
Reproduible Measurements of MPIPerformane Charateristis?William Gropp and Ewing LuskArgonne National Laboratory, Argonne, IL, USAAbstrat. In this paper we desribe the diÆulties inherent in makingaurate, reproduible measurements of message-passing performane.We desribe some of the mistakes often made in attempting suh mea-surements and the onsequenes of suh mistakes. We desribe mpptest,a suite of performane measurement programs developed at ArgonneNational Laboratory, that attempts to avoid suh mistakes and obtainreproduible measures of MPI performane that an be useful to bothMPI implementors and MPI appliation writers. We inlude a numberof illustrative examples of its use.1 IntrodutionEveryone wants to measure the performane of their systems, but di�erentgroups have di�erent reasons for doing so:{ Appliation writers need understanding of the performane pro�les of MPIimplementations in order to hoose e�etive algorithms for target omputingenvironments.{ Evaluators �nd performane information ritial when deiding whih ma-hine to aquire for use by their appliations.{ Implementors need to be able to understand the behavior of their own MPIimplementations in order to plan improvements and measure the e�ets ofimprovements made.All of these ommunities share a ommon requirement of their tests: that theybe reproduible. As obvious as this requirement is, it is diÆult to satisfy in pra-tie. Parallelism introdues an element of nondeterminism that must be tightlyontrolled. The Unix operating system, together with network hardware and soft-ware, also introdues sporadi intrusions into the test environment that must betaken into aount. The very portability of MPI suggests that the performane ofthe same operations (MPI funtion alls) an be meaningfully ompared amongvarious parallel mahines, even when the alls are implemented in quite di�er-ent ways. In this paper we review the perils of shortuts frequently taken in? This work was supported by the Mathematial, Information, and Computational Si-enes Division subprogram of the OÆe of Advaned Sienti� Computing Researh,U.S. Department of Energy, under Contrat W-31-109-Eng-38.



attempting to aquire reproduible results, and the approah we take to avoidsuh perils.Over the years, the MPICH group has developed a suite of programs thatharaterize the performane of a message-passing environment. An example isthe program mpptest that an be used to quikly haraterize the performaneof an MPI implementation in a variety of ways. For example, it was used toquikly measure the performane of a variety of pre-MPI message-passing im-plementations and to identify message sizes where sharp performane transitionsourred; see [4℄, Figures 1 and 3. An example of the use of mpptest in tuning anMPI implementation is shown in [3℄. These programs are portable to any MPIimplementation.A number of parallel performane tests already exist. Many of these striveto be benhmarks that produe a \�gure of merit" for the system. Our interestis in the details of the behavior, rather than a few numbers representing thesystem. Perhaps the losest projet to our work is SKaMPI [7℄. The SKaMPIsystem provides graphial output detailing the behavior of a wide variety of MPIfuntions and inludes an adaptive message-length re�nement algorithm similarto that in mpptest. The testing method in SkaMPI is somewhat di�erent fromours and uses di�erent rules when aepting experiments.A number of well-known benhmarks are aessible through BenhWeb [1℄.The ParkBenh Organization provides a variety of odes, inluding \ompatappliation benhmarks". A review of some of the issues in developing a benh-mark may be found in [2℄. Previous PVMMPI meetings have inluded papers onperformane measurement; see, for example, [5, 6℄.We hope that the unusual approah taken in mpptestmakes it a useful addi-tion to the olletion of performane measurement proedures for MPI programs.The paper �rst reviews (Setion 2) some of the diÆulties of performane per-formane measurements and haraterizations. Setion 3 briey desribes thetesting methods and variations, relating the hoies to the issues raised in Se-tion 2. Setion 4 presents a few examples that illustrate the apabilities of ourperformane haraterization tests.2 Perils of Performane MeasurementSimple tests an be misleading. As ommuniation software beomes more so-phistiated (for example, dynamially alloating resoures to busy ommuni-ation hannels), simple tests beome less indiative of the performane of afull appliation. The following list desribes some of the pitfalls in measuringommuniation performane, in the form of \mistakes often made."1. Forget to establish initial ommuniation link. Some systems dynam-ially reate onnetions. The �rst ommuniation between two proessesan take far longer than subsequent ommuniations.2. Ignore ontention with unrelated appliations or jobs. A bakground�le system bakup may onsume muh of the available ommuniation band-width.



