
Infrastructure and Interfaces for Large-Scale Numerical Software �Lori A. Freitag, William D. Gropp, Paul D. Hovland, Lois C. McInnes, and Barry F. SmithMathematics and Computer Science DivisionArgonne National Laboratory9700 South Cass AvenueArgonne, IL 60439-4844ffreitag,gropp,hovland,mcinnes,bsmithg@mcs.anl.govAbstractThe complexity of large-scale scienti�c simula-tions often necessitates the combined use of multiplesoftware packages developed by di�erent groups inareas such as adaptive mesh manipulations, scal-able algebraic solvers, and optimization. Histori-cally, these packages have been combined by usingcustom code. This practice inhibits experimentationwith and comparison of multiple tools that providesimilar functionality through di�erent implementa-tions. The ALICE project, a collaborative e�ortamong researchers at Argonne National Laboratory,is exploring the use of component-based softwareengineering to provide better interoperability amongnumerical toolkits. We discuss some initial experi-ences in developing an infrastructure and interfacesfor high-performance numerical computing.Keywords: high-performance scienti�c computing,component software, nonlinear PDEs1 IntroductionResearchers in computational science havebene�ted from the encapsulation of expertisein numerical libraries for many years. However,the complexity and scale of today's multidis-ciplinary scienti�c simulations imply that de-�The authors were supported by the Mathematical,Information, and Computational Sciences Division sub-program of the O�ce of Computational and TechnologyResearch, U.S. Department of Energy, under ContractW-31-109-Eng-38.

velopment work must be leveraged over manyindividual projects, because writing and main-taining a large custom application usually ex-ceeds the resources of a single group. Theseissues, coupled with the multilevel memory hi-erarchies of distributed-memory architectures,create ever more challenging demands for high-performance numerical software tools that areexible, extensible, and, perhaps most impor-tant for the discussion in this paper, interoper-able with complementary tools. As we aim forscalable, e�cient, and portable performanceover the lifetimes of scienti�c applications, weare exploring techniques for managing softwarechanges, which may range from evolutionarykernel improvements to paradigm shifts in al-gorithms and software organization. In thispaper we describe recent e�orts to develop acomponent-based approach to building numer-ical tools.The term component has been used in manyways by the software community (see, e.g.,[17]). Here we de�ne a software component tobe an encapsulated software object that pro-vides a certain set of functionalities or servicesand can be used in conjunction with other com-ponents to build applications. A componentconsists of an API (application programminginterface) and one or more implementations,and conforms to a prescribed behavior withina given computational framework.The mainstream computing community hasdeveloped interoperability mechanisms (e.g.,



distributed object technology such as the COMfamily and CORBA, and component technol-ogy such as Enterprise Java Beans) to ad-dress similar levels of complexity within theirapplications. Our approach is to leveragethis work when appropriate, recognizing thatthe features of large-scale scienti�c computa-tion present di�erent challenges and thus de-mand di�erent solutions. One challenge is theneed for e�cient and scalable performance ondistributed-memory architectures such as sym-metric multiprocessors and workstation clus-ters. Also, the culture of research computingdi�ers from that of the business world; scien-tists need to be able to explore their ideas with-out requiring legions of programmers to trans-late from scienti�c abstractions to actual code,and without becoming overwhelmed by details(e.g., security) that are not of primary interest.These issues are further discussed in [5]. A va-riety of researchers, including [2, 8, 15, 18], areconsidering similar issues within the context ofhigh-performance scienti�c software.Our goal is to leverage the strengths of dif-ferent high-performance toolkits, not to de-velop a single massive library into which ev-eryone contributes code. As such, we have aminimalist philosophy that focuses on develop-ing infrastructure for dynamic assembly of soft-ware tools and designing performance-sensitiveabstract interfaces that de�ne the interactionsamong them.The remainder of this paper motivates thisapproach and explains our design strategy.Section 2 introduces the needs of a simulationbased on partial di�erential equations (PDEs).Section 3 presents our infrastructure design re-quirements and some interface issues for nu-merical software components. This discus-sion emphasizes support for multiple under-lying component implementations (e.g., var-ious mesh management techniques and alge-braic solvers) and for automatically generat-ing one type of component from another (e.g.,producing a Jacobian component by comput-ing derivatives of a nonlinear function). Pre-liminary observations and directions of futurework are discussed in Section 4.

