
Reprodu
ible Measurements of MPIPerforman
e Chara
teristi
s?William Gropp and Ewing LuskArgonne National Laboratory, Argonne, IL, USAAbstra
t. In this paper we des
ribe the diÆ
ulties inherent in makinga

urate, reprodu
ible measurements of message-passing performan
e.We des
ribe some of the mistakes often made in attempting su
h mea-surements and the 
onsequen
es of su
h mistakes. We des
ribe mpptest,a suite of performan
e measurement programs developed at ArgonneNational Laboratory, that attempts to avoid su
h mistakes and obtainreprodu
ible measures of MPI performan
e that 
an be useful to bothMPI implementors and MPI appli
ation writers. We in
lude a numberof illustrative examples of its use.1 Introdu
tionEveryone wants to measure the performan
e of their systems, but di�erentgroups have di�erent reasons for doing so:{ Appli
ation writers need understanding of the performan
e pro�les of MPIimplementations in order to 
hoose e�e
tive algorithms for target 
omputingenvironments.{ Evaluators �nd performan
e information 
riti
al when de
iding whi
h ma-
hine to a
quire for use by their appli
ations.{ Implementors need to be able to understand the behavior of their own MPIimplementations in order to plan improvements and measure the e�e
ts ofimprovements made.All of these 
ommunities share a 
ommon requirement of their tests: that theybe reprodu
ible. As obvious as this requirement is, it is diÆ
ult to satisfy in pra
-ti
e. Parallelism introdu
es an element of nondeterminism that must be tightly
ontrolled. The Unix operating system, together with network hardware and soft-ware, also introdu
es sporadi
 intrusions into the test environment that must betaken into a

ount. The very portability of MPI suggests that the performan
e ofthe same operations (MPI fun
tion 
alls) 
an be meaningfully 
ompared amongvarious parallel ma
hines, even when the 
alls are implemented in quite di�er-ent ways. In this paper we review the perils of short
uts frequently taken in? This work was supported by the Mathemati
al, Information, and Computational S
i-en
es Division subprogram of the OÆ
e of Advan
ed S
ienti�
 Computing Resear
h,U.S. Department of Energy, under Contra
t W-31-109-Eng-38.



attempting to a
quire reprodu
ible results, and the approa
h we take to avoidsu
h perils.Over the years, the MPICH group has developed a suite of programs that
hara
terize the performan
e of a message-passing environment. An example isthe program mpptest that 
an be used to qui
kly 
hara
terize the performan
eof an MPI implementation in a variety of ways. For example, it was used toqui
kly measure the performan
e of a variety of pre-MPI message-passing im-plementations and to identify message sizes where sharp performan
e transitionso

urred; see [4℄, Figures 1 and 3. An example of the use of mpptest in tuning anMPI implementation is shown in [3℄. These programs are portable to any MPIimplementation.A number of parallel performan
e tests already exist. Many of these striveto be ben
hmarks that produ
e a \�gure of merit" for the system. Our interestis in the details of the behavior, rather than a few numbers representing thesystem. Perhaps the 
losest proje
t to our work is SKaMPI [7℄. The SKaMPIsystem provides graphi
al output detailing the behavior of a wide variety of MPIfun
tions and in
ludes an adaptive message-length re�nement algorithm similarto that in mpptest. The testing method in SkaMPI is somewhat di�erent fromours and uses di�erent rules when a

epting experiments.A number of well-known ben
hmarks are a

essible through Ben
hWeb [1℄.The ParkBen
h Organization provides a variety of 
odes, in
luding \
ompa
tappli
ation ben
hmarks". A review of some of the issues in developing a ben
h-mark may be found in [2℄. Previous PVMMPI meetings have in
luded papers onperforman
e measurement; see, for example, [5, 6℄.We hope that the unusual approa
h taken in mpptestmakes it a useful addi-tion to the 
olle
tion of performan
e measurement pro
edures for MPI programs.The paper �rst reviews (Se
tion 2) some of the diÆ
ulties of performan
e per-forman
e measurements and 
hara
terizations. Se
tion 3 brie
y des
ribes thetesting methods and variations, relating the 
hoi
es to the issues raised in Se
-tion 2. Se
tion 4 presents a few examples that illustrate the 
apabilities of ourperforman
e 
hara
terization tests.2 Perils of Performan
e MeasurementSimple tests 
an be misleading. As 
ommuni
ation software be
omes more so-phisti
ated (for example, dynami
ally allo
ating resour
es to busy 
ommuni-
ation 
hannels), simple tests be
ome less indi
ative of the performan
e of afull appli
ation. The following list des
ribes some of the pitfalls in measuring
ommuni
ation performan
e, in the form of \mistakes often made."1. Forget to establish initial 
ommuni
ation link. Some systems dynam-i
ally 
reate 
onne
tions. The �rst 
ommuni
ation between two pro
esses
an take far longer than subsequent 
ommuni
ations.2. Ignore 
ontention with unrelated appli
ations or jobs. A ba
kground�le system ba
kup may 
onsume mu
h of the available 
ommuni
ation band-width.



