
A Standard Interfa
e for Debugger A

ess toMessage Queue Information in MPIJames Cownie1 and William Gropp2 ?1 Etnus In
., Framingham MA, USAj
ownie�etnus.
om,WWW home page: http://www.etnus.
om/2 Mathemati
s and Computer S
ien
e Division, Argonne National Laboratorygropp�m
s.anl.gov,WWW home page: http://www.m
s.anl.gov/~groppAbstra
t. This paper dis
usses the design and implementation of aninterfa
e that allows a debugger to obtain the information ne
essary todisplay the 
ontents of the MPI message queues. The design has beenimplemented in the TotalView debugger, and dynami
 libraries that 
on-form to the interfa
e exist for MPICH, as well as the proprietary MPIimplementations from Compaq, IBM, and SGI.1 Introdu
tionIn any debugging task one of the debugger's main obje
tives is to make visibleinformation about the state of the exe
uting program.Debuggers for sequential pro
esses provide easy a

ess to the state of thepro
ess, allowing the user to observe the values of variables, ma
hine registers,sta
k ba
ktra
es, and so on. When debugging message-passing programs all ofthis information is still required; however, additional information spe
i�
 to themessage passing model is also needed if the user is to be able to debug the prob-lems, su
h as deadlo
k that are spe
i�
 to this new environment. Unfortunatelythe message-passing state of the program is not easily a

essible to the user(or the debugger), be
ause it is represented by data stru
tures in the message-passing library, whose format and 
ontent is implementation dependent.To address this problem, we des
ribe an interfa
e within the debugger itselfthat allows library-spe
i�
 
ode to extra
t information des
ribing the 
on
eptualmessage-passing state of the program so that this 
an be displayed to the user.2 The User's Model of MPI Internal StateSin
e ea
h MPI 
ommuni
ator represents an independent 
ommuni
ation spa
e,the highest level of the user's model is the 
ommuni
ator. Within a 
ommuni-? This work was supported in part by the Mathemati
al, Information, and Computa-tional S
ien
es Division subprogram of the OÆ
e of Advan
ed S
ienti�
 ComputingResear
h, U.S. Department of Energy, under Contra
t W-31-109-Eng-38.




ator there are, 
on
eptually at least, three distin
t \message queues," whi
hrepresent the state of the MPI subsystem. These areSend Queue: represents all of the outstanding send operations.Re
eive Queue: represents all of the oustanding re
eive operations.Unexpe
ted Message Queue: represents messages that have been sent tothis pro
ess, but have not yet been re
eived.The send and re
eive queues store information about all of the un�nishedsend and re
eive operations that the pro
ess has started within the 
ommu-ni
ator. These might result either from blo
king operations su
h as MPI Sendand MPI Re
v or nonblo
king operations su
h as MPI Isend or MPI Ire
v. Ea
hentry on one of these queues 
ontains the information that was passed to thefun
tion 
all that initiated the operation. Nonblo
king operations will remainon these queues until they have 
ompleted and have been 
olle
ted by a suit-able MPI Wait, MPI Test, or one of the related multiple 
ompletion routines.The unexpe
ted message queue represents a di�erent 
lass of information, sin
ethe elements on this queue have been 
reated by MPI 
alls in other pro
esses.Therefore, less information is available about these elements. In all 
ases theorder of the queues represents the order that the MPI subsystem will performmat
hing (this is important where many entries 
ould mat
h, for instan
e whenwild-
ard tag or sour
e is used in a re
eive operation).Note that these queues are 
on
eptual ; they are a des
ription of how a user
an think about the progression of messages through an MPI program. As wedis
uss below, an MPI implementation may have fewer or more queues, and thequeues within an implementation may be di�erent. The interfa
e des
ribed inthis paper addresses how to extra
t these 
on
eptual queues from the implemen-tation so that they 
an be presented to the user independently of the parti
ularMPI implementation.3 Queues in A
tual MPI ImplementationsThe MPICH implementation of MPI [1℄ maintains only two queues in ea
h pro-
ess: a queue of posted re
eives and a queue of unexpe
ted messages. There isno expli
it queue of send operations; instead, all of the information about anin
omplete send operation (e.g., an MPI Isend) is maintained in the asso
iatedMPI Request. In addition, operations asso
iated with all 
ommuni
ators live inthe same queues, being distinguished internally by a 
ontext identi�er.Other organizations of message queues are possible. For example, Morimotoet al [2℄ des
ribe a system where posted re
eives from a parti
ular sour
e are sentto the pro
essor that is expe
ted to send the message; in this implementationthere is a queue of unmat
hed re
eives that send operations try to mat
h beforesending data to a destination. This does not 
on
i
t with the queue model thatwe have des
ribed; it is always possible for an MPI implementation to presentthe three queues that this interfa
e requires. However, this internal queue of\expe
ted re
eivers" is not visible to the user via the debug interfa
e des
ribedhere.



