
ADAPTIVE, MULTIRESOLUTION VISUALIZATION OF LARGE DATA SETSUSING PARALLEL OCTREES�LORI A. FREITAGy AND RAYMOND M. LOYzAbstract. The interactive visualization and exploration of large scienti�c data sets is a challenging and di�culttask; their size often far exceeds the performance and memory capacity of even the most powerful graphics work-stations. To address this problem, we have created a technique that combines hierarchical data reduction methodswith parallel computing to allow interactive exploration of large data sets while retaining full-resolution capability.The hierarchical representation is built in parallel by strategically inserting �eld data into an octree data structure.We provide functionality that allows the user to interactively adapt the resolution of the reduced data sets so thatresolution is increased in regions of interest without sacri�cing local graphics performance. We describe the creationof the reduced data sets using a parallel octree, the software architecture of the system, and the performance of thissystem on the data from a Rayleigh-Taylor instability simulation.Keywords. Interactive Visualization, Multi-Resolution Visualization, Adaptive Visualization,Parallel Octrees1. Introduction. A critical step in the computational solution of application problems is theinteractive exploration and visualization of the resulting data sets. However, in today's computa-tional environment, the data sets produced by simulations performed on giga- and teraop-scalemassively parallel processors (MPPs) often exceed the memory and performance capacity of typicalgraphics workstations. Currently, interactive performance of high-end graphics workstations is lim-ited to data sets that contain roughly 2563 data points. Unfortunately, this is an order of magnitudesmaller than many data sets produced by large-scale simulations, and the discrepancy between whatis easily visualized and what scientists would like to visualize is likely to continue. Thus, the inter-active visualization of very large data sets requires either (1) a postprocessing step to reduce thenumber of data points sent to the visualization environment or (2) sophisticated parallel renderingalgorithms that work with the full-resolution data set. Both techniques have been used successfully.In this paper we present an adaptive, multi-resolution data reduction method that combines bothapproaches.To create a reduced data set, researchers commonly build a hierarchical, multiresolution repre-sentation of the data or geometric model to be visualized (see [1] for an overview of these methods).In these techniques, a series of coarse representations of the data is constructed using, for example,quadtrees or octrees [2, 3], progressive meshes [4, 5], or wavelets [6]. The level of detail in eachregion is controlled through a variety of mechanisms, such as error tolerance bounds that control�delity to the original model, or user input, such as �eld of view. These methods are useful for fastnavigation through the data set, but maximum resolution is limited by the memory size and speedof the graphics workstation.In contrast, parallel rendering algorithms often work with full-resolution data sets either asthe computation proceeds or as a postprocessing step [7, 8, 9, 10]. The data is distributed acrossthe processors of the MPP, and derived visualization entities such as isosurfaces or streamlines arecomputed in parallel and communicated to the graphics workstation for display. The advantageof this technique is that no information is lost in a data reduction process; however, for scientists� The authors were supported by theMathematical, Information, and Computational SciencesDivision subprogramof the O�ce of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocableworldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and performpublicly and display publicly, by or on behalf of the Government.yAssistant Scientist, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL60439. freitag@mcs.anl.gov.zPostdoctoral Appointee, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,IL 60439. rloy@mcs.anl.gov. 1



