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Abstract

The complexity of large-scale scientific simula-
tions often necessitates the combined use of multiple
software packages developed by different groups in
areas such as adaptive mesh manipulations, scal-
able algebraic solvers, and optimization. Histori-
cally, these packages have been combined by using
custom code. This practice inhibits experimentation
with and comparison of multiple tools that provide
similar functionality through different implementa-
tions. The ALICE project, a collaborative effort
among researchers at Argonne National Laboratory,
1s exploring the use of component-based software
engineering to provide better interoperability among
numerical toolkits. We discuss some initial experi-
ences in developing an infrastructure and interfaces
for high-performance numerical computing.
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1 Introduction

Researchers in computational science have
benefited from the encapsulation of expertise
in numerical libraries for many years. However,
the complexity and scale of today’s multidis-
ciplinary scientific simulations imply that de-
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velopment work must be leveraged over many
individual projects, because writing and main-
taining a large custom application usually ex-
ceeds the resources of a single group. These
issues, coupled with the multilevel memory hi-
erarchies of distributed-memory architectures,
create ever more challenging demands for high-
performance numerical software tools that are
flexible, extensible, and, perhaps most impor-
tant for the discussion in this paper, interoper-
able with complementary tools. As we aim for
scalable, efficient, and portable performance
over the lifetimes of scientific applications, we
are exploring techniques for managing software
changes, which may range from evolutionary
kernel improvements to paradigm shifts in al-
gorithms and software organization. In this
paper we describe recent efforts to develop a
component-based approach to building numer-
ical tools.

The term component has been used in many
ways by the software community (see, e.g.,
[17]). Here we define a software component to
be an encapsulated software object that pro-
vides a certain set of functionalities or services
and can be used in conjunction with other com-
ponents to build applications. A component
consists of an API (application programming
interface) and one or more implementations,
and conforms to a prescribed behavior within
a given computational framework.

The mainstream computing community has
developed interoperability mechanisms (e.g.,



distributed object technology such as the COM
family and CORBA, and component technol-
ogy such as Enterprise Java Beans) to ad-
dress similar levels of complexity within their
applications.  Qur approach is to leverage
this work when appropriate, recognizing that
the features of large-scale scientific computa-
tion present different challenges and thus de-
mand different solutions. One challenge is the
need for efficient and scalable performance on
distributed-memory architectures such as sym-
metric multiprocessors and workstation clus-
ters. Also, the culture of research computing
differs from that of the business world; scien-
tists need to be able to explore their ideas with-
out requiring legions of programmers to trans-
late from scientific abstractions to actual code,
and without becoming overwhelmed by details
(e.g., security) that are not of primary interest.
These issues are further discussed in [5]. A va-
riety of researchers, including [2, 8, 15, 18], are
considering similar issues within the context of
high-performance scientific software.

Our goal is to leverage the strengths of dif-
ferent high-performance toolkits, not to de-
velop a single massive library into which ev-
eryone contributes code. As such, we have a
minimalist philosophy that focuses on develop-
ing infrastructure for dynamic assembly of soft-
ware tools and designing performance-sensitive
abstract interfaces that define the interactions
among them.

The remainder of this paper motivates this
approach and explains our design strategy.
Section 2 introduces the needs of a simulation
based on partial differential equations (PDEs).
Section 3 presents our infrastructure design re-
quirements and some interface issues for nu-
merical software components. This discus-
sion emphasizes support for multiple under-
lying component implementations (e.g., var-
ious mesh management techniques and alge-
braic solvers) and for automatically generat-
ing one type of component from another (e.g.,
producing a Jacobian component by comput-
ing derivatives of a nonlinear function). Pre-
liminary observations and directions of future
work are discussed in Section 4.

2 Motivating Example

While our work is motivated by collaborations
with scientists studying a range of different ar-
eas, including astrophysics, microtomography,
combustion, superconductivity, and molecular
dynamics, we illustrate some of the challenges
typical of this work with a particular exam-
ple. We consider the modeling of Rayleigh-
Taylor instabilities, which is part of an ongoing
project by Argonne and University of Chicago
researchers [16].

