
LOCAL OPTIMIZATION-BASED SIMPLICIAL MESH UNTANGLING ANDIMPROVEMENT�LORI A. FREITAGy AND PAUL PLASSMANNzAbstract. We present an optimization-based approach for mesh untangling that maximizes the minimum area orvolume of simplicial elements in a local submesh. These functions are linear with respect to the free vertex position;thus the problem can be formulated as a linear program that is solved by using the computationally inexpensivesimplex method. We prove that the function level sets are convex regardless of the position of the free vertex, andhence the local subproblem is guaranteed to converge. Maximizing the minimum area or volume of mesh elements,although well-suited for mesh untangling, is not ideal for mesh improvement, and its use often results in poor qualitymeshes. We therefore combine the mesh untangling technique with optimization-basedmesh improvement techniquesand expand previous results to show that a commonly used two-dimensional mesh quality criterion can be guaranteedto converge when starting with a valid mesh. Typical results showing the e�ectiveness of the combined untanglingand smoothing techniques are given for both two- and three-dimensional simplicial meshes.Keywords. Mesh Untangling, Mesh Improvement, Simplicial Mesh Quality, Mesh Smoothing1. Introduction. Simplicial meshes often contain poorly shaped, distorted, or inverted ele-ments that result in numerical di�culties during the solution of �nite element and �nite volumeapplications.1 Several methods have been developed to improve element quality if the mesh is valid,that is, the mesh contains elements with positive area or volume. These techniques include localreconnection methods, such as edge or face swapping,2, 3, 4 or node point adjustment methods suchas mesh smoothing.5, 6, 7 The most commonly used class of mesh smoothing techniques compriseslocal methods that operate on one vertex at a time to improve mesh quality in a neighborhood ofthat vertex. Some number of sweeps over the adjustable vertices are performed to achieve an overallimprovement in the mesh. These techniques cannot, however, always be used when starting witha mesh with inverted elements. To address this problem, in this paper we present a local mesh\smoothing" technique designed speci�cally for mesh untangling. This method assumes that themesh has valid connectivity but that the node point positions are such that some of the elementsare inverted.Local mesh smoothing techniques operate using data from the neighborhood of the grid pointthat is being adjusted. To illustrate this approach we show an example of such a submesh neighbor-hood in Figure 1.1. The submesh consists of the free vertex, v, eight incident elements, t1; : : : ; t8,and eight �xed vertices, v1; : : : ; v8: The shaded region in each submesh is the feasible region, whichwe de�ne to be the set of possible locations for v for which all of the incident elements have apositive area. The local submesh on the left shows the free vertex in a position that is not ideal.Elements t1; t2; and t7 have poor quality, but all of the elements in this mesh are valid because thefree vertex lies inside the feasible region. In the middle submesh, we show the same local submeshafter a typical mesh smoothing operation. In local mesh smoothing techniques, the location of thefree vertex is changed according to some rule or heuristic procedure based on information availableat the adjacent grid points. Only the position of v is a�ected; adjacent vertex locations remainunchanged. The quality of elements t1; t2; and t7 has signi�cantly improved by moving v towardthe middle of the feasible region. The submesh on the right shows a tangled local submesh; the free�The submitted manuscript has been created by the University of Chicago as Operator of Argonne NationalLaboratory (\Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide licensein said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and displaypublicly, by or on behalf of the Government.yAssistant Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL60439. freitag@mcs.anl.gov.zAssistant Professor, Department of Computer Science and Engineering, The Pennsylvania State University, Uni-versity Park, PA 16802. plassman@cse.psu.edu. This work was supported by an Alfred P. Sloan research fellowship.1
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vFig. 1.1. A local submesh consisting of a free vertex, v, to be moved and its incident vertices, v1; : : : ; v8, andelements, t1 � � � t8 The feasible region for the free vertex location is shaded gray in all three submeshes. The submeshesshow three possible locations for v. The �rst results in a valid but poor-quality mesh, the second in a higher-qualityvalid mesh, and the third in an invalid mesh with inverted elements.vertex v is outside the feasible region, and the shaded elements t1; t2, and t7 are inverted.The most commonly used local mesh smoothing technique is Laplacian smoothing,8, 9 whichmoves the free vertex to the geometric center of its incident vertices. Laplacian smoothing is com-putationally inexpensive but does not guarantee improvement in the element quality. In fact, it ispossible to create inverted elements, and this method is therefore not guaranteed to correct an invalidmesh, even for the local subproblem. In contrast, optimization-based approaches to mesh smoothingavoid the creation of invalid elements and �nd the optimal location of each mesh vertex in the localsubmesh.6, 7, 10, 11, 12, 13, 14 These approaches o�er the advantage of guaranteed mesh improvementand validity; however, this guarantee comes at a much higher computational cost. Thus, a naturalapproach that has been shown to obtain high-quality elements at a low computational cost is tocombine Laplacian and optimization-based smoothing techniques.10, 15In previous papers, the authors have developed an optimization-based approach to mesh im-provement that involves minimizing a nonsmooth, composite function on a local submesh using atechnique analogous to steepest descent.11, 15 This approach has been shown to be equivalent to gen-eralized linear programming techniques,16 and can be guaranteed to converge to an optimal solutiongiven convex function level sets in the feasible region and a feasible starting point. In Figure 1.2, weshow the level sets for three geometric mesh quality metrics that can be used to create a compositefunction: minimum angle in the local submesh, minimum sine of an angle, and scaled root meansquare. The level sets are created by choosing a series of candidate locations for the free vertex bothinside and outside the feasible region (three such candidate locations are shown in Figure 1.1) andevaluating the composite function at those points. The contours of the resulting function point setare plotted by using Matlab. Note that these function level sets are nonconvex if the free vertex liesoutside of the feasible region. Thus, if the mesh contains inverted or tangled elements, optimizationapproaches using these metrics cannot be guaranteed to converge and, in fact, often diverged inpreliminary tests using them for mesh untangling.To address this problem, we have developed an optimization-based approach to mesh untanglingbased on maximizing the minimum area or volume of mesh elements in a local submesh. Theformulation and solution are presented in Section 2. We prove that the function level sets areconvex regardless of the position of the free vertex, and hence the local subproblem is guaranteedto converge. Maximizing the minimum area or volume of mesh elements, although well suited formesh untangling, is not ideal for mesh improvement because a small, but perfectly shaped element islikely to be distorted in an e�ort to maximize its area. We therefore combine this technique for meshuntangling with local mesh improvementmethods in a two-stage solution process. We include a briefdescription of the improvementmethod for completeness in Section 3, and expand previous results toshow that the level sets for the two-dimensional mesh quality criterion minimum sine of an angle are2
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Fig. 1.2. Level sets for the minimum angle, minimum sine of the angle, and minimum root mean square qualitymetrics. Each of these metrics is nonconvex outside of the feasible region.convex in the feasible region. Typical results showing the e�ectiveness of the combined untanglingand smoothing techniques for both two- and three-dimensional meshes are given in Section 4.2. Optimization-based Mesh Untangling. Local mesh untangling techniques are formu-lated in terms of the grid point to be adjusted, the free vertex, v, and that grid point's adjacentvertices, adj(v) = fu j an edge exists between v and ug. Suppose x is the position of the free vertex;then the general form of a local untangling algorithm is given byxnew = Untangle(x, adj(v), conn(v)),where xnew is the proposed new position of v and conn(v) is the connectivity information of theelements adjacent to v.Ideally, xnew improves the local submesh in such a way that it is untangled or can be untangledin a succeeding sweep through the mesh. In this section we describe a method for performing thenode point adjustment based on maximizing the minimum area or volume of a simplex containedin the local submesh. This method is computationally inexpensive, and we prove that convergenceof the local subproblem is guaranteed by showing that the level sets are convex regardless of theposition of the free vertex.2.1. Formulation. The function that gives the minimum area or volume of a simplex in alocal submesh is f(x) = min1�i�n Ai(x);(2.1)where n is the number of simplices in the local submesh, Ai is the area (volume) of simplex ti, andx is the position of the free vertex. In two dimensions, if triangle ti is de�ned by the free vertexposition, x, and the positions of two other vertices, xi and xj , then Ai can be expressed as a functionof the Jacobian of the element14Ai = 12det(xi � x; xj � x) = axix+ ayiy + ci;(2.2)where axi = yi � yj ; ayi = xj � xi; ci = xiyj � xjyi:Similarly, in three dimensions, if tetrahedron ti is de�ned by the free vertex position, x, and thepositions of three other vertices, xi, xj, and xk, then Ai is given byAi = 16det(xi � x; xj � x; xk � x) = axix+ ayiy + aziz + ci;(2.3) 3



