
Communication Servicesfor Advanced Network ApplicationsJohn Bresnahan, Ian Foster, Joseph Insley, Brian Toonen, Steven TueckeMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL, U.S.A.Abstract Advanced network applications such asremote instrument control, collaborative environ-ments, and remote I/O are distinguished from \tra-ditional" applications such as videoconferencing bytheir need to create multiple, heterogeneous 
owswith di�erent characteristics. For example, a sin-gle application may require remote I/O for rawdatasets, shared controls for a collaborative anal-ysis system, streaming video for image renderingdata, and audio for collaboration. Furthermore,each 
ow can have di�erent requirements in termsof reliability, network quality of service, security,etc. We argue that new approaches to communi-cation services, protocols, and network architectureare required both to provide high-level abstractionsfor common 
ow types and to support user-levelmanagement of 
ow creation and quality. We de-scribe experiences with the development of such ap-plications and communication services.Keywords: Network applications, communica-tion libraries, Nexus, Collaboratory Interoper-ability Framework (CIF)1 IntroductionAdvanced network applications such as re-mote instrument control, collaborative envi-ronments, and remote I/O are distinguishedfrom \traditional" networked applications suchas videoconferencing by their need to main-tain multiple, heterogeneous 
ows with dif-ferent characteristics. For example, a singleapplication may require remote I/O for rawdatasets, shared controls for a collaborative

analysis system, streaming video for image ren-dering data, and audio for collaboration. Fur-thermore, each 
ow can have di�erent require-ments in terms of reliability, network qualityof service, security, and so on. For example,in a tele-immersive collaborative environment,tracking information need not be propagatedreliably but can often bene�t from multicast,while database updates require reliable com-munication but cannot always use multicastcapabilities. Mechanisms are required that al-low both convenient speci�cation of these ap-plications and e�cient execution in a varietyof environments.Historically, such applications either haveused a single low-level communication proto-col for all 
ows (e.g., TCP/IP [1, 2, 3]) or haveused a mixture of di�erent, often specializedAPIs for di�erent 
ows [4, 5, 6]. Neither ap-proach is ideal. The �rst approach leads to aprotocol that is good for some purposes butless ideal for others; in the second, programcomplexity is increased and portability is hardto achieve. In both cases, a variety of issuesrelating to the coordination of multiple 
ows(e.g., synchronization of audio and video, pri-oritization of di�erent 
ows) have typically notbeen addressed at all.We believe that such applications requiremore sophisticated communication serviceswith, ideally, the following characteristics:� A uniform API allows both high-levelspeci�cation of communication structureand independent speci�cation of commu-nication mechanisms.



� A variety of 
ow types and interactionmodels are supported, including varioustypes of streaming data, shared controls,and database updates.� Support is provided for automatic anduser-managed manipulation of 
ow char-acteristics, such as privacy, integrity, com-pression, and network quality-of-service.� Support is provided for the coordina-tion and management of ensembles of
ows, enabling, for example, programmer-controlled prioritization, synchronization,and aggregation of 
ows in various typesof network.� Integrated instrumentation allows user-level monitoring of 
ow quality and no-ti�cation, for the purpose of adaptation,of violations in performance contracts.Our views on these topics have been shapedby our experiences developing both advancednetworked applications and communication li-braries designed to support such applications.In this paper, we review these experiences, fo-cusing on one particularly demanding appli-cation and three di�erent communication li-braries.2 Motivating ExampleWe use a single example application to moti-vate some of the discussion that follows. Ourchosen application is typical of an emergingclass of so-called \Grid" applications that cou-ple geographically distributed resources of var-ious types to create virtual devices with uniquecapabilities [7]. In this case, the resourcesin question are a specialized scienti�c instru-ment, the Advanced Photon Source (APS) atArgonne National Laboratory, used to probethe interior structure of materials at very smallscales using, in this case, a technique calledcomputed microtomography (CMT); a super-computer, used to reconstruct 3-D materialdensities from the sequence of 2-D raw data\slices" provided by the instrument; and a

