

Greek Symbols

γj gravity term for phase j, defined as gjρ
∇ gradient operator

r
∇ • divergence operator
ξj molar density of phase j
µ j viscosity of phase j
φ porosity

References

1. Shiralkar, G.S., Stephenson, R.E., Joubert, W., Lubeck,
L., and Waanders, B.v.B. :”Falcon: A Production Quality
Distributed Memory Reservoir Simulator,” SPE Res.
Eval. Eng., Oct. 1998.

2. Chien, M.C.H., Techelepi, H.A., Yardumian, H.E., and
Chen, W.H.: “A Scalable Parallel Multi-Purpose
Reservoir Simulator,” paper SPE 37976 presented at the
1997 SPE Reservoir Simulation Symposium, Dallas, TX
(June 8-11, 1997).

3. Parashar, M., Wheeler, J.A, Pope, G.A., and Wang, P.:
“A New Generation EOS Compositional Reservoir
Simulator: Part II – Framework and Multiprocessing,”
paper SPE 37977 presented at the 1997 SPE Reservoir
Simulation Symposium, Dallas, TX (June 8-11, 1997).

4. Ghori, S.G., Wang, C., Lim, M.T., Pope, G.A.,
Sepehrnoori, K., and Wheeler, M.F.: “Compositional
Reservoir Simulation on CM-5 and KSR1 Parallel
Machines,” paper SPE 29140 presented at the 13th SPE
Symposium on Reservoir Simulation, San Antonio, TX
(1995).

5. Wang, P., Yotov, I., Wheeler, M.F., Arbogast, T.,
Dawson, C., Parashar, M and Sepehrnoori, K.: “A New
Generation EOS Compositional Reservoir Simulator:
Part I – Formulation and Discretization,” paper SPE
37979 presented at the 1997 SPE Reservoir Simulation
Symposium, Dallas, TX (June 8-11, 1997).

6. Wheeler, J.: “Integrated Parallel Accurate reservoir
Simulator (IPARS),” The 8th Annual Industrial Affiliates
Meeting, Center for Subsurface Modeling, The
University of Texas at Austin (Oct. 27-28, 1998).

7. Yotov, I. "Multigrid on the Interface for Mixed Finite
Element Methods on Non-Matching Multiblock Grids,"
presented at the 10th International Conference on
Domain Decomposition Methods, Boulder, Colorado
(Aug. 1997).

8. Wheeler, M.F. "Conservative Discretization for
Modeling Subsurface and Surface Flows," presented at
Fourth SIAM Conference on Mathematical and
Computational Issues in the Geosciences, Albuquerque,
New Mexico (June 1997).

9. Balay, S., Gropp, W.D., Curfman McInnes, L, and
Smith, B.: “PETSc 2.0 Users Manual,” Argonne
National Laboratory, ANL-95/11 - Revision 2.0.22
(April, 1998).

10. Balay, S., Gropp, W., McInnes, L.C. and Smith, B.:
“Efficient Management of Parallelism in Object Oriented
Numerical Software Libraries,” Modern Software Tools
in Scientific Computing, Argonne National Laboratory
(Oct. 1997).

11. The MPI Forum: “MPI: A Message-Passing Interface
Standard,” International J. Supercomputing
Applications, Vol. 8, No. ¾ (1997).

12. Abate, J, Wang, P, and Sepehrnoori, K., G.A.: “Parallel
Compositional Reservoir Simulation on a Cluster of
PCs,” submitted to the journal of Communications in
Numerical Methods in Engineering, 1998.

8 P. Wang, S. Balay, K.Sepehrnoori, J. Wheeler, J. Abate, B. Smith, and G.A. Pope SPE 51885

Figure 1. Speedup for Case 1 on the IBM SP at
MHPCC

0

16

32

48

64

80

96

0 8 16 24 32 40 48 56 64
Number of processors

S
pe

ed
up

ideal 64k 128k 1 million

Figure 2. The speedup for Case 1 (Rgn=20,480)

0

4

8

12

16

20

1 4 7 10 13 16
Number of processors

S
pe

ed
up

Ideal SP

Figure 3. CPU Breakdow n for 1 million cells run.

0.9

34

50

0

10

20

30

40

50

60

Solver Jacobian
update

MPI

C
P

U
 p

er
ce

nt
ag

e

Figure 4. The speedup from 2D domain splitting for
Case 1 (72 x 72 x 20 gridblocks).

4

8

12

16

4 7 10 13 16
Number of processors

S
pe

ed
up

Ideal SP

Figure 5. CPU distributions in 3 major tasks for the
512,000 cells run.

0 20 40 60 80 100

Dependents

Jacobian

Linear Solver

CPU percentage (%)
Homogeneous Hetergeneous

SPE 51885 A Fully Implicit Parallel EOS Compositional Simulator for Large Scale Reservoir Simulation 9

Figure 6. Speedup for a run w ith 5-spot w ell
partern on both SP and PCs (64x64x8 gridblocks)

4

8

12

16

20

4 8 12 16
Number of processors

S
pe

ed
up

Ideal SP PCs PCs (Rgn = 8192)

Figure 9. The max and min CPUs for the run with
207,360 cells and 13 wells on the 16 nodes.

0 20 40 60 80 100

Dependents

Jacobian

Linear Solver

CPU percentage (%)

Minimum Maximum

Figure 8. CPU breakdown for the run with 207,360 cells and 13
wells.

0 20 40 60 80 100

Solver

Jacobian

CPU percentage (%)

SP PCs

Figure 7. CPU distribution versus number
of processors

0

20

40

60

Linear solver Jacobian update MPI

CP
U
per
ce
nta
ge
(%
)

4 nodes 8 nodes 16 nodes

10 P. Wang, S. Balay, K.Sepehrnoori, J. Wheeler, J. Abate, B. Smith, and G.A. Pope SPE 51885