3. Ignore nonblo
king 
alls. High-performan
e kernels often involve non-blo
king operations both for the possibility of 
ommuni
ation overlap but,more important, for the advantage in allowing the system to s
hedule 
om-muni
ations when many pro
esses are 
ommuni
ating. Nonblo
king 
alls arealso important for 
orre
t operation of many appli
ations.4. Ignore overlap of 
omputation and 
ommuni
ation.High-performan
ekernels often strive to do this for the advantages both in data transfer andin laten
y hiding.5. Make an apples-to-oranges 
omparison.Message-passing a

omplishestwo e�e
ts: the transfer of data and a handshake (syn
hronization) to in-di
ate that the data are available. Some 
omparisons of message passingwith remote-memory or shared-memory operations ignore the syn
hroniza-tion step.6. Confuse total bandwidth with point-to-point bandwidth. Dedi
ated,swit
hed networks have very di�erent performan
e than shared network fab-ri
s.7. Compare CPU time to elapsed time. CPU time may not in
lude anytime that was spent waiting for data to arrive. Knowing the CPU load 
ausedby a message-passing system is useful information, but only the elapsed timemay be used to measure the time it takes to deliver a message.8. Ignore 
orre
tness. Systems that fail for long messages may have an unfairadvantage for short messages.9. Time events that are small relative to the resolution of the 
lo
k.Many timers are not 
y
le 
ounters; timing a single event may lead to wildlyina

urate times if the resolution of the 
lo
k is 
lose to the time the op-eration takes. A related error is to try to 
orre
t the 
lo
k overhead bysubtra
ting an estimate of the time to 
all the 
lo
k that is 
omputed bytaking the average of the time it takes to 
all the 
lo
k; this will redu
e theapparent time and arti�
ially in
ate performan
e.10. Ignore 
a
he e�e
ts. Does the data end up in the 
a
he of the re
eiver?What if data doesn't start in the 
a
he of the sender? Does the transfer ofdata perturb (e.g., invalidate) the 
a
he?11. Use a 
ommuni
ation pattern di�erent from the appli
ation. Ensur-ing that a re
eive is issued before the mat
hing send 
an make a signi�
antdi�eren
e in the performan
e. Multiple messages between di�erent pro
esses
an also a�e
t performan
e. Measuring ping-pong messages when the appli-
ation sends head-to-head (as many s
ienti�
 appli
ations do) 
an also bemisleading.12. Measure with just two pro
essors. Some systems may poll on the num-ber of possible sour
es of messages; this 
an lead to a signi�
ant degradationin performan
e for real 
on�gurations.13. Measure with a single 
ommuni
ation pattern. No system with a largenumber of pro
essors provides a perfe
t inter
onne
t. The pattern you wantmay in
ur 
ontention. One major system su�ers slowdowns when simplebutter
y patterns are used.



The programs des
ribed in this paper attempt to avoid these problems; forea
h 
ase, we indi
ate below how we avoid the related problem.3 Test MethodologyIn this se
tion we dis
uss some of the details of the testing. These are related tothe issues in measuring performan
e des
ribed in Se
tion 2. Our basi
 assumptionis that in any short measurement, the observed time will be perturbed by somepositive time �t and that the distribution of these perturbations is random withan unknown distribution. (There is one possible negative perturbation 
aused bythe �nite resolution of the 
lo
k; this is addressed by taking times mu
h longerthan the 
lo
k resolution.)3.1 Measuring Time: Minimum of AveragesThe fundamental rule of testing is that the test should be repeatable; that is,running the test several times should give, within experimental error, the sameresult. It is well known that running the same program 
an produ
e very di�erentresults ea
h time it is run.The only time that is reprodu
ible is the minimum time of a number of tests.This is the 
hoi
e that we make in our testing. By making a number of tests, weeliminate any misleading results do to initialization of links (issue 1).Using the minimum is not a perfe
t 
hoi
e; in parti
ular, users will see somesort of average time rather than a minimum time. For this reason, we provide anoption to re
ord the maximum time observed, as well as the average of the ob-servations. While these values are not reprodu
ible, they are valuable indi
atorsof the variation in the measurements.The next question 
on
erns what the minimums should be taken over. We usea loop with enough iterations to make the 
ost of any timer 
alls in
onsequentialby 
omparison. This eliminates errors related to the 
lo
k resolution (issue 9). Inaddition, the length of time that the loop runs 
an be set; this allows the user todetermine the tradeo� between the runtime (
ost) of the test and its a