number of both high-end and low-end displaydevices, used to support collaborative analy-sis of the reconstructed data. These resourceswork in concert to enable quasi-real-time re-construction and collaborative analysis of APSdata, so that users at remote sites can bemanipulating and discussing three-dimensionalimage data just minutes after data collectionbegins [8].2.1 Visualization CapabilitiesThe visualization system uses a specializedgraphics utility, the SGI Volumizer library, toproduce high-quality, 3-D volume-rendered im-ages of the dataset. As illustrated in Figures 1and 2, this data can be displayed in multi-ple ways, depending on the capabilities of theuser's visualization environment:� Virtual reality display: CAVE or Im-mersaDesk (Idesk) immersive display de-vices support high-quality, 3-D stereo dis-play. The user can control the dis-play through the use of a control panelprovided within the virtual environment.This control panel allows operations suchas rotation, volume cropping, and assign-ment of color and opacity to dataset vox-els.� Desktop display: Rather than rewritingthe volume renderer to run on less capabledesktop hardware, we use remotely ren-dered video for the desktop display. Thehigh-quality images produced by the SGI-based volume rendering hardware andsoftware are captured, compressed, andsent over the network for display usingstandard network video display tools. AJava control panel supports desktop con-trol of the rendering process.� Web display: The same software canalso capture individual images from thescene and put them on a Web page, for avery low-end solution that provides high-quality images.



Figure 1: A screen shot of the ImmersaDesktaken during a collaborative session with twousers.Shared-state mechanisms are used to linkthe virtual reality and desktop displays, so thatusers at di�erent locations and on di�erentsystems can cooperate in the steering of thevolume-rendering process.2.2 Communication RequirementsThe application is typical of advanced Grid ap-plications in its simultaneous use of many un-derlying communication structures:� The transfer of 2-D images from the APSto the supercomputer, and of 3-D datasetsfrom the supercomputer to the visualiza-tion system, requires high-bandwidth (10sof Mb/s today, Gb/s or more in the fu-ture), unicast communication.� Communication within the parallel 3-D re-construction program requires high band-width and low-latency communication, asis typically available on parallel supercom-puters through the Message Passing Inter-face (MPI) or shared-memory libraries.� The video stream uses standard, unre-liable IP multicast protocols (e.g., RTPand RTCP). We commonly used 800x600pixel H.261 video, which requires approxi-mately 300 kbps of bandwidth when the

Figure 2: A screen shot of a low-resolutiongraphics workstation taken during a collabora-tive session with two users.image is rapidly changing; signi�cantlyhigher resolution is desirable.� Audio streams between the collaboratorscan also use standard, unreliable IP mul-ticast protocols. Audio requires less band-width than video but is more susceptibleto quality degradation due to lost packets.� The communication between the controlpanels of the collaborators uses both re-liable and unreliable multicast protocols.Unreliable protocols can be used for in-cremental updates of the panels, for ex-ample while a user is dragging a slider onthe panel. Reliable protocols are used toensure that all participants are synchro-nized, for example when the user releasesthe slider on the panel to set a �nal value.Hence, even in this relatively simple appli-cation we see a need for tens of 
ows (if multi-ple collaborators are participating) with widelyvarying characteristics. Other applications canplace yet more complex demands on a commu-nications infrastructure. For example, DeFantiand Stevens identify nine 
ow types in collab-orative design applications [9].