4 How to Extra
t State for a DebuggerWhile it would be possible to de�ne a set of data stru
tures that an MPI librarymust implement solely so that a debugger 
ould extra
t the data it needed,spe
ifying su
h implementation details was at 
on
i
t with the aim of the MPIForum of de�ning an interfa
e that would allow implementations to a
hieve lowlaten
y. Therefore, although we 
onsidered the idea of making su
h a proposal tothe MPI-2 Forum, we de
ided against it, sin
e it would 
learly never be a

epted.Another apparently attra
tive solution would be to provide MPI 
alls that
ould be made inside a pro
ess to return information about the MPI library state.Unfortunately, this approa
h has a signi�
ant problem: it requires that there bea thread in the pro
ess that the debugger 
an use at any time to 
all the inquiryfun
tion. In many 
ases of interest no su
h thread exists; for instan
e, whendebugging 
ore �les, there are no threads at all, or when debugging a deadlo
kedset of pro
esses, all of the threads are likely to be in the system 
alls underlyingthe send or re
eive operations. These arguments lead to the 
on
lusion thata

essing the library state must be driven by the debugger, rather than 
oderunning inside the pro
ess.One way to permit the debugger to display MPI library state would be ex-pli
itly to 
ode the knowledge of the MPI library's internal data stru
tures intothe debugger. While this works (and indeed was the way that we initially im-plemented MPI queue display for MPICH in TotalView [3℄), it is unattra
tivebe
ause it links the debugger and MPI library versions together inextri
ablyand it requires that the writers of the debugger have a

ess to the details of theMPI implementation. For vendor-spe
i�
 MPI implementations (when the MPIvendor and debugger vendor are di�erent), su
h a

ess is hard or impossible toobtain (often requiring the involvement of lawyers).4.1 Use of a Library Dynami
ally Linked into the DebuggerThe solution that we have now adopted (and whi
h is supported by TotalView)is to have the debugger use the Unix dlopen 
all to load a dynami
 library (the\debug DLL") at run time, when the debugger knows whi
h MPI implementationis being used. This debug DLL is provided and distributed by the writers of thetarget MPI library.This allows the debugger to be insulated from the internals of the MPI library,so that 
hanges to the MPI implementation do not require the debugger to berebuilt. Instead, the MPI implementation's spe
i�
 debug DLL must be 
hanged,but this is the responsibility of the MPI implementors. It allows the debugger tosupport multiple MPI implementations on the same system (for instan
e, bothMPICH and a vendor MPI implementation) and to be portable, requiring no
hanges to its MPI support to work with many di�erent MPI implementations.Finally, it allows implementors of MPI to provide their users with high-leveldebugging support without requiring a

ess to the sour
e 
ode of the debugger.