whereaxi = �det24 1 1 1yi yj ykzi zj zk 35 ; ayi = �det24 xi xj xk1 1 1zi zj zk 35 ; azi = �det24 xi xj xkyi yj yk1 1 1 35 ;ci = det24 xi xj xkyi yj ykzi zj zk 35 :In both two and three dimensions, Ai is a linear function of the free vertex position, x. We canuse this fact to pose the solution of the optimization problemmax min1�i�n Ai(x)(2.4)as a linear programming problem. To do this, we �rst construct the dual problem. Let d be thespatial dimension of the problem and n be the number of incident elements. De�ne the (d+ 1)� nmatrix A to be the matrix whose ith column is �axi; ayi; 1�T for d = 2 and �axi; ayi; azi; 1�Tfor d = 3 and � to be the (d+ 1)-vector containing the spatial coordinates of the free vertex in the�rst d components and the current estimate of the minimum area (volume) in the last component.Then, by de�nition of A and �, AT� = c� s;where c is the n-vector containing the values of ci de�ned above, and s is an n-vector of slackvariables where the ith component, si, gives the di�erence between the area (volume) of simplex tiand the current estimate of the minimum area (volume). Thus, the dual of the linear programmingproblem is max bT�subject to AT� + s = c; s � 0;where b is a (d+ 1)-vector whose �rst d components are zero and whose last component is one, sothat bT� gives the current minimum simplex area (volume).The primal formulation of this linear program can be written in standard form asmin cTy(2.5) subject to Ay = b; y > 0;(2.6)where y is the primal solution vector.The linear program has been solved when si � 0; i = 1 � � �n, that is, when all of the elementshave an area (volume) greater than or equal to the current minimumvalue, and the complementaritycondition yT s = 0 has been satis�ed.2.2. Phase One Solution. The linear programming problem de�ned by equations (2.5){(2.6)can be solved by using the simplex method.17 To begin the solution process, we �rst solve a phaseone problem to �nd an initial feasible point, y0, that satis�es Ay0 = b. Given the special form ofb, this is equivalent to �nding d+ 1 positive components of y0 (the rest are set equal to zero) suchthatPni=0 yi = 1 and the linear combination of the �rst d corresponding columns of A sum to zero.The phase one problem can also be formulated as a linear programming problem. A solutionto the phase one problem exists if the subproblem is well-posed and is not degenerate. Let F be4