3 NexusThe preceding section outlines the wide va-riety of communication modalities that mustbe simultaneously supported in an advancednetwork application such as the CMT collab-orative analysis and visualization system. Ingeneral, we observe that the low-level methodused to achieve a communication can vary ac-cording to where communication is being per-formed, what is being communicated, or whencommunication is performed [10].Currently, developers of such applicationsmust program to a variety of APIs for thesevarious 
ows (e.g., TCP sockets, IP multicast,reliable multicast libraries, MPI) and mustknow myriad details about each API in orderto achieve good performance (e.g., TCP socketbu�er sizes). This burden will only increase asthese applications add such features as securityand network quality of service.We believe that the solution to this prob-lem is to allow for the separate speci�cationof the communication structure of an appli-cation and the methods used to achieve thatcommunication. The Nexus communication li-brary [11, 10] represents both an ambitious ex-periment in this regard and a substantial soft-ware system that has been used in many tooldevelopment and application projects, rang-ing from parallel language compilers to high-level communication libraries and distributedperformance pro�ling systems. Nexus alsoserves as the communication component of theGlobus toolkit.Nexus provides simple, general ways for ex-pressing communication, based on the abstrac-tions of startpoints, endpoints, communicationlinks, and remote service requests. These ab-stractions are able to express the wide va-riety of communication modalities describedabove. The Nexus implementation maps theseabstractions onto a wide variety of underlyingcommunication methods.Nexus programs bind communication start-points and endpoints to form communicationlinks. If multiple startpoints are bound to anendpoint, incoming communications are inter-

leaved, in the same manner as messages sentto the same node in a message passing sys-tem. If a startpoint is bound to multiple end-points, communication results in a multicastoperation. A startpoint can be copied betweenprocessors, causing new communication linksto be created that mirror the links associatedwith the original startpoint. Hence, startpointscan be used as global names for objects thatcan be communicated and used anywhere in adistributed system.A communication link supports a singlecommunication operation: an asynchronous re-mote service request (RSR). An RSR is appliedto a startpoint by providing a procedure nameand a data bu�er. For each endpoint linkedto the startpoint, the RSR transfers the databu�er to the address space in which the end-point is located and remotely invokes the spec-i�ed procedure, passing the endpoint and thedata bu�er as arguments. A local address canbe associated with an endpoint, in which casestartpoints associated with the endpoint can bethought of as \global pointers" to that address.An advantage of the startpoint construct ina distributed computing environment is thatthe startpoint can be used to encapsulate notonly information about where communicationshould be performed, but also how to commu-nicate. Di�erent communication methods canbe associated with di�erent communicationlinks, with selection being either automatic oruser guided. The communication methods cur-rently supported by Nexus are listed in Table 1.In addition, a message transform, or �lter,can be applied to each communication link.This feature allows operations such as compres-sion, encryption, and pro�ling to be speci�edand performed on a per-link basis.Our experience is that the Nexus abstrac-tions capture nicely numerous communicationstructures and map cleanly onto a variety ofunderlying protocols and capabilities (e.g., se-curity and quality of service). The one limita-tion of which we are aware relates to supportfor multicast communication. The Nexus APIfor creating startpoints and endpoints is cur-rently better suited for the creation of unicast



Table 1: Communication methods supported by NexusName DescriptionLocal Reliable ordered unicast within a single processSysV Reliable ordered unicast between processeson the same computer, via System V shared memoryMPI/MPL/INX Reliable ordered unicast between processes ondi�erent nodes of a single distributed-memory computer,via low-level communication librariesTCP Reliable ordered unicastUDP Unreliable, unordered or ordered unicastIP multicast Unreliable, unordered or ordered multicastXTP Reliable, source-ordered multicastTotem Reliable, totally ordered multicastcommunication than for multicast communica-tion. In particular, there is currently no way todirectly bind a startpoint to multicast group.Instead, one must �rst create an endpoint thatis bound to the multicast group, and then binda startpoint to that endpoint. This can be an-noying for processes that only want to sendto a particular multicast group. This problemcan be corrected by adding the communicationlink management to the API and then allowingstartpoints and endpoints to directly bind tothe communication link. Therefore, multicastcommunication would be set up by creating acommunication link with multicast propertiesand by binding one or more startpoints andendpoints to that communication link.4 CIF Comm LibraryWhile Nexus demonstrates that a uniform in-terface can be constructed for a variety of pro-tocols and messaging libraries, this interface(which was originally designed for use by com-pilers) is too low level for all but the mostexpert programmer. Hence, in a more recentproject we have developed a higher-level inter-face that makes the same protocols availablein a more convenient form. This interface, de-veloped as part of the DOE2000 CollaboratoryInteroperability Framework (CIF) project, istermed CIF Comm.