who run their parallel applications at remote sites, there are two potential drawbacks to using thismethod for interactive visualization. First, manyMPP supercomputers are accessed through a batchqueuing system, making it di�cult to predict when the \interactive" job will run. Second, thesetechniques are useful for interactive requests of derived visualization entities only if there is su�cientnetwork bandwidth between the graphics workstation and the parallel computer.To address these problems, we have developed a system that combines data reduction techniquesand parallel computing to obtain fast performance on a local graphics workstation while retainingaccess to the full-resolution data set. We �rst distribute the data across the processors of a parallelcomputer and create a hierarchical representation of it using a distributed-memory octree datastructure. Various levels of detail are sent to the local visualization environment for interactivenavigation and exploration via a communication mechanism such as the ALICE memory snooper[11] or CAVEcomm [12]. The octree may be easily adapted to reect changing level of detail requiredby the visualization; additional detail is obtained by re�ning the octree, whereas reduced detail isobtained by pruning or truncated traversal. Thus the user can zoom into regions of interest withoutsacri�cing local performance by simultaneously coarsening the data outside the region of interest.The user can evaluate the �delity of the reduced data set to the original data by visualizing errorindicators that are computed and sent to the graphics workstation for display.The remainder of this paper is organized as follows. In Section 2, we describe the creationof the reduced data set including the parallel octree infrastructure. In Section 3, we describe thesoftware architecture of the system, both the envisioned �nal toolkit and its current instantiation.In particular, we discuss the communication mechanisms that enable the parallel octree code andthe visualization environment to run on separate, possibly remote, computers. In Section 4, we showthe use of this system to visualize data from a Rayleigh-Taylor instability simulation. We provideperformance results for the creation of the octree, the communication of data across an ethernetnetwork, and the visualization frame rates achieved for each reduced data set. Finally, in Section 5we o�er concluding remarks and indicate additional features and results that will be included in the�nal paper.2. Creating Reduced Data Sets. Our data reduction technique is based on creating a hi-erarchical representation of the data using a parallel octree. We �rst describe the criteria used forinserting �eld data into the octree, our approach for creating a general interface that can be usedwith a number of mesh types, and the error indicators associated with the reduction stored on eachoctant leaf. We then describe the parallel octree infrastructure, including the data structures andtechniques used for e�cient parallel creation, coarsening, and traversal of the tree.2.1. Data Reduction. To create the reduced data set, the user must loop through the �elddata and call the octree code with spatial locations and their �eld data values. The spatial locationsare used to insert the �eld data value into the appropriate leaf octant; a user-de�ned criterionindicates whether the octant should divide to create eight new leaf octants. We currently dividean octant leaf when a user-de�ned maximum number of elements have been inserted into it. Thistechnique maintains approximately uniform �delity to the solution data for h�adaptive meshes inwhich the error at each data point is roughly constant. For uniform meshes or p�adaptive methods,we plan to use error indicator techniques such as energy norms or gradient bounds to determinewhen octants should be subdivided.The �eld data values are averaged or otherwise agglomerated after insertion into the octree.To provide an indication of the error associated with the reduced data set, for each leaf octant wecompute and store statistical values such as the standard deviation, �, and maximumdeviation fromthe mean, e. These values are normalized by the mean to yield �n and en, respectively, which areincluded as additional scalar �elds to be visualized so that the user has an indication of the �delityof the reduced data set to the original data set. These measures of error also serve to highlight2



potential regions of interest; the cells with a large deviation from the average value are likely to have�ne-scale structure that was not adequately captured by the reduction process.2.2. Parallel Octree Infrastructure. To e�ectively manage a large distributed data set, theoctree must also be distributed across the processors of the MPP. E�cient traversal of the paralleloctree data structure is enabled by interoctant links, which may be either local or o�-processor.O�-processor parent links are represented by a local root structure containing spatial informationto enable local point searches without communication (Figure 2.1). An octree partitioning algo-rithm [13] together with arbitrary octant migration is used for load balancing of the mesh dataand associated octree. If the data reduction were closely coupled to the parallel application, octantmigration could be performed to track the location of the application data.
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Fig. 2.1. A portion of an octree (left) and the same tree distributed across three processors (right). Dotted linksare nonlocal; squares indicate local root spatial information.In most cases, octree insertion, re�nement, and coarsening may be performed without the needfor interprocessor communication. The reduced data set is easily formed by traversing each localoctree and computing the values on each leaf. This can be done on each processor in linear timewith respect to the local number of data points. Complex algorithms operating on the reduced dataset (such as streamlines or isosurface generation) may require face-neighbor links or a guarantee ofmaximum level-di�erence between adjacent octants. Providing this functionality complicates octreeinsertion but may be done in a highly asynchronous fashion.3. Software Architecture. The interactive data reduction system described in this paper iscomprised of four major components:� the parallel octree code described in Section 2,� the local visualization environment, which can consist of externally developed desktop toolssuch as the General Mesh Viewer (GMV) [14], IRIS Explorer [15], or custom tools built forstate-of-the-art display devices such as the CAVE virtual reality theater [16],� �eld data input to the parallel octree code through either �les or interactive requests to arunning application, and� a portable communication infrastructure that allows the user to make interactive requestsfor new reduced data sets from the visualization environnment and allows the octree codeto obtain new �eld data from the running application.These four components and their interactions are shown in Figure 3.1. The arrows between thecomponents indicate the communication necessary for an interactive environment. The width ofthe arrows indicates the relative size of the messages; small messages are needed to request newreduced data sets or �eld data values; large messages are required to transfer information from the3