3. Ignore nonbloking alls. High-performane kernels often involve non-bloking operations both for the possibility of ommuniation overlap but,more important, for the advantage in allowing the system to shedule om-muniations when many proesses are ommuniating. Nonbloking alls arealso important for orret operation of many appliations.4. Ignore overlap of omputation and ommuniation.High-performanekernels often strive to do this for the advantages both in data transfer andin lateny hiding.5. Make an apples-to-oranges omparison.Message-passing aomplishestwo e�ets: the transfer of data and a handshake (synhronization) to in-diate that the data are available. Some omparisons of message passingwith remote-memory or shared-memory operations ignore the synhroniza-tion step.6. Confuse total bandwidth with point-to-point bandwidth. Dediated,swithed networks have very di�erent performane than shared network fab-ris.7. Compare CPU time to elapsed time. CPU time may not inlude anytime that was spent waiting for data to arrive. Knowing the CPU load ausedby a message-passing system is useful information, but only the elapsed timemay be used to measure the time it takes to deliver a message.8. Ignore orretness. Systems that fail for long messages may have an unfairadvantage for short messages.9. Time events that are small relative to the resolution of the lok.Many timers are not yle ounters; timing a single event may lead to wildlyinaurate times if the resolution of the lok is lose to the time the op-eration takes. A related error is to try to orret the lok overhead bysubtrating an estimate of the time to all the lok that is omputed bytaking the average of the time it takes to all the lok; this will redue theapparent time and arti�ially inate performane.10. Ignore ahe e�ets. Does the data end up in the ahe of the reeiver?What if data doesn't start in the ahe of the sender? Does the transfer ofdata perturb (e.g., invalidate) the ahe?11. Use a ommuniation pattern di�erent from the appliation. Ensur-ing that a reeive is issued before the mathing send an make a signi�antdi�erene in the performane. Multiple messages between di�erent proessesan also a�et performane. Measuring ping-pong messages when the appli-ation sends head-to-head (as many sienti� appliations do) an also bemisleading.12. Measure with just two proessors. Some systems may poll on the num-ber of possible soures of messages; this an lead to a signi�ant degradationin performane for real on�gurations.13. Measure with a single ommuniation pattern. No system with a largenumber of proessors provides a perfet interonnet. The pattern you wantmay inur ontention. One major system su�ers slowdowns when simplebuttery patterns are used.



The programs desribed in this paper attempt to avoid these problems; foreah ase, we indiate below how we avoid the related problem.3 Test MethodologyIn this setion we disuss some of the details of the testing. These are related tothe issues in measuring performane desribed in Setion 2. Our basi assumptionis that in any short measurement, the observed time will be perturbed by somepositive time �t and that the distribution of these perturbations is random withan unknown distribution. (There is one possible negative perturbation aused bythe �nite resolution of the lok; this is addressed by taking times muh longerthan the lok resolution.)3.1 Measuring Time: Minimum of AveragesThe fundamental rule of testing is that the test should be repeatable; that is,running the test several times should give, within experimental error, the sameresult. It is well known that running the same program an produe very di�erentresults eah time it is run.The only time that is reproduible is the minimum time of a number of tests.This is the hoie that we make in our testing. By making a number of tests, weeliminate any misleading results do to initialization of links (issue 1).Using the minimum is not a perfet hoie; in partiular, users will see somesort of average time rather than a minimum time. For this reason, we provide anoption to reord the maximum time observed, as well as the average of the ob-servations. While these values are not reproduible, they are valuable indiatorsof the variation in the measurements.The next question onerns what the minimums should be taken over. We usea loop with enough iterations to make the ost of any timer alls inonsequentialby omparison. This eliminates errors related to the lok resolution (issue 9). Inaddition, the length of time that the loop runs an be set; this allows the user todetermine the tradeo� between the runtime (ost) of the test and its auray.3.2 Message LengthsThe performane of data movement, whether for message-passing or simple mem-ory opies, is not a simple funtion of length. Instead, the performane is likely toonsist of a number of sudden steps as various thresholds are rossed. Samplingat regular or prespei�ed data lengths an give misleading results. The mpptestprogram an automatially hoose message lengths. The rule that mpptest usesis to attempt to eliminate artifats in a graph of the output. It does this by om-puting three times: f(n0), f(n1), and f((n0 + n1)=2), where f(n) is the time tosend n bytes. Then mpptest estimates the error in interpolating between n0 andn1 with a straight line by omputing the di�erene between (f(n0) + f(n1))=2and f((n0 + n1)=2). If this value is larger than a spei�ed threshold (in relative