the d � n principal submatrix of A, and assume that there exist d columns of F that span Rd.If this is not the case, the local subproblem is degenerate, and the vertices all lie on in a lower-dimensional subspace. In this case, the optimal solution is to place the free vertex anywhere in thissubspace, resulting in zero volumes for all the elements, and the linear programming approach tomesh untangling is not used to solve this subproblem in this sweep through the mesh.We also assume that none of the columns of F are zero. If one or more of the columns of F arezero, then at least two of the incident vertices are co-located at the same point in space, resultingin a simplex of zero area (volume) regardless of the position of the free vertex. If this situationoccurs, one of the co-located vertices is removed from the local submesh and the untangling methodis restarted with the reduced incident vertex set. Note that the co-located vertex is not removedfrom the global mesh problem, just from the current local submesh.If the free vertex is an interior vertex of a valid triangulation and the corresponding subproblemis not degenerate, there must be d+1 vectors (corresponding to the normals to the faces opposite tothe free vertex) that can be used to solve the phase one problem. In this case, we say the subproblemis well-posed.If the problem is not degenerate, d linearly-independent columns of F are selected as the initialactive set for the phase one linear program. Without loss of generality, assume that one vector inthe active set is the last column of F , Fn. Then the phase one solution is formulated as followsmin ĉT ŷ(2.7) subject to Âŷ = b̂; ŷ > 0(2.8)where Â(i; :) = 24Fi;0; � � � ;Fi;n�1;�Fi;n � n�1Xj=1 Fi;j � ŷj35(2.9) b̂i = �Fi;n; andĉ = [0; � � � ; 0; 1]:The initial guess for the phase one solution will be the vector ŷ0 whose components are all zeroexcept for those corresponding to the active set which are equal to one. This initial point is clearlya feasible point.We use the simplex method to �nd an iterate ŷk of equations (2.7){(2.8) that satis�es theconstraints of the original formulation for mesh untangling given in equations (2.5){(2.6), whichoccurs when F ŷk + Fn = 0:(2.10)We note that an iterate that does not minimize ĉT ŷ may satisfy the criterion given in (2.10), and itmay, therefore, be necessary to only partially solve the phase one linear program.2.3. Convergence of the Local Subproblem. To guarantee convergence of the local opti-mization problem, the level sets of the composite function given in equation (2.1) must be convexand closed. Typical level sets for this function in two dimensions are shown in Figure 2.1 for threedi�erent local submeshes, including one that has �xed edges that are tangled. In each case, the levelsets appear to be convex, and in this section we prove that they are convex in both two and threedimensions in the entire domain if the initial local submesh is not degenerate and the subproblemis well-posed.In two dimensions, this function can be written asf(x) = min1�i�nAi(x) = min1�i�n 12bih?i(x);5
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Fig. 2.1. Level sets for the minimum element area function for three local submeshes, including one that has�xed edges that are tangledwhere bi is the base of simplex ti, and h?i(x) is the perpendicular distance between x and bi. Onecan think of a typical level set boundary for each triangle to be a line parallel to the base of thetriangle. This boundary is illustrated in Figure 2.2 as a dashed line for a triangle with base verticess and t and area equal to 12bih?i(x) = c. Thus, all triangles with base vertices s and t and areagreater than c have a third vertex that lies in a half-plane as shown by the shaded area in Figure2.2; this region is convex. The level set boundary for a local submesh is the intersection of thehalf planes de�ned by the individual triangles in that local submesh. As the intersection of convexregions is convex, these levels sets are convex.
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hFig. 2.2. The boundary of a typical level set for the function f(x) = 12 bh is shown by the dashed line. Alltriangles with base vertices s and t and third vertex on the dashed line have the same area.One can formally show that the level sets are convex in both two and three dimensions.Theorem 2.1. The level sets of the functionf(x) = min1�i�nAi(x)are convex where Ai is de�ned by equations (2.2) and (2.3) in two and three dimensions, respectively.Proof. Note that component functions Ai(x) as given in equations (2.2) and (2.3) are linearfunctions of the position x of the free vertex. Thus, these component functions are concave. Wehave that the minimum of concave functions is also concave, thus f(x) is concave.The level sets for any concave function are convex.18 For any two points, x1 and x2, on theboundary of the set S(�) = fx j f(x) � �g we have that for � 2 [0; 1],f(�x1 + (1� �)x2) � �f(x1) + (1 � �)f(x2)= �:Thus, the set S(�) is convex and, therefore, the level sets of f are convex.As a simple corollary to this theorem we have the following fact.6