application to the octree code and from the octree code to the visualization environment. Solid boxesand solid arrows indicate components and interactions that currently exist; dashed box outlines andarrows indicate components and interaction models that are planned for future instantiations of thetoolkit. In the visualization tool boxes, the packages listed in roman font are currently supported;near-term support is planned for those in italics. Asterisks indicate extensible toolkits that willsupport interactivity; the others must be used with �le input and output.
Fig. 3.1. The four primary components of the data reduction toolkit and their interactionsIn the current instantiation, �eld data is loaded from a �le into the parallel octree code. Thisstep can occur either in a batch processing mode, where the element bound is statically imposed, orinteractively via requests from the user. In batch mode, the values computed at the leaf octants arestored to a �le; in interactive mode, these values are communicated directly to a graphics workstationfor visualization.We currently support two visualization environments: an externally developed desktop tool,GMV, and a custom CAVE visualization tool developed at Argonne National Laboratory. GMVis a freely available software package from Los Alamos that is distributed in binary form. It islightweight and easy to use but not extensible to support interactive requests to the parallel octreecode. We therefore use it to test the utility of the batch processing mode described above. The CAVEvirtual reality theater was developed at the Electronics Visualization Laboratory at the Universityof Illinois at Chicago. The user manipulates objects in the CAVE using a wand, a three-dimensionalanalogue of a mouse. We used this functionality to develop an interactive visualization system totest the performance of the dynamic adaptive level-of-detail aspects of our system. User requestsand data are transferred directly between the octree code and the CAVE using the communicationinfrastructure described below.3.1. The Communication Infrastructure. The communication infrastructure for this soft-ware system must meet the following design requirements.� It must be portable and exible so that the parallel octree code and the visualization envi-ronment can run on a variety of computer architectures. And ideally, it should be supported.� It must allow dynamic linking and decoupling of multiple processes so that (1) the user canperiodically monitor a long-running application and (2) multiple scientists can collaboratewhile visualizing their data. 4



Several communication packages or speci�cations meet these design requirements, includingNexus [17], the MPI-2 speci�cation [18] (although dynamic process management has not yet beenimplemented on most MPP architectures), PVM [19], and various tools built with these communica-tion infrastructures. For our initial tests we use the CAVEcomm library [12] developed at ArgonneNational Laboratory, which uses Nexus. CAVEcomm uses a client-server model in which a brokermediates the communication between the parallel octree code and one or more CAVE environments.Figure 3.2 shows example interactions required between the CAVEcomm broker, the parallel octreecode, and the local CAVE visualization process. After the initial connection is made, the paralleloctree code and the visualization environment interact directly without mediation from the broker.The octree code waits to receive a request from the visualization environment for a new reduceddata set. Once that request is received, the octree is re�ned and coarsened as required, and the newoctant leaves are sent to the visualization environment for display. This process is repeated untilthe user has completed the exploration of the data set.
Fig. 3.2. The communication interactions between the CAVEcomm broker, the visualization process, and theparallel octree codeAs stated earlier, the long-term goal of this project is to dynamically link to and monitor arunning application. One concern when building the octree from a running parallel application isensuring that the data is consistent; that is, we must access information at known synchronizationpoints (for example, between time steps of a time-dependent code). One toolkit that helps managethe synchronization of distributed data sets is the ALICE Memory Snooper [11]. This toolkit usesa client-server model and allows one or more processes to dynamically link to, monitor, and changean application's published memory space at user-de�ned synchronization points. Thus it can beused both for ful�lling interactive requests for new data sets from a long-running simulation and formodifying or \steering" the simulation. We therefore plan to replace the CAVEcomm library withthe ALICE Memory Snooper in the �nal instantiation of the data reduction toolkit.4. System Performance. As part of a joint project with the University of Chicago, we areworking toward complete simulations of thermonuclear ashes on astrophysical bodies such as neu-tron stars or white dwarves. The target problem size for these simulations is 10243 grid points, whichexceeds the limits discussed earlier for graphics workstations. Therefore, data reduction techniquesare necessary. One crucial aspect of these simulations is the correct modeling of the ame frontas it moves away from the surface of the compact star during the deagration stage. Because therelatively dense nuclear fuel lies above the nuclear ash, the ame front is subject to Rayleigh-Taylor5



