
A Standard Interfae for Debugger Aess toMessage Queue Information in MPIJames Cownie1 and William Gropp2 ?1 Etnus In., Framingham MA, USAjownie�etnus.om,WWW home page: http://www.etnus.om/2 Mathematis and Computer Siene Division, Argonne National Laboratorygropp�ms.anl.gov,WWW home page: http://www.ms.anl.gov/~groppAbstrat. This paper disusses the design and implementation of aninterfae that allows a debugger to obtain the information neessary todisplay the ontents of the MPI message queues. The design has beenimplemented in the TotalView debugger, and dynami libraries that on-form to the interfae exist for MPICH, as well as the proprietary MPIimplementations from Compaq, IBM, and SGI.1 IntrodutionIn any debugging task one of the debugger's main objetives is to make visibleinformation about the state of the exeuting program.Debuggers for sequential proesses provide easy aess to the state of theproess, allowing the user to observe the values of variables, mahine registers,stak baktraes, and so on. When debugging message-passing programs all ofthis information is still required; however, additional information spei� to themessage passing model is also needed if the user is to be able to debug the prob-lems, suh as deadlok that are spei� to this new environment. Unfortunatelythe message-passing state of the program is not easily aessible to the user(or the debugger), beause it is represented by data strutures in the message-passing library, whose format and ontent is implementation dependent.To address this problem, we desribe an interfae within the debugger itselfthat allows library-spei� ode to extrat information desribing the oneptualmessage-passing state of the program so that this an be displayed to the user.2 The User's Model of MPI Internal StateSine eah MPI ommuniator represents an independent ommuniation spae,the highest level of the user's model is the ommuniator. Within a ommuni-? This work was supported in part by the Mathematial, Information, and Computa-tional Sienes Division subprogram of the OÆe of Advaned Sienti� ComputingResearh, U.S. Department of Energy, under Contrat W-31-109-Eng-38.



ator there are, oneptually at least, three distint \message queues," whihrepresent the state of the MPI subsystem. These areSend Queue: represents all of the outstanding send operations.Reeive Queue: represents all of the oustanding reeive operations.Unexpeted Message Queue: represents messages that have been sent tothis proess, but have not yet been reeived.The send and reeive queues store information about all of the un�nishedsend and reeive operations that the proess has started within the ommu-niator. These might result either from bloking operations suh as MPI Sendand MPI Rev or nonbloking operations suh as MPI Isend or MPI Irev. Eahentry on one of these queues ontains the information that was passed to thefuntion all that initiated the operation. Nonbloking operations will remainon these queues until they have ompleted and have been olleted by a suit-able MPI Wait, MPI Test, or one of the related multiple ompletion routines.The unexpeted message queue represents a di�erent lass of information, sinethe elements on this queue have been reated by MPI alls in other proesses.Therefore, less information is available about these elements. In all ases theorder of the queues represents the order that the MPI subsystem will performmathing (this is important where many entries ould math, for instane whenwild-ard tag or soure is used in a reeive operation).Note that these queues are oneptual ; they are a desription of how a useran think about the progression of messages through an MPI program. As wedisuss below, an MPI implementation may have fewer or more queues, and thequeues within an implementation may be di�erent. The interfae desribed inthis paper addresses how to extrat these oneptual queues from the implemen-tation so that they an be presented to the user independently of the partiularMPI implementation.3 Queues in Atual MPI ImplementationsThe MPICH implementation of MPI [1℄ maintains only two queues in eah pro-ess: a queue of posted reeives and a queue of unexpeted messages. There isno expliit queue of send operations; instead, all of the information about aninomplete send operation (e.g., an MPI Isend) is maintained in the assoiatedMPI Request. In addition, operations assoiated with all ommuniators live inthe same queues, being distinguished internally by a ontext identi�er.Other organizations of message queues are possible. For example, Morimotoet al [2℄ desribe a system where posted reeives from a partiular soure are sentto the proessor that is expeted to send the message; in this implementationthere is a queue of unmathed reeives that send operations try to math beforesending data to a destination. This does not onit with the queue model thatwe have desribed; it is always possible for an MPI implementation to presentthe three queues that this interfae requires. However, this internal queue of\expeted reeivers" is not visible to the user via the debug interfae desribedhere.