Figure 1: A single plume Rayleigh-Taylor in-
stability modeled as a compressible fluid with
the Euler equations at two different levels of
refinements (left: 14,848 cells; right: 54,208
cells).

In Figure 1 we show a single plume Rayleigh-
Taylor instability simulated using an adaptive
Piecewise Parabolic Method (PPM) method at
two different levels of refinement. The figure on
the right was computed at a higher resolution
than the figure on the left, and we see a corre-
sponding increase in the fine-scale features ev-
idenced in the numerical simulation. Because
the Raleigh-Taylor phenomenon is chaotic, dif-
ferent discretization schemes, resolutions in the
computational model, and mesh types result
in different fine-scale features. Thus, an open
question is “Which numerical scheme, mesh
type, and resolution most accurately capture
the Rayleigh-Taylor instability?”



Table 1: Methods under consideration for modeling a Rayleigh-Taylor instability.

Fluid Mathematical Discretization Mesh Solution

Regime Model Technique Type Technique
Incompressible’ | Navier-Stokes Spectral Fixed Cartesian Explicit
Incompressible! | Navier-Stokes | Spectral Elements Fixed Cartesian Semi-Implicit
Compressiblet Euler PPM Fixed Cartesian Explicit
Compressiblef Euler PPM Adaptive Cartesian Explicit
Compressiblet Euler Discontin. Galerkin | Adaptive Tetrahedral Explicit
Compressiblef Euler Finite Volume Fixed Cartesian Implicit
Compressible? Euler Discontin. Galerkin | Adaptive Tetrahedral Implicit

T existing models
t potential future models

We are therefore studying different numer-
ical strategies for Rayleigh-Taylor simulations
(see Table 1 for a list of techniques). Because
the codes in the current generation of models
are all distinct from each other, we face dif-
ficulties in ensuring that they are all running
the same initial and boundary conditions. An
environment that allows computational scien-
tists to interchange models, discretization tech-
niques, and mesh management strategies from
a single application code would greatly reduce
the likelihood of such inconsistencies. In ad-
dition, to facilitate algorithm experimentation
and comparison for implicit and semi-implicit
schemes, we need support for various linear
and nonlinear solvers, as well as techniques for
sparse derivative computations.

3 The ALICE Project

The current generation of software infra-
structure is incapable of providing this “plug
and play” functionality, even if the individ-
ual tools have been built using modularity
and object-oriented design. We are inves-
tigating techniques for dynamic, component-
based interactions as part of a flexible archi-
tecture within the Advanced Large-scale Inte-
grated Computational Environment (ALICE)
[1]. Our holistic perspective, where we consider
many facets of numerical simulations rather
than simply one or two areas, is one of the
key strengths of our approach. Our work

builds on practical experiences with two-way
interfaces between the existing parallel tools
SUMAA3d [9] and PETSc [4] (discussed in
[10]) and between PVODE [13] and PETSc
(discussed in [5]). We also build on early expe-
riences with common interface design for par-
allel linear algebra tools in the Equation Solver
Interface forum [7]. The time is ripe for such
activities; rich sets of unstandardized tools ex-
ist for certain functionalities (e.g., meshes and
algebraic solvers), so that we can begin to ex-
ploit their differences and leverage their com-
monalities.

Section 3.1 discusses the development of
light-weight infrastructure to manage both
synchronous and asynchronous tool coordina-
tion. Section 3.2 describes recent work in en-
hancing existing toolkits so that they can func-
tion in a more dynamic computing paradigm.

3.1 ALICE Infrastructure

Traditional large-scale numerical simulations
are almost always implemented by routines
that are called in a well-defined order to im-
plement a deterministic numerical algorithm.
When object-oriented techniques are used in
numerical computing, the standard approach is
to encapsulate the data structures in objects,
while still allowing the application programmer
to call a sequence of functions that operate on
the objects to perform the desired calculations.

On the other hand, the programming of
graphical user interfaces and transaction pro-



cessing systems has moved away from the ex-
pression of a computation as a linear list of
functions that are called. Rather, (possibly
distributed) objects are viewed as making re-
quests of and serving requests of other objects.