2 Motivating ExampleWhile our work is motivated by collaborationswith scientists studying a range of di�erent ar-eas, including astrophysics, microtomography,combustion, superconductivity, and moleculardynamics, we illustrate some of the challengestypical of this work with a particular exam-ple. We consider the modeling of Rayleigh-Taylor instabilities, which is part of an ongoingproject by Argonne and University of Chicagoresearchers [16].
Figure 1: A single plume Rayleigh-Taylor in-stability modeled as a compressible uid withthe Euler equations at two di�erent levels ofre�nements (left: 14,848 cells; right: 54,208cells).In Figure 1 we show a single plume Rayleigh-Taylor instability simulated using an adaptivePiecewise Parabolic Method (PPM) method attwo di�erent levels of re�nement. The �gure onthe right was computed at a higher resolutionthan the �gure on the left, and we see a corre-sponding increase in the �ne-scale features ev-idenced in the numerical simulation. Becausethe Raleigh-Taylor phenomenon is chaotic, dif-ferent discretization schemes, resolutions in thecomputational model, and mesh types resultin di�erent �ne-scale features. Thus, an openquestion is \Which numerical scheme, meshtype, and resolution most accurately capturethe Rayleigh-Taylor instability?"



Table 1: Methods under consideration for modeling a Rayleigh-Taylor instability.Fluid Mathematical Discretization Mesh SolutionRegime Model Technique Type TechniqueIncompressibley Navier-Stokes Spectral Fixed Cartesian ExplicitIncompressibley Navier-Stokes Spectral Elements Fixed Cartesian Semi-ImplicitCompressibley Euler PPM Fixed Cartesian ExplicitCompressibley Euler PPM Adaptive Cartesian ExplicitCompressibley Euler Discontin. Galerkin Adaptive Tetrahedral ExplicitCompressiblez Euler Finite Volume Fixed Cartesian ImplicitCompressiblez Euler Discontin. Galerkin Adaptive Tetrahedral Implicity existing modelsz potential future modelsWe are therefore studying di�erent numer-ical strategies for Rayleigh-Taylor simulations(see Table 1 for a list of techniques). Becausethe codes in the current generation of modelsare all distinct from each other, we face dif-�culties in ensuring that they are all runningthe same initial and boundary conditions. Anenvironment that allows computational scien-tists to interchange models, discretization tech-niques, and mesh management strategies froma single application code would greatly reducethe likelihood of such inconsistencies. In ad-dition, to facilitate algorithm experimentationand comparison for implicit and semi-implicitschemes, we need support for various linearand nonlinear solvers, as well as techniques forsparse derivative computations.3 The ALICE ProjectThe current generation of software infra-structure is incapable of providing this \plugand play" functionality, even if the individ-ual tools have been built using modularityand object-oriented design. We are inves-tigating techniques for dynamic, component-based interactions as part of a exible archi-tecture within the Advanced Large-scale Inte-grated Computational Environment (ALICE)[1]. Our holistic perspective, where we considermany facets of numerical simulations ratherthan simply one or two areas, is one of thekey strengths of our approach. Our work