Lemma 2.2. The feasible region for each local submesh is convex.Proof. The feasible region corresponds to the set S(0) = fx j f(x) � 0g. By Theorem 2.1, thisregion is convex.We assume that the local subproblems are not degenerate and are well-posed so that f(x) (theminimum area or volume of an element in the submesh) is bounded. As the level sets are convex,any local maximum of f(x) is a global maximum. Thus, any optimization algorithm guaranteed to�nd a local maximum (such as the linear programming approach presented above) is guaranteed todetermine the global maximum for the local subproblem. Because the level sets for f(x) are convexon the entire domain, this approach converges to the global maximum from any starting point forthe free vertex.3. Local Node Point Smoothing Techniques. The mesh smoothing method is formulatedin the same manner as the optimization-based untangling technique; that is, given a free vertex, v,and its adjacent vertices and elements, the new position of the free vertex, xnew, is given by thegeneral operation xnew = Smooth(x, adj(v), conn(v)).Ideally, the new location of the free vertex will improve the mesh according to some measure ofmesh quality such as dihedral angle or element aspect ratio. The action of the function Smooth isdetermined by the particular algorithm chosen, and in this section we describe four methods forperforming the node point adjustment.3.1. Laplacian and \Smart" Laplacian Smoothing. For Laplacian smoothing, the smooth-ing operator moves the free vertex to the geometric center of the adjacent grid points. No e�ort ismade to ensure that mesh quality is improved, and poor quality or even invalid elements can resultfrom the use of this technique. For an example in which Laplacian smoothing creates an invalidmesh, consider the leftmost submesh in Figure 3.1. The center submesh the shows the results ofLaplacian smoothing; the free vertex position has moved outside the feasible region, and elementst2 and t3 have become inverted. However, the technique is computationally inexpensive, easy toimplement, and therefore commonly used.A simple variant of Laplacian smoothing, which we call \smart" Laplacian smoothing, relocatesthe free vertex to the geometric center of the adjacent grid points only if the quality of the localmesh is improved according to some mesh quality measure.3.2. Optimization-based Smoothing. Like optimization-based mesh untangling, the opti-mization approach to mesh improvement �nds the position x� that maximizes the composite functionf(x) = min1�i�n qi(x);(3.1)where qi(x) is a mesh quality metric such as minimum angle, sine of the minimum angle, or aspectratio of an element. Typically, each qi(x) is a nonlinear, smooth, and continuously di�erentiablefunction, and multiple functions can obtain the minimum value of the composite function. Hence,the composite function f(x) has discontinuous partial derivatives where the active set changes fromone set of functions to another set. Let the minimum value of the functions evaluated at x be calledthe active value, and the set of functions that obtain that value, the active set, be denoted by S(x).We solve this nonsmooth optimization problem using an analogue of the steepest descent methodfor smooth functions. The search direction, s, at each step is the steepest descent direction derivedfrom all possible convex linear combinations of the gradients in S(x). This direction is computedby solving the quadratic programming problemmin �gT �g; where �g =Xi2S �igi(x)7



