ADAPTIVE, MULTIRESOLUTION VISUALIZATION OF LARGE DATA SETS
USING PARALLEL OCTREES*
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Abstract. The interactive visualization and exploration of large scientific data sets is a challenging and difficult
task; their size often far exceeds the performance and memory capacity of even the most powerful graphics work-
stations. To address this problem, we have created a technique that combines hierarchical data reduction methods
with parallel computing to allow interactive exploration of large data sets while retaining full-resolution capability.
The hierarchical representation is built in parallel by strategically inserting field data into an octree data structure.
We provide functionality that allows the user to interactively adapt the resolution of the reduced data sets so that
resolution is increased in regions of interest without sacrificing local graphics performance. We describe the creation
of the reduced data sets using a parallel octree, the software architecture of the system, and the performance of this
system on the data from a Rayleigh-Taylor instability simulation.
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1. Introduction. A critical step in the computational solution of application problems is the
interactive exploration and visualization of the resulting data sets. However, in today’s computa-
tional environment, the data sets produced by simulations performed on giga- and teraflop-scale
massively parallel processors (MPPs) often exceed the memory and performance capacity of typical
graphics workstations. Currently, interactive performance of high-end graphics workstations is lim-
ited to data sets that contain roughly 2562 data points. Unfortunately, this is an order of magnitude
smaller than many data sets produced by large-scale simulations, and the discrepancy between what
is easily visualized and what scientists would like to visualize is likely to continue. Thus, the inter-
active visualization of very large data sets requires either (1) a postprocessing step to reduce the
number of data points sent to the visualization environment or (2) sophisticated parallel rendering
algorithms that work with the full-resolution data set. Both techniques have been used successfully.
In this paper we present an adaptive, multi-resolution data reduction method that combines both
approaches.

To create a reduced data set, researchers commonly build a hierarchical, multiresolution repre-
sentation of the data or geometric model to be visualized (see [1] for an overview of these methods).
In these techniques, a series of coarse representations of the data is constructed using, for example,
quadtrees or octrees [2, 3], progressive meshes [4, 5], or wavelets [6]. The level of detail in each
region is controlled through a variety of mechanisms, such as error tolerance bounds that control
fidelity to the original model, or user input, such as field of view. These methods are useful for fast
navigation through the data set, but maximum resolution is limited by the memory size and speed
of the graphics workstation.

In contrast, parallel rendering algorithms often work with full-resolution data sets either as
the computation proceeds or as a postprocessing step [7, 8, 9, 10]. The data is distributed across
the processors of the MPP, and derived visualization entities such as isosurfaces or streamlines are
computed in parallel and communicated to the graphics workstation for display. The advantage
of this technique 1s that no information is lost in a data reduction process; however, for scientists
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who run their parallel applications at remote sites, there are two potential drawbacks to using this
method for interactive visualization. First, many MPP supercomputers are accessed through a batch
queuing system, making it difficult to predict when the “interactive” job will run. Second, these
techniques are useful for interactive requests of derived visualization entities only if there 1s sufficient
network bandwidth between the graphics workstation and the parallel computer.

To address these problems, we have developed a system that combines data reduction techniques
and parallel computing to obtain fast performance on a local graphics workstation while retaining
access to the full-resolution data set. We first distribute the data across the processors of a parallel
computer and create a hierarchical representation of i1t using a distributed-memory octree data
structure. Various levels of detail are sent to the local visualization environment for interactive
navigation and exploration via a communication mechanism such as the ALICE memory snooper
[11] or CAVEcomm [12]. The octree may be easily adapted to reflect changing level of detail required
by the visualization; additional detail is obtained by refining the octree, whereas reduced detail is
obtained by pruning or truncated traversal. Thus the user can zoom into regions of interest without
sacrificing local performance by simultaneously coarsening the data outside the region of interest.
The user can evaluate the fidelity of the reduced data set to the original data by visualizing error
indicators that are computed and sent to the graphics workstation for display.