The CIF Comm design employs object-oriented concepts as a means of encapsulatingprotocol details. The interface consists of threecore classes: abstract connection and listenerclasses, and a factory class to instantiate them.The abstract connection class provides asimple interface for sending and receiving mes-sages. It is from this class that all protocol-speci�c connection classes are derived. Asthe class name and capabilities imply, each ofthe protocol-speci�c implementations providea connection-oriented, message-passing styleview of the communication irrespective of theunderlying protocol. Hence, applications canswitch between di�erent protocols simply byinstantiating a di�erent class.The abstract listener class allows traditionalclient-server applications to implement server-side functionality using CIF Comm. Once aclass has been instantiated, the listener waitsfor connection requests from remote connec-tion objects. These connection requests aretransformed into local connection objects whenthe application requests the next incoming con-nection from the listener.In reality, an application never instantiatesa protocol-speci�c connection or listener class.Instead, it makes a request to the factory class,which performs the instantiation on its be-half. To facilitate protocol independence in thefactory, all requests are made using URLs inwhich the �rst component speci�es the proto-



col to be used. This protocol information isused to instantiate the correct connection orlistener class, which is then passed the remain-der of the URL.At present, both C++ and Java bindingshave been implemented for the CIF Comm in-terface, supporting TCP, UDP, IP multicast,and Totem. In addition, XTP is supported inthe C++ implementation and will soon be sup-ported in Java as well. With these protocols,the application has the full cross product ofreliable/unreliable and unicast/multicast com-munication available to it.To date, CIF Comm has been used in twoapplications: a multi-user camera controllersystem developed by Deb Agarwal at LawrenceBerkeley National Laboratory and the CIFShared State library (described below), a fun-damental piece of the CMT application.5 CIF Shared State LibraryCollaborative applications require mechanismsfor maintaining and synchronizing updates tothe shared data elements that represents thestate of the world in which collaboration oc-curs. For example, in the CMT data analysissystem this shared state includes the variouscontrols for the remote visualization system:point of view, color map, and so forth. We haveused CIF Comm to implement a shared-stateabstraction library, CIF Shared State, whichwas then used to implement the CMT collab-orative data analysis system.The Shared State component of CIF allowsfor shared control of abstract states in collabo-rative space across multiple platforms. An ini-tial impetus for the creation of the shared-statelibrary was to allow for shared control of \wid-gets" across di�erent computer architecturesand languages. (Other systems, in particularNCSA's Habanero, support a shared-state ab-straction, but only within a Java framework.)If shared control of sliders, buttons, and otherarbitrary components could be established, agraphical program running on a high-end re-source could be controlled remotely from a

simpler, more accessible computer. The CMTcollaborative visualization application uses theCIF Shared State Library to do just that.The CIF Shared State library is an object-oriented API with both C++ and Java im-plementations that allows for shared controlof abstract states. (A Java implementationis provided for portability and a C++ imple-mentation for use on high-end platforms and inC-based applications; a common Nexus-basedwire protocol allows for interoperability.) Theabstract states can be implemented as GUIcomponents (sliders, buttons, toggles) or moresimply as arrays of data primitives (integers,
oating point numbers, bytes). To create ashared state, the user needs only to provide amechanism for packing and unpacking its cur-rent values into a CIF Shared State \Serial"object via convenient methods provided by theAPI.The use of shared-state information ratherthan collective control functions as our ba-sic primitive proved extremely e�ective in theCMT application. We were able to create un-orthodox visual components that provided nocontrol to the user but were used to displayuseful information, such as histogram graphs,color bandwidth �lter curves, and images ofall of the users currently participating in thecollaborative session. This layer of abstractionbetween shared data and visual control also al-lowed us to couple di�erent visual componentpackages with the messaging structure: a Java-based control GUI for desktop clients and a setof 3-D widgets for use in the CAVE.6 ConclusionsEmerging networked applications involve mul-tiple 
ows with di�erent and time-varying re-quirements for low-level protocols, security,performance, and so on. We have argued thatthe communication services that we provideto support these applications need to recog-nize this fact and provide explicit support bothfor the separate speci�cation of communica-tion 
ow and communication method and for