subject to Xi2S �i = 1; �i � 0for the �i. The line search subproblem along s is solved by predicting the points at which the activeset S will change. These points are found by computing the intersection of the projection of acurrent active function in the search direction with the linear approximation of each qi(x) given bythe �rst-order Taylor series approximation. The distance to the nearest intersection point from thecurrent location gives the initial step length, �. The initial step is accepted if the actual improve-ment achieved by moving v exceeds 90 percent of the estimated improvement or the subsequentstep results in a smaller function improvement. Otherwise, � is halved recursively until a step isaccepted, or � falls below some minimum step length tolerance. The optimization-based smoothingalgorithm is described in more detail elsewhere.11, 15 We note that similar local optimization-basedsmoothing methods have been proposed for a variety of optimization procedures and mesh qualitymeasures.12, 19, 13, 14To illustrate the bene�ts of optimization-based smoothing compared with Laplacian smoothing,we consider the initial local submesh drawn in the leftmost �gure of Figure 3.1. Recall that thecenter submesh shows the results of Laplacian smoothing, which created two inverted elements. Inthe rightmost �gure we show the results of optimization-based smoothing. The local submesh hassigni�cantly improved quality, and all of the elements remain valid.
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3.4. Convergence of the Local Subproblem. We now show that the level sets for thecomposite function f(x) = min1�i�n sin �i(x)(3.2)are convex in the feasible region of a two-dimensional local submesh. Thus, the convergence ofthe local submesh problem can be theoretically guaranteed. In practice, the optimization processis terminated if one of the following conditions apply: (1) the step size falls below the minimumstep length with no improvement obtained; (2) the maximum number of iterations is exceeded; (3)the achieved improvement of any given step is less than some user-de�ned tolerance; or (4) theKuhn-Tucker conditions of nonlinear programming are satis�ed, indicating that we have found alocal maximum x�.21Lemma 3.1. Let �i(x) be an element angle such that sin �i(x) = f(x) for any x in the strictlyfeasible region. Then we have that �i(x) � �2 .Proof. We prove this lemma by contradiction. Let �i(x) > �2 such that sin �i(x) = f(x), that is�i(x) is in the active set at x. Let �s and �t be the other two angles in the element containing �i.These three angles sum to �, thus both �s and �t must be acute and, because x is strictly feasible,nonzero. We have that sin(�i) = sin(� � �s � �t)= sin(�s + �t)> sin(�s):This is contradicts our assumption that sin �i(x) = f(x), thus we have that �i(x) � �2 .Theorem 3.2. The level sets, S, of the function f(x) = min1�i�n sin �i(x) are convex in thefeasible region of a two-dimensional local submesh.Proof. By Lemma 3.1 we have that any angle �i(x) with sin �i(x) = f(x) for x in the feasibleregion must satisfy 0 � �i(x) � �2 . As sine is monotonic for angles in this range, it is su�cient toshow that the levels sets of the function g(x) = min1�i�n�i(x)are convex. This fact has been shown previously,16, 22 and we briey review the argument here.First consider angles �j(x) at triangle vertices other than the free vertex, call these anglesexternal angles. Let Sj(�) be the set of points in the feasible region, denoted RF , which form anangle � � �j(x) with the external triangle edges, that is, let Sj(�) = fx 2 RF j � � �j(x)g for0 � � � �2 . For example, in the left submesh in Figure 3.2, we show the set Sj(�) for the angleassociated with vertex s and formed with the external edge (s; t). This region is convex.Internal angles are formed by the free vertex, v, and the line segments connecting v to the othertwo vertices of each external triangle edge. Recall the geometric fact that the set of points wherethis angle is a constant is the circle containing these three vertices where v can be any point on theboundary of the circle. Thus, the set Sj(�) for an internal angle is this circle intersected with thefeasible region. An example of Sj(�) is illustrated by the shaded region the right submesh in Figure3.2 for free vertex v and the external triangle edge vertices r and s. This set is also convex.The set S(�) = fx j � � g(x)g for 0 � � is the intersection of the sets Sj(�). As the intersectionof convex sets is convex, we have that S(�) is convex. Thus, the level sets for g(x) and, therefore,the level sets for f(x) are convex in the feasible region.In Figure 3.3 we illustrate one of these level sets for a subproblem example. The two points xand y are on the level set boundary because of the wedge-shaped feasible regions corresponding tothe two exterior angles originating from the vertex t. Note that the level set is convex and containedin the interior of the feasible region. 9