We adopt two complementary models to
handle the differences between these two types
of interactions:

1. synchronous, local-address-space function
calls (e.g., in C++ calling methods on ob-
jects), intended for implementing numeri-
cal algorithms; and

2. asynchronous, possibly remote, transac-
tions such as accessing data objects for
monitoring, steering, and visualization,
as supported by the ALICE Memory
Snooper [3]. (Here we use the term asyn-
chronous to mean that the object may
serve a request while simultaneously per-
forming a numerical calculation.)

The primary design requirements for
model 1 are that basic functionality should
be as efficient as standard procedural code
(Fortran/C/C++4) and that no “run-time”
system (e.g., threads) be needed. Our im-
plementation, which takes the form of a
“microkernel” [5] for use by ALICE-compliant
tools, supports runtime binding of different
toolkits, dynamic addition of methods, and
object attachment through a dynamically
loaded library approach. A benefit of this
approach is that it promotes well-designed
interfaces that are completely separate from
implementations, so that wvarious external
toolkits can be introduced and the community
can begin to work toward defining sets of
canonical interfaces. This movement beyond
layered class libraries is crucial for managing
the social and technical complexities of large
application projects.

Whereas model 1 meets our basic perfor-
mance requirement, model 2 provides addi-
tional functionality, especially for remote oper-
ations. Model 2 requires a relatively large run-
time infrastructure to support marshaling of
arguments, communicating among remote pro-

cesses, locking and unlocking data structures
to allow access from multiple threads, and so
forth. Model 2 could use technology such as
Enterprise Java Beans, CORBA, or COM as

implementation mechanisms.

3.2 Component Interfaces

Designing interoperable software for Raleigh-
Taylor simulations and other nonlinear PDE-
based models is difficult, given the modeling
required to capture the physics of the problems
in sufficiently realistic detail.

3.2.1 Nonlinear Function Evaluation

For example, for the explicit, semi-implicit,
and implicit methods listed in Table 1, we must
discretize a nonlinear function throughout the
computational domain. In Figure 2 we show an
example containing three base components: a
mesh component, a discretization component,
and a local physics component. These base
components are used in combination to form
a compound component that computes F(z),
where F'is a vector containing the discretized
nonlinear function, and x is the current iterate.

For each base component in Figure 2, we
show example objects and interfaces that are
used in computing and assembling F. For ex-
ample, the mesh component contains geomet-
ric information such as the spatial locations
of vertices and elements, as well as hierarchi-
cal and connectivity information. Application-
specific data stored in the vector z is attached
to mesh entities using an abstract interface
such as M::attachData(xz, I, F), where M is
a mesh and I, is the mapping that relates the
vector indices to the appropriate mesh entities
of type F. Note that we can use introspec-
tion techniques to determine such interfaces at
runtime. The local values of the vector, Fj,
are computed by the local physics component,
which requires information from both the mesh
and the discretization components. For exam-
ple, the computation of each F; requires a dis-
cretization stencil, which we define to be the
set of local mesh entities and their connectiv-
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Figure 2: Schematic diagram of a nonlinear
function evaluation.

ity (e.g., the standard 7-point stencil used in
central finite differences or the vertices of an
element used in finite element discretizations).
This stencil can be accessed by both the mesh
and the local physics components to obtain
the spatial information and application-specific
data necessary to compute F;. Once the local
values, F;, have been computed, they can be
assembled into the global vector by the mesh
component, which simultaneously creates F’s
mapping, Ir.

An ongoing project at Argonne is exploring
design issues for a general mesh management
component that can interact with solver and
visualization tools [10]. Key issues under con-
sideration include the set of “atomic” meth-
ods for mesh manipulations, recognizing that
aggregation is crucial for large-scale problems,
and the trade-offs in performance versus degree
of canonicalization.

3.2.2 Newton Numerics

Figure 3 illustrates the use of numerical compo-
nents at various levels of abstraction for solving
the nonlinear system F(z) = 0 with Newton-
based methods. We first consider the solution
of the linearized system, F'(z)dx = —F(z),
which is a key kernel within the overall simula-
tion. Most modern linear iterative solvers may
be viewed as the combination of a precondi-
tioner (simple stationary iterative solver) and
a Krylov subspace accelerator. Figure 3 illus-
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Figure 3: Schematic diagram of a Newton-type
method.

trates these relationships within a component
for linear solution, which in turn can be con-
sidered as part of a higher-level component for
nonlinear solution.