terms), the interval [n0; n1℄ is subdivided into two intervals, and the step is re-peated. This an ontinue until a minimum separation between message lengthsis reahed.3.3 Sheduling of TestsThe events that ause perturbations in the timing of a program an last manymilliseonds or more. Thus, a simple approah that looks for the minimum ofaverages within a short span of time an be onfused by a single, long-runningevent. As a result, it is important to spread the tests for eah message lengthover the full time of the haraterization run. A sketh of the appropriate mea-surement loop is shown below:for (number of repetitions) {for (message lengths) {Measure time for this lengthif this is the fastest time yet, aept it}}Note that this approah has the drawbak that it doesn't produe a steadystream of results; only at the very end of the test are �nal results available.However, it omes muh loser to what areful researhers already do|run thetest several times and take the best results. This helps address ontention withother appliations or jobs (issue 2), though does not solve this problem.Tests with anomalously high times, relative to surrounding tests, are auto-matially rerun to determine if those times reet a property of the ommunia-tion system or are the result of a momentary load on the system. This also aidsin produing reproduible results.Note also that it is important to run a number of yles of this loop before re-�ning the message intervals. Otherwise, noise in the measurements an generateunneeded re�nements.3.4 Test OperationsRather than test only a single operation, suh as the usual \ping pong" or round-trip pattern, our tests provide for a wide variety of tests, seleted at run timethrough ommand line arguments. The following list summarizes the availableoptions and relates them to the issues in Setion 2.Number of proessors. Any number of proessors an be used. By default,only two will ommuniate (this tests for salability in the message-passingimplementation itself; see issue 12). With the -biset option, half of theproessors send to the other half, allowing measurement of the bisetionbandwidth of the system (issue 6).Cahe e�ets. The ommuniation tests may be run using suessive bytes ina large bu�er. By seleting the bu�er size to be larger than the ahe size,all ommuniation takes plae in memory that is not in ahe (issue 10).



Communiation Patterns. A variety of ommuniation patterns an be spe-i�ed for the bisetion ase, addressing issue 13. In addition, both \ping pong"and head-to-head ommuniation is available when testing two ommuniat-ing proesses. More are needed, in partiular to make it easier to simulatean appliation's ommuniation pattern (issue 11).Corretness. Corretness is tested by a separate program, stress. This pro-gram sends a variety of bit patterns in messages of various sizes, and hekseah bit in the reeive message. Running this test, along with the perfor-mane haraterization tests for large message sizes, addresses issue 8.Communiation and omputation overlap. A simple test using a �xed mes-sage length and a variable amount of omputation provides a simple mea-surement of ommuniation/omputation overlap, addressing issue 4.Nonbloking Communiation. Nonbloking ommuniation is important; inmany appliations, using nonbloking ommuniation routines is the easiestway to ensure orretness by avoiding problems related to �nite bu�ering.The performane of nonbloking routines an be di�erent from the that ofthe bloking routines. Our tests inlude versions for nonbloking routines(issue 3).4 ExamplesThis setion shows the apabilities of the mpptest haraterization program inthe ontext of spei� examples.Disontinuous Behavior The need for adaptive message length hoie an be seenin Figure 1(a). This illustrates why the simple lateny and bandwidth model isinappropriate as a measure of performane of a system.We see the stair-steps illustrating message paket sizes (128 bytes). We alsosee the harateristi hange in protool for longer messages. Here it looks likethe protool hanges at 1024 bytes, and that it is too late. The implementationis not making an optimal deision for the message length at whih to swithmethods; slightly better performane ould be ahieved in the range of 768 to1024 bytes by using the same method used for longer messages.Figures 1() shows the behavior for nonbloking sends instead of blokingsends. Note the small but measurable overhead ompared with Figure 1(a).Cahe Performane E�ets Performane tests often use the same, relativelysmall, data arrays as the soure and destination of messages. In many applia-tions, data is moved from main memory, not from ahe. Figure 1(b) shows anexample where the performane with data in ahe is better than when the datais not in ahe, both in absolute terms and in the trend (lower slope for in-ahedata).Variation in Performane In an appliation, the minimum times for an operationmay not be as important as the average or maximum times. Figure 1(d) shows