4 How to Extrat State for a DebuggerWhile it would be possible to de�ne a set of data strutures that an MPI librarymust implement solely so that a debugger ould extrat the data it needed,speifying suh implementation details was at onit with the aim of the MPIForum of de�ning an interfae that would allow implementations to ahieve lowlateny. Therefore, although we onsidered the idea of making suh a proposal tothe MPI-2 Forum, we deided against it, sine it would learly never be aepted.Another apparently attrative solution would be to provide MPI alls thatould be made inside a proess to return information about the MPI library state.Unfortunately, this approah has a signi�ant problem: it requires that there bea thread in the proess that the debugger an use at any time to all the inquiryfuntion. In many ases of interest no suh thread exists; for instane, whendebugging ore �les, there are no threads at all, or when debugging a deadlokedset of proesses, all of the threads are likely to be in the system alls underlyingthe send or reeive operations. These arguments lead to the onlusion thataessing the library state must be driven by the debugger, rather than oderunning inside the proess.One way to permit the debugger to display MPI library state would be ex-pliitly to ode the knowledge of the MPI library's internal data strutures intothe debugger. While this works (and indeed was the way that we initially im-plemented MPI queue display for MPICH in TotalView [3℄), it is unattrativebeause it links the debugger and MPI library versions together inextriablyand it requires that the writers of the debugger have aess to the details of theMPI implementation. For vendor-spei� MPI implementations (when the MPIvendor and debugger vendor are di�erent), suh aess is hard or impossible toobtain (often requiring the involvement of lawyers).4.1 Use of a Library Dynamially Linked into the DebuggerThe solution that we have now adopted (and whih is supported by TotalView)is to have the debugger use the Unix dlopen all to load a dynami library (the\debug DLL") at run time, when the debugger knows whih MPI implementationis being used. This debug DLL is provided and distributed by the writers of thetarget MPI library.This allows the debugger to be insulated from the internals of the MPI library,so that hanges to the MPI implementation do not require the debugger to berebuilt. Instead, the MPI implementation's spei� debug DLL must be hanged,but this is the responsibility of the MPI implementors. It allows the debugger tosupport multiple MPI implementations on the same system (for instane, bothMPICH and a vendor MPI implementation) and to be portable, requiring nohanges to its MPI support to work with many di�erent MPI implementations.Finally, it allows implementors of MPI to provide their users with high-leveldebugging support without requiring aess to the soure ode of the debugger.



5 The Interfae between Debugger and Debug DLLAll alls to the debug DLL from the debugger are made through entry pointswhose names are known to the debugger. However, all alls bak to the debuggerfrom the debug DLL are made through a table of funtion pointers that is passedto the initialization entrypoint of the debug DLL. This proedure ensures thatthe debug DLL is independent of the spei� debugger from whih it is beingalled.5.1 Opaque Objets Passed through the InterfaeThe debugger needs to identify to the debug DLL a number of di�erent objets(mqs for \message queue system"):mqs image: an exeutable image �lemqs proess: a spei� proessmqs type: a named target type (strut or typedef)However, the debugger does not want to expose its internal representationsof these types to the debug DLL, whih has no need to see the internal strutureof these objets, but merely uses them as keys to identify objets of interest, orto be passed bak to the debugger through a allbak.These objets are therefore de�ned in the interfae �le as typedefs of un-de�ned strutures and are always passed by referene. The use of these opaquetypes allows the debugger the freedom either to pass true pointers to its inter-nal data strutures or to pass some other key to the debug DLL from whihit an later retrieve its internal objet. We prefer typedefs of unde�ned stru-tures rather than simply using void *, sine using the typedefs provides moreompile-time type heking over the interfae.For reasons of eÆieny it is important that the debug DLL be able eas-ily to assoiate information with some of these debugger-owned objets. Forinstane, it is onvenient to extrat information about the address at whih aglobal variable of interest to the debug DLL lives only one for eah proessbeing debugged, rather than every time that the debug DLL needs aess to thevariable. Similarly, the o�set of a �eld in a struture that the debug DLL needsto understand is onstant within a spei� exeutable image, and again shouldbe looked up only one. Callbaks are therefore provided by the debugger to al-low the debug DLL to store and retrieve information assoiated with image andproess objets. Sine retrieving the information is a allbak, the debugger hasthe option either of extending its internal data strutures to provide spae for anadditional pointer or of implementing a hash table to assoiate the informationwith the proess key.5.2 Conrete Objets Passed through the InterfaeTo allow the debugger to obtain useful information from the debug DLL, onretetypes are de�ned to desribe a ommuniator and a spei� element on a messagequeue.