w
r

u

v

s

t

v

r

u

v

w

s

t

θFig. 3.2. The level sets for external and internal angles in the local submesh. In each �gure, the dashedline represents the feasible region. In the left �gure, the shaded region shows the set Sj(�) for the exterior angleassociated with vertex s and the edge (s; t). In the right �gure, the shaded region shows the set Sj(�) of the interiorangle associated with triangle vrs.
x

y

r

u

v

w

ps

tFig. 3.3. A local submesh in which the feasible region is shaded gray. The dashed line represents a typical levelset, the boundary of S(�), for the function f(x) = min1�i�n sin �i(x). The points x and y are two arbitrary pointson the boundary of S. The level set is convex if p = �x+ (1� �)y 2 S for 0 � � � 1.4. Typical Results for Mesh Untangling and Improvement. To show typical results forthe mesh untangling problem, we start with a two-dimensional Delaunay mesh created using theTriangle package23 and a three-dimensional tetrahedral mesh created using the GRUMMP package.24We perturb a percentage of the nodes in these meshes a given distance to create new meshes thathave valid connectivity, but invalid elements with negative area. In the discussion that follows, letP be the percentage of nodes perturbed and h be the average edge length in the mesh.The initial two-dimensional mesh, which is shown in Figure 4.1, has 333 elements and an initialminimum angle of 22o. We perturb 10 percent of the nodes in this mesh a distance, h, to createa tangled mesh containing 28 invalid elements; a portion of this tangled mesh is shown in theleftmost �gure of Figure 4.2. The perturbed mesh is untangled by using the linear programmingapproach described in Section 2. The untangling process stops when all of the elements are validor 40 sweeps through the mesh have been performed. In this case, 2 sweeps through the mesh wererequired to eliminate all of the invalid elements. The second mesh in Figure 4.2 shows the untangledmesh. Although this mesh is valid, the untangling procedure results in meshes of extremely poorquality; minimum angles of 10�3 degrees are typical. In this case the minimum angle followingmesh untangling is :0856o. We therefore follow the mesh untangling procedure with three and tenpasses of optimization-based smoothing using the combined approach described in Section 3 and thequality metric maximize the minimum sine. The results are shown in the last two meshes in Figure10