The linear solver component requires input
of a discretized linear operator (or matrix),
Ji &~ F'(z), and a vector F to define the al-
gebraic system. Optionally, a different matrix,
J, ~ F'(z), can be provided for use in build-
ing a preconditioner; we often choose .J, to be
a relatively cheap approximation of the Jaco-
bian (e.g., lower order discretization than I’
and Jg).

We can easily explore different algorithmic
combinations and parallel data representations
(e.g., sparse matrix storage schemes, matrix-
free methods), since our interfaces exploit
mathematical abstraction (see, e.g., [4]). Also,
the ALICE microkernel’s support for runtime
binding of different toolkits facilitates experi-
ments with functionality provided by various
external solvers.

3.2.3 Jacobian Evaluation

The solution of nonlinear systems using
Newton-type methods requires computation of
a Jacobian matrix F'(z) or, in the case of a
matrix-free method, a Jacobian-vector prod-
uct F'(z) - v. While these derivatives can be
approximated with finite differences, determin-
ing an appropriate differencing parameter can
be difficult, and even reasonable choices may



degrade algorithmic convergence in compari-
son to analytic code. Since code for com-
puting derivatives analytically is often compli-
cated and difficult to program by hand, we con-
sider the use of automatic differentiation (AD),
a technology for augmenting a computer pro-
gram with statements for the computation of
derivatives [11]. The AD process is not entirely
automatic, as the user of an AD tool must iden-
tify a model’s independent and dependent vari-
ables and perform some initialization.

Combining automatic differentiation tech-
nology with component-based software devel-
opment can be mutually beneficial, and we
have begun integrating AD technology with the
nonlinear solver component of PETSc. Given
a component for computing a function, F(z),
AD can generate a component for computing
the Jacobian F’(z) or a Jacobian-vector prod-
uct F'(x)-v. Furthermore, because component-
based software has well-defined interfaces, the
process of generating derivative code can be
completely automated. While the current im-
plementation is manual, there are no funda-
mental impediments to automating the pro-
cess, and we intend to do so in the future.

We demonstrate the utility of these abstract
component interfaces through some algorith-
mic experiments in a nonlinear PDE-based
simulation. The application discussed here is
three-dimensional compressible Euler flow aris-
ing in the context of aerodynamics [12], though
the same numerical techniques are also under
consideration for the Raleigh-Taylor simula-
tions discussed in Section 2. This application
uses nonlinear solvers within PETSc, which are
organized according to the schematic diagram
of Figure 3.

In particular, we compared both finite differ-
encing and automatic differentiation for com-
puting Jacobian-vector products, Ji - v, in
matrix-free Newton-Krylov methods. Figure 4
demonstrates some of the convergence bene-
fits of using the automatic differentiation tool
ADIFOR [6], where we see that AD overcomes
challenges in selection of an appropriate differ-
encing parameter for the finite difference case.
This particular simulation, which used four

processors of an IBM SP for a problem with
158,760 unknowns, solved the linearized New-
ton systems with restarted GMRES in conjunc-
tion with Restricted Additive Schwarz precon-
ditioning. The preconditioner was built using
Jp, which in this case was a finite difference ap-
proximation of F'(z) that was held fixed over
several nonlinear iterations.

(A) Finite Difference Approx, err=1.e-5
oF (B) Finite Difference Approx, err=1.e-6
(C) Finite Difference Approx, err=1.e-7
(D) Automatic Differentiation

Log(10) of Residual Norm

20 40 63eralion850 100 120 140
Figure 4: Convergence comparison of auto-
matic differentiation and finite difference ap-
proximations in a matrix-free Newton method
for compressible Euler flow.

4 Future Work

The infrastructure and interfaces presented
in this paper represent some of the lines of
research being pursued within the ALICE
project. ~ We have also begun to develop
derivative-enhanced components [14], which
can play an important role in sensitivity analy-
sis, optimization, and inverse problems. In all
of these activities, the fundamental objective
is to provide a flexible environment for manag-
ing the complex interactions among a variety of
numerical components, while maintaining the
performance that scientific/engineering appli-
cation developers expect and require.
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