5 The Interfa
e between Debugger and Debug DLLAll 
alls to the debug DLL from the debugger are made through entry pointswhose names are known to the debugger. However, all 
alls ba
k to the debuggerfrom the debug DLL are made through a table of fun
tion pointers that is passedto the initialization entrypoint of the debug DLL. This pro
edure ensures thatthe debug DLL is independent of the spe
i�
 debugger from whi
h it is being
alled.5.1 Opaque Obje
ts Passed through the Interfa
eThe debugger needs to identify to the debug DLL a number of di�erent obje
ts(mqs for \message queue system"):mqs image: an exe
utable image �lemqs pro
ess: a spe
i�
 pro
essmqs type: a named target type (stru
t or typedef)However, the debugger does not want to expose its internal representationsof these types to the debug DLL, whi
h has no need to see the internal stru
tureof these obje
ts, but merely uses them as keys to identify obje
ts of interest, orto be passed ba
k to the debugger through a 
allba
k.These obje
ts are therefore de�ned in the interfa
e �le as typedefs of un-de�ned stru
tures and are always passed by referen
e. The use of these opaquetypes allows the debugger the freedom either to pass true pointers to its inter-nal data stru
tures or to pass some other key to the debug DLL from whi
hit 
an later retrieve its internal obje
t. We prefer typedefs of unde�ned stru
-tures rather than simply using void *, sin
e using the typedefs provides more
ompile-time type 
he
king over the interfa
e.For reasons of eÆ
ien
y it is important that the debug DLL be able eas-ily to asso
iate information with some of these debugger-owned obje
ts. Forinstan
e, it is 
onvenient to extra
t information about the address at whi
h aglobal variable of interest to the debug DLL lives only on
e for ea
h pro
essbeing debugged, rather than every time that the debug DLL needs a

ess to thevariable. Similarly, the o�set of a �eld in a stru
ture that the debug DLL needsto understand is 
onstant within a spe
i�
 exe
utable image, and again shouldbe looked up only on
e. Callba
ks are therefore provided by the debugger to al-low the debug DLL to store and retrieve information asso
iated with image andpro
ess obje
ts. Sin
e retrieving the information is a 
allba
k, the debugger hasthe option either of extending its internal data stru
tures to provide spa
e for anadditional pointer or of implementing a hash table to asso
iate the informationwith the pro
ess key.5.2 Con
rete Obje
ts Passed through the Interfa
eTo allow the debugger to obtain useful information from the debug DLL, 
on
retetypes are de�ned to des
ribe a 
ommuni
ator and a spe
i�
 element on a messagequeue.



The information in the mqs 
ommuni
ator stru
ture in
ludes the 
ommu-ni
ator's size, the lo
al rank of the pro
ess within the 
ommuni
ator, and thename of the 
ommuni
ator as de�ned by the MPI implementation or set by theuser using the MPI-2 [4℄ fun
tion MPI Comm set name, whi
h was added to thestandard spe
i�
ally to aid debugging and pro�ling.The mqs pending operation stru
ture 
ontains enough information to allowthe debugger to provide the user with details both of the arguments to a re
eiveand of the in
oming message that mat
hed it. All referen
es to other pro
esses areavailable in the mqs pending operation stru
ture both as indi
es into the groupasso
iated with the 
ommuni
ator and as indi
es into MPI COMM WORLD. Thisavoids any need for the debugger to 
on
ern itself expli
itly with this mapping.5.3 Target Independen
eSin
e the 
ode in the debug DLL is running inside the debugger, it 
ould be run-ning on a 
ompletely di�erent ma
hine from the debugged pro
ess. Therefore, theinterfa
e uses expli
it types to des
ribe target types, rather than using 
anoni
alC types. The interfa
e header de�nition �le de�nes the types mqs taddr t andmqs tword t that are appropriate types for the debug DLL to use on the hostto hold, respe
tively, a target address (void *) and a target word (long).It is also possible that although the debugger is running lo
ally on the samema
hine as the target pro
ess, the target pro
ess may have di�erent propertiesfrom the debugger. For instan
e, on AIX, IRIX, or Solaris 7, it is possible toexe
ute both 32- and 64-bit pro
esses. To handle this situation, the debuggerprovides a 
allba
k that returns type size information for a spe
i�
 pro
ess. Tohandle the possibility that the byte ordering may be di�erent between the debughost and the target, the debugger provides a 
allba
k to perform any ne
essarybyte reordering when viewing the target store as an obje
t of a spe
i�
 size.The debugger also provides 
allba
ks to the debug DLL to allow it to �ndthe address of a global symbol, to look up a named type, to �nd the size of atype, and to �nd the o�set of a �eld within a (stru
t) type. Ea
h of these 
allstakes as an argument a spe
i�
 pro
ess.These 
allba
ks enable the debug DLL to be entirely independent of thetarget pro
ess, as is demonstrated by the fa
t that the MPICH implementationof the debug DLL 
ontains no target-spe
i�
 #ifdefs yet is su