Fig. 4.1. The initial mesh created using the Triangle packageFig. 4.2. Typical results for mesh untangling using the linear programming approach. The mesh on the left isthe original, tangled mesh; the mesh in the middle is the same mesh after untangling; the two meshes on the rightare the same mesh after three and ten passes of mesh smoothing, respectively.4.2. The meshes have a minimum angle of 17:6o and 29:9o, respectively.The initial three-dimensional mesh is shown in Figure 4.3; this mesh has 11,098 elements and aninitial minimum dihedral angle of :657o. We again perturb this mesh in such a way that 10 percentof the nodes are moved a distance h from their original position, creating a mesh with 910 invalidelements. In this case, four sweeps through the mesh using the untangling procedure were requiredto create a valid mesh with a minimum dihedral angle of :0372o. The untangling procedure is againfollowed by three passes of mesh smoothing using the combined approach and a mesh quality metricof minimum sine of the dihedral angle, resulting in a �nal mesh with a minimum dihedral angle of4:34o. In this case, the mesh fails to improve after three passes, and ten passes of mesh smoothingare not performed.To evaluate the performance of the mesh untangling procedure as a function of the number ofinvalid elements and the amount of node perturbation, we created two series of perturbed meshesfor each of the initial meshes. The perturbation direction for a particular node is randomly chosen,but for each series of meshes the same nodes are perturbed in the same direction. In the �rst series,the magnitude of the perturbation is �xed to be the average element edge length, h, and additionalnodes are perturbed in each successive mesh in the series. In the second series of meshes, the numberof nodes that are perturbed is constant, but the amount of the perturbation is increased in eachsuccessive mesh.In Tables 4.1 and 4.2 we present untangling and improvement results for the two- and three-dimensional mesh series, respectively. In these tables P is the percentage of perturbed nodes, D isthe distance they are perturbed, N is the resulting number of invalid elements, SU is the numberof sweeps required to untangle the mesh, Min. �U is the minimum (dihedral) angle in the meshfollowing untangling, and Min. �S is the minimum dihedral angle after mesh smoothing.These results clearly show that the amount a grid point is perturbed signi�cantly increasesthe number of untangling passes required to create a valid mesh and decreases the e�ectiveness ofthree passes of mesh smoothing. We note that if 10 passes of mesh smoothing were used, resultsof �S = 17:6o and �S = 4:34o were achieved for the last two- and three-dimensional test cases,respectively. The cost of mesh untangling per grid point is approximately half the cost of mesh11



Fig. 4.3. The initial three-dimensional tetrahedral mesh based on the geometry of a tire incineratorTable 4.1Untangling results for a series of 2D meshesUntangling SmoothingTotal Time/ Total Time/P D N SU Time (s) Call (s) Min. �U Time (s) Call (s) Min. �S5 h 15 3 1.36e-01 3.36e-04 4.46e-01 1.58e-01 3.90e-04 14.510 h 28 2 6.99e-02 2.59e-04 8.56e-02 1.61e-01 3.97e-04 17.625 h 51 3 1.04e-01 2.56e-04 5.70e-03 2.21e-01 5.46e-04 14.950 h 93 4 1.35e-01 2.50e-04 6.20e-01 2.15e-01 5.32e-04 19.125 h 51 3 1.04e-01 2.56e-04 5.70e-03 2.21e-01 5.46e-04 14.925 2h 73 4 1.33e-01 2.46e-04 2.10e-01 2.30e-01 5.68e-04 12.325 4h 92 5 1.61e-01 2.39e-04 6.87e-02 2.78e-01 6.86e-04 8.8625 8h 95 10 3.39e-01 2.51e-04 2.33e-01 2.79e-01 6.89e-04 2.52smoothing.To further reduce the costs of the mesh untangling procedure, we experimented with combiningthe optimization-based approach with Laplacian smoothing. We considered four di�erent approachesto mesh untangling:1. Laplacian smoothing used alone (the Laplacian-smooth or LS method),2. optimization-based untangling used alone (untangle-smooth or US method),3. Laplacian smoothing on each local submesh, followed immediately by optimization-baseduntangling if the local submesh is still invalid (the combined-smooth or CS method), and4. a few sweeps through the mesh using Laplacian smoothing only followed by sweeps throughthe mesh using optimization-based untangling only (the Laplacian-untangle-smooth or LUSmethod).In each case, mesh untangling is followed by three passes of mesh smoothing to improve the qualityof the �nal mesh.In two dimensions, the LS method successfully untangled each test case. We therefore recom-12