The remainder of this paper is organized as follows. In Section 2, we describe the creation
of the reduced data set including the parallel octree infrastructure. In Section 3, we describe the
software architecture of the system, both the envisioned final toolkit and its current instantiation.
In particular, we discuss the communication mechanisms that enable the parallel octree code and
the visualization environment to run on separate, possibly remote, computers. In Section 4, we show
the use of this system to visualize data from a Rayleigh-Taylor instability simulation. We provide
performance results for the creation of the octree, the communication of data across an ethernet
network, and the visualization frame rates achieved for each reduced data set. Finally, in Section 5
we offer concluding remarks and indicate additional features and results that will be included in the
final paper.

2. Creating Reduced Data Sets. Our data reduction technique is based on creating a hi-
erarchical representation of the data using a parallel octree. We first describe the criteria used for
inserting field data into the octree, our approach for creating a general interface that can be used
with a number of mesh types, and the error indicators associated with the reduction stored on each
octant leaf. We then describe the parallel octree infrastructure, including the data structures and
techniques used for efficient parallel creation, coarsening, and traversal of the tree.

2.1. Data Reduction. To create the reduced data set, the user must loop through the field
data and call the octree code with spatial locations and their field data values. The spatial locations
are used to insert the field data value into the appropriate leaf octant; a user-defined criterion
indicates whether the octant should divide to create eight new leaf octants. We currently divide
an octant leaf when a user-defined maximum number of elements have been inserted into it. This
technique maintains approximately uniform fidelity to the solution data for h—adaptive meshes in
which the error at each data point 1s roughly constant. For uniform meshes or p—adaptive methods,
we plan to use error indicator techniques such as energy norms or gradient bounds to determine
when octants should be subdivided.

The field data values are averaged or otherwise agglomerated after insertion into the octree.
To provide an indication of the error associated with the reduced data set, for each leaf octant we
compute and store statistical values such as the standard deviation, ¢, and maximum deviation from
the mean, e. These values are normalized by the mean to yield o, and e,, respectively, which are
included as additional scalar fields to be visualized so that the user has an indication of the fidelity
of the reduced data set to the original data set. These measures of error also serve to highlight
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potential regions of interest; the cells with a large deviation from the average value are likely to have
fine-scale structure that was not adequately captured by the reduction process.

2.2. Parallel Octree Infrastructure. To effectively manage a large distributed data set, the
octree must also be distributed across the processors of the MPP. Efficient traversal of the parallel
octree data structure is enabled by interoctant links, which may be either local or off-processor.
Off-processor parent links are represented by a local root structure containing spatial information
to enable local point searches without communication (Figure 2.1). An octree partitioning algo-
rithm [13] together with arbitrary octant migration is used for load balancing of the mesh data
and associated octree. If the data reduction were closely coupled to the parallel application, octant
migration could be performed to track the location of the application data.

Processor 0 Processor 1

F1G. 2.1. A portion of an octree (left) and the same tree distributed across three processors (right). Dotted links
are nonlocal; squares indicate local root spatial information.

In most cases, octree insertion, refinement, and coarsening may be performed without the need
for interprocessor communication. The reduced data set is easily formed by traversing each local
octree and computing the values on each leaf. This can be done on each processor in linear time
with respect to the local number of data points. Complex algorithms operating on the reduced data
set (such as streamlines or isosurface generation) may require face-neighbor links or a guarantee of
maximum level-difference between adjacent octants. Providing this functionality complicates octree
insertion but may be done in a highly asynchronous fashion.

3. Software Architecture. The interactive data reduction system described in this paper is
comprised of four major components:

e the parallel octree code described in Section 2,

e the local visualization environment, which can consist of externally developed desktop tools
such as the General Mesh Viewer (GMV) [14], IRIS Explorer [15], or custom tools built for
state-of-the-art display devices such as the CAVE virtual reality theater [16],

e field data input to the parallel octree code through either files or interactive requests to a
running application, and

e a portable communication infrastructure that allows the user to make interactive requests
for new reduced data sets from the visualization environnment and allows the octree code
to obtain new field data from the running application.