ura
y.3.2 Message LengthsThe performan
e of data movement, whether for message-passing or simple mem-ory 
opies, is not a simple fun
tion of length. Instead, the performan
e is likely to
onsist of a number of sudden steps as various thresholds are 
rossed. Samplingat regular or prespe
i�ed data lengths 
an give misleading results. The mpptestprogram 
an automati
ally 
hoose message lengths. The rule that mpptest usesis to attempt to eliminate artifa
ts in a graph of the output. It does this by 
om-puting three times: f(n0), f(n1), and f((n0 + n1)=2), where f(n) is the time tosend n bytes. Then mpptest estimates the error in interpolating between n0 andn1 with a straight line by 
omputing the di�eren
e between (f(n0) + f(n1))=2and f((n0 + n1)=2). If this value is larger than a spe
i�ed threshold (in relative



terms), the interval [n0; n1℄ is subdivided into two intervals, and the step is re-peated. This 
an 
ontinue until a minimum separation between message lengthsis rea
hed.3.3 S
heduling of TestsThe events that 
ause perturbations in the timing of a program 
an last manymillise
onds or more. Thus, a simple approa
h that looks for the minimum ofaverages within a short span of time 
an be 
onfused by a single, long-runningevent. As a result, it is important to spread the tests for ea
h message lengthover the full time of the 
hara
terization run. A sket
h of the appropriate mea-surement loop is shown below:for (number of repetitions) {for (message lengths) {Measure time for this lengthif this is the fastest time yet, a

ept it}}Note that this approa
h has the drawba
k that it doesn't produ
e a steadystream of results; only at the very end of the test are �nal results available.However, it 
omes mu
h 
loser to what 
areful resear
hers already do|run thetest several times and take the best results. This helps address 
ontention withother appli
ations or jobs (issue 2), though does not solve this problem.Tests with anomalously high times, relative to surrounding tests, are auto-mati
ally rerun to determine if those times re
e
t a property of the 
ommuni
a-tion system or are the result of a momentary load on the system. This also aidsin produ
ing reprodu
ible results.Note also that it is important to run a number of 
y
les of this loop before re-�ning the message intervals. Otherwise, noise in the measurements 
an generateunneeded re�nements.3.4 Test OperationsRather than test only a single operation, su
h as the usual \ping pong" or round-trip pattern, our tests provide for a wide variety of tests, sele
ted at run timethrough 
ommand line arguments. The following list summarizes the availableoptions and relates them to the issues in Se
tion 2.Number of pro
essors. Any number of pro
essors 
an be used. By default,only two will 
ommuni
ate (this tests for s
alability in the message-passingimplementation itself; see issue 12). With the -bise
t option, half of thepro
essors send to the other half, allowing measurement of the bise
tionbandwidth of the system (issue 6).Ca
he e�e
ts. The 
ommuni
ation tests may be run using su

essive bytes ina large bu�er. By sele
ting the bu�er size to be larger than the 
a
he size,all 
ommuni
ation takes pla
e in memory that is not in 
a
he (issue 10).



Communi
ation Patterns. A variety of 
ommuni
ation patterns 
an be spe
-i�ed for the bise
tion 
ase, addressing issue 13. In addition, both \ping pong"and head-to-head 
ommuni
ation is available when testing two 
ommuni
at-ing pro
esses. More are needed, in parti
ular to make it easier to simulatean appli
ation's 
ommuni
ation pattern (issue 11).Corre
tness. Corre
tness is tested by a separate program, stress. This pro-gram sends a variety of bit patterns in messages of various sizes, and 
he
ksea
h bit in the re
eive message. Running this test, along with the perfor-man
e 
hara
terization tests for large message sizes, addresses issue 8.Communi
ation and 
omputation overlap. A simple test using a �xed mes-sage length and a variable amount of 
omputation provides a simple mea-surement of 
ommuni
ation/
omputation overlap, addressing issue 4.Nonblo
king Communi
ation. Nonblo
king 
ommuni
ation is important; inmany appli
ations, using nonblo
king 
ommuni
ation routines is the easiestway to ensure 
orre
tness by avoiding problems related to �nite bu�ering.The performan
e of nonblo
king routines 
an be di�erent from the that ofthe blo
king routines. Our tests in
lude versions for nonblo
king routines(issue 3).4 ExamplesThis se
tion shows the 
apabilities of the mpptest 
hara
terization program inthe 
ontext of spe
i�
 examples.Dis
ontinuous Behavior The need for adaptive message length 
hoi
e 
an be seenin Figure 1(a). This illustrates why the simple laten
y and bandwidth model isinappropriate as a measure of performan
e of a system.We see the stair-steps illustrating message pa
ket sizes (128 bytes). We alsosee the 
hara
teristi
 