builds on practical experiences with two-wayinterfaces between the existing parallel toolsSUMAA3d [9] and PETSc [4] (discussed in[10]) and between PVODE [13] and PETSc(discussed in [5]). We also build on early expe-riences with common interface design for par-allel linear algebra tools in the Equation SolverInterface forum [7]. The time is ripe for suchactivities; rich sets of unstandardized tools ex-ist for certain functionalities (e.g., meshes andalgebraic solvers), so that we can begin to ex-ploit their di�erences and leverage their com-monalities.Section 3.1 discusses the development oflight-weight infrastructure to manage bothsynchronous and asynchronous tool coordina-tion. Section 3.2 describes recent work in en-hancing existing toolkits so that they can func-tion in a more dynamic computing paradigm.3.1 ALICE InfrastructureTraditional large-scale numerical simulationsare almost always implemented by routinesthat are called in a well-de�ned order to im-plement a deterministic numerical algorithm.When object-oriented techniques are used innumerical computing, the standard approach isto encapsulate the data structures in objects,while still allowing the application programmerto call a sequence of functions that operate onthe objects to perform the desired calculations.On the other hand, the programming ofgraphical user interfaces and transaction pro-



cessing systems has moved away from the ex-pression of a computation as a linear list offunctions that are called. Rather, (possiblydistributed) objects are viewed as making re-quests of and serving requests of other objects.We adopt two complementary models tohandle the di�erences between these two typesof interactions:1. synchronous, local-address-space functioncalls (e.g., in C++ calling methods on ob-jects), intended for implementing numeri-cal algorithms; and2. asynchronous, possibly remote, transac-tions such as accessing data objects formonitoring, steering, and visualization,as supported by the ALICE MemorySnooper [3]. (Here we use the term asyn-chronous to mean that the object mayserve a request while simultaneously per-forming a numerical calculation.)The primary design requirements formodel 1 are that basic functionality shouldbe as e�cient as standard procedural code(Fortran/C/C++) and that no \run-time"system (e.g., threads) be needed. Our im-plementation, which takes the form of a\microkernel" [5] for use by ALICE-complianttools, supports runtime binding of di�erenttoolkits, dynamic addition of methods, andobject attachment through a dynamicallyloaded library approach. A bene�t of thisapproach is that it promotes well-designedinterfaces that are completely separate fromimplementations, so that various externaltoolkits can be introduced and the communitycan begin to work toward de�ning sets ofcanonical interfaces. This movement beyondlayered class libraries is crucial for managingthe social and technical complexities of largeapplication projects.Whereas model 1 meets our basic perfor-mance requirement, model 2 provides addi-tional functionality, especially for remote oper-ations. Model 2 requires a relatively large run-time infrastructure to support marshaling ofarguments, communicating among remote pro-