These four components and their interactions are shown in Figure 3.1. The arrows between the
components indicate the communication necessary for an interactive environment. The width of
the arrows indicates the relative size of the messages; small messages are needed to request new
reduced data sets or field data values; large messages are required to transfer information from the
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application to the octree code and from the octree code to the visualization environment. Solid boxes
and solid arrows indicate components and interactions that currently exist; dashed box outlines and
arrows indicate components and interaction models that are planned for future instantiations of the
toolkit. In the visualization tool boxes, the packages listed in roman font are currently supported;
near-term support is planned for those in italics. Asterisks indicate extensible toolkits that will
support interactivity; the others must be used with file input and output.
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Fiac. 3.1. The four primary components of the data reduction toolkit and their interactions

In the current instantiation, field data is loaded from a file into the parallel octree code. This
step can occur either in a batch processing mode, where the element bound is statically imposed, or
interactively via requests from the user. In batch mode, the values computed at the leaf octants are
stored to a file; in interactive mode, these values are communicated directly to a graphics workstation
for visualization.

We currently support two visualization environments: an externally developed desktop tool,
GMYV, and a custom CAVE visualization tool developed at Argonne National Laboratory. GMV
is a freely available software package from Los Alamos that is distributed in binary form. It is
lightweight and easy to use but not extensible to support interactive requests to the parallel octree
code. We therefore use it to test the utility of the batch processing mode described above. The CAVE
virtual reality theater was developed at the Electronics Visualization Laboratory at the University
of lllinois at Chicago. The user manipulates objects in the CAVE using a wand, a three-dimensional
analogue of a mouse. We used this functionality to develop an interactive visualization system to
test the performance of the dynamic adaptive level-of-detail aspects of our system. User requests
and data are transferred directly between the octree code and the CAVE using the communication
infrastructure described below.

3.1. The Communication Infrastructure. The communication infrastructure for this soft-
ware system must meet the following design requirements.
e It must be portable and flexible so that the parallel octree code and the visualization envi-
ronment can run on a variety of computer architectures. And ideally, it should be supported.
o It must allow dynamic linking and decoupling of multiple processes so that (1) the user can
periodically monitor a long-running application and (2) multiple scientists can collaborate
while visualizing their data.



Several communication packages or specifications meet these design requirements, including
Nexus [17], the MPI-2 specification [18] (although dynamic process management has not yet been
implemented on most MPP architectures), PVM [19], and various tools built with these communica-
tion infrastructures. For our initial tests we use the CAVEcomm library [12] developed at Argonne
National Laboratory, which uses Nexus. CAVEcomm uses a client-server model in which a broker
mediates the communication between the parallel octree code and one or more CAVE environments.
Figure 3.2 shows example interactions required between the CAVEcomm broker, the parallel octree
code, and the local CAVE visualization process. After the initial connection is made, the parallel
octree code and the visualization environment interact directly without mediation from the broker.
The octree code waits to receive a request from the visualization environment for a new reduced
data set. Once that request is received, the octree is refined and coarsened as required, and the new
octant leaves are sent to the visualization environment for display. This process is repeated until
the user has completed the exploration of the data set.
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Fi1c. 3.2. The communication interactions between the CAVEcomm broker, the visualization process, and the
parallel octree code

As stated earlier, the long-term goal of this project is to dynamically link to and monitor a
running application. One concern when building the octree from a running parallel application is
ensuring that the data is consistent; that is, we must access information at known synchronization
points (for example, between time steps of a time-dependent code). One toolkit that helps manage
the synchronization of distributed data sets is the ALICE Memory Snooper [11]. This toolkit uses
a client-server model and allows one or more processes to dynamically link to, monitor, and change
an application’s published memory space at user-defined synchronization points. Thus it can be
used both for fulfilling interactive requests for new data sets from a long-running simulation and for
modifying or “steering” the simulation. We therefore plan to replace the CAVEcomm library with
the ALICE Memory Snooper in the final instantiation of the data reduction toolkit.