hange in proto
ol for longer messages. Here it looks likethe proto
ol 
hanges at 1024 bytes, and that it is too late. The implementationis not making an optimal de
ision for the message length at whi
h to swit
hmethods; slightly better performan
e 
ould be a
hieved in the range of 768 to1024 bytes by using the same method used for longer messages.Figures 1(
) shows the behavior for nonblo
king sends instead of blo
kingsends. Note the small but measurable overhead 
ompared with Figure 1(a).Ca
he Performan
e E�e
ts Performan
e tests often use the same, relativelysmall, data arrays as the sour
e and destination of messages. In many appli
a-tions, data is moved from main memory, not from 
a
he. Figure 1(b) shows anexample where the performan
e with data in 
a
he is better than when the datais not in 
a
he, both in absolute terms and in the trend (lower slope for in-
a
hedata).Variation in Performan
e In an appli
ation, the minimum times for an operationmay not be as important as the average or maximum times. Figure 1(d) shows



Fig. 1. Example results generated by mpptest on several platforms. Graph (a) showsan example of dis
ontinuous performan
e identi�ed by mpptest. Note the sharp dropin laten
y for zero bytes, the signi�
ant steps up to 1024 bytes, and the lower slopebeyond 1024 bytes. Graph (b) shows an example of the 
hange in performan
e betweendata in 
a
he (dashed line) and not in 
a
he (solid line). Graph (
) shows the extra 
ostof using nonblo
king sends. Graph (d) gives an example of the variation in performan
eeven on a system 
ommuni
ating with shared-memory hardware (see text for details).



the variations in times on a lightly-loaded shared-memory system. This graphis very interesting in that the minimum (bottom line) and average times (dots)are 
lose together in most pla
es, but the maximum observed time (top line)
an be quite large. The peaks seem to line up with the transitions; however,sin
e there are more measurements near the transitions, the 
orrelation may bean a

ident. Further testing, parti
ularly with the evenly spa
ed message sizes,would be required to determine if those peaks o

urred only at the transitions.5 Con
lusionWe have illustrated the diÆ
ulty in 
hara
terizing performan
e and have dis-
ussed how the MPICH performan
e 
hara
terization programs 
an be usedto dis
over properties of the parallel environment. The software is freely avail-able from http://www.m
s.anl.gov/mpi/mpi
h/perftest orftp://ftp.m
s.anl.gov/pub/mpi/mis
/perftest.tar.gz.Referen
es1. Ben
hweb. World Wide Web. http://www.netlib.org/ben
hweb/.2. Parkben
h Committee. Publi
 international ben
hmarks for parallel 
omputers.S
ienti�
 Programming, 3(2):101{146, 1994. Report 1.3. W. Gropp and E. Lusk. A high-performan
e MPI implementation on a shared-memory ve
tor super
omputer. Parallel Computing, 22(11):1513{1526, January1997.4. W. D. Gropp and E. Lusk. Experien
es with the IBM SP1. IBM Systems Journal,34(2):249{262, 1995.5. J. Piernas, A. Flores, and J. M. Gar
�ia. Analyzing the performan
e of MPI in a
luster of workstations based on fast Ethernet. In Marian Bubak, Ja
k Dongarra,and Jerzy Wa�sniewski, editors, Re
ent advan
es in Parallel Virtual Ma
hine andMessage Passing Interfa
e, volume 1332 of Le
ture Notes in Computer S
ien
e,pages 17{24. Springer, 1997. 4th European PVM/MPI Users' Group Meeting.6. Mi
hael Res
h, Holger Berger, and Thomas Boenis
h. A 
omparision of MPI perfor-man
e on di�erent MPPs. In Marian Bubak, Ja
k Dongarra, and Jerzy Wa�sniewski,editors, Re
ent advan
es in Parallel Virtual Ma
hine and Message Passing Inter-fa
e, volume 1332 of Le
ture Notes in Computer S
ien
e, pages 25{32. Springer,1997. 4th European PVM/MPI Users' Group Meeting.7. R. Reussner, P. Sanders, L. Pre
helt, and M M�uller. SKaMPI: A detailed, a

urateMPI ben
hmark. In Vassuk Alexandrov and Ja
k Dongarra, editors, Re
ent advan
esin Parallel Virtual Ma
hine and Message Passing Interfa
e, volume 1497 of Le
tureNotes in Computer S
ien
e, pages 52{59. Springer, 1998. 5th European PVM/MPIUsers' Group Meeting.