instabilities, which can dramatically alter the shape and area of the burn region and, consequently,the duration and strength of the nuclear ash. In Figure 4.1, we show a single-plumeRayleigh-Taylorinstability from an adaptive PPM code at two di�erent levels of re�nement This code is a descendantof PARAMESH [20] and PROMETHEUS [21]. The �gure on the right was computed at a higherresolution than the �gure on the left, and we can see a corresponding increase in the �ne-scalefeatures evidenced in the numerical simulation. The increase in �ne-scale features can dramaticallya�ect the large-scale features, and large problems sizes are therefore necessary to accurately modelthis phenomenon.
Fig. 4.1. A single plume Rayleigh-Taylor instability modeled in two dimensions as a compressible uid with theEuler equations at two di�erent levels of re�nements: 14848 mesh elements (left) and 54208 mesh elements (right).The data reduction technique of Section 2 was used to preprocess data for display using bothGMV and the CAVE. We consider both two- and three-dimensional Rayleigh-Taylor data sets; thetwo-dimensional one described above, the three-dimensional one from an unstructured discontinuousGalerkin Euler code [13]. The problem mesh types, data sizes, and dimensionalities are given inTable 4.1. Data reduction was performed by an SGI Onyx (4 � 250 MHz MIPS R4400 processors).The CAVE virtual reality theater and CAVEcomm communications broker were both run on anOnyx2 Reality Monster (16 � 250 MHz MIPS R10000 processors). These machines were connectedby local ethernet with 6Mb/s capacity [22]. Table 4.1Rayleigh-Taylor data set characteristicsDimension Mesh Type Data Location Data Size Display Device2-D Block Structured Cell-Center 5:4� 104 GMV, CAVE3-D Tetrahedral Cell-Center 3:3� 105 CAVELet I denote the maximum number of �eld data points allowed in a leaf octant. For theexperiments presented here, the mesh data set is read from a �le and inserted into a coarse initialoctree using the criterion I = 1024. This initial construction took 2 seconds for the two-dimensionaldata set and 15 seconds for the three-dimensional data set. The level of detail in the entire domainis adjusted by traversing and adapting the existing tree to conform to the new criterion.For the two-dimensional Rayleigh-Taylor data set, we show three levels of detail in Figure 4.2corresponding to I = 128; 32; and 8. In each case we show the reduced data set image, the error6



plots associated with that level of detail, and the slice through the associated octrees. The light-colored octant leaves in the middle row of �gures indicate regions in which the error associated withthe data reduction is large. These regions correspond to the sharp density interface between the twoincompressible uids. As the user requests �ner detail, more leaf octants are created, the regions oflarge error reduce in size, and more �ne scale features are visible.In Table 4.2, we give the performance results for the cases shown in Figure 4.2 as well as for threelevels of detail for the three-dimensional set. Recall that �n is the normalized standard deviation,and en the normalized maximum deviation from the mean. For each level of detail, we give thenumber of leaf octants generated, N ; the percentage of the full data set to which N corresponds,P ; the maximum �n over all octants; the maximum en over all octants; the average �n ; and theaverage en. The �rst two values give the worst-case scenario for �delity to the original data set;the latter two values give a measure of the overall quality of the data reduction. We also includethe time in seconds to revise the octree, TR; the time to transfer the new reduced data set to thevisualization environment, TC ; and the frame rate, FR, for the CAVE visualization tool (measuredin frames/second). Table 4.2Results for two- and three-dimensional Rayleigh-Taylor simulation data setsMax. Max. Avg. Avg.N P �n en �n en TR TC FR2-D Rayleigh-Taylor820 1.6 0.397 1.081 0.134 0.294 0.48 0.17 225.503280 6.2 0.396 0.932 0.081 0.154 0.57 0.49 85.8313120 25.0 0.382 0.569 0.042 0.050 1.10 1.54 24.273-D Rayleigh-Taylor9677 2.6 0.090 0.232 0.025 0.053 1.75 1.02 17.0019933 5.3 0.088 0.206 0.019 0.035 2.28 2.21 8.2643977 11.8 0.085 0.153 0.014 0.023 3.27 4.95 3.69As before, our criterion for creation of the reduced data sets in two dimensions is I = 128; 32, and8 and in three dimensions is I = 128; 64; and 32. Thus in each successive case, N is quadrupled in twodimensions and doubled in three dimensions. The largest errors in both two and three dimensions arelocated along the discontinuity between the two uids simulated in the Rayleigh-Taylor instability.Because these features are much smaller than the leaf octants, the maximum�n (about forty percentin two dimensions and nine percent in three dimensions) only slowly decreases as N increases. Theaverage �n decreases more signi�cantly as N increases; the biggest gains in accuracy of the reduceddata are achieved in the �rst increase of N , and fairly accurate representations of the data sets(eight percent error in 2-D; two percent error in 3-D) are achieved for P � 5. To further illustratethe relationship between the error measures and N , we plot average �n and en values in both twoand three dimensions for criterion of I = 2 : : :1024 in two dimensions and I = 4 : : :1024 in threedimensions in Figure 4.3. As N increases, the corresponding decreases in �n and en both approachzero as well as each other. The times, TR and TC , vary linearly with N , and the inverse frame rate1FR also varies linearly with N . We note that TR grows more slowly than TC and, for large values ofN , the value of TR is less than TC demonstrating that, as expected, the bottleneck of this procedureis communication.5. Future Work for SC99. For the �nal paper, we will add two new functionalities to theparallel octree code to improve its exibility. In particular, we will provide more options for averagingor interpolating the data as it is inserted into the octree. We will also provide a subroutine stub7



Fig. 4.2. From left to right, the two-dimensional Rayleigh-Taylor image at three increasing levels of detail. Foreach level of detail we show density (top), the standard deviation resulting from the data reduction (center), and aslice through the corresponding octree (bottom). 8
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