essfully used ona variety of both big- and little-endian 32- and 64-bit systems.5.4 Servi
es Provided to the Debug DLL by the DebuggerAs well as the servi
es already des
ribed for extra
ting symbols and types andfor supporting target independen
e, the debugger provides the debug DLL witha fun
tion for reading the store of a target pro
ess. This is the most fundamentalservi
e provided, sin
e without it the debug DLL would have no a

ess to targetruntime state information.



6 Extra
ting the InformationThe debug DLL fun
tions 
alled from the debugger to extra
t the informationare stru
tured as iterators: one to iterate over all of the 
ommuni
ators in apro
ess, and a se
ond to iterate over all of the messages in a spe
i�
 messagequeue. This avoids the problems of store allo
ation that would arise were theinterfa
e de�ned in terms of arrays or lists of obje
ts.Sin
e a 
ommuni
ator and asso
iated translation groups 
an be of signi�
antsize (in MPICH a 
ommuni
ator and its asso
iated groups o

upy at least 176bytes on a 32-bit ma
hine), reading all of the 
ommuni
ator information ea
htime that a message queue is displayed 
ould be slow. Therefore a 
all to theroutine mqs update 
ommuni
ator list is made before the 
ommuni
ator iter-ator is initialized if the debugger knows that the pro
ess has run. This allows theDLL to hold the 
ommuni
ator information lo
ally and to update it only whenthe 
ommuni
ator list has been 
hanged. In the MPICH library su
h 
hangesare dete
ted by the use of a sequen
e number that is in
remented whenever a
ommuni
ator is 
reated, destroyed, or modi�ed (e.g., has its name 
hanged).To extra
t the 
ommuni
ator list, the debugger iterates over all of the 
om-muni
ators in the pro
ess using 
ode similar to the following C++ example takendire
tly from TotalView. The MPI debug support library has been en
apsulatedin the C++ dll obje
t, whose methods are trivial wrappers for the fun
tions inthe debug DLL itself./* Iterate over ea
h 
ommuni
ator displaying the messages */mqs_
ommuni
ator 
omm;for (dll->setup_
ommuni
ator_iterator (pro
ess);dll->get_
ommuni
ator (pro
ess, &
omm) == mqs_ok;dll->next_
ommuni
ator(pro
ess)){ /* Do something on ea
h 
ommuni
ator, des
ribed by 
omm */} To extra
t information about a spe
i�
 message queue in the 
urrently se-le
ted 
ommuni
ator, 
ode like this (again taken with only trivial edits fromTotalView) is used.int err
ode = dll->setup_operation_iterator (pro
ess, whi
h_queue);if (err
ode != mqs_ok)return false; /* Nothing to be done */mqs_pending_operation op;while (dll->next_operation (pro
ess, &op) == mqs_ok){ /* Display the information about the operation from op */}