The information in the mqs ommuniator struture inludes the ommu-niator's size, the loal rank of the proess within the ommuniator, and thename of the ommuniator as de�ned by the MPI implementation or set by theuser using the MPI-2 [4℄ funtion MPI Comm set name, whih was added to thestandard spei�ally to aid debugging and pro�ling.The mqs pending operation struture ontains enough information to allowthe debugger to provide the user with details both of the arguments to a reeiveand of the inoming message that mathed it. All referenes to other proesses areavailable in the mqs pending operation struture both as indies into the groupassoiated with the ommuniator and as indies into MPI COMM WORLD. Thisavoids any need for the debugger to onern itself expliitly with this mapping.5.3 Target IndependeneSine the ode in the debug DLL is running inside the debugger, it ould be run-ning on a ompletely di�erent mahine from the debugged proess. Therefore, theinterfae uses expliit types to desribe target types, rather than using anonialC types. The interfae header de�nition �le de�nes the types mqs taddr t andmqs tword t that are appropriate types for the debug DLL to use on the hostto hold, respetively, a target address (void *) and a target word (long).It is also possible that although the debugger is running loally on the samemahine as the target proess, the target proess may have di�erent propertiesfrom the debugger. For instane, on AIX, IRIX, or Solaris 7, it is possible toexeute both 32- and 64-bit proesses. To handle this situation, the debuggerprovides a allbak that returns type size information for a spei� proess. Tohandle the possibility that the byte ordering may be di�erent between the debughost and the target, the debugger provides a allbak to perform any neessarybyte reordering when viewing the target store as an objet of a spei� size.The debugger also provides allbaks to the debug DLL to allow it to �ndthe address of a global symbol, to look up a named type, to �nd the size of atype, and to �nd the o�set of a �eld within a (strut) type. Eah of these allstakes as an argument a spei� proess.These allbaks enable the debug DLL to be entirely independent of thetarget proess, as is demonstrated by the fat that the MPICH implementationof the debug DLL ontains no target-spei� #ifdefs yet is suessfully used ona variety of both big- and little-endian 32- and 64-bit systems.5.4 Servies Provided to the Debug DLL by the DebuggerAs well as the servies already desribed for extrating symbols and types andfor supporting target independene, the debugger provides the debug DLL witha funtion for reading the store of a target proess. This is the most fundamentalservie provided, sine without it the debug DLL would have no aess to targetruntime state information.



6 Extrating the InformationThe debug DLL funtions alled from the debugger to extrat the informationare strutured as iterators: one to iterate over all of the ommuniators in aproess, and a seond to iterate over all of the messages in a spei� messagequeue. This avoids the problems of store alloation that would arise were theinterfae de�ned in terms of arrays or lists of objets.Sine a ommuniator and assoiated translation groups an be of signi�antsize (in MPICH a ommuniator and its assoiated groups oupy at least 176bytes on a 32-bit mahine), reading all of the ommuniator information eahtime that a message queue is displayed ould be slow. Therefore a all to theroutine mqs update ommuniator list is made before the ommuniator iter-ator is initialized if the debugger knows that the proess has run. This allows theDLL to hold the ommuniator information loally and to update it only whenthe ommuniator list has been hanged. In the MPICH library suh hangesare deteted by the use of a sequene number that is inremented whenever aommuniator is reated, destroyed, or modi�ed (e.g., has its name hanged).To extrat the ommuniator list, the debugger iterates over all of the om-muniators in the proess using ode similar to the following C++ example takendiretly from TotalView. The MPI debug support library has been enapsulatedin the C++ dll objet, whose methods are trivial wrappers for the funtions inthe debug DLL itself./* Iterate over eah ommuniator displaying the messages */mqs_ommuniator omm;for (dll->setup_ommuniator_iterator (proess);dll->get_ommuniator (proess, &omm) == mqs_ok;dll->next_ommuniator(proess)){ /* Do something on eah ommuniator, desribed by omm */} To extrat information about a spei� message queue in the urrently se-leted ommuniator, ode like this (again taken with only trivial edits fromTotalView) is used.int errode = dll->setup_operation_iterator (proess, whih_queue);if (errode != mqs_ok)return false; /* Nothing to be done */mqs_pending_operation op;while (dll->next_operation (proess, &op) == mqs_ok){ /* Display the information about the operation from op */}