4. System Performance. As part of a joint project with the University of Chicago, we are
working toward complete simulations of thermonuclear flashes on astrophysical bodies such as neu-
tron stars or white dwarves. The target problem size for these simulationsis 10242 grid points, which
exceeds the limits discussed earlier for graphics workstations. Therefore, data reduction techniques
are necessary. Omne crucial aspect of these simulations is the correct modeling of the flame front
as 1t moves away from the surface of the compact star during the deflagration stage. Because the
relatively dense nuclear fuel lies above the nuclear ash, the flame front is subject to Rayleigh-Taylor
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instabilities; which can dramatically alter the shape and area of the burn region and, consequently,
the duration and strength of the nuclear flash. In Figure 4.1, we show a single-plume Rayleigh-Taylor
instability from an adaptive PPM code at two different levels of refinement This code is a descendant
of PARAMESH [20] and PROMETHEUS [21]. The figure on the right was computed at a higher
resolution than the figure on the left, and we can see a corresponding increase in the fine-scale
features evidenced in the numerical simulation. The increase in fine-scale features can dramatically
affect the large-scale features, and large problems sizes are therefore necessary to accurately model
this phenomenon.

Fic. 4.1. A single plume Rayleigh-Taylor instability modeled in two dimensions as a compressible fluid with the
Euler equations at two different levels of refinements: 14848 mesh elements (left) and 54208 mesh elements (right).

The data reduction technique of Section 2 was used to preprocess data for display using both
GMYV and the CAVE. We consider both two- and three-dimensional Rayleigh-Taylor data sets; the
two-dimensional one described above, the three-dimensional one from an unstructured discontinuous
Galerkin Euler code [13]. The problem mesh types, data sizes, and dimensionalities are given in
Table 4.1. Data reduction was performed by an SGI Onyx (4 x 250 MHz MIPS R4400 processors).
The CAVE virtual reality theater and CAVEcomm communications broker were both run on an
Onyx?2 Reality Monster (16 x 250 MHz MIPS R10000 processors). These machines were connected
by local ethernet with 6Mb/s capacity [22].

TABLE 4.1
Rayleigh-Taylor data set characteristics

| Dimension | Mesh Type | Data Location | Data Size | Display Device |
2-D Block Structured Cell-Center 5.4 x 104 GMV, CAVE
3-D Tetrahedral Cell-Center 3.3 x 10° CAVE

Let I denote the maximum number of field data points allowed in a leaf octant. For the
experiments presented here, the mesh data set is read from a file and inserted into a coarse initial
octree using the criterion I = 1024. This initial construction took 2 seconds for the two-dimensional
data set and 15 seconds for the three-dimensional data set. The level of detail in the entire domain
is adjusted by traversing and adapting the existing tree to conform to the new criterion.

For the two-dimensional Rayleigh-Taylor data set, we show three levels of detail in Figure 4.2
corresponding to I = 128, 32, and 8. In each case we show the reduced data set image, the error
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plots associated with that level of detail, and the slice through the associated octrees. The light-
colored octant leaves in the middle row of figures indicate regions in which the error associated with
the data reduction is large. These regions correspond to the sharp density interface between the two
incompressible fluids. As the user requests finer detail, more leaf octants are created, the regions of
large error reduce in size, and more fine scale features are visible.