cesses, locking and unlocking data structuresto allow access from multiple threads, and soforth. Model 2 could use technology such asEnterprise Java Beans, CORBA, or COM asimplementation mechanisms.3.2 Component InterfacesDesigning interoperable software for Raleigh-Taylor simulations and other nonlinear PDE-based models is di�cult, given the modelingrequired to capture the physics of the problemsin su�ciently realistic detail.3.2.1 Nonlinear Function EvaluationFor example, for the explicit, semi-implicit,and implicit methods listed in Table 1, we mustdiscretize a nonlinear function throughout thecomputational domain. In Figure 2 we show anexample containing three base components: amesh component, a discretization component,and a local physics component. These basecomponents are used in combination to forma compound component that computes F (x),where F is a vector containing the discretizednonlinear function, and x is the current iterate.For each base component in Figure 2, weshow example objects and interfaces that areused in computing and assembling F . For ex-ample, the mesh component contains geomet-ric information such as the spatial locationsof vertices and elements, as well as hierarchi-cal and connectivity information. Application-speci�c data stored in the vector x is attachedto mesh entities using an abstract interfacesuch as M::attachData(x; Ix; E), where M isa mesh and Ix is the mapping that relates thevector indices to the appropriate mesh entitiesof type E. Note that we can use introspec-tion techniques to determine such interfaces atruntime. The local values of the vector, Fi,are computed by the local physics component,which requires information from both the meshand the discretization components. For exam-ple, the computation of each Fi requires a dis-cretization stencil, which we de�ne to be theset of local mesh entities and their connectiv-
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x FFigure 2: Schematic diagram of a nonlinearfunction evaluation.ity (e.g., the standard 7-point stencil used incentral �nite di�erences or the vertices of anelement used in �nite element discretizations).This stencil can be accessed by both the meshand the local physics components to obtainthe spatial information and application-speci�cdata necessary to compute Fi. Once the localvalues, Fi, have been computed, they can beassembled into the global vector by the meshcomponent, which simultaneously creates F 'smapping, IF .An ongoing project at Argonne is exploringdesign issues for a general mesh managementcomponent that can interact with solver andvisualization tools [10]. Key issues under con-sideration include the set of \atomic" meth-ods for mesh manipulations, recognizing thataggregation is crucial for large-scale problems,and the trade-o�s in performance versus degreeof canonicalization.3.2.2 Newton NumericsFigure 3 illustrates the use of numerical compo-nents at various levels of abstraction for solvingthe nonlinear system F (x) = 0 with Newton-based methods. We �rst consider the solutionof the linearized system, F 0(x)dx = �F (x),which is a key kernel within the overall simula-tion. Most modern linear iterative solvers maybe viewed as the combination of a precondi-tioner (simple stationary iterative solver) anda Krylov subspace accelerator. Figure 3 illus-
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degrade algorithmic convergence in compari-son to analytic code. Since code for com-puting derivatives analytically is often compli-cated and di�cult to program by hand, we con-sider the use of automatic di�erentiation (AD),a technology for augmenting a computer pro-gram with statements for the computation ofderivatives [11]. The AD process is not entirelyautomatic, as the user of an AD tool must iden-tify a model's independent and dependent vari-ables and perform some initialization.Combining automatic di�erentiation tech-nology with component-based software devel-opment can be mutually bene�cial, and wehave begun integrating AD technology with thenonlinear solver component of PETSc. Givena component for computing a function, F (x),AD can generate a component for computingthe Jacobian F 0(x) or a Jacobian-vector prod-uct F 0(x)�v. Furthermore, because component-based software has well-de�ned interfaces, theprocess of generating derivative code can becompletely automated. While the current im-plementation is manual, there are no funda-mental impediments to automating the pro-cess, and we intend to do so in the future.We demonstrate the utility of these abstractcomponent interfaces through some algorith-mic experiments in a nonlinear PDE-basedsimulation. The application discussed here isthree-dimensional compressible Euler ow aris-ing in the context of aerodynamics [12], thoughthe same numerical techniques are also underconsideration for the Raleigh-Taylor simula-tions discussed in Section 2. This applicationuses nonlinear solvers within PETSc, which areorganized according to the schematic diagramof Figure 3.In particular, we compared both �nite di�er-encing and automatic di�erentiation for com-puting Jacobian-vector products, Jk � v, inmatrix-free Newton-Krylov methods. Figure 4demonstrates some of the convergence bene-�ts of using the automatic di�erentiation toolADIFOR [6], where we see that AD overcomeschallenges in selection of an appropriate di�er-encing parameter for the �nite di�erence case.This particular simulation, which used four

processors of an IBM SP for a problem with158,760 unknowns, solved the linearized New-ton systems with restarted GMRES in conjunc-tion with Restricted Additive Schwarz precon-ditioning. The preconditioner was built usingJp, which in this case was a �nite di�erence ap-proximation of F 0(x) that was held �xed overseveral nonlinear iterations.
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Figure 4: Convergence comparison of auto-matic di�erentiation and �nite di�erence ap-proximations in a matrix-free Newton methodfor compressible Euler ow.4 Future WorkThe infrastructure and interfaces presentedin this paper represent some of the lines ofresearch being pursued within the ALICEproject. We have also begun to developderivative-enhanced components [14], whichcan play an important role in sensitivity analy-sis, optimization, and inverse problems. In allof these activities, the fundamental objectiveis to provide a exible environment for manag-ing the complex interactions among a variety ofnumerical components, while maintaining theperformance that scienti�c/engineering appli-cation developers expect and require.AcknowledgmentsWe thank Bruce Fryxell, Kevin Olson, andMike Singer for the images of the Raleigh-Taylor phenomenon presented in Section 1. We
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