Fig. 1. Example results generated by mpptest on several platforms. Graph (a) showsan example of disontinuous performane identi�ed by mpptest. Note the sharp dropin lateny for zero bytes, the signi�ant steps up to 1024 bytes, and the lower slopebeyond 1024 bytes. Graph (b) shows an example of the hange in performane betweendata in ahe (dashed line) and not in ahe (solid line). Graph () shows the extra ostof using nonbloking sends. Graph (d) gives an example of the variation in performaneeven on a system ommuniating with shared-memory hardware (see text for details).



the variations in times on a lightly-loaded shared-memory system. This graphis very interesting in that the minimum (bottom line) and average times (dots)are lose together in most plaes, but the maximum observed time (top line)an be quite large. The peaks seem to line up with the transitions; however,sine there are more measurements near the transitions, the orrelation may bean aident. Further testing, partiularly with the evenly spaed message sizes,would be required to determine if those peaks ourred only at the transitions.5 ConlusionWe have illustrated the diÆulty in haraterizing performane and have dis-ussed how the MPICH performane haraterization programs an be usedto disover properties of the parallel environment. The software is freely avail-able from http://www.ms.anl.gov/mpi/mpih/perftest orftp://ftp.ms.anl.gov/pub/mpi/mis/perftest.tar.gz.Referenes1. Benhweb. World Wide Web. http://www.netlib.org/benhweb/.2. Parkbenh Committee. Publi international benhmarks for parallel omputers.Sienti� Programming, 3(2):101{146, 1994. Report 1.3. W. Gropp and E. Lusk. A high-performane MPI implementation on a shared-memory vetor superomputer. Parallel Computing, 22(11):1513{1526, January1997.4. W. D. Gropp and E. Lusk. Experienes with the IBM SP1. IBM Systems Journal,34(2):249{262, 1995.5. J. Piernas, A. Flores, and J. M. Gar�ia. Analyzing the performane of MPI in aluster of workstations based on fast Ethernet. In Marian Bubak, Jak Dongarra,and Jerzy Wa�sniewski, editors, Reent advanes in Parallel Virtual Mahine andMessage Passing Interfae, volume 1332 of Leture Notes in Computer Siene,pages 17{24. Springer, 1997. 4th European PVM/MPI Users' Group Meeting.6. Mihael Resh, Holger Berger, and Thomas Boenish. A omparision of MPI perfor-mane on di�erent MPPs. In Marian Bubak, Jak Dongarra, and Jerzy Wa�sniewski,editors, Reent advanes in Parallel Virtual Mahine and Message Passing Inter-fae, volume 1332 of Leture Notes in Computer Siene, pages 25{32. Springer,1997. 4th European PVM/MPI Users' Group Meeting.7. R. Reussner, P. Sanders, L. Prehelt, and M M�uller. SKaMPI: A detailed, aurateMPI benhmark. In Vassuk Alexandrov and Jak Dongarra, editors, Reent advanesin Parallel Virtual Mahine and Message Passing Interfae, volume 1497 of LetureNotes in Computer Siene, pages 52{59. Springer, 1998. 5th European PVM/MPIUsers' Group Meeting.