In Table 4.2, we give the performance results for the cases shown in Figure 4.2 as well as for three
levels of detail for the three-dimensional set. Recall that ¢, is the normalized standard deviation,
and e, the normalized maximum deviation from the mean. For each level of detail, we give the
number of leaf octants generated, N; the percentage of the full data set to which N corresponds,
P; the maximum o, over all octants; the maximum e, over all octants; the average o, ; and the
average e,. The first two values give the worst-case scenario for fidelity to the original data set;
the latter two values give a measure of the overall quality of the data reduction. We also include
the time in seconds to revise the octree, Txr; the time to transfer the new reduced data set to the
visualization environment, T¢; and the frame rate, Fg, for the CAVE visualization tool (measured
in frames/second).

TABLE 4.2
Results for two- and three-dimensional Rayleigh-Taylor simulation data sets

Max. | Max. | Avg. | Avg.
N P on €n on €n Tr Tco Fg
2-D Rayleigh-Taylor
820 | 1.6 || 0.397 | 1.081 | 0.134 | 0.294 || 0.48 | 0.17 | 225.50
3280 | 6.2 | 0.396 | 0.932 | 0.081 | 0.154 || 0.57 | 0.49 | 85.83
13120 | 25.0 || 0.382 | 0.569 | 0.042 | 0.050 || 1.10 | 1.54 | 24.27
3-D Rayleigh-Taylor
9677 | 2.6 || 0.090 | 0.232 | 0.025 | 0.053 || 1.75 | 1.02 | 17.00
19933 | 5.3 || 0.088 | 0.206 | 0.019 | 0.035 || 2.28 | 2.21 8.26
43977 | 11.8 || 0.085 | 0.153 | 0.014 | 0.023 || 3.27 | 4.95 3.69

As before, our criterion for creation of the reduced data sets in two dimensionsis / = 128, 32, and
8 and in three dimensionsis 7 = 128, 64, and 32. Thus in each successive case, N is quadrupled in two
dimensions and doubled in three dimensions. The largest errors in both two and three dimensions are
located along the discontinuity between the two fluids simulated in the Rayleigh-Taylor instability.
Because these features are much smaller than the leaf octants, the maximum o, (about forty percent
in two dimensions and nine percent in three dimensions) only slowly decreases as N increases. The
average o, decreases more significantly as N increases; the biggest gains in accuracy of the reduced
data are achieved in the first increase of NV, and fairly accurate representations of the data sets
(eight percent error in 2-D; two percent error in 3-D) are achieved for P & 5. To further illustrate
the relationship between the error measures and N, we plot average o, and e, values in both two
and three dimensions for criterion of 7 = 2...1024 in two dimensions and I = 4...1024 in three
dimensions in Figure 4.3. As N increases, the corresponding decreases in o, and e, both approach
zero as well as each other. The times, T and T, vary linearly with N, and the inverse frame rate
ﬁ also varies linearly with N. We note that T grows more slowly than T and, for large values of
N, the value of Tg is less than T demonstrating that, as expected, the bottleneck of this procedure
s communication.

5. Future Work for SC99. For the final paper, we will add two new functionalities to the
parallel octree code to improve its flexibility. In particular, we will provide more options for averaging
or interpolating the data as it is inserted into the octree. We will also provide a subroutine stub
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Fi1G. 4.2. From left to right, the two-dimensional Rayleigh- Taylor image at three increasing levels of detail. For
each level of detail we show density (top), the standard deviation resulting from the data reduction (center), and a
slice through the corresponding octree (bottom).
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that allows users to custom design the data reduction method most appropriate for their simulation
data. Moreover, we will provide more default options for determining when to subdivide leaf octants
including gradient tests on scalar fields.

In addition to the results in Section 4, we plan to include performance results for the parallel
octree code running on several processors of the IBM SP and communicating via the ALICE Memory
Snooper to graphics workstations located at both Argonne and the University of Chicago. These
results will compare performance of a local ethernet connection, a 10 Mb/s ethernet WAN between
ANL and Chicago, and an ATM WAN between ANL and Chicago. In addition, we will demonstrate
the use of this tool with at least one Gigabyte data set from the simulation of an explosion on the
surface of a neutron star.
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