the management of ensembles of 
ows in anintegrated fashion. We have described threesoftware systems that we have developed toaddress the �rst of these concerns, namely,the Nexus communication library and the CIFComm and CIF Shared State libraries. Appli-cation experiences with these systems indicatethat the separate speci�cation of communica-tions structure and method is indeed desirable.In future work, we will address the associationof quality-of-service attributes with 
ows andthe management of 
ow ensembles.AcknowledgmentsWe gratefully acknowledge the many colleagueswho have contributed to the development ofNexus, the CIF libraries, and the CMT appli-cation, in particular Gregor von Laszewski andSteve Wang at Argonne; Carl Kesselman andMei Su at USC/ISI; Deb Agarwal at LBNL;and Bruce Mah at SNL/CA. This work wassupported in part by the Mathematical, Infor-mation, and Computational Sciences Divisionsubprogram of the O�ce of Computational andTechnology Research, U.S. DOE, under Con-tract W-31-109-Eng-38; by DARPA under con-tract N66001-96-C-8523; and by NSF.References[1] C. Shaw and M. Green. The MRtoolkit peers package and environment. InProceedings of the IEEE Virtual RealityAnnual International Symposium. IEEEComputer Society Press, 1993.[2] K. Birman. The process group approachto reliable distributed computing. Com-munications of the ACM, 36(12):37{53,1993.[3] C. Carlsson and O. Hagsand. DIVE -a multi-user virtual reality system. InProceedings of the IEEE Virtual RealityAnnual International Symposium. IEEEComputer Society Press, 1993.

[4] J. Mandeville, J. Furness, and T. Kawa-hata. Greenspace: Creating a distributedvirtual environment for global applica-tions. In Proceedings of the IEEE Net-worked Virtual Reality Workshop. IEEEComputer Society Press, 1995.[5] M. Roussos, A. Johnson, J. Leigh,C. Valsilakis, C. Barnes, and T. Moher.NICE: Combining constructionism, narra-tive, and collaboration in a virtual learn-ing environment. Computer Graphics,31(3):62{63, August 1997.[6] M. Macedonia and M. Zyda. A taxon-omy for networked virtual environments.In Proceedings of the 1995 Workshop onNetworked Realities. 1995.[7] I. Foster and C. Kesselman, editors. TheGrid: Blueprint for a Future ComputingInfrastructure. Morgan Kaufmann Pub-lishers, 1999.[8] G. von Laszewski, I. Foster, J. Ins-ley, J. Bresnahan, C. Kesselman M. Su,M. Thiebaux, M. Rivers, I. McNulty,B. Tieman, and S. Wang. Real-time analy-sis, visualization, and steering of microto-mography experiments at photon sources.In Proceedings of the Ninth SIAM Confer-ence on Parallel Processing for Scienti�cComputing. SIAM, 1999.[9] T. DeFanti and R. Stevens. Teleimmer-sion. In [7], pages 131{156.[10] I. Foster, J. Geisler, C. Kesselman, andS. Tuecke. Managing multiple com-munication methods in high-performancenetworked computing systems. Journalof Parallel and Distributed Computing,40:35{48, 1997.[11] I. Foster, C. Kesselman, and S. Tuecke.The Nexus approach to integrating mul-tithreading and communication. Jour-nal of Parallel and Distributed Comput-ing, 37:70{82, 1996.