7 Implementation of the Debug DLL for MPICHTo provide a send queue for the debugger, we added a small amount of 
ode tothe MPICH implementation to maintain a list of MPI Requests asso
iated withMPI Send operations; 
ompletion of these operations (with MPI Test, MPI Wait,or the related multiple-
ompletion routines) removes the request from the list.This extra list is 
onditionally 
ompiled into MPICH when MPICH is 
on�guredwith the --enable-debug swit
h. The run-time 
ost of this 
hange is minimalwhen the pro
ess is not being debugged, amounting to one additional 
onditionalbran
h in ea
h of the immediate send operations, and in ea
h of the test or waitoperations when 
ompleting a request 
reated by an immediate send.The rest of the implementation of the debug DLL uses existing MPICHdata stru
tures; 
hanges in MPICH internals are invisible to the debugger. Forexample, a 
hange in MPI Request to handle requests freed by the user before theoperation 
ompleted only required rebuilding the DLL (along with the MPICHlibrary); this 
hange appeared in the next release of MPICH without requiringany 
hange in TotalView.8 Use of the Message Queue DataMessage queue data extra
ted from an MPI program 
an be used in many ways.The most basi
 is just to display it to the user, as in Fig. 1.

Fig. 1. Sample display generated by TotalView using the interfa
e with MPICHThe data 
an also be used as input to tools that give higher-level informa-tion; for instan
e, Chan [5℄ des
ribes a \Wait state graph" tool that uses theinformation extra
ted from an MPI implementation through this interfa
e toshow the user the message dependen
ies in an MPI program.



9 Availability of ImplementationsIn addition to the portable implementation that supports MPICH, implementa-tions of libraries that 
onform to this interfa
e have been written to support theproprietary MPI implementations of Compaq, IBM, and SGI.The sour
e 
ode for the interfa
e header and the MPICH implementationof the debug DLL are distributed with the MPICH sour
e 
ode, available fromhttp://www.m
s.anl.gov/mpi/mpi
h. These �les are open sour
e; all rights aregranted to everyone.The 
ode 
ontains des
riptions of other fun
tions that have not been dis-
ussed here for la
k of spa
e, in
luding 
onversion of error 
odes to strings andsupport for 
he
king that the DLL and the 
lient debugger are implementing
ompatible versions of the interfa
e.10 Con
lusionsThe interfa
e des
ribed has proved to be useful on many systems. It su

essfullyseparates an MPI enabled debugger from the details of the MPI implementationand provides suÆ
ient hooks to allow the debug DLL also to be written in aportable manner.While the interfa
e will require extensions to handle some of the features ofMPI-2 (for instan
e, an index into MPI COMM WORLD will no longer be suÆ
ientto identify a pro
ess), and other useful extensions su
h as the ability to displayMPI data types, groups, or MPI-2 remote memory a

ess windows are possible,the fun
tionality already provided is extremely useful.The interfa
e is publi
ly available, and we en
ourage both debugger and MPIimplementors to fet
h the �les and use the interfa
e.Referen
es1. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performan
e, portable implementation of the MPI Message Passing Interfa
e stan-dard. Parallel Computing, 22(6):789{828, 1996.2. Kenjii Morimoto, Takashi Matsumoto, and Kei Hiraki. Implementing MPI withthe memory-based 
ommuni
ation fa
ilities on the SSS-CORE operating system. InVassuk Alexandrov and Ja
k Dongarra, editors, Re
ent advan
es in Parallel VirtualMa
hine and Message Passing Interfa
e, volume 1497 of Le
ture Notes in ComputerS
ien
e, pages 223{230. Springer, 1998. 5th European PVM/MPI Users' GroupMeeting.3. Etnus, In
. TotalView User's Manual. Available from http://www.etnus.
om.4. Message Passing Interfa
e Forum. MPI2: A Message Passing Interfa
e standard.International Journal of High Performan
e Computing Appli
ations, 12(1{2):1{299,1998.5. Bor Chan. http://www.llnl.gov/s

d/l
/DEG/TV-LLNL-Rel-3.html#waittree.