7 Implementation of the Debug DLL for MPICHTo provide a send queue for the debugger, we added a small amount of ode tothe MPICH implementation to maintain a list of MPI Requests assoiated withMPI Send operations; ompletion of these operations (with MPI Test, MPI Wait,or the related multiple-ompletion routines) removes the request from the list.This extra list is onditionally ompiled into MPICH when MPICH is on�guredwith the --enable-debug swith. The run-time ost of this hange is minimalwhen the proess is not being debugged, amounting to one additional onditionalbranh in eah of the immediate send operations, and in eah of the test or waitoperations when ompleting a request reated by an immediate send.The rest of the implementation of the debug DLL uses existing MPICHdata strutures; hanges in MPICH internals are invisible to the debugger. Forexample, a hange in MPI Request to handle requests freed by the user before theoperation ompleted only required rebuilding the DLL (along with the MPICHlibrary); this hange appeared in the next release of MPICH without requiringany hange in TotalView.8 Use of the Message Queue DataMessage queue data extrated from an MPI program an be used in many ways.The most basi is just to display it to the user, as in Fig. 1.

Fig. 1. Sample display generated by TotalView using the interfae with MPICHThe data an also be used as input to tools that give higher-level informa-tion; for instane, Chan [5℄ desribes a \Wait state graph" tool that uses theinformation extrated from an MPI implementation through this interfae toshow the user the message dependenies in an MPI program.



9 Availability of ImplementationsIn addition to the portable implementation that supports MPICH, implementa-tions of libraries that onform to this interfae have been written to support theproprietary MPI implementations of Compaq, IBM, and SGI.The soure ode for the interfae header and the MPICH implementationof the debug DLL are distributed with the MPICH soure ode, available fromhttp://www.ms.anl.gov/mpi/mpih. These �les are open soure; all rights aregranted to everyone.The ode ontains desriptions of other funtions that have not been dis-ussed here for lak of spae, inluding onversion of error odes to strings andsupport for heking that the DLL and the lient debugger are implementingompatible versions of the interfae.10 ConlusionsThe interfae desribed has proved to be useful on many systems. It suessfullyseparates an MPI enabled debugger from the details of the MPI implementationand provides suÆient hooks to allow the debug DLL also to be written in aportable manner.While the interfae will require extensions to handle some of the features ofMPI-2 (for instane, an index into MPI COMM WORLD will no longer be suÆientto identify a proess), and other useful extensions suh as the ability to displayMPI data types, groups, or MPI-2 remote memory aess windows are possible,the funtionality already provided is extremely useful.The interfae is publily available, and we enourage both debugger and MPIimplementors to feth the �les and use the interfae.Referenes1. William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performane, portable implementation of the MPI Message Passing Interfae stan-dard. Parallel Computing, 22(6):789{828, 1996.2. Kenjii Morimoto, Takashi Matsumoto, and Kei Hiraki. Implementing MPI withthe memory-based ommuniation failities on the SSS-CORE operating system. InVassuk Alexandrov and Jak Dongarra, editors, Reent advanes in Parallel VirtualMahine and Message Passing Interfae, volume 1497 of Leture Notes in ComputerSiene, pages 223{230. Springer, 1998. 5th European PVM/MPI Users' GroupMeeting.3. Etnus, In. TotalView User's Manual. Available from http://www.etnus.om.4. Message Passing Interfae Forum. MPI2: A Message Passing Interfae standard.International Journal of High Performane Computing Appliations, 12(1{2):1{299,1998.5. Bor Chan. http://www.llnl.gov/sd/l/DEG/TV-LLNL-Rel-3.html#waittree.