Table 4.2Untangling results for a series of 3D meshesUntangling SmoothingTotal Time/ Total Time/P D N SU Time (s) Call (s) Min. �U Time (s) Call (s) Min. �S5 h 447 3 8.94e+00 2.25e-03 3.61e-03 1.65e+01 4.17e-03 4.3410 h 910 3 9.22e+00 2.32e-03 6.32e-03 1.75e+01 4.41e-03 4.3425 h 2030 5 1.48e+01 2.25e-03 1.42e-03 2.03e+01 5.11e-03 4.3450 h 3277 7 2.08e+01 2.24e-03 3.92e-01 2.14e+01 5.41e-03 4.3425 h 2030 5 1.48e+01 2.25e-03 1.42e-03 2.03e+01 5.11e-03 4.3425 2h 3218 9 2.74e+01 2.23e-03 0.00e+00 2.49e+01 6.27e-03 4.3425 4h 3667 9 2.67e+01 2.24e-03 1.04e-05 2.57e+01 6.48e-03 4.3425 8h 3891 29 8.77e+01 2.29e-03 0.00e+00 3.23e+01 8.13e-03 1.74mend �rst attempting to untangle a mesh using Laplacian smoothing only. In three dimensions,however, the LS method failed to untangle any of the test cases. In Table 4.3 we give results foreach of the three other techniques. For each technique, we give the number of sweeps required tountangle the mesh, SU , the time required to untangle the mesh in seconds, and the average minimumelement dihedral angle in the mesh following untangling, Min. �U . For the LUS method, we usedthree passes of Laplacian smoothing. The number of sweeps needed for mesh untangling is reportedas 3{X for that technique, where X is the number of optimization-based sweeps.Table 4.3Untangling results for three di�erent techniques on the three-dimensional mesh seriesU-S Method C-S Method L-U-S MethodUntangle Untangle UntangleP D N SU Time (s) Min. �U SU Time (s) Min. �U SU Time (s) Min. �U5 h 447 3 8.94 28.3 3 1.28 43.8 3{1 2.92 36.110 h 910 3 9.22 27.3 4 2.48 44.4 3{1 2.93 36.125 h 2030 5 14.8 26.3 5 4.54 44.2 3{1 2.92 44.750 h 3277 7 20.8 26.4 12 7.02 44.3 3{1 2.93 36.125 2h 3218 9 27.4 25.4 12 8.02 44.2 3{1 2.93 36.125 4h 3667 9 26.7 24.9 28 12.1 44.4 3{1 2.93 36.125 8h 3891 29 87.7 22.1 { { { 3{1 3.25 35.9Using approaches that combine Laplacian smoothing with optimization-based untangling resultin higher quality meshes at lower computational cost than optimization-based untangling used alone.The LUS method is the recommended method. It requires only one sweep of optimization-baseduntangling for each case, and the total time to untangle the mesh is constant and smaller thanthe US method used alone for all cases and smaller than the CS method for all but two cases. Inaddition, the quality of the �nal untangled mesh as measured by the average minimum dihedralangle falls between the US and CS method results. In general, the CS method required moreiterations to converge than the US method, but each iteration was much less expensive, with theaverage time to process a local submesh being 3:75�4 seconds compared with 2:32�3 seconds. Inone case, however, the CS method failed to converge in less than 80 iterations. In Figure 4.4 weshow the convergence history as a function of both the number of invalid elements in the mesh andthe minimum tetrahedral volume for each of the three techniques for the P = 25, D = 8h case. We13



use linear-log plots so that the details of the �nal iterations can be clearly seen, and therefore mustplot the log of the negative minimum tetrahedral volume in the right �gure. Because Laplaciansmoothing is not guaranteed to improve a local submesh, the CS method falls into a cyclic patternafter 60 iterations, and the minimum tetrahedral volume fails to increase after that point.
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